
Münster Curry

User’s Guide

Release 0.9.11

Wolfgang Lux

June 10, 2007

1

Contents

1 Overview 5

2 Installation 5
2.1 Binary Distribution . 5
2.2 Source Distribution . 6

2.2.1 Porting to a New Architecture . 9
2.2.2 Building the Documentation . 9
2.2.3 Building universal libraries and programs on Mac OS X 10

2.3 Installation on Microsoft Windows . 10
2.3.1 CygWin . 10
2.3.2 MinGW . 11

3 Using the Compiler 11
3.1 Overall Options . 12
3.2 Compiling Curry Modules . 12
3.3 Compiling C Files . 14
3.4 Linking . 14
3.5 Environment . 16
3.6 Examples . 16
3.7 Running Programs . 17

4 Using the Debugger 18
4.1 Trusted functions . 19

5 Building programs with cymake 19
5.1 Options . 20
5.2 Environment . 21
5.3 Modules and the Filesystem . 21
5.4 Using Libraries . 22
5.5 Using make . 23

6 Using the Interactive Environment 23
6.1 Goals . 23
6.2 Commands . 24
6.3 Limitations . 25
6.4 Example Session . 25

7 Libraries 26
7.1 Prelude . 28
7.2 Haskell 98 Library . 30

7.2.1 Ratio . 30
7.2.2 Complex . 30
7.2.3 Numeric . 30

2

7.2.4 Ix . 30
7.2.5 Array . 30
7.2.6 List . 30
7.2.7 Maybe . 30
7.2.8 Char . 31
7.2.9 Monad . 31
7.2.10 IO . 31
7.2.11 Directory . 31
7.2.12 System . 31
7.2.13 Time . 31
7.2.14 Locale . 31
7.2.15 CPUTime . 31
7.2.16 Random . 32

7.3 Foreign Function Interface . 32
7.3.1 Foreign . 32
7.3.2 Bits . 32
7.3.3 Int . 32
7.3.4 Word . 32
7.3.5 Ptr . 32
7.3.6 ForeignPtr . 32
7.3.7 StablePtr . 33
7.3.8 Storable . 33
7.3.9 MarshalAlloc . 33
7.3.10 MarshalArray . 33
7.3.11 MarshalError . 33
7.3.12 MarshalUtils . 33
7.3.13 CForeign . 33
7.3.14 CTypes . 33
7.3.15 CString . 34
7.3.16 CError . 34

7.4 Library Modules Compatible with PAKCS 34
7.4.1 AllSolutions . 34
7.4.2 Combinatorial . 35
7.4.3 Float . 36
7.4.4 Integer . 37
7.4.5 Parser . 39
7.4.6 Ports . 40
7.4.7 Read . 41
7.4.8 Socket . 42
7.4.9 Unsafe . 43

7.5 Library Modules Specific to the Münster Curry Compiler 43
7.5.1 FiniteMap . 43
7.5.2 IOExts . 44
7.5.3 IOVector . 46

3

7.5.4 Lexing . 46
7.5.5 NameSupply . 47
7.5.6 Set . 48
7.5.7 Success . 50
7.5.8 Trace . 50

8 Extensions and Limitations 51
8.1 Extensions . 51

8.1.1 Polymorphic Integer Literals and Negation 51
8.1.2 Disequality Constraints . 51
8.1.3 Existentially Quantified Types . 52
8.1.4 Partial Applications in Equality and Disequality Constraints . . . 53
8.1.5 Fixity Declarations . 54
8.1.6 Lazy Patterns . 54
8.1.7 Type Renamings . 55
8.1.8 Expression Type Signatures . 56
8.1.9 Constraint Guards in Case Expressions 56
8.1.10 Constructor Operators . 57
8.1.11 No Automatic Eta-expansion of Function Definitions 57
8.1.12 Generalized Function Left-Hand Sides 58
8.1.13 Polymorphic Generalization of Let-Bound Variables 58
8.1.14 Mutually Recursive Variable Bindings 59
8.1.15 Extended Import/Export Specifications 59
8.1.16 Foreign Function Interface . 60

8.2 Limitiations and Incompatibilities . 61
8.3 Known Bugs . 63

9 Common Problems and Solutions 64

10 Release History 66

4

1 Overview

The Münster Curry compiler is a mature native code compiler for the declarative multi-
paradigm language Curry [Han06]. The language supported by the compiler is compatible
with version 0.8.2 of the Curry report except for some minor differences with respect to
the module system. Many syntax extensions including newtype declarations, infix data
constructors, lazy patterns, and recursive pattern bindings are available for compatibility
with Haskell [Pey03].1 Other supported extensions include existentially quantified data
types, disequality constraints, and I/O exceptions. A distinctive feature of the Münster
Curry compiler is the integration of a declarative debugger of wrong answers [CL02]. An
interactive Curry environment and a make-like build tool for Curry programs are also
part of the distribution. A graphical user interface is available separately for Mac OS X.

The Münster Curry compiler is portable to many Unix operating systems with pre-
compiled binaries being available for Linux (i386), Mac OS X, and eventually other Unix
variants. It is possible to build and use the Münster Curry compiler on Windows systems
using the CygWin and MinGW environments. The only additional software needed for
compiling and running Curry programs is the Gnu C compiler. Building and installing
the Münster Curry compiler from its sources requires a Haskell 98 compiler, too. Build-
ing and installing the compiler from source and binary distributions can be achieved
with the commands

./configure
make install

in most cases.
Source and binary distributions as well as further information can be found at

http://danae.uni-muenster.de/~lux/curry.

2 Installation

2.1 Binary Distribution

Precompiled binary distributions are available for Linux (i386), Mac OS X, and eventu-
ally other systems. After unpacking the archive, change into the directory corresponding
to your platform and run the configure script in that directory. You can then use the
scripts2 cyc, cymake, and cyi from the bin directory (e.g., by setting up soft links
from a directory which is included in $PATH) or install the compiler with make install.
It is possible to uninstall the compiler with the command make uninstall. By de-
fault, the compiler binaries are installed in the directory /usr/local/bin, interface
files, header files, and libraries in /usr/local/lib/curry-0.9.11, and manual pages in
/usr/local/man/man1.

1Type classes and the record syntax may be supported in future releases.
2The scripts cyc, cymake, and cyi are in fact soft links to cyc-0.9.11, cymake-0.9.11, and

cyi-0.9.11, respectively, allowing multiple versions of the Münster Curry compiler to coexist on a
single machine.

5

http://www.informatik.uni-kiel.de/~mh/curry/
http://danae.uni-muenster.de/~lux/curry

The configure script is a standard Gnu configure script that understands the following
options:

--prefix=prefix Use prefix instead of /usr/local as base directory for the instal-
lation. For instance, in order to install the compiler in the directories bin and
lib/curry-0.9.11 in your home directory, you can use the command configure --prefix=$HOME.

--bindir=bindir Install the compiler binaries in directory bindir instead of /usr/local/bin.

--libdir=libdir Install the library files in directory libdir/curry-0.9.11 instead of
/usr/local/lib/curry-0.9.11.

--mandir=mandir Install the manual pages in directory mandir/man1 instead of /usr/local/man/man1.

2.2 Source Distribution

The Münster Curry compiler is known to work under Linux (Intel i386, AMD x86-64,
Power PC), NetBSD i386, FreeBSD, Solaris for Sparc, Mac OS X, and will probably run
out of the box on most other Unix operating systems as well.

In order to rebuild the Münster Curry compiler from its sources, you need a Haskell
98 compiler and a modern make. It is recommended to use ghc for compiling Haskell
sources, but hbc and nhc98 are supported as well. The makefiles are known to work with
Gnu make, BSD make, and Solaris’ make command. They may work with other make
commands, too.

Compilation from the unpacked source directory is achieved with the commands

./configure
make

After successful compilation, you can use the scripts3 cyc, cymake, and cyi from the
build directory (e.g., by setting up soft links from a directory which is included in $PATH)
or install the compiler with the command make install. An installed compiler can be
uninstalled with the command make uninstall.

The configure script automatically determines the required software. In particular,
it will check for one of the supported Haskell compilers in the path, trying ghc, hbc, and
nhc98 in that order. It is also possible to select a particular compiler with the --with-hc
option.

The configure script understands the following options.

--prefix=prefix Use prefix instead of /usr/local as base directory for the instal-
lation. For instance, in order to install the compiler in the directories bin and
lib/curry-0.9.11 in your home directory, you can use the command configure --prefix=$HOME.

--bindir=bindir Install the compiler binaries in directory bindir instead of /usr/local/bin.
3The scripts cyc, cymake, and cyi are in fact soft links to cyc-0.9.11, cymake-0.9.11, and

cyi-0.9.11, respectively, allowing multiple versions of the Münster Curry compiler to coexist on a
single machine.

6

--libdir=libdir Install the library files in directory libdir/curry-0.9.11 instead of
/usr/local/lib/curry-0.9.11.

--mandir=mandir Install the manual pages in directory mandir/man1 instead of /usr/local/man/man1.

--with-hc=hc Use the command hc for compiling Haskell sources. E.g., if you have ghc
and hbc installed on your machine and prefer building the compiler with hbc, you
can use configure --with-hc=hbc. configure will check that the compiler hc is
a supported Haskell 98 compiler.

--disable-ghc-make With this option, you can specify that ghc’s --make option should
not be used and Haskell source files are compiled individually. The advantage of
this configuration is that it allows you to specify options for particular source files
on the make command line. E.g., if you want to build a compiler for profiling and
get profiling data for all top-level functions in file TypeCheck.lhs, you can use the
command

make HCFLAGS=’-prof -auto’ TypeCheck_HCFLAGS=-auto-all

This option has no effect when hbc or nhc98 are used.

--disable-stdlib This option disables compilation of all library modules except for
the prelude.

--disable-debug This option disables compilation of the Curry libraries with debug-
ging information. Note that the compiler still can be used for compiling modules
with debugging information, but you will be unable to build programs from these
modules due to missing definitions for the standard library. This option is useful
in order to speed up compilation on a slow machine if you do not intend to use the
debugger.

--disable-occurs-check The semantics of Curry requires performing an occurs check
in equality and disequality constraints in order to avoid constructing cyclic data
terms. With this option, the occurs check can be disabled. This can improve perfor-
mance on some examples, but may lead to worse performance and non-termination
on others. Using this option is not recommended.

--enable-stability This flag enables some experimental code that suspends threads
performing a non-deterministic instantiation of variables while other deterministic
computations can be run. This strategy is known as stability from AKL and Oz.
For instance, given the definitions

data Nat = Z | S Nat
nat Z = success
nat (S n) = nat n

7

the expression let n free in nat n & n =:= S Z is evaluated deterministically
because the deterministic binding of n in the equality constraint will get precedence
over the non-deterministic instantiation of n in nat.

--enable-copying By default, the bindings of local variables in different solutions of a
search goal are managed with an extended trailing scheme. This option enables an
alternative implementation, where independent copies of the search goal are used
for each branch of the goal’s search tree. This allows for a slightly more efficient
execution of deterministic code, but can slow down non-deterministic code consid-
erably in some situations. See [Lux04] for a comparison of both configurations.

--enable-trampoline By default, the compiler uses some extensions of the Gnu C
compiler in order to implement tail calls efficiently by inserting assembler jump
instructions into the code. This trick works on many architectures, but is not fully
portable. For instance, it does not work under Mac OS X and is also incompatible
with building code for shared libraries on most systems.

If the compiler is configured with --enable-trampoline, it uses a portable but
slower implementation where a global loop (the so-called trampoline) is used for
dispatching tail calls. If your Curry programs keep crashing with bus errors or
segmentation faults try reconfiguring the compiler with this option. Note that
--enable-trampoline is the default when using a C compiler other than Gnu C
and also on Mac OS X.

--disable-pointer-tags Normally, the runtime system encodes character values and
integer values that fit into n− 1 bits, where n is the number of bits in a machine
word, in pointers rather than allocating a node in the heap for them. This im-
proves efficiency mostly due to avoiding allocation, but makes pattern matching
and character and integer operations slightly more complex. When the system is
configured with --disable-pointer-tags, all characters and integer numbers are
allocated in the heap. This option is useful only for measuring the performance
gain of the default configuration and is not recommended otherwise.

--disable-mprotect In order to detect errors in the two-space copying garbage col-
lector early, the runtime system makes the inactive semi-space of the heap inac-
cessible using the mprotect(2) system call. This requires that mprotect is able
to protect individual memory pages, which should be the case on most operating
systems. The configure script checks only for the availability of the mprotect call,
but does not check whether it actually works. On systems where mprotect exists,
but is not able to protect individual pages, its use can be disabled by passing the
--disable-mprotect option to configure.

--enable-cam2c The source distribution includes a compiler from abstract machine
code to C. This compiler is built by default only when the --enable-cam2c option
is passed to configure. Note that this compiler is mainly intended for testing
the C code generator of the Curry compiler and is not other integrated with the
compiler.

8

--enable-mach The source distribution also includes an interpreter for the abstract
machine underlying the implementation of the Münster Curry compiler. This in-
terpreter is built when the --enable-mach option is passed to configure. Note
that the interpreter is poorly maintained and may be removed in a future release.

2.2.1 Porting to a New Architecture

The Münster Curry compiler was designed to be as portable as possible and should
work on systems where an ANSI C compiler and a POSIX compatible environment are
available. It has been tested on different 32-bit and 64-bit architectures, and should work
on all 32-bit and 64-bit systems where the size of a C long is equal to that of a pointer.

In order to generate efficient code, the Münster Curry compiler uses some Gnu C
extensions which work on a lot of architectures, but are not strictly portable. In partic-
ular, the default code generation model is incompatible with position independent code
on most architectures. On systems where position independent code is the default – e.g.,
Apple’s Mac OS X and IBM’s AIX – and eventually on other systems, the compiler
may have to be configured with the --enable-trampoline option in order to produce
working executables.4

In order to test the compiler on an unsupported architecture, you can use the test
suites in http://danae.uni-muenster.de/~lux/curry/examples.tar.gz and http:
//danae.uni-muenster.de/~lux/curry/more-examples.tar.gz. After unpacking the
archives, execute make test CYC=path-to-cyc for both of them. This should report All
tests completed successfully at the end. In that case, you can ignore the error
messages produced while running the tests. Otherwise, send a bug report to wlux@uni-
muenster.de.

2.2.2 Building the Documentation

The internal documentation of the Münster Curry compiler, which describes the compiler
and runtime system implementation, can be built from the build directory by invoking
either make curry.dvi or make curry.pdf depending on the format you prefer. These
targets require a working LATEX installation (which must include pdflatex in order to
build curry.pdf) and in addition noweb.sty from Norman Ramsey’s noweb literate
programming tool5.

The source distribution includes pre-built TEX sources for the runtime system, which
were created with noweb version 2.10c. These files may cause errors when used together
with a noweb.sty from an earlier noweb release. In that case you have two options. Either
upgrade noweb from a CTAN mirror or remove all .tex files except for runtime.tex
from the runtime directory in the source tree. This is achieved best by changing into the
runtime directory in your build(!) directory and invoking make maintainerclean there.
Note that this will also remove the .h and .c files in the runtime directory and cause

4In fact, this option is already the default on Mac OS X systems.
5http://www.eecs.harvard.edu/~nr/noweb/

9

http://danae.uni-muenster.de/~lux/curry/examples.tar.gz
http://danae.uni-muenster.de/~lux/curry/more-examples.tar.gz
http://danae.uni-muenster.de/~lux/curry/more-examples.tar.gz
mailto:wlux@uni-muenster.de
mailto:wlux@uni-muenster.de
http://www.eecs.harvard.edu/~nr/noweb/

them to be rebuilt with your local noweb installation when the runtime system is built
with make the next time.

On Mac OS X, if you have TeXShop6 installed, you can use it in order to typeset
the documentation by using make TeXShop instead of make curry.pdf. However, in
contrast to the standard targets, the TeXShop target does not yet take care of invoking
bibtex when necessary or typesetting the document once again if the cross references
were updated.

2.2.3 Building universal libraries and programs on Mac OS X

It is easily possible to build the Münster Curry compiler with universal libraries that
can be used on both Intel and PowerPC based Macintosh computers by passing appro-
priate -arch options to the C compiler either during configuration or while building the
compiler. For instance, the command

./configure CFLAGS=’-arch i386 -arch x86_64 -arch ppc -g -O2’

will configure the Münster Curry compiler such that it can be used to link native exe-
cutables on Intel based machines in 32-bit and 64-bit modes as well as on 32-bit PowerPC
machines. It is also possible to build universal programs by specifying the appropriate
-arch options during the link step (see Sect. 3.1).

2.3 Installation on Microsoft Windows

The Münster Curry compiler can be built on Windows systems with CygWin as well as
with MinGW.

