Cook

A File Construction Tool

User Guide

Peter Miller
millerp@canb.auug.@yau

This document describes Cook version 2.28
and was prepared 6 June 2007.

This document describing the Cook program, and the Cook program itself, are
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Peter Miller; All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your optionydater version.

This program is distributed in the hope that it will be usefut WITHOUT ANY
WARRANTY; without esen the implied warranty of MERCHANABILITY or FITNESS
FOR A FRARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should hae receved a opy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc.,&8ple Place, Suite 330,
Boston, MA 02111, USA.

Cook UserGuide

1. Introduction

This document describeok, a maintenance tool designed to construct fil€&ook may be used to
maintain consisterydbetween gecutable files and the associated source files that are used to generate them.
The consistencis designated by the rela# last-modified times of files and is thus automatically adjusted
each time a file is edited, compiled or otherwise modifiédok validates the consistepof a g/stem of

files and gecutes all commands necessary to maintain that consystenc

Cook is a tool for constructing files. It is\gn a %t of files to create, and instructions detailingvtio
construct them. In annon-trivial program there will be prerequisites to performing the actions necessary
to creating anfile, such as extraction from a source-control syst€wmok provides a mechanism to define
these.

When a program is beingioped or maintained, the programmer will typically change one filevefale
which comprise the programCook examines the last-modified times of the files to see when the
prerequisites of a file ka dhanged, implying that the file needs to be recreated as it is logically out of date.

Cook also prwides a facility for implicit recipes, allowing users to specifyvio form a file with a gien
suffix from a file with a different sfik. For example, to creafdenameo from filenamec

1.1 Why You Want To Use Cook

- Cook is a replacement for the traditionahké1) tool.

- There is anake2cookitility included in the distribution to help ceert makefiles into cookbooks.
« Cook is more powerful than the traditiomaaketool.

- Cook has true variables, not simple macros.

- Cook has a simpleub powerful string-based description language with yrauilt-in functions. This
allows sophisticated filename specification and manipulation without loss of readability or
performance.

» Cook has user defined functions.
« Cook can build in parallel.
- Cook can distribute builds across your LAN.

« Cook is able to build your project with multiple parallel threads, with support for rules which must be
single threaded. It is possible to distrib parallel buildswer your LAN, allowing you to turn your
network into a virtual parallel build engine.

- Cook is able to use fingerprints to supplement file modification tifikis. allows build optimization
without contorted rules.

. Cook can be configured with amxpdicit list of primary source files. This allothe dependenc
graph to be constructeddter by not going down dead ends, and also allows better error messages
when the graph canbe @nstructed. Thisequires an accurate source file manifest.

- In addition to walking the dependgngraph, Cook can turn the input rules into a shell script, or a
web page.

. Cook has speciatascadedependencies, allowing powerful include depengeggecification,
amongst other things.

- And Cook doestt'interpret tab differently to 8 space characters!

If you are putting together a source-code distribution and planning to write efilmakonsider writing a
cookbook instead. Although Cook takes a day ar tavlearn, it is much more powerful and a bit more
intuitive than the traditionainakg1) tool.

Peter Miller Paje 1

Cook UserGuide

1.2 How to Use this Manual
This manual is divided into teparts.
The first part is tutorial introduction tmok. This part runs from chapter 4 to chapter 5.

The second part is for reference and details preciselydaok works. Thispart runs from chapter 6 to
chapter 14.

Users familiar with other programs similar ¢cook are advised to skim the tutorial part before diving into
the reference part.

1.3 Ancient History

Cook was aiginally developed because | was marooned on an operating system without anytlaing e
vaguely resemblingnakél). Thiswas in 1988. Sincd had to write my own, | added afémprovements.
When | finally escaped back teix, in 1990, it took only tw days to portcook to SystemV | have snce
deleted all code for that original operating system, although clues to its identity are still present.

After | hadcook up onunix, the progress the world had made caught up with lheas gratifying that
mary of the features other maloid authors had thought necessary were either already present, or easily
and seamlessly added.

Cook was written with portability in mind. This does not means it is entirely portable, but it comes close.
Cook has been tested on numerous flavors. Thiswas made much simpler in 1994 when | started using
the GNU Autoconf utility This means that when you obtain the sources for Cook, all wauthao is un

the configurescript included in the distribution and Cook will be configured for your syst8ee the
BUILDING file in the source distribution for more information.

In 1996 Cook had internationalization support added, so that users coeldrita messages and other
warning and informational messages printed in theinvedtinguage. Thisvas made possible by the GNU
Gettext utilities.

In 1997 Cook had a major re-write of significant portions of its inference engine. This enabled the addition
of parallel processing support, and simplified adding user-defined functions to the cookbook language.

Peter Miller Page 2

Cook UserGuide

2. Cook from the Outside

This chapter is part of the tutorial onvingo use thecook program. Itfocuses on hwe to usecook, without
needing to knar how cook works internally.

2.1 What can cook do for me?

By far the most common use of cook, by experts and beginners alike, is to issue the command
cook
and cook will consult its cookbook to see what needs to be done.

In generalcook is used to tag a £t of files and che on them in some way to produce another set of files;
such as the source files for a program, and tooturn them into theecutable program file. In order for
cook to do anything useful, it needs to kmavhat to do. "What to do" is contained in a file called
Howto.cookin the same directory as the files it is going to work dbu need to ®ecute the cook
command in the same directory as all of the files.

2.2 What is cook doing?

TheHowto.coolfile was written by the same person who wrote the source files. It contains a set of recipes;
each of which, among other things, contain commands fertbenanipulate the filesThe cook program
echos each of the commands it is aboukezge, so that you can watch what it is doing as it goes.

If the Howto.coolfile contained only commands, you would be betteusihg a shell script. In addition to

the commands is information tellirpok which files need to be constructed before other files can be, and
from this informationcook determines the order in which taeeute the commandsAlso, cook examines

other information to determine which commands it need not do, because the associated files are already up-
to-date.

2.3 What can cook always do?
If you are in a directory with Blowto.cookfile, you can expect aviecommon requests to work

cook clobber This command can be expected to reenany fies from the directory which
cook is able to reconstruct.

cook all This is the default action, and so can be obtained by a souple request. It
causesook to construct some specific file or set of files.

cook clean This is similar to "cook clobber" alie, but it only remaes intermediate files,
and not not the final file or files which "cook all" constructs.

In addition to the ah@, manyHowto.cookiles will also define

cook install If a program or library or document is constructed in the directiwy this
command will install it into the correct place in the system.

cook uninstall The neerse of the abee, it removes osmething from the system.

2.4 If something goes wrong

Most errors whilecook is constructing file are caused by errors in the source files, and rtdbite.cook
file. In general, you can fix the problems in the source files, aeclie thecook command again, and
cook will resume from the command which incurred the error.

To help you while editing the files with the errocepk keeps a listing file of all the commands xeeuted,
and an output of those commands, in a file calléawto.listin the current directory.