2.3.1 CygWin

In order to build the Münster Curry compiler with CygWin, the development packages
(make, gcc) and a working Haskell compiler are required. Currently, this appears to work
only for the native Win32 binaries of ghc. The installation instructions below are derived
from notes kindly provided by Diego Berrueta.
Note: In the following, <CYGWIN> represents the directory where CygWin is installed.

1. Install the Win32 version of ghc in <CYGWIN>/usr/local/ghc.

2. Add /usr/local/ghc/bin to the path. Make sure that the executable is found by
typing ghc -v in the CygWin console. This should print out a long list configura-
tion and package information for ghc.

3. Unpack the sources of the Münster Curry compiler in some convenient place and
change into the curry-0.9.11 directory.

4. Configure, compile, and install the compiler:
6http://darkwing.uoregon.edu/~koch/texshop/texshop.html

10

http://darkwing.uoregon.edu/~koch/texshop/texshop.html

./configure
make
make install

5. Ready to test. Make sure that /usr/local/bin is in your PATH.

2.3.2 MinGW

In order to build the Münster Curry compiler with MinGW, a minimal development en-
vironment (gcc-core, binutils, mingw-runtime, and win32-api) is needed. In addition, the
MSYS shell must be installed and a working Haskell compiler is required. The compiler
can be built with the usual commands

./configure
make
make install

The last step may be omitted and the compiler can be used from its build directory,
too. Note that at present, the networking related functions from modules IOExts and
Socket do not work with MinGW.

3 Using the Compiler

The Curry compiler is invoked with the command cyc. Normally, it performs compi-
lation, assembly, and linking. The “overall options” allow stopping this process at an
intermediate stage. For example, the -c option says not to run the linker. The output
then consists of object files output by the assembler.

Other options control one stage of processing; for instance, the --debug option tells
cyc to compile Curry modules such that they can be evaluated by the declarative de-
bugger (see Sect. 4).

The cyc program accepts options and file names as operands. Options and file names
can be mixed on the command line. In general, the order of options is not relevant
with the exception of additional libraries specified with -l options. On many systems,
these should be specified last on the command line in order to ensure proper linking of
programs.

The order of file names does matter as it determines the order in which the files
are compiled. In particular, it is essential to specify Curry source modules such that
each module is compiled before any module that depends on it. cyc compiles and links
exactly those files which are named on the command line and does not include imported
modules automatically. In general, you should use cymake (see Sect. 5) in order to build
programs composed of more than one source module.

The source language of a file and the associated processing is determined by the file
name extension. Argument names which end with .curry are taken to be Curry source,
names ending in .lcurry are taken to be literate Curry source, names ending in .c are

11

taken to be C code, names ending in .s are taken to be assembler programs, and .o are
object files.

By default, a program linked with cyc executes the main function in the main module
of the program. The compiler assumes that the last Curry source file appearing on
the command line defines the main module. A different main module can be specified
explicitly with the -M option. It is possible to specify a different goal with the -e option.
See Sect. 6.1 for a description of the syntax of goals. If the type of the goal is IO t, for some
arbitrary type t, the program executes the corresponding I/O action. Otherwise, the goal
is evaluated and its solutions are presented incrementally on the standard output.

3.1 Overall Options

The following options control the general processing of source files.

-n Do not execute any command, but display each command that normally would be
executed.

-q This option has no effect.

-v Display each command before it is executed by cyc.

-C Stop processing after generating C code from the Curry source modules.

-S Stop processing after generating assembler code from the Curry and C source files.

-c Compile and assemble the source file but do not link.

-o file Place the output in a file named file. Since only one output file can be specified,
it does not make sense to use -o when compiling more than one input file unless
you are producing an executable file as output.

If -o is not specified, the default is to put an executable file in a.out, the object
file for source.suffix in source.o, its assembler file in source.s, and its C file in
source.c.

-arch arch Mac OS X: Compile for the specified target architecture arch. Multiple
options work, and direct the compiler to produce “universal” binaries. Using this
option on other systems is likely to produce a C compiler error.

3.2 Compiling Curry Modules

The names of Curry source files must end with .curry or .lcurry. The latter are
taken to contain literate Curry source and are deliterated first. All Curry source files
are compiled into C code. In addition, for every source file file.curry and file.lcurry,
respectively, the compiler creates a file file.icurry containing the module’s interface.
The compiler uses module interfaces when processing import declarations in a source
module. In order for the compiler to find the interfaces of imported modules, the name
of the source file should agree with its module name. Hierarchical module names of the

12

form A.B.C are mapped onto the filesystem as in Java, i.e., the compiler expects to find
the interface of this module in file C.icurry in directory A/B relative to the directory
where the compiler was invoked or to one of the directories specifying the import search
path (see also Sect. 5.3).

The following options control the compilation of Curry source into C code.

-g Deprecated synonym for --debug.

--debug Prepare the compiled code for executing the program with the declarative
debugger.

Note that code compiled with this option is incompatible with code compiled
without this option. This option must therefore be used consistently for compiling
and linking all modules of a program.

--trusted This flag has an effect only in conjunction with one of previous options. It
tells that debugger that it can trust all functions from a module compiled with
this flag. The debugger will not ask questions about such functions.

-idir Add directory dir to the list of paths used to locate interface files. By default,
the compiler searches for interface files in the current directory and in its standard
library directory (usually /usr/local/lib/curry-0.9.11).

The directory dir is also added to the list of paths used to locate header files, as
if -Idir was present on the command line.

-Pdir Add directory dir to the list of paths used to locate interface files. By default,
the compiler searches for interface files in the current directory and in its standard
library directory (usually /usr/local/lib/curry-0.9.11) .

The directory dir is also added to the lists of paths used to locate header and
library files, respectively, as if -Idir and -Ldir were present on the command line.

-Whaskell

-Wprolog

-Wgoedel Warn whenever a definition does not obey the selected case mode (cf. Sect.
C.1 of the Curry report [Han06]).

-Wall Enable all warnings below.

-Wunused Enable all unused warnings below.

-Wunused-data Warn whenever a data constructor is not used.

-Wunused-decl Warn whenever a function or pattern declaration is not used.

-Wunused-var Warn whenever a function or pattern argument is not used.

-Wshadow Warn whenever a local declaration shadows a declaration from an outer
scope.

13

-Woverlap Warn whenever a function’s equations have overlapping left hand sides.

-Hsize Change the heap size used by the compiler to size. It is possible to use the
abbreviations sizek and sizeM to specify the heap size in kBytes and MBytes,
respectively.

Note that this option does not effect the heap size of the compiled executable. Use
-hsize for this (see Sect. 3.4).

3.3 Compiling C Files

The following list describes only the most common options understood by cyc when
compiling C source either directly or as a result of previously compiling Curry source
into C code. In fact, cyc passes on most of its options to the C compiler. For a detailed
description of these options see the Gnu C man pages and documentation.

-Dname Predefine name as a macro, with definition 1.

-Dname=defn Predefine name as a macro with definition defn.

-Uname Cancel any previous definition of name, either built in or provided with a -D
definition.

-Idir Add directory dir to the list of paths used to locate header files. The standard
library directory (usually /usr/local/lib/curry-0.9.11) is always included in
this list.

-Fdir Mac OS X: Add the framework directory dir to the list of paths used to locate
header files. Using this option on other systems is likely to produce a C compiler
error.

-O equivalent to -O1

-Olevel Controls optimization of the compiled code. -O0 disables all optimizations.
Note that -O3 and higher levels will fail to produce valid code for Curry modules
on many architectures.

--ccopt opt Passes the option opt to the C compiler without interpretation. For in-
stance, in order to include debugging symbols in the compiled C code, invoke the
compiler with --ccopt -g.

--ccopts opts Passes each option from the comma separated list opts to the C compiler
without further interpretation.

3.4 Linking

The following options are relevant while linking a program. The compiler creates a tiny
C code file in this phase, which contains the startup code initializing the Curry runtime
system and starting the evaluation of the goal. This file is compiled like other C code
during the link phase.

14

-g Deprecated synonym for --debug.

--debug Compile a program that invokes the declarative debugger. All Curry modules
must have been compiled with the --debug option as well.

-hsize Use size bytes for the heap of the Curry program. Note that actually twice as
much memory is allocated for the heap because the runtime system uses a two-space
copying collector. The abbreviations sizek and sizeM can be used for specifying the
size in kBytes and MBytes, respectively. The default is to use a 4 MByte heap.

-ksize Use size bytes for the stack of the Curry program. The abbreviations sizek and
sizeM can be used for specifying the size in kBytes and MBytes, respectively. The
default is to use a 512 kByte stack.

-tsize Use size bytes for the trail stack of the Curry program. The abbreviations sizek
and sizeM can be used for specifying the size in kBytes and MBytes, respectively.
The default is to use a 512 kByte trail stack.

-f Print all failures during execution of a non-deterministic goal. If given multiple times,
print also failures inside encapsulated search.

-p Print cumulated execution times and memory usage statistics at the end of the run.
If specified more than once, also print memory statistics at each garbage collection.

-egoal Evaluate goal instead of main. See Sect. 6.1 for a description of the goal syntax.
The goal is evaluated with respect to the modules specified with -M options and
the Curry source files appearing on the command line. All entities exported from
the Prelude and the Curry source file that appears last on the command line or
the last module specified with a -M option, if there are no source file arguments, are
in scope with unqualified and qualified names. The exported entities of all other
modules are in scope with qualified names only.

-Tgoal Compute the type of goal. See Sect. 6.1 for a description of the goal syntax. The
goal ’s type is computed with respect to the modules specified with -M options and
the Curry source files appearing on the command line. All entities exported from
the Prelude and the Curry source file that appears last on the command line or
the last module specified with a -M option, if there are no source file arguments, are
in scope with unqualified and qualified names. The exported entities of all other
modules are in scope with qualified names only.

-Mmodule Brings all entities exported from module into scope with their qualified
names for a goal specified with the -e and -T options. By default, only the entities
exported from the Prelude and the Curry source files occurring on the command
line are in scope. The entities exported from the Prelude and the last source file
appearing on the command line or specified with the last -M option, if there are no
source file arguments, are brought into scope with their unqualified names, too.

15

Module is either the name of a source file (ending in .lcurry or .curry), the name
of an interface file (ending in .icurry), or the name of a module whose interface
can be located in the interface search path.

-Ldir Add directory dir to the list of paths used to locate libraries specified with -l op-
tions. The standard library directory (in the standard configuration: /usr/local/lib/curry-0.9.11)
is always included in this list.

-llib Search the library named lib when linking.

-framework name Mac OS X: Link against framework name. Using this option on
other systems is likely to produce a C compiler error.

--ldopt opt Passes the option opt to the C compiler without interpretation. In contrast
to --ccopt (see Sect. 3.3), opt is used only during the link phase.

--ldopts opts Passes each option from the comma separated list opts to the C compiler
without further interpretation. As with --ldopt, opts are used only during the link
phase.

3.5 Environment

CURRY PATH The environment variable CURRY_PATH is used to locate the compiler
executables. The default value is /usr/local/lib/curry-0.9.11.

CURRY IMPORT PATH

CURRY INCLUDE PATH

CURRY LIBRARY PATH The environment variables CURRY_IMPORT_PATH, CURRY_INCLUDE_PATH,
and CURRY_LIBRARY_PATH contain colon-separated lists of directories that are searched
for imported interfaces, included header files, and library files, respectively. Their
default value is $CURRY_PATH.

3.6 Examples

cyc test.curry

This command compiles and links the Curry module in test.curry. The executable is
put in a.out and evaluates the main function in test.curry.

cyc -h12M -O2 A.lcurry B.lcurry -o B

This command compiles and links the Curry modules in A.lcurry and B.lcurry in that
order. Both files are assumed to contain literate Curry source. The code is optimized by
the C compiler using optimization level 2. The executable is put in file B. It evaluates
the main function in B.lcurry and uses a larger default heap (12 MBytes).

cyc -c nat.curry
cyc -e "add n Z =:= S Z where n free" nat.o -Mnat -o one

16

The first of these commands compiles the Curry module in nat.curry and places the
object file in nat.o. The second command then links the object file into a program which
evaluates the goal add n Z =:= S Z where n free in the context of this module. Note
that this context must be specified explicitly with a -M option because no Curry module
was named on the second command line. The executable is placed in one.

cyc -e "length Xs where Xs free"

This command compiles and links a program that evaluates the goal length Xs where
Xs free. The executable is placed in a.out.

3.7 Running Programs

The operation of a Curry program depends on the type of the goal being evaluated.
If it is of type IO t, the I/O action described by the goal is executed. All command
line arguments except for the runtime system options (see below) are available to the
program and can be accessed with the function System.getArgs.

If the goal’s type is not IO t, the program computes and prints the solutions of the goal
with a depth first search strategy. A solution comprises the normal form of the goal and
the bindings and constraints for its free variables. When run on an interactive terminal,
solutions are presented one by one giving the user a chance to stop the computation
after each solution. Otherwise, all solutions of the goal are computed.

This behavior can be changed by passing one of the options -i and -n to the program.
If invoked with -i, the program computes the solutions incrementally as if it were run
on an interactive terminal. If invoked with -n, the goal’s solutions are computed all at
once.

All Curry programs run with fixed size heap, stack, and trail. Their sizes can be
specified at link time (see Sect. 3.4), but can be changed at run-time by passing options to
the Curry runtime system. Such options must be enclosed with +RTS and -RTS arguments
on the command line. The -RTS switch may be omitted if it is the last argument on the
command line.

The Curry runtime system understands the following options:

-b mode Use buffer mode mode for the standard input and output of the program
where the following modes are recognized
n Unbuffered
l Line buffered
f[n] Fully buffered

The optional number n allows specifying the buffer size when using fully buffered
mode.

-h n Use n bytes for the heap in this run of the program. Note that actually twice as
much memory is allocated for the heap because the runtime system uses a two-
space copying collector. The abbreviations nk and nM can be used for specifying
the size in kBytes and MBytes, respectively.

17

-k n Use n bytes for the stack in this run of the program. The abbreviations nk and
nM can be used for specifying the size in kBytes and MBytes, respectively.

-t n Use n bytes for the trail stack in this run of the program. The abbreviations nk
and nM can be used for specifying the size in kBytes and MBytes, respectively.

-f Print all failures during execution of a non-deterministic goal. If given multiple times,
print also failures inside encapsulated search.

-p Print cumulated execution times and memory usage statistics at the end of the run.
If specified more than once, also print memory statistics at each garbage collection.

-d Turn on the low-level tracer of the abstract machine. In general you do not want
to see its output, but it may give hints to why a program does not compute an
expected solution or runs into a deadlock. Beware that tracing can slow down
program execution considerably and the output may be excessively large.

Example

prog -x +RTS -k512k -h8M -t0 -RTS foo

executes prog with an 8 MByte heap, a 512 kByte stack, and no trail stack. The argu-
ments -x and foo are passed to the Curry program and are available from Curry code
via System.getArgs. Note that running a program without a trail stack, as in this ex-
ample, requires that the code is completely deterministic and does not use encapsulated
search.

4 Using the Debugger

The Münster Curry compiler includes a declarative debugger of wrong answers. This
debugger can be used for finding the source of a wrong answer in the program. The idea
of a declarative debugger is to compute a representation of the program’s computation,
the so-called computation tree. In the Curry debugger, each node of the computation
tree corresponds to a basic fact f t1 . . . tn = t where f is the name of a function and
t and all ti are data terms. Data terms can include the special value ⊥ denoting an
unevaluated expression. The value ⊥ is represented by an underscore (_) in the output
of the debugger.

The debugger will ask questions about the correctness of these basic facts in order
to find (an instance of) a program rule which computes a value that does not match the
intended semantics of the program.

In order to debug a program, all of its modules have to be recompiled with the
--debug command line flag.

The debugger is capable of handling programs which use encapsulated search. Note
that wrong answers whose cause is actually a missing answer in a search goal cannot be
detected. The debugger cannot yet handle programs involving I/O.

18

4.1 Trusted functions

When debugging larger programs, it is very inconvenient to answer questions about lot
of functions which are supposed to be correct. In order to narrow down the region of
the program that is explored in the debugger, the compiler allows annotating whole
modules as well as individual functions as trusted. The debugger assumes that basic
facts for trusted function are always correct and will not ask any questions for them.
Note that the prelude and the standard libraries are always trusted.

A whole module can be trusted by invoking with the compiler with the --trusted
option in addition to --debug. Individual functions can be trusted by means of trust
annotations in the source code.

Lexically, trust annotations appear as nested comments using {-# and #-} as delim-
iters7. Syntactically, trust annotations are declarations that can appear where a function
declaration is allowed. To this end, the Curry grammar is extended as follows (cf. ap-
pendix C.3 in [Han06]).