You may want cook to find all the errors it can before you doyaadliting, do do this, use th&ontinue
option (it may be abbreviated tofor convenience).

Peter Miller Page 3

Cook UserGuide

2.5 The Reference Manual

For more information about the command ling@aments and options of the various commands mentioned,
you should consult the on-line manual pages. The Cook Reference Manual is also a good source of this
information, and is\ailable from the same place as you obtained this manual.

Peter Miller Paye 4

Cook UserGuide

3. Cook from a Cookbook

This chapter describes the contents and meaning of a cookbook, a file which contains infayooktion
needs to do its joblt focuses on what a cookbook looks like, and touches ow aréas of hav cook
works does its job.

3.1 What does Cook do?

The basic building block farook is the concept of eecipe A recipe has three parts:
1. oneor more files which the recipe constructs, known agatyets of the recipe

2. zeroor more files which are used by the recipe to construct the target, knowniagréutentsof
the recipe

3. oneor more commands taxecute which construct the targets from the ingredients, known as the
bodyof the recipe.

When a number of recipes arevgi, some recipes may describewhto cook the ingredients of other
recipes. Wherook is asked to construct a particular target it automatically determines the correct order to
perform the recipe bodies to cook the requested target.

Cook would not be especially useful if you had toaiexlicit recipes for hw to cook every little thing.

As a result,cook has the concept of amplicit recipe. Animplicit recipe is ery similar to an xplicit
recipe, except that the targets and ingredients of the recipmtieensto be matched to file names, rather
than explicit file namesThis means it is possible to write a recipe, for example which constructs a files
with a name ending ind’ from a file of the same name, but ending.¢hrather than.o'.

In addition to recipesgook needs to knw whento construct targets from ingredient€ook has been
designed to cook as little as possible. "As little as possible" is determined by examining when eash file w
last modified, and only constructing targets when that are out of date with the ingredients.

3.1.1 When is Cook useful?
From the abee description,cook may be described as a tool for maintaining consigtensets of files.

3.1.2 When is Cook not useful?

Cook is not useful for maintaining consistgraf sets of things which arwiithin files and thusook is
unable to determine when thevere modified.For example,cook is not useful for maintaining consistgnc
of sets of records within a database.

3.2 How do | tell Cook what to do?

Sets of recipes are gathered together into cookbddleencook is executed it looks for a cookbook of the
nameHowto.cookin the current directorylf you did not name a file to be constructed on the command
line, the first target in the cookbook will be constructed.

The best way to understandvh@o write recipes is anxample. Inthis example, aprogram,prog, is
composed of three filefo.g bar.candbaz.c To inform cook of this, the cookbook
#include "c"

prog: foo.o bar.o baz.o

{
}

is sufficient forprogto be constructed.

cc -0 prog foo.o bar.o baz.o;

This cookbook has twparts. Thdine

Peter Miller Pagye 5

Cook UserGuide

#include "c"
tells cook to refer to a system cookbook which tells it, among other things tdhvoonstruct asomething
file from asomething: file.

The second part is a recipe. The first line of this recipe
prog: foo.o bar.o baz.o
names the targgprog, and the ingredient$po.q bar.oandbaz.o

The next three lines

}

are the recipe bodyvhich consists of a singleo(1) command to bexecuted. Recipédodies are afays
within { curly braceg, and commands ®lays end with a semicolor)(

cc -0 prog foo.o bar.o baz.o;

Thus, to updateprog after aly of the source files @ been edited, it is only necessary to issue the
command

cook prog
This could be simplified furthebecausecook will cook the targets of the first recipe by default; in this
caseprog

The power of cook becomes more apparent when include files are considered. If tl®.flandbaz.c
include the filedefs.h this would automatically be detected dxyok. If defs.hwere to be edited, armbok
re-executed, this would causepok to recompile bothifoo.c andbaz.¢ and relink prog. The information
about hav to turn .c files into.o files came from thé#include "c" " line, which read in the C recipes
distributed with Cook.

3.2.1 The common program case
The abee example may be simplifiedven further If the four filesfoo.g bar.c, baz.canddefs.hall resided
in a directory with a path déome/where/fmyg, then theHowto.cookKile in that directory need only contain
#include "c"
#include "program"
for prog to be cookd. Thisis because theptogram " cookbook looks for all of theomething: files in
the current directorycompiles them all, and links them into a program named after the current directory.

The default target in thepfogram " cookbook is calledill. The ingredient ofll is the program named
after the current directoryTwo aher targets are supplied by this cookbook:

clean remues dl of the something files from the current directory.

clobber remwes the program named after the current directend also remees dl of the something
files from the current directory.

3.3 Creating a Cookbook

To usecook you will usually need to define a cookbook, by creating a file, usually dddiedio.cookin the
current directorywith your favaite text editor.

This file has a specific formaflhe format has been designed to be easy to leasn fer the casual user
Much of the power ofook is contained in he it works, without complicating the format of the cookbook.

Peter Miller Paye 6

Cook UserGuide

Example of what a cookbook looksdilee scattered throughout this document. The following example is
the entire cookbook for mgirprograms, some quite large:

#include "c"

#include "yacc"

#include "usr.local"

#include "program”
As you can seeyen for mary complex programs, the cookbook is remarkably simple.

Peter Miller Pae 7

Cook UserGuide

4. Cooking in Parallel

Cook is able to use the dependentformation in the cookbook to schedule more than one recipe body at
once, where theare independent. In large projects this is almosag possible.

Paallel processing is of most use on multi-processor systdimere are cases, Wwever, when running tw
jobs at once on a workstation candakllvantage of disk or network latencies.

Paallel processing requires more resources than the simple case. Because more commands are running,
more CPU is required,ub also more virtual memory and more temporary file sp&@el need to be sure
that cooking in parallel is a sensible thing to be doing.

4.1 Command Line Option

The-PARallel option is used to tell Cook to run the recipe bodies in parallel. By default, 4 jobs run in
parallel. You may specify the number of jobs after the optmg.(-par=2) if you wish.

4.2 Cookbook Variable

It is also possible to set the number of jobs from within the cookbook by usirmgatakiel jobs
variable. Thiscan be used to automate the selection of the number of jobs, based on the current host name:
if [not [defined parallel_jobs]] then

{
host = [os node];
if [in [host] cerberus] then
parallel_jobs = 3;
else if [in [host] zaphod] then
parallel_jobs = 2;
else if [in [host] hydra] then
parallel_jobs = 8;
}

In this way, the number of jobs will be set appropriately for each machingjded the number of jobsas
not already set by the command line option.

4.3 Recipe Writing

Most recipes run in parallel without fidulty, howeve some will require special treatment. The problems
arise from conflict for resources — usually temporary files.

The simplest example of thisyacdl). Theoutput filenames are hard-codederewhen you write a more
general recipe:
%.c: %.y
single-thread yy.tab.c

{
[yacc] [yacc_flags] %.y;
sed "s/[yY]lyY}/%_/g" yy.tab.c > [targe];
rm yy.tab.c;

}

Replacing therY is a common method for getting more than one yacc grammar into a progvamn
into trouble with theyy.tab.c file becauseery one of the yacc grammars will need to use the same
temporary file name.