FunctionDeclaration ::= Signature | TrustAnnot | Equat
TrustAnnot ::= {-# (TRUST | SUSPECT) (FunctionNames | _) #-}

An explicit trust annotation {-# TRUST f1, . . ., fn #-} declares f1, . . . , fn as trusted
functions. The annotation {-# TRUST _ #-} declares all functions in its declaration
group, which are not listed in an explicit trust annotation, as trusted functions. Lo-
cal functions are trusted automatically when their enclosing function is trusted. Thus,
adding an annotation {-# TRUST _ #-} at the top-level of a module is equivalent to
compiling the module with --trusted.

{-# SUSPECT . . . #-} annotations have the opposite effect as TRUST annotations, i.e.,
they declare functions as untrusted. This is useful in order to narrow down the set of
functions where a bug is suspected when a module is compiled with --trusted. In some
sense, adding a SUSPECT annotation to an otherwise trusted module is the equivalent of
setting a breakpoint in a conventional debugger for an imperative language.

5 Building programs with cymake

cymake is a make like tool for compiling Curry programs. Dependencies are automatically
extracted from the source files; there is no need to construct or maintain a Makefile.

cymake accepts options and file names on the command line in an arbitrary order.
The file arguments determine what to compile. If file is the name of an executable (i.e.
it has no extension), file.lcurry or file.curry is assumed to contain the main module
of the program. All modules it depends on are compiled (if necessary) and linked to an
executable. If file is the name of a source module (i.e. it ends in .lcurry or .curry) or
an object module (i.e. it ends in .o) then the object file for that module is generated.
Archive files and shared libraries (i.e. files ending with .a, .so, .dylib, or .dll) are not
targets, but passed as additional arguments to the linker.

7This is deliberately modeled after Haskell’s pragma notation.

19

cymake allows several programs to reside in the same directory. Modules can be
shared between several programs. Directories to search for modules can be specified
with the -i flag, in the same way as for cyc. In addition, directories which are searched
for interfaces of library modules can be specified with the -P flag.

cymake correctly handles the fact that the Curry compiler generates two files, an
object file and an interface file, for each module compiled.

5.1 Options

cymake understands the following options:

-n No execution mode. Print commands but do not execute them.

-q Quiet mode. Do not print commands before executing them.

-M Output a Makefile compatible dependency list on the standard output.

--find For each command line target t, cymake will print a line of the form t: f , where
f is the name of the source or interface file corresponding to t. If t is a module
name, cymake will look for the source or interface file first in the current directory
and then along the search path. If no file is found, f is empty.

-a Always link the executable, even if it is not out of date with respect to its object
files. This is useful if only the goal to be evaluated by the program is changed.

-e goal Evaluate goal instead of function main. This option cannot be used when com-
piling more than one module. See Sect. 6.1 for a description of the syntax of goals.

-Tgoal Compute the type of goal. This option cannot be used when compiling more
than one module. See Sect. 6.1 for a description of the goal syntax.

--debug Compile the program for use with the debugger. As object files compiled with
--debug cannot be linked with object files compiled without --debug, cymake uses
the suffix .d.o instead of .o for object files when this option is specified.

-idir Add directory dir to the list of paths used to locate imported modules. By default,
the compiler searches only the current directory for source files. Note that the
current directory is always searched first.

The directory dir is also added to the list of paths used to locate C header files,
as if -Idir was present on the command line.

-Pdir Add directory dir to the list of paths used to locate interface files for library
modules. By default, the compiler searches for interface files in its standard library
directory (usually /usr/local/lib/curry-0.9.11).

The directory dir is also added to the lists of paths used to locate C header files
and libraries, respectively, as if -Idir and -Ldir were present on the command line.

20

The compiler scans the directories specified with -P before the installation direc-
tory; thus, it is possible to hide the interfaces of the standard library by using this
option.

-o file Puts the executable file in file. This option cannot be used when compiling more
than one module. This option is ignored if compiling to an object file.

--clean Remove all compiled files for a program. If specified in conjunction with --debug
only the object files for the debugger, i.e. with suffix .d.o, are removed.

Most other flags are assumed to be compiler options and are passed to cyc when com-
piling and linking modules.

5.2 Environment

CURRY PATH The environment variable CURRY_PATH is used to locate the auxiliary
executables used by cymake. The default value is /usr/local/lib/curry-0.9.11.

CURRY IMPORT PATH

CURRY INCLUDE PATH

CURRY LIBRARY PATH The environment variables CURRY_IMPORT_PATH, CURRY_INCLUDE_PATH,
and CURRY_LIBRARY_PATH contain colon-separated lists of directories that are searched
for imported interfaces, included header files, and library files, respectively. Their
default value is $CURRY_PATH.

5.3 Modules and the Filesystem

Starting with release 0.9.6, the Münster Curry compiler maps hierarchical module names
onto the filesystem as in Java. This is of particular importance in conjunction with
cymake which tries to find sources for imported modules. For instance, the source for an
imported module Lib.Data.Set is expected in one of the files Lib/Data/Set.lcurry
and Lib/Data/Set.curry. This path is relative to the directory where cymake is invoked
or one of the directories specified with the -i option and does not depend on the path of
the source file or target being compiled. This makes it possible to import modules of one
subproject into sources of another subproject. The compiler uses the same procedure for
locating interface files of imported modules. Therefore, you should always compile the
sources of hierarchical modules from the base directory of the project.

For instance, given the following directory layout

21

and the following association between files and modules

File Module File Module
main.curry main SubProj/Sub.curry Sub
Lib/Data.curry Lib.Data SubProj/Lib/Mod1.curry Sub.Mod1
Lib/Funs.curry Lib.Funs SubProj/Lib/Mod2.curry Sub.Mod2

it is possible to rebuild the program and all of its imported modules using the single
command cymake -iSub main.

5.4 Using Libraries

The -i and -P options of cymake allow searching for imported Curry modules and library
interfaces in various directories besides the current directory and the standard library
directory. Imported source files, which are found in the current directory and along the
paths specified with -i options, are updated as necessary and the compiled object files
are automatically included when linking the executable program.

Interfaces found along the paths specified with -P options are used for determining
whether a source module is out of date, but they cause no object files to be linked to
the program. As cymake does not provide means to specify additional object files to be
linked with a program, the object files corresponding to these interfaces must be placed
in a library, which must be specified when invoking cymake.

As an example, consider the following directory hierarchy

where the files in directory modules are part of the program and the files in directory
library constitute an independent library.

Assuming that the files L1.curry and L2.curry define the modules L1 and L2,
respectively, it is possible to bring the library up to date with the command

(cd library; cymake L[12].curry; ar rc libL12.a L[12].o; ranlib libL12.a)

In order to bring the program prog up to date when the files M1.curry and M2.curry
define the modules M1 and M2, respectively, the following command can be used:

cymake -imodules -Plibrary prog -lL12

Note that this command will not recompile the files L1.curry and L2.curry if they are
newer than the corresponding object files in directory library. Nevertheless, the inter-
face files L1.icurry and L2.icurry can cause a recompilation of prog.curry, M1.curry,
and M2.curry, respectively, if these modules are out of date with respect to the inter-
faces.

22

5.5 Using make

When cymake is invoked with the -M option, it generates make style dependencies which
can be included in a Makefile. The generated dependencies assume that the Makefile
contains definitions similar to

.SUFFIXES=.curry .lcurry .icurry .o

.curry.o:
cyc -c $< -o $@

.lcurry.o:
cyc -c $< -o $@

.o.icurry:
@test -f "$@" || \
(echo "$@ does not exist"; \
echo "Remove $< and run make again"; exit 1)

in order to compile Curry modules. The .o.icurry rule is essential for a correct operation
of make with respect to the generated dependencies.

6 Using the Interactive Environment

cyi is an interactive environment that allows evaluating and debugging Curry goals
with respect to a Curry module loaded into the interpreter. At startup, cyi reads and
interprets commands from the file .cyirc in the current directory if it exists, or from
.cyirc in your home directory otherwise, and then loads either the first module specified
on the command line or the Curry prelude.

6.1 Goals

A goal is a Curry expression optionally followed by a where-clause, which can be used
for providing local definitions for the goal (see appendix C.3 in [Han06] for the context
free syntax of Curry).

Goal ::= Expr [where LocalDefs]

All entities exported from the Prelude and the module specified in the last :load
command are in scope with unqualified and qualified names unless they are shadowed by
one of the declarations from the where-clause. Entities from modules that are imported
directly or indirectly from the module specified in the last :load command are also in
scope, but only with qualified names.

All free variables of the goal must be declared either in the where-clause or by using
a let expression as goal. The bindings of the free variables are displayed together with
the normal form of the goal after successful evaluation unless the goal is of type IO t.

23

6.2 Commands

At the prompt of the interactive environment, the following commands can be entered:

goal Evaluate goal in the context of the current module.

:^[goal] Evaluate goal in the context of the current module. If goal is omitted, the
previous goal is evaluated again.

:debug [goal] Invoke the debugger for goal. It may take some time to recompile the
source modules with debugging information. If goal is omitted, the debugger is
invoked for the previous goal.

:type [goal] Print the type of goal instead of evaluating it. If goal is omitted, the type
of the previous goal is shown.

:load module Set the current evaluation context to module. This command will compile
module and all modules it depends on if necessary. Module can be specified either by
the name of its source file (ending in .lcurry or .curry) or a plain module name.
In the latter case, cyi will look for a source or interface file for module in the current
directory and the current search path as determined by the -i and -P options set
with the :set command and the environment variable CURRY_IMPORT_PATH.

cyi displays the name of the current module in its prompt.

:load Reset the current evaluation context to the Curry prelude.

:reload Repeat the last load command.

:freshen Recompile the current module and all imported source files.

:clean Remove all compiled files for the current module and all imported source files.

:interface module Display the interface of module. If the environment variable PAGER
is set, the interface file is displayed with this command. Otherwise the interface is
simply written to the standard output.

:interface Display the interface of the current module.

:edit file Invoke the editor for file. The default editor is /usr/bin/vi, but this can be
changed by setting one of the environment variables VISUAL and EDITOR to your
preferred editor before starting cyi.

:edit Edit the source file of the current module.

:set option . . . Add options to the list of compiler options.

:unset word . . . Remove words from the list of compiler options.

:cd dir Change the current directory to dir.

24

:cd Print the current directory.

:!command Execute the shell command command.

:version Display the compiler’s version.

:help Show the list of supported commands.

:quit Quit cyi.

All commands, except for :cd and :clean, may be abbreviated to their first letter.

6.3 Limitations

cyi is implemented as a shell script which invokes cymake and cyc for compiling mod-
ules and goals. Commands are read from the standard input using the shell’s builtin
read command. Some shells, e.g. /bin/sh on Solaris, cannot read raw input but apply
backslash processing to the input. When cyi is executed by such a shell, all backslash
characters on the command line must be escaped by another backslash character; i.e.,
you have to enter \\x -> x in a goal instead of \x -> x and ord ’\\n’ instead of
ord ’\n’. In order to remind you of this limitation, cyi displays the following warning
at startup when it is appropriate.

Warning: Backslashes on the command line must be escaped
For instance, use \\x -> x for a lambda abstraction
and ’\\n’ for the linefeed character.

On most systems you should not see the above warning and can enter your goals
as expected because the configure scripts of the Münster Curry compiler will look for a
shell that supports raw reads. If this is not the case, you may want to install a modern
shell, e.g., Gnu bash, on your system and reinstall the compiler. Be careful to remove the
file config.cache if it exists in your build directory before running configure again.

Command line editing and history require support from the read command of the
shell, which executes the cyi script. This is available only for Gnu Bash and Korn shells
except for the public domain version. Command line editing also works for the Z shell,
but without history.

6.4 Example Session

Figs. 1 and 2 on the following pages show a typescript of an example session with cyi.
User input is typeset in a slanted typeface. The file nat.curry contains the following
definitions.

data Nat = Z | S Nat

nat Z = success
nat (S n) = nat n

25

lux@localhost:~ % cyi
_____ __ __
/ ___/ | / _ Muenster Curry Compiler
/ / | / | | Version 0.9.11, Copyright (c) 1998-2007
/ /___ / / | |
____/ /_/ |_| Type :h for help

Prelude> length [1,2,3,4]

4
Prelude> length Xs where Xs free

{Xs = []} 0
More solutions? [Y(es)/n(o)/a(ll)]
{Xs = [_a]} 1
More solutions? [Y(es)/n(o)/a(ll)]
{Xs = [_a, _b]} 2
More solutions? [Y(es)/n(o)/a(ll)] n

Prelude> :l nat

/usr/local/bin/cyc -c nat.curry -o nat.o
nat> let N free in nat N

{N = Z}
More solutions? [Y(es)/n(o)/a(ll)]
{N = S Z}
More solutions? [Y(es)/n(o)/a(ll)] n

nat> sub (S (S Z)) X where X free

S (S Z)
More solutions? [Y(es)/n(o)/a(ll)] n

Figure 1: Sample session

add Z n = Z
add (S m) n = S (add m n)

sub m n | add d n =:= m = d where d free

Note that add deliberately contains an error, which is corrected during the session.

7 Libraries

In addition to the standard prelude, the Münster Curry compiler is distributed with a
subset of the Haskell 98 and Haskell 98 foreign function interface libraries (see [Pey03]
and [Cha03], respectively), a few modules compatible with PAKCS, and some other
library modules, which are specific to the Münster Curry compiler.

26

nat> :d

Preparing nat.curry for debugging; this may take some time...
/usr/local/bin/cyc --debug -c nat.curry -o nat.d.o

Entering debugger...

Considering the following basic fact:
1. nat.sub (S (S Z)) _a -> (S (S Z))
Is this valid? [y(es)/n(o)/a(bort)] n

Considering the following basic fact:
1. nat.add (S (S Z)) _a -> (S (S Z))
Is this valid? [y(es)/n(o)/a(bort)] n

Considering the following basic fact:
1. nat.add (S Z) _a -> (S Z)
Is this valid? [y(es)/n(o)/a(bort)] n

Considering the following basic fact:
1. nat.add Z _a -> Z
Is this valid? [y(es)/n(o)/a(bort)] n

** Function nat.add is incorrect **
Wrong instance: nat.add Z _a -> Z

Buggy node found
Debugger exiting
nat> :e nat.curry

nat> :r

/usr/local/bin/cyc -c nat.curry -o nat.o
nat> :^

{X = S (S Z)} Z
More solutions? [Y(es)/n(o)/a(ll)] a

{X = S Z} S Z | {X = Z} S (S Z)

Figure 2: Sample session(cont’d)

27

x y x ‘div‘ y x ‘mod‘ y x ‘quot‘ y x ‘rem‘ y
7 3 2 1 2 1
7 -3 -3 -2 -2 1
-7 3 -3 2 -2 -1
-7 -3 2 -1 2 -1

Figure 3: Integer division operators

7.1 Prelude

The Prelude implements the data types and functions of appendix B of the Curry
report [Han06]. In addition, the following extensions are implemented in the Prelude of
the Münster Curry compiler.

• Additional operators quot and rem for integer division.

quot :: Int -> Int -> Int
rem :: Int -> Int -> Int

The semantics of div, mod, quot, and rem follows the Haskell 98 report in that div
and mod truncate the quotient toward negative infinity and quot and rem truncate
the quotient toward zero. Fig. 3 gives an example.

• Arithmetic operations for floating-point numbers:

(+.) :: Float -> Float -> Float
(-.) :: Float -> Float -> Float
(*.) :: Float -> Float -> Float
(/.) :: Float -> Float -> Float
negateFloat :: Float -> Float

Note: Unary negation for floating-point numbers can be achieved with either the
(prefix) operator - or with -., but the latter is deprecated. Conversion between
floating-point and integer numbers is achieved with the functions

floatFromInt :: Int -> Float
truncateFloat :: Float -> Int
roundFloat :: Float -> Int

• Disequality constraints

(=/=) :: a -> a -> Success

See also Sect. 8.1.2

28

• The undefined function:

undefined = failed

• The function

ensureGround :: a -> a

returns its argument and ensures (lazily) that the normal form of the result is a
ground term.

• The type

type ShowS = String -> String

and the functions

shows :: a -> ShowS
showChar :: Char -> ShowS
showString :: String -> ShowS
showList :: [a] -> ShowS
showParen :: Bool -> ShowS -> ShowS

from the Haskell prelude are defined. Note that showList is a polymorphic function
and therefore will show strings in list notation, not in string notation.

• Additional I/O functions:

getContents :: IO String

returns the whole standard input as a (lazy) string. The actions getChar and
getLine raise an end-of-file exception after this I/O action has been executed.

interact :: (String -> String) -> IO ()
interact f = getContents >>= putStr . f

• I/O exceptions

type IOError = String
ioError :: IOError -> IO a
catch :: IO a -> (IOError -> IO a) -> IO a

ioError ioe raises an I/O exception with error message ioe. catch io f executes the
I/O action io. If no I/O exception is raised during the evaluation of io, catch io f
is equivalent to io. Otherwise, the function f is applied to the error message of the
exception and its result is returned from catch io f .

Note: The type IOError will become an abstract type in future releases for com-
patibility with Haskell.

29

7.2 Haskell 98 Library

The Haskell 98 Library is partially implemented. The following sections describe only
the differences with respect to part II of the Haskell 98 Language Report [Pey03].

7.2.1 Ratio

Not implemented.

7.2.2 Complex

Not implemented.

7.2.3 Numeric

All functions except fromRat and floatToDigits are implemented. However, due to the
lack of type classes, they are restricted to the types Int and Float, respectively.

7.2.4 Ix

The methods of class Ix are available, but only for (pairs of) Int.

7.2.5 Array

All functions of this module are implemented. However, indices are restricted to type
Int. As the index type is fixed, the type Array has only one argument, viz. the type of
the elements, instead of two. Instead of making Array an instance of the Functor class
and implementing the method fmap, the module exports the equivalent function

amap :: (a->b) -> Array a -> Array b

7.2.6 List

This module defines all functions except for the generic. . . variants. The latter are
generalization of the prelude functions take, drop, etc. to arbitrary index types which
are instances of the Integral class. As only Int is available in the Münster Curry
compiler, there seems no point in implementing these functions.

This module also defines all functions that are re-exported from the Haskell pre-
lude but absent from the Curry prelude, in particular the functions init, last, scanl,
scanl1, scanr, scanr1, cycle, sum, product, maximum, and minimum. Due to the lack
of type classes, the functions sum and product are available only for lists with elements
of type Int.

7.2.7 Maybe

Fully implemented.

30

7.2.8 Char

All functions except readLitChar, showLitChar, and lexLitChar are implemented.
There is no support for Unicode or other character sets at present. Reasonable results
should be expected only for characters in the ASCII character range, i.e. between ’\NUL’
and ’\DEL’.

This module also exports the non-standard functions

minChar :: Char
maxChar :: Char

which return the smallest and largest character values. These functions are provided as
a temporary workaround until the Münster Curry compiler supports type classes.

7.2.9 Monad

All functions except guard and msum are implemented, but are available only for IO.
Note that guard and msum require an instance of MonadPlus and IO is not an instance of
this class in Haskell. This module also defines the functions sequence, sequence_, mapM,
and mapM_ that are re-exported from the Haskell prelude, but defined as sequenceIO,
sequenceIO_, mapIO, and mapIO_ in the Curry prelude.

7.2.10 IO

All functions except for hWaitForInput, hReady, and the IOError related functions are
implemented. Note that IOError is currently equal to String. This will change in future
releases.

7.2.11 Directory

Implemented except for the type Permissions and the related functions getPermissions
and setPermissions. Note that a compatible definition of Permissions requires records.

7.2.12 System

Fully implemented.

7.2.13 Time

Only the type ClockTime and the function getClockTime are implemented at present.

7.2.14 Locale

Not implemented.

7.2.15 CPUTime

Not implemented.

31

7.2.16 Random

All functions and methods of this module have been implemented, except for the Read
and Show instances of StdGen. In addition, due to the lack of type classes only one
instance of RandomGen and Random, namely those for StdGen and Int, respectively, are
available.

7.3 Foreign Function Interface

A subset of the libraries from the Haskell 98 Foreign Function Interface addendum [Cha03]
have been implemented as far as they do not make use of type classes. In the follow-
ing, only the differences with respect to the addendum are described; for a detailed
documentation of the functions and their semantics see Sections 5 and 6 of [Cha03].

Note that in the current implementation only arguments and results of types Bool,
Char, Int, Float, Ptr, FunPtr, and StablePtr can be marshaled. In particular, values
of type Bool and Char are marshaled to int, values of type Int are marshaled to long,
values of type Float are marshaled to double and the pointer types are marshaled to
void *.

7.3.1 Foreign

This module exports the function unsafePerformIO and all entities from the modules
Bits, Ptr, ForeignPtr, StablePtr, MarshalAlloc, MarshalError, and MarshalUtils.

7.3.2 Bits

All member functions of the class Bits have been implemented as functions for type
Int.

7.3.3 Int

Not yet implemented.

7.3.4 Word

Not yet implemented.

7.3.5 Ptr

All types and functions are implemented except for freeHaskellFunPtr. This function
is not useful without support for callbacks from foreign code into Curry, which is not
implemented at present.

7.3.6 ForeignPtr

All types and functions are implemented except for mallocForeignPtr, mallocForeignPtrArray,
and mallocForeignPtrArray0, which require type classes.

32

7.3.7 StablePtr

Fully implemented.

7.3.8 Storable

Not implemented because it does not make sense without type classes. The module
CTypes offers replacements for the peek and poke member functions.

7.3.9 MarshalAlloc

All functions except for malloc, alloc, and realloc are implemented.

7.3.10 MarshalArray

Not implemented due to lack of type classes.

7.3.11 MarshalError

Only the result value checks throwIf, throwIf , throwIfNeg, throwIfNeg , and throwIfNull
as well as function void are implemented. The I/O error related functions have not been
implemented because they assume a different error representation.

7.3.12 MarshalUtils

All functions except for new and with are implemented. The functions toBool and
fromBool are restricted to Int arguments and results, respectively.

7.3.13 CForeign

This module exports all entities from the modules CTypes, CString, and CError.

7.3.14 CTypes

This module is considerably different from the Haskell FFI specification in order to work
around the lack of type classes. In particular, the types CChar, CInt etc. are defined
as type synonyms. For each type Ct, this module defines functions alignmentt :: Int,
sizeOft :: Int, peekt :: Ptr Ct -> IO Ct, and poket :: Ptr Ct -> Ct -> IO (),
that return the alignment constraints for values of type Ct, the size of values of type Ct,
read from a memory location with type Ct, and write to a memory location with type
Ct, respectively.

These functions are also defined for the types Ptr, FunPtr, and StablePtr.

33

7.3.15 CString

Only the types CString, CStringLen and the functions peekCString, peekCStringLen,
newCString, newCStringLen, withCString, and withCStringLen are implemented. Note
that the Münster Curry compiler does not support Unicode characters at present and
therefore all of these functions are restricted to 8-bit characters.

7.3.16 CError

All functions are implemented, but throwErrnoIfMinus1, throwErrnoIfMinus1 ,
throwErrnoIfMinus1Retry, and throwErrnoIfMinus1Retry are restricted to IO ac-
tions returning an Int result.

7.4 Library Modules Compatible with PAKCS

7.4.1 AllSolutions

This module provides a collection of functions for obtaining lists of solutions of con-
straints and expressions. The implementation is based on the I/O action getSearchTree
proposed in [BBH04]. In contrast to the try primitive, this function is able to encapsulate
all non-determinism of a computation. Note that the returned search tree is computed
lazily. Therefore, getSearchTree can be applied safely to expressions that have an infi-
nite number of normal forms.

module AllSolutions where

-- data type representing solutions of a goal
-- Fail no solution
-- Val x solution x (which is a normal form)
-- Or ts disjunction of solutions
data SearchTree a = Fail | Val a | Or [SearchTree a]

-- (allValuesD t) returns all solutions of search tree t with a
-- depth-first left-to-right strategy
allValuesD :: SearchTree a -> [a]

-- (allValuesB t) returns all solutions of search tree t with a
-- breadth-first strategy
allValuesB :: SearchTree a -> [a]

-- (getSearchTree x) returns a search tree for x’s evaluation, which
-- encapsulates all non-determinism
getSearchTree :: a -> IO (SearchTree a)

-- (getOneSolution g) returns one solution of goal g with an
-- incomplete depth-first left-to-right strategy

34

getOneSolution :: (a -> Success) -> IO (Maybe a)

-- (getAllSolutions g) returns all solutions of goal g with an
-- incomplete depth-first left-to-right strategy
getAllSolutions :: (a -> Success) -> IO [a]

-- (getOneValue x) returns one normal form of x with an incomplete
-- depth-first left-to-right strategy
getOneValue :: a -> IO (Maybe a)

-- (getAllValues x) returns all normal forms of x with an incomplete
-- depth-first left-to-right strategy
getAllValues :: a -> IO [a]

-- (getAllFailures x g) returns all normal forms of x for which g x has
-- no solution
getAllFailures :: a -> (a -> Success) -> IO [a]

7.4.2 Combinatorial

The Combinatorial module provides some common non-deterministic operations.

module Combinatorial where

-- (permute xs) non-deterministically computes any permutation of xs
permute :: [a] -> [a]

-- (subset xs) non-deterministically computes any sublist of xs
subset :: [a] -> [a]

-- (sizedSubset n xs) non-deterministically computes any sublist of xs
-- with n elements
sizedSubset :: Int -> [a] -> [a]

-- (splitSet xs) non-deterministically splits xs into sublists ys,zs
-- such that ys and zs have the same elements as xs
splitSet :: [a] -> ([a], [a])

-- (partition xs) non-deterministically computes any partition of xs
partition :: [a] -> [[a]]

Note that all functions except permute interpret their input lists as multi-sets and there
is no guarantee about the order of elements in the result list. For instance, if one of the
results of partition [1,2,3,4] is the list [[1],[2,3],[4]], no permutation of that
list, i.e., neither [[1],[3,2],[4]] nor [[1],[4],[2,3]], are returned as well.

35

7.4.3 Float

This module contains a lot of useful functions on floating-point numbers.

module Float where
infixl 8 ^, ^^, **
infixl 7 *., /.
infixl 6 +., -.

-- (+.), (-.), (*.), (/.) re-exported for PAKCS compatibility
(+.) :: Float -> Float -> Float
(-.) :: Float -> Float -> Float
(*.) :: Float -> Float -> Float
(/.) :: Float -> Float -> Float

-- (<.), (>.), (<=.), (>=.) ordering relations restricted to Floats
(<.) :: Float -> Float -> Bool
(>.) :: Float -> Float -> Bool
(<=.) :: Float -> Float -> Bool
(>=.) :: Float -> Float -> Bool

-- pi = 3.14159265358979323846
pi :: Float

-- Convert an integer to a floating-point number
i2f :: Int -> Float

-- Convert a floating-point number to an integer rounding towards 0
truncate :: Float -> Int

-- Convert a floating-point number to the nearest integer number
round :: Float -> Int

-- (x^n) computes the nth power of x, n must be non-negative
(^) :: Float -> Int -> Float

-- (x^^n) computes the nth power of x, n may be negative
(^^) :: Float -> Int -> Float

-- (x^^y) raises x to power y
(**) :: Float -> Float -> Float

-- (sqrt x) returns the square root of x
sqrt :: Float -> Float

36

-- (log x) returns the natural logarithm of x
log :: Float -> Float

-- (log10 x) returns the logarithm in base 10 of x
log10 :: Float -> Float

-- (exp x) returns e**x
exp :: Float -> Float

-- trigonometric functions
sin :: Float -> Float
cos :: Float -> Float
tan :: Float -> Float

-- inverse trigonometric functions
asin :: Float -> Float
acos :: Float -> Float
atan :: Float -> Float

-- (atan2 y x) computes the principal value of atan (y/.x) using the
-- signs of both arguments in order to determine the quadrant the result
-- is in; this function is useful for converting rectangular coordinates
-- into polar coordinates
atan2 :: Float -> Float -> Float

-- hyperbolic functions
sinh :: Float -> Float
cosh :: Float -> Float
tanh :: Float -> Float

The constant pi, and the functions (^), (^^), (**), log10, asin, acos, atan, sinh,
cosh, and tanh are available only for the Münster Curry compiler.

7.4.4 Integer

This module contains useful functions on integer numbers. Note that in contrast to
PAKCS, the Münster Curry compiler supports only fixed width integer numbers. The
smallest and largest integer values can be determined with the functions minInt and
maxInt, respectively. Note that these functions are not available in PAKCS and are
provided only as a temporary workaround until the Münster Curry compiler supports
type classes.

module Integer where

-- (minInt) returns the smallest representable integer number

37

minInt :: Int

-- (maxInt) returns the largest representable integer number
maxInt :: Int

-- (pow m n) returns the m raised to the power of n
pow :: Int -> Int -> Int

-- (ilog n) returns the floor of the logarithm in base 10 of n
ilog :: Int -> Int

-- (isqrt n) returns the floor of the square root of n
isqrt :: Int -> Int

-- (factorial n) returns the factorial of n
factorial :: Int -> Int

-- (binomial m n) returns m*(m-1)*...*(m-n+1)/n*(n-1)*...*1
-- Fails if n <= 0 or m >= n
binomial :: Int -> Int -> Int

-- (abs n) returns the absolute value of n
abs :: Int -> Int

-- (max3 m n o) returns the maximum of m, n, and o
max3 :: a -> a -> a -> a

-- (min3 m n o) returns the maximum of m, n, and o
min3 :: a -> a -> a -> a

-- (maxlist l) returns the maximum value from list l
maxlist :: [a] -> a

-- (minlist l) returns the minimum value from list l
minlist :: [a] -> a

-- (bitTrunc m n) returns the m least significant bits of n
bitTrunc :: Int -> Int -> Int

-- (bitAnd m n) returns the bitwise and of m and n
bitAnd :: Int -> Int -> Int

-- (bitOr m n) returns the bitwise or of m and n
bitOr :: Int -> Int -> Int

38

-- (bitXor m n) returns the bitwise exclusive of m and n
bitXor :: Int -> Int -> Int

-- (bitNot n) returns the bitwise complement of n
bitNot :: Int -> Int

-- (even n) returns whether n is even
even :: Int -> Bool

-- (odd n) returns whether n is odd
odd :: Int -> Bool

7.4.5 Parser

This module implements functional logic parsing combinators [CL99]. The implementa-
tion has been optimized to avoid a quadratic time complexity problem with respect to
the length of the input stream, which is present in the original version.

module Parser where
infixr 4 <*>
infixr 2 <|>, <||>
infixr 3 >>>

-- Raw parser type
type Parser a = [a] -> [a]

-- Parsers with attributes (a.k.a representations)
type ParserRep a b = a -> Parser b

-- Basic parsers
empty :: Parser a
terminal :: a -> Parser a
satisfy :: (a -> Success) -> ParserRep a a

-- Concatention
(<*>) :: Parser a -> Parser a -> Parser a

-- Alternatation
(<|>) :: Parser a -> Parser a -> Parser a
(<||>) :: ParserRep a b -> ParserRep a b -> ParserRep a b

-- (p >>> x) attaches attribute x to parser p
(>>>) :: Parser a -> b -> ParserRep b a

39

-- Parsers for p* and p+, respectively
star :: ParserRep a b -> ParserRep [a] b
some :: ParserRep a b -> ParserRep [a] b

-- (parse p xs) non-deterministically succeeds for any valid parse of xs
parse :: Parser a -> [a] -> Success

-- (parseRep p xs) non-deterministically returns any representation
-- of xs computed by parser p
parseRep :: ParserRep a b -> [b] -> a

-- (parseOne p xs) deterministically returns only one representation
-- of xs computed by parser p
parseOne :: ParserRep a b -> [b] -> a

7.4.6 Ports

The Münster Curry compiler implements a subset of PAKCS’ distributed Curry function-
ality [Han99]. In particular, this module supports internal ports (created with openPort)
and stream ports, which allow connecting with a subprocess (openProcessPort) and a
TCP socket (openSocketConnectPort), respectively. This functionality is sufficient in
order to implement graphical interfaces with PAKCS’ Tk module, and also for connecting
to Web servers and to implement simple Web browsers.

Distributed ports with arbitrary argument types (openNamedPort and connectPort)
are not supported because their implementation requires type information that is not
available in the runtime system of the Münster Curry compiler.