The single-thread clause tells cook to find something else to do if it discothat it wants do tevof
these at the same time.

Peter Miller Paye 8

Cook UserGuide

The temporary file name may not be sadent as in the yacc case. The GNU Autoconf utilities use a
number of temporary files in the current directdoyt none of them appear in the text of the recipes.
%: %.in: config.status
single-thread conftest.subs

{
CONFIG_FILES\=[target] CONFIG_HEADERS\= config.status;
}
It is common, if your project uses GNU Autoconf, to generateerak files in this vay. Once the
config.status script is produced, all of these files will then be candidates for cook to generate — b

they can only be done one at a time.

Other resources, such as tapesetj can also be described in tiagle-thread clause. ¥u can do
this by device namee(g./dev/irmt/0O) or by some descriptie gring. Thesingle threading is performed
by mutually exclusie gring sets, not by inode.

4.3.1 Concurrent Execution Threads

Each recipe, when its actions areeuted, is gecuted within an xecution thread.Execution threads share
almost eerything in common; this includes all of thanables, the state of thisét” statement, the stat
cachegtc

If you need to create variable names, or temporary file names, which are unique to a thread, use the
[thread-id] variable. Thisvariable has a uniquealue for the life of a thread. No other concurrent
thread will hae the same value.

Note, havever, that the[thread-id] values of completed threads will be re-used; this ensures that when
it is used to construct variable names, thgiables will be re-used. This ments memory bloat when
cooking large projects.

4.4 File Locking

The abwee dscussion applies to utilities which perform no file locking, and thus cannot detect or sequence
multiple accesses to a resource. Other programs, such as those which access databases,gpity ha
capable file locking mechanisms and are able to manage multiple parallel updates on theivieting ob

the need for theingle-thread clause.

4.5 Virtual Machine

It is possible to simulate a parallel machine if you are on aanktwCookis able to distribute tasks to
computers on a network, if it isvgn sufficient information.

The first information Cook requires is the list of machin&his is done using thparallel_hosts
variable. Note: The tasks will be distributed amongst these machines independent of the setting of the
parallel_jobs variable. i.e. even if you are not doing parallel processing.

parallel_hosts = larry curly moe;
If you want to g¥e e machine more wieghting than the others, (sagause it is twice as fast) you simply
name it more than once. Cook will use these names in round-robin fashion.

4.5.1 Remote Shell Command
Cook uses the Beelkeyrsh(1) command to woke the remote commandyYou can set the command, or the
command and some options, usingpheallel_rsh variable. Thedefault value is
parallel_rsh = rsh;
In order to work in a useful &y, Cook males some assumptions about your environment and your account:

+ That your system administrators allogih(1) to be used on your network.

« That your account name is the sameatirmachines (otherwise noven thersh -l login-name
option will help).

Peter Miller Pagye 9

Cook UserGuide

« That the/etc/hosts.equiv file, or your~/.rhosts file, is set omall machines so that you
don't need to gie a @assword.

- That all of the necessary files and directories are mounted in exactly the same place on all of the
machines; and that there the same fileen all machines, via NFS or similaAutomounters can
male this especially messy.

- That your account start-up scripts set the necessaiyoement settingse.g. command search
PATH without ary intervention required.

- That all of the machines are of the same architecture, or that the architecturé ma#sn’

« That the system time is synchronised on all machines, usatg1) from cron(8), or using NTPor
similar.

4.5.2 Limitations
There are some inherent limitations in thie(1) protocol.

- Your current environment variable settings are not transferred adiesther areulimit settingsetc
If any are important, you need to write the cookbook to explicitly replicate them.

- The «it status of the remote command is not reported in the exit status c$h(ti¢ command
There are internal contortions used by Cook to obtain the exit status; error about mysteriously named
files usually indicate that one or more of thexabasumptions is being broken.

4.5.3 Secure Shell

It is possible to use the Secure Shell (ssh) instead of Remote ShellTtnghyives you fully authenticated,
fully encrypted sessions, botlkes your intranet andwen over the Internet. Once you ha it installed and
configured correctlyyou simply replace thesh command in the alve examples with thesshcommand.

This is accomplised by setting
parallel_rsh = "ssh";
Somewhere near the top of your cookbook.

4.5.4 Host Binding
In some cases, such as licensing conditions, some commands will only run on a limited set &dtbsts.
than perform all commands on those hosts, it is possible to bind recipes to specificTh@stsinding
overrides theparallel_hosts variable.
%.c: %.esql
host-binding shylock
{

}

This example says that the embedded SQL preprocessor is only to be run on the database server called
“shylock’, probably due to usurious licensing feeslowever, you may want to perform your other
development activities on more lightly loaded machines; this clause only applies to this one recipe, other
recipes beha & normal.

esql %.esql > [target];

The host-binding clause may ha nore than one host named, andytgll be used in round-robin
fashion. Thids a recipe-leel variant of theparallel_hosts variable.

The host-binding clause will apply independent of the setting of the settpagallel_jobs and
parallel_hosts variables.

The recipe leel host-binding overrides the cookbook &l parallel_hosts when determining
which remote hosts should be used.

If the list of hosts gien to the host-binding clause is empfythe local host will be used (normal recipe
execution will occur).

1. The Berkelg sources certainly dohtontain code to do this. Do plther vendors hae a nore useful implementation?

Peter Miller Page 10

Cook UserGuide

If you need to include the local host in the round robin,losalhost or [os node] , howeve this

will behave exactly the same as for a remote hosau should also consider hard coding the name, that
way you get the same behar no mater which of the machines in the rond robin the Cook command is
executed on.

4.5.5 Load Balancing
It is possible to uséost-bindingto perform load balancingThis is accomplished by usingip(1) to
discover which hosts are least bysynd then using this information tovioke the system’ssh(1).

This may be accomplished by using

parallel_rsh = "cook_rsh";
someavhere near the top of your cookbook ¢mok_ish —sfor secure shell).You then gve dasses of hosts
to the host-bindingclause of the recipes, rather than specific host narSeg.cook_rslfl) for more
information about setting up classes of hosts.

If you still need to gie pecific host names to some recipask_rsil) will cope with this, too.

4.6 Virtual Machine, Revisited

It is also possible to e Gook run multiple processes in parallel without having tovkmdhat machines
are aailable. Thismethod puts control of the netwk resources in the hands of an external program, one
example of which igook_rsh , distributed with Cook.

Once you hee ach a virtual network defined it becomes very easy to build projects for multiple platforms
or architectures in the sameild. It also allows easily adding wemachines, or disabling machines for
maintenance. Thertual network can be changed aydime without disturbing ongoing delopment.

The following examples will hae te form allowing multiple architecture builds, but of coursey tivél
work for single architecture as well.