The function closePort is an addition for the Münster Curry compiler, which allows
closing a port explicitly. If a port is closed, the message stream will become finite, and
a program that sends a message to a closed port fails.

module Ports where
data Port a

-- (openPort p ms) creates an internal port p with message stream ms
openPort :: Port a -> [a] -> Success

-- (closePort p) closes port p
closePort :: Port a -> Success

-- (send m p) sends message m to port p
send :: a -> Port a -> Success

-- doSend m p = doSolve (send m p)
doSend :: a -> Port a -> IO ()

40

-- Stream Port messages
-- SP_Put s: send s followed by a newline to the port
-- SP_GetLine s: instantiates s with the next line read from the port
-- SP_GetChar c: instantiates c with the next character from the port
-- SP_EOF b: instantiates b with True at the end of the input stream
-- SP_Close: closes the port
data SP_Msg

= SP_Put String
| SP_GetLine String
| SP_GetChar Char
| SP_EOF Bool
| SP_Close

-- (openProcessPort cmd) runs the shell command cmd as a new subprocess
-- and returns a stream port connected to the input and output channels
-- of that process
openProcessPort :: String -> IO (Port SP_Msg)

-- (openSocketConnectPort p h) returns a stream port connected to the
-- TCP socket with port number p at host h
openSocketConnectPort :: Int -> String -> IO (Port SP_Msg)

-- (choiceSPEP p ms) returns either a line read from the stream port p
-- or the message list ms provided that it is instantiated to a
-- non-variable term
choiceSPEP :: Port SP_Msg -> [a] -> Either String [a]

-- (newObject f s p) applies the function f to an initial state s and
-- the messages received on the port p
-- NB newObject constrains p to a fresh (local) port, so this argument
-- should be a free variable
newObject :: (a -> [b] -> Success) -> a -> Port b -> Success

The function choiceSPEP is supposed to perform a fair merge between the lines available
on the stream port and the message stream. The current implementation, however,
always returns the message list unless it is a variable. This may change in a future
release of the Münster Curry compiler.

7.4.7 Read

The module Read implements conversions from strings to integer and floating-point
numbers. Since its implementation is based on the Numeric module, there are some
subtle differences with the PAKCS implementation. In particular, all functions fail if the
argument string does not represent a valid number. On the other hand, the Münster

41

Curry compiler’s readInt function recognizes parenthesized numbers and allows spaces
between the minus sign and the number. In addition, readHex is case insensitive, i.e.,
readHex " AbCd " returns the number 43981. The function readFloat is an extension
of the Münster Curry compiler.

module Read where

readFloat :: String -> Float
readNat :: String -> Int
readInt :: String -> Int
readHex :: String -> Int

7.4.8 Socket

The module Socket provides an interface to the Unix socket system calls and is compat-
ible with PAKCS. Note that only TCP sockets are supported at present and that there
is no support for IPv6.

module Socket where

-- Abstract socket type
data Socket

-- Creates a new INET socket. Use socketBind, socketListen, and
-- socketAccept for establishing a server for this socket.
socketINET :: IO Socket

-- Binds a socket to a port number. If the port number is a free
-- variable, the system picks a port number and binds the variable
-- to it.
socketBind :: Socket -> Int -> IO ()

-- Defines the maximum backlog queue of a port.
socketListen :: Socket -> Int -> IO ()

-- Creates a server side socket bound to a port number. If the port
-- number is a free variable, the system picks a port number and binds
-- the variable to it. The implementation currently sets a queue limit
-- of 10 connections.
listenOn :: Int -> IO Socket

-- Returns a connection of a client to a socket. The connection is
-- returned as a pair consisting of a string identifying the client
-- (the format of this string is implementation-dependent) and a handle
-- to a stream communication with the client. The handle is both

42

-- readable and writable.
socketAccept :: Socket -> IO (String, IO.Handle)

-- Waits until a connection of a client to a socket is available. If
-- no connection is available within the time limit, it returns Nothing,
-- otherwise the connection is returned as a pair consisting of a string
-- identifying the client (the format of this string is
-- implementation-dependent) and a handle to a stream communication with
-- the client.
--
-- Example call: (waitForSocketAccept socket timeout)
-- Parameters:
-- socket - a socket
-- timeout - milliseconds to wait for input (< 0 : no time out)
waitForSocketAccept :: Socket -> Int -> IO (Maybe (String, IO.Handle))

-- Creates a new connection to a Unix socket.
-- Example call: (connectToSocket host port)
-- Parameters:
-- host - the host name of the connection
-- port - the port number of the connection
-- Returns:
-- the handle of the stream (connected to the port port@host)
-- which is both readable and writable
connectToSocket :: String -> Int -> IO IO.Handle

7.4.9 Unsafe

Do not use this module unless you have really good reasons for doing so and can prove
your program to be safe.

module Unsafe where
isVar :: a -> Bool
spawnConstraint :: Success -> a -> a
trace :: String -> a -> a
unsafeInterleaveIO :: IO a -> IO a
unsafePerformIO :: IO a -> a

7.5 Library Modules Specific to the Münster Curry Compiler

7.5.1 FiniteMap

This module provides an implementation of finite maps based on 2-3 trees.

module FiniteMap where

43

infix 4 ‘eqFM‘, ‘neqFM‘

-- abstract type
data FM a b

-- eqFM, neqFM compare the contents of the maps, not their structure
-- as (==) and (/=) do
eqFM :: FM a b -> FM a b -> Bool
neqFM :: FM a b -> FM a b -> Bool

-- check for the empty map
nullFM :: FM a b -> Bool

-- the empty map
zeroFM :: FM a b

-- unitFM constructs a map with a single association
unitFM :: a -> b -> FM a b

-- adding and removing elements
addToFM :: a -> b -> FM a b -> FM a b
deleteFromFM :: a -> FM a b -> FM a b

-- lookupFM x returns the value associated with x, or Nothing
-- if there is no such value
lookupFM :: a -> FM a b -> Maybe b

-- conversion between association lists and finite maps
fromListFM :: [(a, b)] -> FM a b
toListFM :: FM a b -> [(a, b)]

-- mapFM f fm applies f to values in the map
mapFM :: (a -> b) -> FM c a -> FM c b

showFM :: FM a b -> [Char]
showsFM :: FM a b -> ShowS

7.5.2 IOExts

The module IOExts implements a few useful functions for compatibility with Hugs and
ghc. The fixIO function implements a fix-point operator in the IO monad as proposed
in [EL00]. The functions openFd, openProcess, pClose, and connectTcpSocket are only
available for the Münster Curry compiler.

module IOExts where

44

-- monadic fix-point operator
fixIO :: (a -> IO a) -> IO a

-- functions from Unsafe/Trace re-exported for compatibility
-- with Hugs and ghc
unsafePerformIO :: IO a -> a
unsafeInterleaveIO :: IO a -> IO a
trace :: String -> a -> a

-- mutable references
data IORef a
newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()
modifyIORef :: IORef a -> (a -> a) -> IO ()

-- mutable arrays
data IOArray a
newIOArray :: (Int,Int) -> a -> IO (IOArray a)
boundsIOArray :: IOArray a -> (Int,Int)
readIOArray :: IOArray a -> Int -> IO a
writeIOArray :: IOArray a -> Int -> a -> IO ()
freezeIOArray :: IOArray a -> IO (Array.Array a)
thawIOArray :: Array.Array a -> IO (IOArray a)
unsafeFreezeIOArray :: IOArray a -> IO (Array.Array a)
unsafeThawIOArray :: Array.Array a -> IO (IOArray a)

-- open a file handle for a Unix file descriptor
openFd :: Int -> IO.IOMode -> IO IO.Handle

-- check whether a file handle is connected to a terminal
hIsTerminalDevice :: IO.Handle -> IO Bool

-- run a subprocess
openProcess :: String -> IO.IOMode -> IO IO.Handle
pClose :: IO.Handle -> IO Int

-- connect to a TCP socket
connectTcpSocket :: String -> Int -> IO.IOMode -> IO IO.Handle

-- invoke the garbage collector
performGC :: IO ()

45

The I/O action openProcess cmd mode returns a handle that is connected to the stan-
dard input and/or output channels of a new subprocess executing the shell command
cmd. Note that handles created with openProcess use block buffering by default. In
order to run an interactive subprocess, you will probably want to change this to line
buffering or no buffering at all using IO.hSetBuffering.

The I/O action pClose closes a process handle that was opened with openProcess
and returns the associated process’ termination status. The result will be a non-negative
number if the process did terminate regularly. In this case, the number is equal to the
exit code of the child process. If the child was terminated due to a signal, the result of
pClose will be the negative signal number. It is an error to apply pClose to a handle
that was not opened with openProcess. However, it is possible to apply hClose to a
handle opened with openProcess. In that case, the calling process is not blocked until
the child process is terminated. In addition, it is possible to apply pClose and hClose
more than once to the same handle. All calls to pClose will return the same result.

The I/O action connectTcpSocket h p mode returns a handle that is connected to
the TCP socket with port number p at host h. For instance, you can use this function
to open a connection to the web server running at danae.uni-muenster.de.

connectTcpSocket "danae.uni-muenster.de" 80 ReadWriteMode

The host h can be specified either as a hostname, which must be resolvable to an internet
address on the current machine, or as an IP address in dotted decimal notation, e.g.,
127.0.0.1. At present, connectTcpSocket supports only IPv4 addresses. Note that
handles created with connectTcpSocket use block buffering by default. If this is not
appropriate for your application, change the buffering mode with IO.hSetBuffering.

7.5.3 IOVector

The implementations of arrays (Sect. 7.2.5) and mutable arrays (Sect. 7.5.2) are actually
based on mutable vectors that use zero-based indexing.

module IOVector where
data IOVector a
newIOVector :: Int -> a -> IO (IOVector a)
copyIOVector :: IOVector a -> IO (IOVector a)
readIOVector :: IOVector a -> Int -> IO a
writeIOVector :: IOVector a -> Int -> a -> IO ()
lengthIOVector :: IOVector a -> Int

7.5.4 Lexing

This module implements lazy lexing combinators based on [Cha99].

module Lexing where
infixl 4 ‘star‘, ‘plus‘, ‘quest‘
infixl 3 +>

46

infixl 2 >|<, >||<

type Position = (String, Int, Int)
type LexerState a = (String, Position, a)

type Regexp s t = Lexer s t -> Lexer s t
data Lexer s t
type OneToken s t = (Maybe t, Lexer s t, LexerState s)

type Action t = String -> Position -> Maybe t
type Meta s t = Position -> s -> (Position, s, Maybe (Lexer s t))

-- Regular expressions
epsilon :: Regexp s t
char :: Char -> Regexp s t
(+>) :: Regexp s t -> Regexp s t -> Regexp s t
(>|<) :: Regexp s t -> Regexp s t -> Regexp s t
star :: Regexp s t -> Regexp s t -> Regexp s t
plus :: Regexp s t -> Regexp s t -> Regexp s t
quest :: Regexp s t -> Regexp s t -> Regexp s t

alt :: String -> Regexp s t
string :: String -> Regexp s t
ident :: Regexp s t

-- Lexer actions
lexaction :: Regexp s t -> Action t -> Lexer s t
(>||<) :: Lexer s t -> Lexer s t -> Lexer s t

-- Meta actions
lexmeta :: Regexp s t -> Meta s t -> Lexer s t
ctrlLexer :: Lexer s t

-- Lexing
execLexer :: Lexer s t -> LexerState s -> [t]
lexOne :: Lexer s t -> LexerState s -> OneToken s t

7.5.5 NameSupply

This module implements unique name supplies based on [ARS94]. Note that all functions
of this module are referentially transparent, i.e., they will return the same names when
applied to the same arguments. For instance,

do
ns <- initialNameSupply

47

print (getName ns,getName ns)

will print the pair (0,0) and not (0,1).

module NameSupply

data NameSupply

-- (initialNameSupply) returns a new name supply
initialNameSupply :: IO NameSupply

-- (splitNameSupply ns) returns two name supplies, whose generated
-- names will be distinct.
splitNameSupply :: NameSupply -> (NameSupply, NameSupply)

-- (listNameSupply ns) returns an infinite list of name supplies, whose
-- generated names will be distinct.
listNameSupply :: NameSupply -> [NameSupply]

type Name = Int

-- (getName ns) returns the unique name of name supply ns.
getName :: NameSupply -> Name

-- (listName ns) returns an infinite list of unique names.
listName :: NameSupply -> [Name]

7.5.6 Set

This module implements functions on sets. The implementation is based on finite maps
(see Sect. 7.5.1).

module Set where

infixl 8 ‘addToSet‘,‘deleteFromSet‘
infixl 7 ‘unionSet‘,‘intersectionSet‘
infixl 6 ‘diffSet‘,‘symDiffSet‘
infix 4 ‘eqSet‘,‘neqSet‘,‘elemSet‘,‘notElemSet‘,‘subsetSet‘

-- abstract type
data Set a

-- eqSet, neqSet compare the contents of the sets, not their structure
-- as (==) and (/=) do
eqSet :: Set a -> Set a -> Bool

48

neqSet :: Set a -> Set a -> Bool

-- check for the empty set
nullSet :: Set a -> Bool

-- the empty set
zeroSet :: Set a

-- unitSet returns a singleton set
unitSet :: a -> Set a

-- adding and removing elements
addToSet :: a -> Set a -> Set a
deleteFromSet :: a -> Set a -> Set a

-- elemSet, notElemSet check set membership
elemSet :: a -> Set a -> Bool
notElemSet :: a -> Set a -> Bool

-- subsetSet xs ys checks whether xs is a subset of or equal to ys
subsetSet :: Set a -> Set a -> Bool

-- common set operations
unionSet :: Set a -> Set a -> Set a
unionSets :: [Set a] -> Set a
intersectionSet :: Set a -> Set a -> Set a
diffSet :: Set a -> Set a -> Set a
symDiffSet :: Set a -> Set a -> Set a

-- conversion between sets and lists
fromListSet :: [a] -> Set a
toListSet :: Set a -> [a]

-- mapSet f xs applies f to every element of xs
mapSet :: (a -> b) -> Set a -> Set b

-- domainFM fm returns the set of all keys of the finite map fm
domainFM :: FiniteMap.FM a b -> Set a

showSet :: Set a -> [Char]
showsSet :: Set a -> ShowS

49

7.5.7 Success

This module implements some frequently used functions for constraints.

module Success(Success, success, (&), (&>),
module Success) where

infix 0 ==>, <==

-- Computes the concurrent conjunction of a list of constraints
andC :: [Success] -> Success

-- Computes the sequential conjunction of a list of constraints
andS :: [Success] -> Success

-- Is a given predicate satisfied by all elements in a list?
allC :: (a -> Success) -> [a] -> Success

-- (c ==> x) evaluates x if the constraint c is satisfied
(==>) :: Success -> a -> a

-- (x <== c) is equivalent to (c ==> x)
(<==) :: a -> Success -> a

-- (choose xs) non-deterministically chooses one element
-- from the list xs
choose :: [a] -> a

-- (ground e) ensures that e is a ground data term; the argument is
-- evaluated lazily as with Prelude.id
ground :: a -> a

Note that ground is just an alias for Prelude.ensureGround. This definition is present
only for backward compatibility and will be removed in a future release.

7.5.8 Trace

This module exports the impure function trace, which is sometimes useful for debugging,
although understanding the output that it produces can sometimes be a major challenge
unless you are familiar with the intimate details of how programs are executed.

Beware that trace may change the order of evaluation in your program and, in
particular, will suspend the running thread if the first argument is not a ground term.

module Trace where
trace :: String -> a -> a

50

8 Extensions and Limitations

8.1 Extensions

8.1.1 Polymorphic Integer Literals and Negation

The Münster Curry compiler allows integer literals – i.e., numbers which neither contain
a decimal point nor an exponent – to be used as floating-point numbers. The type of an
integer literal is determined by the context where it occurs and defaults to Int if it is
not constrained by the code of the module being compiled.

For instance, the following expressions are accepted by the compiler and have type
Float.

1::Float
17 +. 25
3.1415 /. 2

This ad-hoc polymorphism can also be used in patterns.

foo :: [Float] -> Success
foo (0 : 1 : _) = success

bar 0 = Zero
bar 0.5 = Half
bar 1 = One

The type of foo would be [Int] -> Success if the type signature were omitted unless
foo is applied to a list whose elements are of type Float, e.g. foo [0.0,1.0], in the
same module. Note that the ad-hoc polymorphism of literals does not extend to functions.
Thus, if the type signature for foo were omitted, foo could be applied either to lists of
integers or to lists of floating-point numbers, but not to both.

The prefix operator - can be used for negating integer as well as floating-point
numbers in patterns and expressions. Floating-point numbers can also be negated with
the operator -., but this is deprecated.

8.1.2 Disequality Constraints

The Münster Curry compiler supports disequality constraints similar to T OY8. The
constraint e1 =/= e2 is satisfied when e1 and e2 reduce to different – not necessarily
finite – data terms. Disequality constraints for the free variables of a solved goal are
printed together with their bindings at the end of evaluation.

Disequality constraints are never instantiated by the runtime system, which can
lead to problems with finite domains. For instance, x =/= False is not replaced by
x =:= True. The runtime system therefore does not notice that the constraint x =/=
False & x =/= True, where x is unbound, cannot be satisfied. This incompleteness can
even lead to wrong results. For instance, given the definition

8http://toy.sourceforge.net

51

http://toy.sourceforge.net

f x | y =/= False & y =/= True = x where y free

the goal f "Wrong" will return the string "Wrong”, even though f’s guard can never be
satisfied9.

8.1.3 Existentially Quantified Types

The Münster Curry compiler supports existentially quantified data types as proposed
by Läufer and Odersky [LO94]. The syntax of data constructor declarations has been
changed to:

ConstrDeclaration ::= [forall TypeVarID1 . . . TypeVarIDm .]
DataConstrID SimpleTypeExpr1 . . . SimpleTypeExprn

where TypeVarID1, . . . , TypeVarIDm are the names of the existentially quantified type
variables that can be used in the argument types of the data constructor.10

For instance, the declaration

data Key a = forall b . Key b (b -> a)

introduces a polymorphic type Key with the single constructor Key. Since the type vari-
able b is existentially quantified, it is possible to combine keys for different types in a
list:

keys = [Key "123" length, Key 2 (+ 1), Key ’\ETX’ ord]

Existentially quantified types can be used in expressions and patterns just like other
data constructors. However, within the scope of a pattern, existentially quantified type
variables can be unified only with themselves. Thus, the definition

keySum (Key x f) (Key y g) = f x + g y

is valid, whereas

invalidKeySum (Key x f) (Key y g) = f y + g x

is rejected because f’s argument type cannot be unified with the type of y (and similarly
for g and x). In addition, the compiler reports an error if an existentially quantified type
variable escapes the scope in which it is visible as, for instance, in the following definition.

badEscape (Key x f) = x

Here, the existentially quantified type of the variable x would appear in the result of the
function badEscape.

9Thanks to Rafael Caballero for making me aware of this issue.
10The forall syntax can also be used for infix data constructors, see Sect. 8.1.10 below.

52

Limitations The invalidKeySum example above indicates that there is a typing is-
sue with the polymorphic operators (=:=), (=/=), and (==). For instance, given the –
otherwise useless – data type definition

data T = forall a. C a

an expression like C 1 =:= C ’a’ is accepted by the compiler because both arguments
have the same type. As a consequence, the implementation must perform runtime type
checking when one of the polymorphic operators is applied to an existentially quantified
type. Because enough type information is available in the Münster Curry implementa-
tion only for non-variable terms, equality and disequality constraints are blocked until
the arguments are sufficiently instantiated when applied to existentially quantified data
types. Therefore, the expression

let x,f free in Key x f =:= Key "abc" length

suspends instead of binding the variables x and f. Note that this restriction does not
apply when a variable is unified with a data term with an existentially quantified type,
e.g.,

let x free in x =:= Key ’a’ ord

A similar issue applies to the polymorphic function compare. However, since there
is no apparent order between terms of different types, this operation simply fails when
it is applied to arguments with existentially quantified types. This happens even if the
arguments of the constructors happen to have compatible types at runtime as, for in-
stance, in the expression C 1 ‘compare‘ C 2. This restriction may be lifted in a future
version of the compiler.

Local Universal Quantification Local universal quantification of types is not yet
supported but planned for a future release.

8.1.4 Partial Applications in Equality and Disequality Constraints

It is possible to use partial applications in equality and disequality constraints; they are
handled similar to data constructors. For instance,

let x free in x =:= id (const (2 * 2))

succeeds and binds x to const 4. In the current implementation, equality and disequality
constraints between two partial applications are restricted to ground terms. Thus,

let x free in const x =:= id (const (2 * 2))

does not bind x to 4, but suspends. This is necessary because equality of partial ap-
plications cannot be checked without runtime type checking and the current runtime
system provides enough type information only for ground terms, but not for variables.
This restriction may be lifted in a future release.

53

8.1.5 Fixity Declarations

The Münster Curry compiler accepts fixity declarations within local binding groups.
Thus, it is possible to assign fixities to operators defined in such groups. In particular,
this allows defining operators with associated fixities for a goal in the interactive top-level
(see Sect. 6.1 for the syntax of goals). You can freely mix fixity and value declarations
in a group. This is also true for fixity and block declarations at the module level.

For instance, you can enter the following goal at the interactive prompt:

length xs <== xs =:= [1] where xs free; infix 0 <==; x <== c | c = x

Note that the operator <== is also defined in library module Success (Sect. 7.5.7).
For compatibility with Haskell, the precedence level in fixity declarations may be

omitted, in which case it defaults to 9. Thus, the declarations infixr 9 . and infixr .
are equivalent.

8.1.6 Lazy Patterns

The Münster Curry compiler extends pattern syntax further by supporting lazy pattern
matching as in Haskell. Lazy patterns are useful for delaying pattern matching of the
arguments of a function until those arguments are actually needed. A pattern is turned
into a lazy pattern by prefixing it with the character ~.

SimplePattern ::= . . .

| ~ SimplePattern

For instance, consider the two functions

f b (x,y) = if b then x * y else 0
g b ~(x,y) = if b then x * y else 0

The goal f False undefined fails, whereas g False undefined evaluates to 0. Lazy
pattern matching can be implemented with the help of a local pattern declaration as
well, e.g.,

h b xy = if b then x * y else 0 where (x,y) = xy

This definition is completely equivalent to g. However, lazy patterns are more convenient,
especially because they can be nested as shown in the following example.

triple ~(a : ~(b : ~(c : _))) = (a,b,c)

Note the spaces between the colons and the tildes in the definition. When the function
triple is used, its argument list is evaluated only when the caller uses the elements of
the triple and only as far as necessary. For instance, if only the first element is used,
only the first node of the list is evaluated. In pure Curry, one has to use three local
declarations in order to write an equivalent function.

54

triple’ list = (a,b,c)
where (a,rest_a) = list

(b,rest_b) = rest_a
(c,_) = rest_b

Note that lazy patterns are handled like variables when computing the definitional
tree of a function. Thus, one has to be careful not to define functions with overlapping
rules. For instance, if triple were extended by another equation

triple [] = (undefined,undefined,undefined)

the evaluation of triple would become non-deterministic.

8.1.7 Type Renamings

The Münster Curry compiler supports type renamings with newtype declarations as in
Haskell.

BlockDeclaration ::= . . .

| NewtypeDeclaration
NewtypeDeclaration ::= newtype TypeConstrID TypeVarID1 . . .TypeVarIDn =

DataConstrID SimpleTypeExpr

I.e., a type renaming declaration is similar to an algebraic data type declaration with
a single unary constructor. However, with respect to the dynamic semantics, a type
introduced with a newtype declaration is more similar to a type synonym in that the
constructor is effectively compiled away. In contrast to a type synonym, a renaming type
is not equivalent to the renamed type and cannot be used interchangeably with it. This
makes it possible to introduce abstract types without the additional cost of introducing
data constructor applications. For instance, a simple stack type can be defined as follows:

module Stack(Stack(), empty, push, pop, top, isEmpty) where
newtype Stack a = Stack [a]
empty = Stack []
push x (Stack xs) = Stack (x:xs)
pop (Stack (_:xs)) = Stack xs
top (Stack (x:_)) = x
isEmpty (Stack xs) = null xs

In contrast to the definition type Stack’ a = [a], it is not possible to apply arbitrary
list functions to a stack. E.g., the expression head stk is rejected by the compiler if
stk is of type Stack t (for some arbitrary type t), whereas it were accepted for type
Stack’ t. Furthermore, the Stack type is exported as an abstract type, i.e., clients in
another module cannot create stacks except by using the exported functions empty and
push. Compared to the definition

data Stack’’ = Stack’’ [a]

55

we have that Stack ⊥ = ⊥, whereas Stack’’ ⊥ 6= ⊥. The use of a newtype is also
slightly more efficient than an algebraic data type with respect to memory usage and
execution time.

8.1.8 Expression Type Signatures

Another extension supported by the Münster Curry compiler are expression type signa-
tures:

Expr ::= Expr’ :: TypeExpr
| Expr’

where the definition of Expr’ is the same as for Expr in the Curry report. In addition,
the definition of conditional expressions is changed into

CondExprs ::= | Expr’ = Expr [CondExprs]

Therefore, in order to use an expression type signature in the guard of a conditional
expression, it has to be enclosed in parentheses as in the following example:

rId b x | (b :: Bool) = x

This restriction was made for compatibility with Haskell.
Until the Münster Curry compiler supports type classes, expression type signatures

are mostly useful in order to specify the type of numeric literals (see Sect. 8.1.1). They
may be helpful for locating type errors, too.

8.1.9 Constraint Guards in Case Expressions

Besides boolean guard expressions, the Münster Curry compiler also allows constraint
guards in case expressions. Similar to function rules, only a single constraint guard is
allowed for each alternative. A guarded alternative p | c -> e, where c is a constraint,
is considered syntactic sugar for the alternative p -> c &> e. This means that the case
expression does not fall through to the next alternative if the constraint fails. Instead,
the whole case expression fails in this case. Thus, the case expression

case (1,3) of
(x,y) | (x < 0) =:= True -> (0,y)
xy -> xy

fails, in contrast to

case (1,3) of
(x,y) | (x < 0) -> (0,y)
xy -> xy

which evaluates to the pair (1,3).

56

8.1.10 Constructor Operators

The Münster Curry compiler allows defining and using infix constructor operators other
than the predefined constructor (:). For instance, you can define an algebraic data type
Assoc, which represents an association between two values, as follows:

data Assoc a b = a := b

Such constructors can be used in patterns in the expected way. For instance, the following
function exchanges the roles of both arguments.

flipAssoc (x := y) = y := x

At any time, it is possible to enclose a constructor operator in parentheses in order to
use it in prefix form and to enclose a constructor identifier in backquotes in order to use
it in infix position. Fixity declarations apply to constructors occurring in a pattern as
well.

In order to accommodate constructor operators, the following rules of the Curry
syntax are changed.

ConstrDeclaration ::= DataConstrID SimpleTypeExpr1 . . . SimpleTypeExprn

| TypeAppl InfixConID TypeAppl
Pattern ::= QDataConstrID Pattern1 . . . Patternn [QInfixConID Pattern]

| SimplePattern [QInfixConID Pattern]
QInfixConID ::= [ModuleID .] InfixConID

| :

The Münster Curry compiler does not impose any restrictions on the names of construc-
tor operators – i.e., InfixConID = InfixOpID – but it is recommended to use only names
starting with a colon for infix constructors. This convention is compatible with Haskell.

8.1.11 No Automatic Eta-expansion of Function Definitions

Similar to PAKCS version 1.8 and T OY, the arity of a function is determined by the
number of arguments in its declaration rather than by its type as the Curry report im-
plies. For instance, the declaration sum = foldr (+) 0 defines sum as a nullary function
even though it has type [Int] -> Int.

Note that η-expansion can change the semantics of a program. Consider the two
programs

zero 0 = success zero 0 = success
one 1 = success one 1 = success
fcoin = zero fcoin x = zero x
fcoin = one fcoin x = one x
goal f | f x & f y = x + y goal f | f x & f y = x + y
where x,y free where x,y free

57

For the left program, goal fcoin has just two solutions, namely 0 and 2, whereas for
the right program, which is the η-expanded version of the left program, goal fcoin has
three different solutions, namely 0, 1, and 2.

Nevertheless, the compiler performs η-expansion as an optimization when it can prove
that the semantics of the program remains unaffected. In particular, function definitions
with only a single equation and whose right hand side is a non-expansive expression (cf.
Sect. 8.1.13) are always η-expanded.

8.1.12 Generalized Function Left-Hand Sides

Similar to Haskell, the Münster Curry compiler allows using a curried style for the left-
hand side of a function rule. This is very convenient for defining higher-order operator
symbols. For instance, the curried syntax can be used in the definition of the function
composition operator (.).

(f . g) x = f (g x)

The definition of FunLHS in the Curry syntax is changed as follows.

FunLHS ::= FunctionName | FunLHS1

FunLHS1 ::= FunctionName SimplePattern1 . . . SimplePatternn (n ≥ 1)
| SimplePattern InfixOpID SimplePattern
| (FunLHS1) SimplePattern1 . . . SimplePatternn (n ≥ 1)

8.1.13 Polymorphic Generalization of Let-Bound Variables

The compiler implements a variant of ML’s value restriction that allows polymorphic gen-
eralization of let-bound variables if the bound expression is a non-expansive expression.
The class of non-expansive expressions is defined inductively as the set of expressions
built from

• literals,

• local variables,

• applications of a constructor with arity n to at most n non-expansive argument
expressions,

• applications of a function or λ-expression with arity n to at most n − 1 non-
expansive argument expressions, and

• let-expressions which comprise only function declarations and variable declarations
of the form x = e where e is a non-expansive expression and whose body is also a
non-expansive expression.

With this extension, the compiler accepts all of the following definitions

58

f1 = (1:nil, ’a’:nil) where nil = []
f2 = [z (), z False] where z = const 0
f3 = last (last ["Curry"])

where last = \xs -> let y,ys free in (xs =:= ys++[y]) &> y

where the types ∀α.[α], ∀α.α → [Int], and ∀α.[α] → α are inferred for the local variables
nil, z, and last, respectively. On the other hand, the definition

f4 = (1:nil, ’a’:nil) where nil = id []

is still rejected because id [] is an expansive expression and therefore nil’s type is not
generalized.

8.1.14 Mutually Recursive Variable Bindings

The compiler allows mutually recursive variable bindings; for instance,

let { xs = 0:ys; ys = 1:xs } in xs

returns an infinite list of alternating 0’s and 1’s. Each right hand side expression is
evaluated only once. Therefore, given the definition

coin = 0
coin = 1

the expression

let xs = coin : xs in xs

returns either an infinite list of 0’s or an infinite list of 1’s.

8.1.15 Extended Import/Export Specifications

As in Haskell it is possible to import or export only some of the constructors of a data
type by specifying the list of visible constructors explicitly. For instance, the import
declaration import Prelude(Bool(True)) brings the constructor True into scope but
not False.

The syntax is as follows

Export ::= . . .

| QTypeConstrID (DataConstrID1 , . . . , DataConstrIDn)
Import ::= . . .

| TypeConstrID (DataConstrID1 , . . . , DataConstrIDn)

59

8.1.16 Foreign Function Interface

The Münster Curry compiler supports a subset of the Haskell foreign function inter-
face [Cha03]. The current implementation allows only importing foreign functions and
supports the calling conventions primitive, ccall, and rawcall. The calling convention
primitive is a non-portable addition of the Münster Curry compiler and must be used
only for C functions that use the calling conventions of the compiler’s runtime system.
Argument types of functions using the ccall calling convention are restricted to the
types Bool, Char, Int, Float, Ptr t, FunPtr t, and StablePtr t in this release where t
is an arbitrary type. In addition to these, types of the form IO t can be used as result
types, where t must be either () or a valid argument type. The non-standard calling
convention rawcall is similar to ccall except that no marshaling takes place. Thus all
arguments of the foreign function must have type Node * and its result type must be
either Node * or void.

The syntax of foreign function declarations is11

ForeignDecl ::= foreign import CallConv [Safety] [ImpEnt]
FunctionName :: TypeExpr

CallConv ::= primitive | ccall | rawcall
Safety ::= safe | unsafe

At present, the safety level is ignored and present only for compatibility with the Haskell
Foreign Function Interface addendum. The syntax of import entity specifications depends
on the calling convention being used. For functions using the primitive calling conven-
tion the string is used as the name of the foreign function. Name mangling is applied to
this name and therefore, there are no restrictions on valid names. For functions using
the ccall calling convention, this string must comply with the following grammar.

ImpEnt ::= " [static] [chname] [&] [cident] "
| " [dynamic] "

The optional chname, which must end with the suffix .h in order to distinguish it from
a cident, allows including a C header file into the compiled code. Besides providing a
prototype for the foreign function, this makes it possible to provide foreign function
declarations for C macros.

The optional cident is the name of the foreign C function and must conform to the
rules for valid C identifiers. If this name is omitted, the compiler assumes that the name
of the foreign function is equal to that of the Curry function, which must be a valid C
identifier in that case.

The optional & modifier imports the address of the entity denoted by cident or the
Curry name of the declaration if cident is omitted. The type of foreign address imports
is restricted to Ptr t and FunPtr t, where t is an arbitrary type.

11The identifiers primitive, ccall, rawcall, safe, and unsafe are not keywords, but given a special
meaning only in foreign function declarations. For instance, the declaration foreign import primitive

ccall :: IO () is accepted by the compiler.

60

The import entity specification dynamic defines a wrapper that allows calling a for-
eign function value with type FunPtr t. The type of a dynamic wrapper must have the
form FunPtr t → t where t is a valid foreign function type.

Arguments of type Bool, Char, and Int are converted to int, arguments of type
Float are converted to double, and arguments of type Ptr t, FunPtr t, and StablePtr t
are converted to void *. An inverse conversion is applied to function results. If a function
is declared with result type IO (), the function’s result (if any) is ignored and the Curry
function always returns the constant ().