4.6.1 cook_rsh

Thecook rsh system is just one way of defining the capabilities of/angietwork in a way that a single
program can makthe best choice of machine for a@i job. It does so in a way that is reliable and does a
decent job of balancing loads acrosailable machines,ven with multiple developers doing builds at the
same time.

Each job that requested WGaok rsh picks the appropriate machine from those able to do the job at that
instant in time. In contrast foarallel_hosts or host-binding hostA hostB etc , it does not
work from a list which was current at the time a cook proceas started. Thus it is less vulnerable to
machines going 6fine or becoming werloaded as time passes.

Currentlycook_rsh usesrsh to actually &ecute the job, so requires the same network setup. Tkte ne
version may usenulticast instead for een finer control and reliability.

There are minor differences in the setup to asek rsh control. Thefirst is that Cook no longer
requires a list of machineslt is not necessary to set thgarallel hosts variable. The
parallel_rsh variable is set as:

parallel_rsh = cook_rsh -v;
The-v option produces information as to what machine was actually picked for each job.

4.6.2 Host Binding
All recipe bodies which should run in parallel nedubat-binding setting. Rathethan list the hosts to
be used we form a name which is usedcbgk_rsh to select an appropriate machinehis hame may
include ararchitecture component and aperation component.
%1/%.0: %.c
host-binding %1 _C
{

}

[%1 _cc] -o [target] -c [resolve %.c];

Peter Miller Page 11

Cook UserGuide

%1/%2: [addprefix %1/ [%2_objs]]
host-binding %1_L

{
[%1_1d] -0 [target] [resolve [need]];

This example says that the compiles for a certain architecture shoelldge& on ay machine designated

as a compile host for that architecture. And linking jobs should go to machines designated as a link host for
that architecture. Of course the same machine could probably do bothyblsulget to define it as you

see fit, and change the designations from moment to moment. Current designations per architecture are:

_C Compile (Compilsource code)
L Link (link binary programs)
T Test (runautomatic tests)
B Build (including cooking, or generic jobs)

And others may be added if necessary by simple extension.

4.6.3 Administration of cook rsh

The definition of the virtual netwvk used bycook_rsh is contained in just a wvoonfiguration files.One
file lists designations, and lists machines belonging to each designation. The ottexciadmfile, which
lists machines which should not be used for wieatteeason.

The designations file may be created by hand if desined htility calledrate_hosts is provided that
can generate thigost_lists.pl file, possibly after being customized for the particular requirements of
a gven environment.

The exclusion file lists machines that shouldende ®lected. Thexclusion file can be edited atyatime
and adding a machine will prent ary further jobs from going its ay. Remaoving the name will agjin
allow selection of that machineHow soon a job actually goes there depends greatly on theoretw
utilization. Theexclude_hosts file contains machine names and optional comments. xample
exclude_hosts file might contain:

| ist of hosts to exclude from arch_hosts lists

f or whatever reason.

monolith # not a development machine - the ftp host
namshub # developer test station

tiamat # unreliable configuration

locutus # Being upgraded

This is handy for maintenance on machines. If a particular machine needs to be brawghodsimply
add its name to thexelusion file. Checking its process list will tell whenyasurrently running remee
jobs are done. After that it can safely be brought down without affectingctine huilds.

Peter Miller Page 12

Cook UserGuide

5. Include File Dependencies

A significant factor in a cookbook accurately describing the dependencies in a program are the include file
dependencies. Thesse three methods for doing this in Cook. The first is easily understandable but is too
slow to use on lage projects, the second is a little harder to understand, but works well for large projects.
The third method is rather cenluted, but works well for projects with mathousands of source files and
multiple simultaneous architectures built within the same source tree.

The recipes here are merelyagples and starting points; you will almost certainly need to enhance them
to suit the needs of your projectdreas you will need to address include (a) the existence df path

options, (b) the use dfearch_list variable and thegresolve] function, and (c) heterogeneous
development. Thetechniques also apply to other languages, such as Fortran, Pascal and Roff, but each
requires a language-specific include scanning program

5.1 The Manual Method

WEell, actually there are four methods, if you count maintaining the dependencies maiihéhhas the
serious defect that humans tenddme to update the cookbook. On a large project not alkldpers are

familiar with the workings of Cook, and so thshy avay from updating the cookboolBy finding ways to

automate include dependgnprocessing, we reduce the risk that adigper will forget to update the
cookbook, and we reduce the risk that the cooktsoddpyendeng information is out-of-date.

Automatic include dependepenethods described belohaveflaws, and can ner replace a human for
flexibility and domain knwledge. Orthe other hand, humansveatetter things to do with their time than
grope files for include file dependencies€likrite neat software).

5.2 Debugging Cookbooks

Before we proceed furthett is worth spending some time waing some of the methods for dejging
your cookbook, because small mistakes in implementing the methods daidecome quite difficult to
locate.

5.2.1 Command Locations
Usually Cook will echo all the commands Xeeutes, just beforexecuting them. If you add the line
set tell-position;
near the top of your cookbook, Cook will add the filename and line number within the cookbook to each
command it echoes. This can be useful in figuring out which recipe Cook actually chessute.e

5.2.2 Printing Stuff
Often you will want to hee Gook print various pieces of information. The wrong way to do it is with the
shell’'s "echo" command

echo variable "=" [variable];
because this iokes another process (which can neakkehugging parallel cookbooks harder) and because
of the optionaldata ... dataendavhich can follev commands (see the command statement in the language
definition, belav). Thecorrect method is to call the "print" function, dilthis

function print [__FILE__]: [__LINE__]: variable "=" [variable];
Note the use of the _ FILE__ and __LINE__ builtins, which provide you with cookbook position
information.

5.2.3 Trigger Ingredients
Another useful piece of information is the ingredients which caused Cookdkeira farticular recipe
body. The following function

function say-why =

{
if [count [@1]] then

2. Thec_inclprogram understands Roff, you just need to usetheption.

Peter Miller Page 13

Cook UserGuide

@1=[@1];
if [count [@2]] then
@2 =[@2];

local tt = [target];
if [defined targets] then
tt = [targets];
localt=;
if [in [count [younger]] 0 1 2 3] then
{

function print [@1] [@2]
Building [target]
because of [youngerf];

}
else
{
function print [@1] [@2]
Building [target] because of
[wordlist 1 3 [younger]] et al;
}
can be inserted at the beginning of a recipe
%.0: %.c
{
function say-why [FILE__][_LINE__J;
cc -¢c %.c;
}

to say wly the recipe was iroked. Thiswill even include dependencies automatically determined by all of
the methods which follg, not just those named on the right-hand-side of the recipe itself.

5.3 Tools

All of the automated include file dependgmethods described belouse thec_incl1) program included
in the Cook distritition. It has a number of options tailored for use with Cofkr exact information

about thec_incl command, consult the on-limearn(1) system (it should ke been installed) or the Cook
Reference Manual.

Other tools are\ailable. Thecommonest is to use tlgecM option, which produces a list of include
files on the standard outpuBecause thgccM output is aimed at GNU Make, you will need amlk(1)
or sedl) script to massage the output into a format suitable for Cook.