The following declarations import the sin function from the standard C library, the
global errno variable, and provide a wrapper for calling C function pointers of functions
that take a long value and return a boolean result.

foreign import ccall "math.h" sin :: Float -> Float
foreign import ccall "errno.h &" errno :: Ptr Int
foreign import ccall "dynamic"

callC :: FunPtr (Int -> Bool) -> Int -> Bool

8.2 Limitiations and Incompatibilities

• The identifiers newtype and foreign and the operator symbol ~ are keywords and
cannot be used as variable, function or (type) constructor names.

• The range of Int is limited to −231 · · · 231−1 on 32-bit machines and −263 · · · 263−1
on 64-bit machines. Overflow is not detected.

• The operators div and mod truncate the quotient toward negative infinity, i.e.,
(-7) ‘div‘ 3 yields -3 and (-7) ‘mod‘ 3 yields 2. This semantics is compatible
with the Haskell 98 report, but not with older releases of the Münster Curry
compiler nor with PAKCS. Use quot and rem for division that truncates toward
zero. Note that the semantics of div and mod for negative numbers is not specified
in the Curry report.

• A type, data constructor, or top-level function with the same name as an imported
entity of the same kind can only be accessed using its qualified name. E.g., the
compiler will report an error for the module

module Main where
length = foldr (const (1 +)) 0
main = print (length [])

to the effect that the identifier length in the body of main is ambiguous. In order
to compile the module, either the length function from the prelude must be hidden
by adding the import declaration

import Prelude hiding(length)

61

or length must be qualified, i.e.,

main = print (Main.length [])

This incompatibility, which is consistent with the Haskell 98 module system, is
present because it allows better detection of unintentional name conflicts between
different modules, which usually are an indication of code duplication.

• A hiding clause in an import declaration effects the qualified name in addition to
the unqualified name. Thus, a hiding specification makes the identifier inaccessible
if not brought into scope with another import declaration. This behavior differs
from the Curry report, but is consistent with the (revised) Haskell 98 language
definition [Pey03] and was chosen in order to effectively control the qualified name
space inside a module. Note that the qualified names are relevant for deciding
which data constructors of a type are exported.

• Pattern matching in list comprehensions is always performed rigidly. For instance,
the evaluation of [x | True <- [x]] suspends when x is an unbound variable.
When following the report strictly, this expression should evaluate non-determi-
nistically to [True] and [False]. However, note that [x | 0 <- [x]] does sus-
pend even according to the Curry report.

• There is a conflict between sharing of non-local variables and encapsulated search.
For instance, for the program

coin = 0
coin = 1
main = findall (\x -> x =:= c) ++ findall (\x -> x =:= c)

where c = coin

main can evaluate either to the list [0,1,0,1] – i.e., sharing of the variable c is
lost – or non-deterministically to the lists [0,0] and [1,1] – i.e., encapsulation
is lost. The former choice is called strong encapsulation in [BBH04], the latter
weak encapsulation. The Münster Curry compiler’s try implementation uses weak
encapsulation, i.e., it preserves sharing of non-local variables, because the results of
an expression depend on the order of evaluation when using strong encapsulation.
For instance, depending on whether (+) evaluates its arguments from left to right
or from right to left, the expression

let c = coin in c + foldr (+) 0 (findall (\x -> x =:= c))

will either have results 0 and 2, or 1 and 2 with strong encapsulation, whereas it
has results 0 and 2 regardless of evaluation order with weak encapsulation.

The downside of weak encapsulation is that some non-determinism cannot be en-
capsulated. In particular, you cannot define a function allValues :: a -> [a]

62

that returns all normal forms to which the argument expression can be reduced.
You also have to be careful with partial applications as search goals. E.g., in
findall (=:= coin), the non-deterministic function coin is evaluated outside of
the encapsulated search because this expression is equivalent to let c = coin in
findall (\x -> x =:= c). In order to encapsulate the non-deterministic func-
tion coin use findall (\x -> x =:= coin) instead. The general rule of thumb
is that for the Münster Curry compiler the result of an expression is the same as
would be with an eager evaluation strategy modulo those subexpressions that were
not evaluated at all.

Because strong encapsulation is nevertheless useful, the Münster Curry compiler
also offers an alternative interface to encapsulated search based on the I/O action
getSearchTree in module AllSolutions (see Sect. 7.4.1).

8.3 Known Bugs

• When the compiler is built with hbc or nhc98, an out of range error is reported
for numeric character escape sequences with character codes greater than 255.

• The implementation of disequality constraints is incomplete. For instance, the goal
x =/= Just undefined fails even though it has a solution for x=Nothing, as can
be observed with the goal x =:= Nothing & x =/= Just undefined. This prob-
lem is expected to be removed in a future release.

• The compiler fails or enters an infinite loop for programs which contain certain
kinds of cyclic variable definitions, e.g.,

bug = x where x = x
cycle = x where { x = y; y = x }

• The send constraint in the Ports library (Sect. 7.4.6) may loose messages because
of unintended sharing. For instance, foldr (&) success (replicate 5 (send
"Hello" p)) sends the string "Hello" only once to the port and not five times.

• Equality and disequality constraints may lead to segmentation faults when applied
to cyclic data structures, e.g. in the goal xs =:= repeat ’x’ where repeat x
= let xs = x:xs in xs. Note that the prelude’s definition of repeat does not
create cyclic data structures.

• It is not possible to debug programs that involve cyclic data structures.

• The basic facts shown by the debugger can be way too complex to understand and
there is no provision to omit inner terms of deeply nested data terms.

• The debugger has insane memory demands for some non-trivial programs and
goals.

63

• The compiler may generate invalid interfaces if type constructors are used that
start with a lower case letter, which is followed by a – possibly empty – sequence
of digits.

• It is not possible to define dynamic foreign function wrappers for functions taking
int arguments and returning int results. This is not much of a problem on 32-bit
architectures where int and long are equivalent, but matters on 64-bit machines.
As a workaround, you have to define additional wrappers that promote the long
arguments to int and vice versa for the result. This issue will be addressed in a
future release that has support for type classes.

9 Common Problems and Solutions

• When compiling and linking my program with cyc or cymake, the compiler reports
an error “line 1.1: main is undefined”.
This error means that the compiler was unable to determine the main function of
your program. In general, this error is reported when your program’s main module
does not define and export a function main. However, this error is also reported
when you link a program with cyc from object files and did not specify the main
module with the -M option (see Sect. 3.4).

• The compiler complains about my function . . . being already defined.
Curry requires all rules of a function to be adjacent.

• The compiler complains about an “unexpected token qualified operator ‘m..’” in
the expression [m..n].
The problem here is that the parser tokenizes the expression into the four tokens
“[”, “m..”, “n”, and “]”, but not into “[”, “m”, “..”, “n”, and “]” as you might
expect. This is due to the fact that Curry – in contrast to Haskell – does not
require module names to start with a capital letter, but we want to allow qualified
uses of the dot operator (e.g., Prelude..).12 In order to avoid this error, always
use spaces before and after the .. token. See also the thread “Slight change of the
Curry syntax” in the Curry mailing list.

• My program fails with a stack or trail overflow or complains that there is not enough
free memory after a garbage collection.
First, make sure that your program did not enter an infinite loop.

If this is not the case, you can rerun the program with larger stack, trail, and heap
sizes by passing the options -ksize, -tsize, and -hsize, respectively, to the runtime
system (see Sect. 3.7)

For instance, to run your program heavyrecursion with a 2 MByte stack, use the
command

12Incidentally, Haskell has the same problem with enumerations for data types, e.g., [False..True]

64

heavyrecursion +RTS -k2M -RTS

You can omit -RTS if there are no program options or arguments following.

You can also change the default sizes when linking the program by passing the
options -hsize, -ksize, and -tsize to the compiler (see Sect. 3.4)

In order to see the default sizes used by a program, invoke it with +RTS -v

• When I enter the goal foldr (+) 0 [1..50000], the interpreter complains about
a stack overflow.
Use the :set command for changing the default sizes for the program with the
compiler options -hsize, -ksize, and -tsize, respectively.

Incidentally, foldr (+) 0 [1..32000] works in the default configuration.

• The interpreter complains about an undefined entity X in my goal.
In contrast to most other logic and functional logic languages all free variables of
a goal have to be declared explicitly in the Münster Curry implementation. Thus,
in order to see the solutions of the unary predicate nat enter

nat X where X free

or use a let expression as goal.

let X free in nat X

• My program fails with ERROR: Cannot duplicate the world.
This happens when your program performs a non-deterministic computation in
an I/O context. Make sure that all non-determinism is encapsulated in a program
with type IO t (see also the next item). Recall that the evaluation of a function can
be non-deterministic for two reasons. Either it is called with an argument that is
not sufficiently instantiated or the function’s definition has overlapping patterns.13

The latter happens regularly when converting Haskell functions to Curry, since in
Haskell functions are matched from top to bottom and only the first match is used,
whereas in Curry all matching equations are considered. For instance, in Haskell
you could define null by

null [] = True
null _ = False

This definition would be non-deterministic in Curry. Either replace the default
pattern _ by explicit cases for the remaining alternatives, i.e.,

13The compiler emits a warning for such functions when it is invoked with options -Woverlap or -Wall
(see Sect. 3.2).

65

null [] = True
null (_:_) = False

or use a case expression:

null xs =
case xs of

[] -> True
_ -> False

Note that in the latter case, null becomes a rigid function.

• My program is non-deterministic even though I use findall to encapsulate non-
deterministic expressions.
In the Münster Curry compiler’s implementation of encapsulated search, only com-
putations which are local to the search goal are encapsulated. Non-determinism
which occurs in arguments passed to a search goal cannot be encapsulated. See the
last item in Sect. 8.2 for a longer explanation of this issue.

• All my programs fail immediately with a bus error or segmentation fault.
Reconfigure the compiler with --enable-trampoline (see Sect. 2.2).

10 Release History

Release 0.9.11 (June 10th, 2007)

Build Environment

• On Microsoft Windows, the compiler can now also be built with MinGW.

• Versioned installation will allow multiple versions of the Münster Curry compiler
to coexist on a single machine in the future.

• New make target TeXShop for typesetting the documentation on Mac OS X with
TeXShop.app (cf. Sect. 2.2.2).

• It is now possible to build universal libraries on Mac OS X (cf. Sect. 2.2.3).

Compiler

• Function definitions are no longer η-expanded automatically (cf. Sect. 8.1.11).

• Let-bound variables can have a polymorphic type in some cases (cf. Sect. 8.1.13).

• The precedence level in a fixity declaration is now optional and defaults to 9 if
omitted (cf. Sect. 8.1.5).

66

• Only the exported entities of the main module and the Prelude are visible with
unqualified names in a goal. On the other hand, the entities of all other modules
imported directly or indirectly from the main module can now be accessed with
qualified names.

• Code generation is now based on a register-based abstract machine code model,
which yields more efficient code.

• The compiler omits redundant module qualifiers from type expressions in error
messages.

• Limited support for compiling mutually recursive modules.

• Compiler options --ccopts and --ldopts allow passing multiple comma separated
options to the C compiler (cf. Sects. 3.3 and 3.4).

• Compiler accepts options -F and -framework and passes them on to the C com-
piler.

Debugger

• Debugging of goals involving IO computations now works.

Interactive Environment

• The interpreter’s :load command takes changes of the search path with the :set
command into account.

• The interpreter allows :loading standard library interfaces so that, e.g., :l Array
no longer fails with an error message missing source file for Array.

• The interpreter no longer recompiles source modules each time a goal is evaluated.

• Only the exported entities of the main module and the Prelude are visible with
unqualified names in a goal. On the other hand, the entities of all other modules
imported directly or indirectly from the current module can now be accessed with
qualified names (cf. Sect. 6.1).

• New command :interface that displays the interface of the current or a specified
module.

Curry Library and Runtime System

• Improved trampoline implementation (used by default on Mac OS X), which re-
duces execution times by 5 to 10% on a PowerPC, and up to 30% on x86.

• Expressions like chr (-1) and const 0 <= id now fail only the current solution
instead of aborting the program with an error message.

67

• When a program fails due to a pattern match failure, the error message now in-
cludes the function where the failure was detected.

• Pattern matching (and other) failures are reported in non-IO goals if the goal was
compiled with the -f option (cf. Sect. 3.4) or if the program is invoked with the
-f runtime system option (cf. Sect. 3.7).

• The runtime system now uses tagged characters (similar to tagged integers) by
default. This avoids allocation for characters with codes above 255 (decimal).

• Avoid many name conflicts when interfacing with foreign C code.

• Many portability fixes to allow compilation on Windows with MinGW.

Foreign Function Interface

• New non-standard calling convention rawcall (cf. Sect. 8.1.16).

Noteworthy Bug Fixes

• The compiler no longer fails with an internal error in function constrKind when
importing a module whose interface contains types T1 and T2 whose names differ
only by their module qualifiers.

• The compiler no longer fails with a non-exhaustive match when reporting case
mode warnings for a program with explicit type signatures.

• Setting the initial buffering mode for the standard input and output channels with
the -b runtime system option (cf. Sect. 3.7) now works.

• The compiler no longer infers too general types for some functions in mutually
recursive binding groups involving pattern declarations.

• The parser no longer rejects patterns of the form (op) t1 . . . tn when op is a qualified
operator, e.g., (Assoc.:=) x y.

Release 0.9.10 (May 10th, 2006)

Build Environment

• The compiler can be used without installing it (see Sects. 2.1 and 2.2).

• Build issues with ghc 6.4 have been fixed.

• Use ghc --make when it is supported.

• Source distributions now include an abstract machine code to C compiler.

68

Compiler

• The compiler now reports all duplicate or undefined identifiers in a scope before
giving up.

• The compiler can optionally report warnings for case mode violations, unused
identifiers, shadowing definitions, and equations with overlapping left hand side
patterns (see Sect. 3.2).

• Existentially quantified types finally enabled again (see Sect. 8.1.3).

• Trust annotations introduced (see Sect. 4.1).

• Evaluation annotations removed.

• The compiler generates better code for case expressions in some cases.

Interactive Environment

• On systems where GNU Bash or a Korn shell (but not the public domain ver-
sion) are installed, the interpreter now supports command line editing. In addi-
tion, a history of previously entered goals and commands is maintained in file
~/.cyi_history.

• Initialization file .cyirc or ~/.cyirc is read at startup.

• The :cd command now works for directories whose name contains embedded
blanks.

• The value Success is shown in the answer to a constraint expression only when
there are no constraints.

Curry Library and Runtime System

• Module prelude renamed into Prelude.

• Additional prelude type: ShowS (see Sect. 7.1).

• New prelude functions: shows, showChar, showString, showList, showParen, ($!!),
($#), ($##), unknown, and ensureGround (see Sect. 7.1).

• New functions Char.minChar, Char.maxChar, Integer.minInt, and Integer.maxInt
that report the smallest and largest elements of types Char and Int, respectively.

• Implementation of AllSolutions.getSearchTree (see Sect. 7.4.1) changed to use
strong encapsulation for logical variables, too. In addition, the search tree now
properly reflects the state of the goal at the time when the getSearchTree action
is evaluated rather than fixing the state when the first solution is computed.

69

• New function IOExts.openFd (see Sect. 7.5.2).

• New library modules Lexing (see Sect. 7.5.4), NameSupply (see Sect. 7.5.5), and
Socket (see Sect. 7.4.8).

• An alternative implementation of encapsulated search is available, which can be
enabled with --enable-copying during configuration (see Sect. 2.2).

• The full Unicode character set range is now supported.

Noteworthy Bug Fixes

• A long standing issue where builds would fail when using the vendor supplied make
command on Solaris systems has been fixed.

• Gnu C specific features are now enabled only when using the Gnu C compiler.

• The import and export specifications T() and T(..) are now also accepted when
T is a type synonym.

• A potential stack overflow problem for functions returning a variable has been
eliminated.

• A problem where programs using encapsulated search could crash in certain situ-
ations has been fixed.

• A problem where a program could fail when show was applied to an infix construc-
tor application other than the list constructor (:) has been fixed.

• A space leak has been closed where file handles opened with one of the functions
IOExts.openProcess and IOExts.openTcpSocket were not closed automatically.
Note that these functions are used by the Ports module, too.

• The functions Integer.ilog, Integer.isqrt, and Integer.pow now fail for neg-
ative arguments.

• The string [’x’,’y’,’\200’,’2’,’3’] is now printed "xy\200\&23".

Release 0.9.9 (May 14th, 2005)

Build Environment

• The runtime system protects the inactive semi-space of the heap with mprotect(2)
on systems which support it. This can be turned off with the new configuration
option --disable-mprotect (see Sect. 2.2).