5.4 The Small Method

The easiest way to determine a lgiclude dependencies is within the recipgagredients.
%.0: %.c: [collect c_incl -api %.c]

{
}

Note the second colon — theecondset of dependencies are onlydeated after Cook has chosen to
activate the recipe (based on the first sé@this does not guarantee that the file exists yet (it meagy tcbe
generated biex or yacq, which is wly the--Absent-Program-Ignore option is required.

cc -c %.c;

This method has the aatage of simplicity It uses a single recipe which reads the way recipes usually
read, and does not containyamusual constructs.

There are tw problems with this method. The first is that it doésnale well. When there are only anfe
source files, the processing burden of runrinincl for every .c file every time Cook is imoked is hardly
noticeable. The_incl program caches the results of its scans, so that is can minimize the length of time

Peter Miller Paye 14

Cook UserGuide

taken, and this does help a littlelowever projects with hundreds or thousands of files fimehehe cached
performance an unreasonable burden; it is constantly re-calculating something which has not changed from
one run to the next.

The second problem is that tbeincl program is run when the dependgigcaph is being built, not when it
is being valked. Thismeans that the file (or a subordinatéh file) may hae been out-of-date at the time.
When the graph is alked, it will hare keen regenerated, and theoteets of include files, those determined
by c_incl at graph building time, and those seencbwt graph walking time, may not agree — which may
result in compile-time errors.

5.5 The Large Method

For projects with large numbers of files, hundreds wenethousands, it is necessary to re-calculate the
include file dependencies only whercdile changes, or a subordinatefile. Ideally, Cook should access
this information directlyrather than running a program to determine it or to fetch it.

The first task is to me te information whichkc_incl caches into a format that Cook can access directly;
Cook can then read in this information as it scans the cook®wknaking a separatadependency’file
for each.c file, we can use existing Cook mechanisms to descrivetdnkeep this file up-to-date.

The dependendile is generated and maintained as follows:
%.c.d: %.c
{
c_incl --no-cache %.c
"--prefix="%.0 "[target]": %.c™
"--suffix="set nodefault;"
-0 [target];
}

This recipe generates a file which contains a mini-cookbook describing the ingredientolbjetiéle.
The dependencies are in terms of the object file becausg dfahe .h files change, it is the object file
which is out-of-date, not the file. Themini-cookbook itself is also described, so that if ahthe source
files change, the mini-cookbook can be brought up-to-date again.

The recipe for the object file is less complicated than in théque section, because the mini-cookbooks
supplement it:
%.0: %.c

{
}

The only thing missing is oto get the information in the mini-cookbooks into the main cookboltis
is done with an include diregg in the cookbook itself, but a special form of it. The names of the mini-
cookbooks can be determined the same way as the names of the object files, and this allows the cookbook
fragments such as the following to be written:

object files = [fromto %.c %.0 [source_files]];

dependency_files = [fromto %.c %.c.d [source_files]];

cc -c %.c;

#include-cooked [dependency _files]

The#include-cooked directive says to include the named files (there may be more than one) if the file
exist. Oncethe cookbook (and its includes)veakeen read in, the files included with this direetiare
checled to see if theare up-to-date.If they are not, then theare re-cooked, and then Cook start&ro
again; this time with up-to-date include dependencies.

The advantage of the method is that if the source files dbahge, the dependgninformation is not
recalculated, this can result in significantisgs. Also,no processes arevioked if nothing has changed,
Cook reads the information directlBecause file opens are significantly cheaper than proogssations,
this results in a significant performance immment.

Peter Miller Page 15

Cook UserGuide

The disadvantage of this method is that it is harder to describe and harder to implEothetuninitiated
the cookbook looks incomplete angedy complex.

Another problem is that if you delete an include file, Cook will complain that it is unable ‘e dwesi
dependengfile because the include file is not prese®imply delete the dependegnfile and start agn.

To avoid the problem, remee references to include files, and re-build, before deleting the include files.
This problem is seen from time to time, but does not present a huge problem in normal practice.

5.6 The Cascade Method

When large numbers of files arevalved, it becomes clear that the more popular include files are being
scanned repeatedlyThis can be un-necessarily time-consuming when a popular include file is touched, as
the dependendiles of all.c files which reference it ven indirectly, must be re-calculated.

There is also a problem when you are attempting to perform heterogenous builds for multiple architectures
out of the same sourceshis is typically done by inserting the architecture name into the object file path as

a drectory. This presents another problem: nominating all of the architectures on the left-hand-side of the
regenerated dependencecipes. Especiallyf you add another one after the fact wnall the existing
dependengcfiles must be recalculated, merely to add the arehitecture.

An alternatve is to £an each of the source files and include files once, and request cook to combine them
together at bild time, rather than at dependence scan time. This is doneceasngde recipes. These
recipes nominate additional ingredients (on their right-hand-sizeyibathe files on their left-hand-size
appears in an ingredients list.

cascade foo.c = bar.h;
This recipe says that amecipe which hafoo.cfor an ingredient, also hdmar.hfor an ingredient.

This takes care of the heterogeneous case, because while the recipes remain specified in a simple manner
viz:
%1/%0%.0: %0%.c

{
%1-gcc -o [target] -c %0%.c;

Any and all of them which compiléoo.cwill depend onbar.h from thecascade recipe. (Thisexample
assumes that you are usiggg(1) in the usual &y, and that your architecture names match the GNyetar
names.)

The dependencfiles are generated and maintained in much the same way as before, except that you need
two: one for.c files and one forh files:
%0%.c.d: %0%.c
set no-cascade

{
c_incl --no-cache --no-recurs %0%.c
"--prefix="cascade %0%.c =™
"--suffix=";"
-0 [target];
}

%0%.h.d: %0%.h
set no-cascade

{
c_incl --no-cache --no-recurs %0%.h
"--prefix="cascade %0%.h ="
"--suffix=";"
-0 [target];
}
You will also need to add thé.d files to thetinclude-cooked lines, to ensure tlyeare generatedIf

there are angeneratedc or.h files, you will need to mention these, too.

Peter Miller Page 16

Cook UserGuide

5.7 Dependencies on Derived Files

If the relationship between a target and avaeringredient appears only in a dexd cookbook, it is lilely

that a clean tild (solely from primary source files) wilkfl. It is recommended that relationships such as

this be placed in a primary source cookbook. Cook looks for such dependencies, and will warn you about
them.

An example of this is commonly seen when using #tieoption with yacdl). If you hae a gparate
lexical analyzer (the usual reason for usidg it will need to include the generated token definition file.

When you first add thgacql) grammar definition, Cook will generate both theand.h file from the
usual yacc recipes. It is only latevhen you hee deaned out all deved files (including the dependenc
files) that you may hee poblems. Wherés it recorded that Cook needs to regenerate the token definition
file before it can determine the include dependencies of tfmlanalyzer?(They were in ad file which

was “cleaned’ away.)

Cook will detect this situation at the first possible moment, aanth wou. But placing the dependgrno a
non-derved cookbook €.g. Howto.cook) the warning will go way, and you will be able to do reliable
clean builds.

If you are convinced that Cook awayswrong in your case, it is possible to suppress tlisnmg. Place
the line

set no-include-cooked-warning;
in your main cookbook, and the warning will not be issued.

Suppressing the warning could lead to problethss often better to add the ingredients recipegin the
warning to the cookbook,ven if you think it is redundantThis disables a single instance of tharming,
rather than all of them - subsequealid instances will still be reported(Implicit ingredients recipes,
rather than explicit ones, are a useful alteueaifiyou hare a onsistent pattern.)

5.8 Renaming Include Files

A consistent problem when youveaitomatically generated include dependencies is that when yee mo
an include file, Cook complains that a required ingredient does not exist.

The easiest way tovaid this is to do a fe things before you build again after moving the include file.
« Move the include file to the mename.

« Where the include file wefsom, put a file containing the line
#error "I'm not here"
to male Cook happ (the ingredient will exist), but also ¥ the compiler generate an error if you
miss a reference to it.

Edit all the references to the old include file name to reference thaamae. Dort worry if you
miss one or two, the previous step will catch it.

Reluild the program.Cook will automatically re-calculate all of the include dependences and then
recompile.

If you missed one of the include file references, Cook will not complain, but the compile(Tils
assumes you are using whole-project builds, as describedliarie Fojectschapter.)

» Once the program builds cleantgmove the fake dd include file, because you kmdor certain that
there are no longer gmeferences.

Peter Miller Page 17

Cook UserGuide

6. Building Large Projects

This chapter caers some of theissues you may come across in building large projectsvés gi &eleton
for how you could use Cook to build a medium-to-large projects, sad @vers some heterogenousilal
issues. Itis expected that you will use this chapter as a guide; yowelagenent environment, and the
shape of each individual project, mean that you will probably change this to suit your own needs.

The material in this chapter uses mamary features of Cook. If you are not familiar with Cook, you may
want to read the rest of this User Guide to get a good idea of €ta@ltures and capabilitiegven if you

are Bmiliar with Cook, you may need to refer to the language guide and built-in function descriptions from
time to time.

6.1 Whole Project Build

The skeleton gien here builds the whole project as a single Cookodation, @en when the project
consists of tens thousands of individual source filgss is distinct from a build process which has Cook
recursvely invoking itself in deeper directories, or a shell script doing much the same. Some of the
adwantages of doing whole project builds will be discussed in a later se&omow it is sufficient to say

that experience has shown repeatedly that this method does scale to significant projects.

The first thing about a single build pass is that it happensveelata sngle fixed place. The logical place
is the top of the project source tfedhis works well with theseach _list functionality, mentioned belw,
which simplifies the structure of pete work areas.

6.1.1 Project Directory Structure
In the examples use in this chaptle following directory structure is assumed:

(1 Project
— [Howto.cook
—(library
[sourcelc
[source2c
[etc...
—(include
[apilh
[api2h
[etc...
— (T programl1
[source3c
[sourcedc
[etc...
L[program?2
[source5c
[source6e

[etc...

Below the project directory is dbrary directory which contains functions common to all of the
programs. Allsource files in this directory are to be compiled, and linked into a libfafigen the
programs are linked, tlgewill all reference this library.

Next to thelibrary directory is thénclude directory This describes inteaites and data shared by the
project. Informatiorwhich is private to the internals of the library or a programs belongs there, not in the
shared include space.

The rest of the directories beldhe project directory are programs to halto Thesources files in each are
to be compiled and linked, together with the common libraoyform the programs. The name of the

3. If you ever want to use Aegis for configuration management, this is what Aegis expects.

Peter Miller Page 18

Cook UserGuide

program will be taken from the directory.

This is a common enough picture, repeated forynmnjects. Your indvidual projects may vary in the
details; you may hee nore directory lgels belaw thelibrary directory or dl of your programs may be
belov a dngle commanddirectory With simple changes to the examplegegiin this chapteryou will be
able to cope with just aboutyaproject structure.

6.1.2 File Manifest
There are man ways of discuering the source files you are working witiMany configuration
management systems are able teegbu a list of them.For example, if you were using Aegis, yowuld
say
change_files =
[collect aegis -I cf -terse -p [project] -¢ [change]];
project_files =
[collect aegis -I pf -terse -p [project] -¢ [change]];
manifest =
[sort [change_files] [project_files]];

If you were using RCS, you could find all of the RCS files, and reconstruct the original filenames from
them,viz:
manifest =
[fromto ./%0RCS/%,v %0%
[collect find . -path "*/RCS/*,v" -print]
I;
Or you could simply scan the directory tree:
manifest =
[fromto ./%0% %0%
[collect find . I - type d -print]
I;
This is will find too much, but what foles will not be altered by this. If you want to get moreatbed,
however, it helps to hae an accurate primary source file manifest.

6.1.3 Compiling C Sources

Recalling that the build will takpgace from the top of the source tree, this means that there it is going to
have 1o be drectory components in the filenames in the commamduted by Cook, and in the recipes
Cook is to use.

This chapter uses Gamples, but the same techniques work just as will with Fortran or Groffythiag
else. Mosbf it maps directly; you may need to adjust for your specific compiler behavior.

This chapter starts with the lowestdeof building a project, the individual source files, and works iy w
upwards, building on the examples until the whole project, including the library and all programs edle link
in a single pass.

So, when cooking C sources, you need recipes of the form
cC = gcc;
cc_flags = -g -Wall -O;

%0%.0: %0%.c
{
[cc] [cc_flags] -c %60%.c
-0 [target];

}
The *%0 part of the patterns matches zero or more directory parts. If your compiler insists on putting the
output (o) file into the current directory (the tops one) you will need to mee it, after:

%0%.0: %0%.c

{

Peter Miller Page 19

Cook UserGuide

[cc] [cc_flags] -c %0%.c;
mv %.0 [target];
}
But, most &isting sources will be assuming that most of their include files are in the same directory as the
source files.We reed include options to indicate this. This is most easily done by using more pattern
elements
%1/%0%.0: %1/%0%.c

[cc] [cc_flags] -1%1 -c %0%.c
-0 [target];

Or by using the dirname of the source file
%0%.0: %0%.c

[cc] [cc_flags] -l[dirname %0%.c] -¢c %0%.c
-0 [target];
}
For structures more than 2 directories deep, these mwoduce different options. Depending on your
project structure, if you & deep directories, one will probably be more suitable than the.oDee
elegant use for deeper directory structures is to reflect the C++ inheritance hjerdirehtly in the
directory hierarci.

The simple[cc_flags] variable is often not stitient. Insteadyou may want to replace it with
[variable_by path "cc_flags" %0%.c] which will look for several variables (all prefixed with
"cc_flags") based on the name of the source 8kee thd=unctions Libary chapter for a description of this
function.