• The source distribution’s Makefile includes rules to build the internal documenta-
tion (see Sect. 2.2.2).

• On Mac OS X, -mdynamic-no-pic is used unless the compiler does not accept this
option.

70

Compiler

• cymake passes archive files (*.a, *.so, *.dylib, *.dll) to the linker instead of
complaining about a missing source file.

• The :set and :unset commands in the interpreter accumulate and remove indi-
vidual options.

• The :debug and :type commands of the interpreter as well as the new command
:^ use the previous goal if the goal was omitted on the command line.

Debugger

• The debugger is no longer restricted to the first solution of a goal.

• User interface improved.

Curry Library and Runtime System

• The compiler and runtime system should now work on 64-bit architectures using
the LP64 programming model, most notably the AMD x86-64. Many thanks to
Adam Peacock for his help in tracking down the problems on this architecture.

• Functions rigid and rigidSpine introduced in release 0.9.8 have been renamed
into ensureNotFree and ensureSpine, respectively, following a consensus on the
Curry mailing list about the names of these functions.

• The range of Int numbers is now always equal to that of C long values on the
target system.

• The functions div and mod now use the semantics mandated by the Haskell report,
i.e. the quotient is rounded toward negative infinity. Use the new functions quot
and rem when the quotient shall be truncated toward zero.

• Floating-point numbers are now printed with maximum precision.

• Function readFloat for converting strings into floating-point numbers implemented
(see Sects. 7.2.3 and 7.4.7).

• A more efficient representation is used for lazy applications.

Foreign Function Interface

• Foreign function declarations using the ccall calling convention have been ex-
tended to support the import of static addresses and dynamic function wrappers.
In addition, the basic marshalable types now include pointers (see Sect. 8.1.16).

• Most libraries from the Haskell 98 Foreign Function Interface addendum have been
implemented as far as they do not require type classes (see Sect. 7.3).

71

Documentation

• Sections about porting to a new architecture (Sect. 2.2.1) and building the internal
documentation (Sect. 2.2.2) added.

Noteworthy Bug Fixes

• It is now possible to use Gnu C version 3.4 and optimization level -O3 with the
default configuration.

• In some rare cases the compiler would print too general types for an expression.

• In a misguided attempt to avoid duplicate solutions, the (=/=) operator was using
equality constraints for some arguments. This is no longer the case as it is a source
of incompleteness. The new implementation correctly reports the solution y/=0 for
the goal let x,y free in (x,y) =/= (undefined,0), which was lost before.

• File handles opened with one of the functions IO.openFile, IOExts.openProcess,
and IOExts.connectTcpSocket are no longer closed automatically at end of file
or when an error occurs.

• It is no longer possible to write to a handle opened in ReadWriteMode after
IO.hGetContents has been applied to it.

• Rounding errors for large floating-point numbers in source text are now avoided.

• Better algorithm used for (Float.^).

• A bug was introduced in release 0.9.7 that caused partial applications of tuple
constructors to be printed incorrectly. This has been fixed.

Release 0.9.8 (Nov 8th, 2004)

Build Environment

• The compiler can now be built on Microsoft Windows with CygWin without special
configuration options.14

• It is now possible to use g++ as backend C compiler.

• Configure scripts upgraded to autoconf ≥ 2.50.

• Unix man pages for cyc, cymake, and cyi.
14Thanks again to Diego Berrueta.

72

Compiler

• Let expressions with free variable declarations are no longer restricted to type
Success.

• All functions use flexible evaluation by default.

• choice and rigid are no longer keywords.

• Syntax of external declarations now uses foreign import instead of external.

• Partial support for ccall calling convention in foreign function declarations (see
Sect. 8.1.16).

• Faster code for lazy applications of nullary and unary functions.

Curry Library and Runtime System

• The copying garbage collector now uses a segment order preserving algorithm.
The compacting collector has been removed as the new copying collector is both
faster and more accurate than it. The command line arguments -gc-2space and
-gc-compact are deprecated and will be removed in the next release.

• Type of (&>) generalized to Success -> a -> a.

• Non-deterministic choice operator (?) added to the prelude (see Sect. 7.1).

• seq and ($!) are no longer rigid, new functions rigid and rigidSpine added to
the prelude (see Sect. 7.1).

• Equality constraints x=:=e, where x is an unbound variable and e is in normal
form are evaluated more efficiently.

• Equality and disequality constraints between two partial applications are now re-
stricted to ground terms (see Sect. 8.1.4 for a rationale).

• (==) and (!=) can now be used for comparing partial applications and terms with
abstract types (e.g. file handles) for (in)equality.

• compare and the operators (<), (>), (<=), (>=) raise a runtime error when applied
to partial applications and terms with abstract types.

• undefined is equivalent to failed again.

• Fix minor incompatibilities with the Haskell report in the Numeric module. In par-
ticular, readSigned now recognizes parenthesized numbers, and readDec, readOct,
and readHex no longer accept leading blanks.

• trace function now writes its message to the standard error channel and appends
a newline to the message.

73

• New modules compatible with PAKCS: AllSolutions (Sect. 7.4.1), Combinatorial
(Sect. 7.4.2), Float (Sect. 7.4.3), Integer (Sect. 7.4.4), Parser (Sect. 7.4.5), and
Ports (only internal and stream ports; see Sect. 7.4.6).

• The Read module (Sect. 7.4.7) has been replaced by a (mostly) PAKCS compatible
one.

• Unsafe module (Sect. 7.4.9) is now compatible with PAKCS.

Documentation

• Section about limitations of encapsulated search added to the user’s guide (Sect. 8.2).

Noteworthy Bug Fixes

• The C compiler backend no longer reports an error for out of range floating-
point numbers. In addition, infinite values and NaNs are now shown as Infinite,
-Infinite, and NaN, respectively.

• show no longer encloses the names of abstract data types (e.g., files) in parentheses.

• Correct implementation of equality and disequality constraints between partial
applications of tuple constructors computed in different modules.

• A few rare bugs with nested encapsulated searches have been fixed.

• Two problems with the debugger have been fixed, where computation trees related
to local bindings could be lost in the presence of guards or case expressions, and
programs using if-then-else or case expressions in arguments could crash.

Release 0.9.7 (May 4th, 2004)

• Support for building and using the compiler on Microsoft Windows using the Cyg-
Win environment (cf. Sect. 2.3).15

• cyc’s option -y renamed into -T. cymake now supports -T, too.

• Integer literals can now be used as floating-point numbers (cf. Sect. 8.1.1).

• The unary negation operator - works for integer and floating-point numbers. Use
of -. for negating floating-point numbers is deprecated.

• The compiler no longer allows mixing import and other declarations. This change
is in conformance with the Curry report and makes cymake’s dependency analysis
more fault tolerant.

• It is now possible to define and use (infix) constructor operators (cf. Sect. 8.1.10).
15The necessary changes were kindly contributed by Diego Berrueta.

74

• Operator fixities must be declared in the same declaration group as the operator. To
this end, fixity declarations are allowed in local declaration groups (cf. Sect. 8.1.5).
Fixity declarations can still be mixed freely with other declarations.

• Curried syntax is supported on the left-hand side of declarations (cf. Sect. 8.1.12).

• Support constraint guards in case expressions. Actually, they have been supported
since the introduction of guarded case alternatives in release 0.9.6, but the docu-
mentation did say otherwise.

• Array module (Sect. 7.2.5) reimplemented. This fixes, in particular, the broken
accum and accumArray functions.

• Finite maps (Sect. 7.5.1) and sets (Sect. 7.5.6) added to the library.

• Add module IOExts which implements a subset of the Hugs/ghc module with the
same name. At present, this includes the monadic fixpoint function fixIO, mutable
references, and mutable arrays (cf. Sect. 7.5.2).

• Random module added (cf. Sect. 7.2.16).

• Add new primitive function ground to module Success (cf. Sect. 7.5.7).

• The generated code has become slightly faster, again.

• Bug fixes.

Release 0.9.6 (Nov 5th, 2003)

• The compiler has been renamed. The compiler proper must now be invoked
with the name cyc (instead of cycc).

• Hierachical modules mapped onto the filesystem, i.e., module SubProj.Lib.Mod is
now expected in one of the files Mod.curry and Mod.lcurry in the subdirectory
SubProj/Lib of the current directory or of one of the directories in the import
search path. (cf. Sect. 5.3)

• Interface files are no longer created in the current directory but in the same direc-
tory as the source file.

• The compiler now uses the source file name for computing the name of the interface
file instead of the module name. This should make a difference only for the main
file of a program.

• The module system finally conforms to the Haskell 98 module system. In particular,
it is now possible to define an entity with the same name as an imported entity.
However, such entities can be accessed only with their qualified name.

• cyc’s -m option renamed into -M because it conflicts with a Gnu C option.

75

• cymake can now search for imported modules in other directories.

• Make output of the debugger a little bit more readable when higher-order functions
are used.

• as, hiding, and qualified can be used as identifiers in programs. They are given
special treatment only in import declarations.

• Syntax extensions:

– newtype declarations (Sect. 8.1.7),

– @-patterns,

– lazy patterns (Sect. 8.1.6),

– guarded right hand sides for pattern declarations and case alternatives (Sect. 8.1.9),
and

– expression type signatures (Sect. 8.1.8).

• Prelude changes

– Make if_then_else rigid.

– Fix handling of negative arguments in take, drop, and splitAt.

• Additional modules from the Haskell library (partially) implemented:

– Directory (Sect. 7.2.11),

– IO (Sect. 7.2.10),

– Numeric (Sect. 7.2.3), and

– Time (Sect. 7.2.13).

• The notorious space leak for lazy pattern bindings has been fixed.

• Performance of the compiler improved, in particular for large files and files with
many constants.

• Bug fixes and minor performance enhancements in the compiled code.

Release 0.9.5 (May 1th, 2003)

• Changed to match version 0.8 of the Curry report.

• Faster implementation.

• Characters and strings are no longer displayed using integer numbers.

• Occurs check in unification.

• Restrictions on (partially) solved goals returned from try have been removed.

76

• Handle partial applications as data constructors in equality and disequality con-
straints (Sect. 8.1.4).

• IO Exceptions implemented. Use ioError for throwing I/O exceptions, and catch
for catching I/O exceptions (cf. Sect. 7.1).

• Existentially quantified data types disabled because the current implementation
was unsound regarding equality constraints. They will be included in a future
release after fixing the problem.

• New option --clean to cymake. This removes all compiled files for the target
modules and its imported modules.

• New commands :freshen and :clean in interactive environment.

• The function undefined now aborts the running program with an error message.
Use failed for failing only the current solution.

• More functions from the Haskell prelude: getContents, interact (cf. Sect. 7.1).

• It is now possible to change the buffer mode used for standard input and output
with a runtime system option (Sect. 3.7).

• Module Monad from the Haskell library is now included. This module also im-
plements the functions sequence, sequence_, mapM, and mapM_ from the Haskell
prelude (Sect. 7.2.9).

• New syntax for external declarations which is closer to the proposed FFI for Haskell
(Sect 8.1.16).

• Bug fixes. . .

Release 0.9.1 (Nov 12th, 2002)

This is mostly a bug-fix release.

• cyi and cymake now work on Solaris 2.7 and other OS’es with test commands
that do not support the -nt operator.

• Runtime option for changing the stack size renamed into -k.

• Defaults for all runtime options can now be passed to the compiler during linking.
Thus, all runtime options are now available under the interactive environment.

77

Release 0.9 (Nov 4th, 2002)

• Interactive environment cyi.

• Make-like build tool cymake.

• Declarative Debugger.

• More library modules.

• Programs can evaluate arbitrary goals, no additional flags needed for distinguishing
IO and non-IO goals.

• Lots of bug fixes.

References

[ARS94] L. Augustsson, M. Rittri, D. Synek. On generating unique names. Journal of
Functional Programming 4(1), 1994. pp. 117–123.

[BBH04] B. Braßel, M. Hanus, F. Huch. Encapsulating Non-Determinism in Func-
tional Logic Computations. Proc. WFLP ’04, pp. 74–90. Aachener Informatik
Berichte AIB-2004-05.

[Cha99] M. Chakravarty. Lazy Lexing is Fast. Proc. FLOPS ’99, pp. 68–84. Springer
LNCS 1772.

[Cha03] M. Chakravarty (ed.). The Haskell 98 Foreign Function Interface 1.0.
Available at: http://www.cse.unsw.edu.au/~chak/haskell/ffi/

[CL99] R. Caballero, F.J. López-Fraguas. A Functional-Logic Perspective on Parsing.
Proc. FLOPS ’99, pp. 85–99. Springer LNCS 1772.

[CL02] R. Caballero, W. Lux. Declarative Debugging for Encapsulated Search.
WFLP’02 – Selected Papers. Electronic Notes in Theoretical Computer Sci-
ence, Vol. 76.
http://www.elsevier.com/locate/entcs/volume76.html

[EL00] L. Erkök, J. Launchbury. Recursive Monadic Bindings. Proc. ICFP ’00,
pp. 174–185. ACM Press. Also available at:
http://www.cse.ogi.edu/pacsoft/projects/rmb

[Han99] M. Hanus. Distributed Programming in a Multi-Paradigm Declarative Lan-
guage. Proc. PPDP ’99, pp. 188–205. Springer LNCS 1702. Also available at:
http://www.informatik.uni-kiel.de/~mh/publications/papers/

[Han06] M. Hanus (ed.). Curry: An Integrated Functional Logic Language. (Version
0.8.2). Available at:
http://www.informatik.uni-kiel.de/~mh/curry/report.html

78

http://www.cse.unsw.edu.au/~chak/haskell/ffi/
http://www.elsevier.com/locate/entcs/volume76.html
http://www.cse.ogi.edu/pacsoft/projects/rmb
http://www.informatik.uni-kiel.de/~mh/publications/papers/
http://www.informatik.uni-kiel.de/~mh/curry/report.html

[LO94] K. Läufer, M. Odersky. Polymorphic Type Inference and Abstract Data Types.
ACM TOPLAS 16(5), 1994. pp 1411–1430.

[Lux04] Wolfgang Lux. Comparing Copying and Trailing Implementations for Encap-
sulated Search Proc. WFLP ’04. Aachener Informatik Berichte AIB-2004-05.
pp. 91–103. Also available at:
http://danae.uni-muenster.de/~lux/pubs/wflp04.html

[Pey03] S. Peyton Jones (ed.). Haskell 98 Language and Libraries. The Revised Report.
Cambridge University Press. April 2003.
Also available at: http://haskell.org/definition/

79

http://danae.uni-muenster.de/~lux/pubs/wflp04.html
http://haskell.org/definition/

	Overview
	Installation
	Binary Distribution
	Source Distribution
	Porting to a New Architecture
	Building the Documentation
	Building universal libraries and programs on Mac OS X

	Installation on Microsoft Windows
	CygWin
	MinGW

	Using the Compiler
	Overall Options
	Compiling Curry Modules
	Compiling C Files
	Linking
	Environment
	Examples
	Running Programs

	Using the Debugger
	Trusted functions

	Building programs with cymake
	Options
	Environment
	Modules and the Filesystem
	Using Libraries
	Using make

	Using the Interactive Environment
	Goals
	Commands
	Limitations
	Example Session

	Libraries
	Prelude
	Haskell 98 Library
	Ratio
	Complex
	Numeric
	Ix
	Array
	List
	Maybe
	Char
	Monad
	IO
	Directory
	System
	Time
	Locale
	CPUTime
	Random

	Foreign Function Interface
	Foreign
	Bits
	Int
	Word
	Ptr
	ForeignPtr
	StablePtr
	Storable
	MarshalAlloc
	MarshalArray
	MarshalError
	MarshalUtils
	CForeign
	CTypes
	CString
	CError

	Library Modules Compatible with PAKCS
	AllSolutions
	Combinatorial
	Float
	Integer
	Parser
	Ports
	Read
	Socket
	Unsafe

	Library Modules Specific to the Münster Curry Compiler
	FiniteMap
	IOExts
	IOVector
	Lexing
	NameSupply
	Set
	Success
	Trace

	Extensions and Limitations
	Extensions
	Polymorphic Integer Literals and Negation
	Disequality Constraints
	Existentially Quantified Types
	Partial Applications in Equality and Disequality Constraints
	Fixity Declarations
	Lazy Patterns
	Type Renamings
	Expression Type Signatures
	Constraint Guards in Case Expressions
	Constructor Operators
	No Automatic Eta-expansion of Function Definitions
	Generalized Function Left-Hand Sides
	Polymorphic Generalization of Let-Bound Variables
	Mutually Recursive Variable Bindings
	Extended Import/Export Specifications
	Foreign Function Interface

	Limitiations and Incompatibilities
	Known Bugs

	Common Problems and Solutions
	Release History