The common include file will also need to be searched. Because of where the command is issued, it is
rather simple to add theclude directory,viz:
%0%.0: %0%.c

{
[cc] [cc_flags]
-I[dirname %0%.c] -linclude
-C %0%.c -o [target];
}

It is important to note that all of these recipes, and the commangdexdbrute, are independent of the
location of the source file. It is possible to customizecthilags used, based on the target file, vere
the directory containing the file, without compromising the generality of the fecipe

6.1.4 Tracking Include Dependencies
When it comes to tracking include dependencies usimgl, you need to rememheagan, that the Cook
happens from a single place. All of the recipes thatclwrites for you must beelative to that place

Continuing our gample, and assuming we are using the cascade include method described widhe pre
chapterwe reed include dependentiles which look similar to

cascade programl source3c =

include/ apilh

Working backwards, we need to create the dependi#iecusing the following recipe:
%0%.c.d: %0%.c
set nocascade
{
c_incl -nc -ns -nrec
-I[dirname %0%.c] -linclude

4. Hint: use a function, and pdsarget] as the argument.

Peter Miller Page 20

Cook UserGuide

%0%.c

-prefix ""cascade %0%.c ="

-suffix ;™

-0 [target];
}

For other source languages, you will need to usecthiecl --languae option.

The dependerycfiles need to be included in the magiaywso that Cook will build them again if there
out of date. This method needs the source file manifest @ #rer names.
dep-files =
[addsuffix .d
[match_mask %0%.c [manifest]]
[match_mask %0%.h [manifest]]
I;
#include-cooked [dep-files]
These files will only be re-calculated if hare out of date; theare small and often zero-length, and so are
usually very quick to read, adding little to the time it takes to read the cookbook.

Notice that adding a mesource file will automatically cause it to be scanned for include dependencies,
without modification to the cookbook.

6.1.5 Linking Libraries
To link libraries with a generic recipe, you need a generalizay o¥ specifying their contentsA little
trickery with constructed variable names does the job:
%l/lib%.a: [[target]_obj]
set unlink

{
}

The right-hand-side of recipes has late binding, and we use the name of the target to tell us the name of the
variable which holds all of the object fileg\ssigning this variable looks bizarre, but it looks more logical
as you hee nore and more of them...
library/liblibrary.a_obj =
[fromto %0%.c %0%.0
[match_mask "library/%0%.c" [manifest]]

ar cq [target] [[target]_obj];

I;
The great thing about this construct is that you can build a loop, usingsGoof’'statement, that assigns a
variable for each of your libraries, if you ¥@nore than one.

Notice that adding a melibrary source file will automatically cause it to be compiled into the library
without modification to the cookbook.

6.1.6 Linking Commands
WE'll use a similar trick for each of the programs you want to link... First the link line
bin/%: [[target]_obj]
set mkdir
{

[cc] -o [target] [[target]_obj];

Then the objectsariable. Notehow we ad a libraryfilenamehere, this will still only use the library
portions actually referenced, not the whole libyaxyit won'’t bloat your programs.
bin/ program obj =
[fromto %0%.c %0%.0
[match_mask program/%0%.c [manifest]]

]
library/liblibrary.a

Peter Miller Page 21

Cook UserGuide

Notice that adding a meprogram source file will automatically cause it to be compiled and linked into the
program, without modification to the cookbook.

The loop construct tends to obscure things, which ig thke essential assignment wasegi first. This
next fragment shows the whole loop.
programs =
[fromto %/main.c %
[match_mask %/main.c [manifest]]
I;

program_list = [programs];

loop
{
program = [head [program_list]];
if [not [count [program]]] then
loopstop;
program_list = [tail [program_list]];
bin/[program]_obj =
[fromto %0%.c %0%.0
[match_mask [program]/%0%.c
[manifest]
]
]
library/liblibrary.a
}

And now tell Cook you actually want it to do somethingglifuild all of the programs...
all: [addprefix bin/ [programs]];

Notice thg way thecommands variable is constructed: just adding asneommand (and itsnain.c file)
will automatically cause it to be built, without modification to the cookbook.

6.2 Private Work Areas

This chapter is about large projects, but large projects usually means large numbeopede The
directory structure and cookbook presented aodoes not immediately lend itself to use by multiple
developers.

6.2.1 Directory Structure

The method suggested here uses CGoagkach list functionality which nominates a search list of
directories that Cook looks in to find the files named in the recipkis can be used toverlay a private
work area on top of a master repository.

N Repository -
7 main.c - .
it partl.c,” \ Comb[ned View
Wark Area prgi'f.f
main.c / part2.c
part2.c .

When recipes are run, the results are written into tbek\area, which means that the repository can be
completely read-only.

It follows from this, that the directory structure of the work area exactly parallels the directory structure of

Peter Miller Page 22

Cook UserGuide

the repository.Exceptyou only check out files into your work area that you actually need to change.

6.2.2 Finding the Cookbook
Setting the search list is done with a simple assignment. In your work area, create &swtpleook
file, containing only 3 lines:

set mkdir;

search_list = . /project/repository ;

#include /project/repository/Howto.cook
You only use this file if you dot’need to modify the cookbook itselffou can male it work aWways, esen
if you are modifying the cookbook, by giving the cookbook a different namaén(cook), and changing
Howto.cook to aways read

set mkdir;

search_list = . /project/repository ;

#include [resolve main.cook]
The [resolve] function walks the search list, looking for the JileThis gives you access to Coak’
internal search mechanisrhlowever, we dso need to modify each of the recipes teettile search list into
account.

The uneplained mkdir flag is used to request that directories be automatically created before recipe
bodies are run. This is common for large projects, where the source files are structurederatcssb-
directories, rather than all lumped together in the one place. This may be nedessatgmple, if ac

file in the repository needs to be recompiled becaukefde in the work area has been changed.

6.2.3 File Manifest
The files could be in either of tnplaces. Yu need to merge them. Most configuration management tools
do this for you; in thisxample we’ll scan the directory treesasmg Fortunately Cook comes with a tool to
do this efficiently.
all_files_in_.=;
#include manifest.cook
manifest = [all_files_in_.];

/* This reduces re-scanning to a minimum. */
set fingerprint;

%0manifest.cook: ["if" [in "%0" "] "then" "." "else" "%0"]
set mkdir
{

cook_bom /* Bill Of Materials */
[addprefix '--dir=" [search_list]]
[need] [target] ;
}
At the end of this fragment, theanifest variable contains a complete list of all files in the directory
tree(s). Thisvariable may then be taken apart with thatch_mask function to build ingredients lists.

Theif function is different to thé statement. lallows you to select one of bwalues (thehen part or
the else part) without creating a dummyasiable. Inthis example, it wuld be impossible to create a
dummy \ariable. Remembedp quote thef ,then andelse strings, otherwise Cook will think thieare

if, thenandelsekeywords, and gie you a syntax error.

The constructedhanifest.cooffiles work for both the top-iel directory and individual sub-directories.

6.2.4 Compiling C Sources
The C compilation recipe needs to be changed to read...
%0%.0: %0%.c

{

5. The search list defaults to just dot (the current directory) if not set.

Peter Miller Page 23

Cook UserGuide

[cc] [cc_flags]
[prepost "-I" /[dirname %0%.c] [search_list]]

[prepost "-I" "/include" [search_list]]
-C [resolve %0%.c]
-0 [target];

}

This ensures that the rights places are searched for include files.

The prepost function is used to add a prefix and a suffix to each of the remaining strings. Téig is v
useful when constructing filenames, as areatidprefix ~ andaddsuffix functions.

6.2.5 Tracking Include Dependencies
A similar change needs to be made to the include dependencies recipe...
%0%.c.d: %0%.c
set nocascade

{
c_incl -nc -ns -nrec
[prepost "-I" /[dirname %0%.c] [search_list]]
[prepost "-I" "/include" [search_list]]
[resolve %0%.c]
-prefix "'cascade %0%.c ="
-suffix ;™
[addsuffix "-rp=" [search_list]]
-0 [target];
}

Note that the form of the output of this recigg@es nothange. Thisneans that the recipes it write®nk
evan if you subsequently cgp file from the repository to the work area, or ungope.

6.2.6 Linking Libraries
The library recipe needsvfemodifications.

%l/lib%.a: [[target]_obj]
set unlink
{

}

The variable assignmentvgh above requires no modifications.

ar cq [target] [resolve [[target]_obj]];

6.2.7 Linking Commands
The command linking recipe requiresvfenodifications.
bin/%: [[target]_obj]
set mkdir

{

[cc] -o [target] [resolve [[target]_obj]];

The variable assignment needs no modifications.

6.3 Whole Project Build Advantages

The advantage of using a whole project build is that the dependeaqeh is complete, and the order of
traversal may be freely determined by Cook. Breaking thédbinto fractured segments denies Cook
access to the whole graph, and dictates the ordervaf$ed to one which, in the light of the entire graph,
would be incorrect.

It greatly simplifies the creating of work areas foveepers, by using Cook'seach list functionality.

A whole project build also permits tlowok -continueoption to work in the presence of a wider range of
errors.

Peter Miller Paye 24

Cook UserGuide

The whole project build also permits tbeok -paralleloption to parallelize more operations.

6.4 Heterogenous Build

Large projects frequently wolve rumerous target architecture¥his may be in the form a multiple nai
compilations, performed in suitable hosts, or it ma thk form of cross-compilation.

In this ekample, we assume that the GNU C Compiler (GCC) is being used. When GCC is installed as a
cross compilerthe command namesd,, as, Id , etd are installed with the architecture name as a prefix.

For consisteny, the natve ompiler is installed with itswn architecture names as a prefix, in addition to

the more commonly usagtc command. Thigxample will exploit this normal installation practice.

6.4.1 Cross Compiling C Sources
In order to support cross compiling, the C compilation recipe needs to be changed to read...
%1/%0%.0: %0%.c
host-binding [defined-or-null %1-hosts]
{
%1-gcc [cc_flags]
[prepost "-I" /[dirname %0%.c] [search_list]]

[prepost "-I" "/include" [search_list]]
-C [resolve %0%.c]
-0 [target];

This uses the first directory element of ttaeget to be the architecture name. This allows multiple
architectures to be compiled in the same source tree, simultaneously.

Because of the practice of installing a duplicate GCC in the same form as the cross compilers, this same
recipe continues to work for naed tuilds.

Thehost-bindindine tells Cook to run the command on one of the hosts nominatechieale named for
the architecture (or as a nadi doss-compiler of no such variabligts). (Thedefined-or-null
function is a@ailable in the “functions’library distributed with Cook.)

Remembering these architectures falilhe GNU cowmention, these lines could read

i386-linux-hosts = fast faster fastest ;
This will do two things for you: first, it will alvays execute linux compiles on linux hostsen when Cook
is not executed on one; second, it will use more than one of them when you uspatadlel option.

It is possible to use implicit ingredients recipes to say that all object ofea gichitecture depend on a
magic include filee.g.

i386-linux/%0%.0: include/linux-special.h;
could be used to say that all Linux object files depend on this include(Tites is a sledge-hammer
approach, and a more subtle method is preferable, but it is sometimes required.)

6.4.2 Tracking Include Dependencies
Because of the cascade form of include depenyidinere is no need to do yhing different for include
dependenciesyen if you add another architecture some time in the future.

6.4.3 Linking Libraries
The library recipe needsvfemodifications.
%1/%/lib%.a: [%/1ib%.a_obj]
set unlink
{

}

The variable assignmentvgh above requires no modifications.

%1-ar cq [target] [resolve [%/lib%.a_obj]];

Peter Miller Page 25

Cook UserGuide

6.4.4 Linking Commands
The command linking recipe requiresvfenodifications.
%1/bin/%: [bin/%_obj]
set mkdir

{
%1-gcc -o [target] [resolve [bin/%_obj]];

The variable assignment needs no modifications.

6.4.5 What to Build
The list of what to build becomes more interestitygu can nominate anand all architectures for which
you hae aoss compilers, or nat compilers and nate hosts.
all:
[addprefix i386-linux/bin/ [commands]]
[addprefix sparc-linux/bin/ [commands]]
[addprefix sparc-solaris2.0/bin/ [commands]]
[addprefix m68k-sunos4.1.3/bin/ [commands]]

All of these architectures will be built in a single Cooltocation, on appropriate machines if necessary
The use of-continue and--parallel work over the entire scope of the build.

6.5 Installing Things

The biggest hassle is that tinstall(1) command, which should kwchow to do nost installation tasks, has
completely incompatible interfaces on the various platforms. This ystlehGNU autoconf system comes
with aninstall-sh script, which faithfully emulates the BSD option®nce you hee a eliable command
line interface to aninstall(1l) program (be it perl or shell) you can then write sensible installation
cookbooks.

If we have a Ist of commands, we would install as follows:
prefix = /usr/local;
bindir = [prefix]/bin;
install = install;

install: [addprefix [bindir]/ [commands]];
[bindir]/%0%: bin/%0% bin/%0.mkdir
{

}

That magichin/%0.mkdir file is used to record that the destination directodigte. Whileyou can
often assume this, it is nowadys true when you are building thingsdiRPM packages.
bin/%0.mkdir:

{

[install] -m 755 bin/%0% [bindir]/%0%;

[install] -d [bindir]/%0
set errok;
touch [target];
}
The alternatie is to Lse
set mkdir;
at the top of your cookbook. This creates directories fgetarbefore rules are run. The install recipe then
reads
set mkdir;

[bindir]/%60%: bin/%0%
{

Peter Miller Page 26

Cook UserGuide

[install] -m 755 bin/%0% [bindir]/%0%;
}
because there is no need for thenkdir " recipe. This,however gives you less crontrol wer the
directories permission modes, and it doebelp when you want to create empty directories as part of the
install. Usethe appropriate technique for your needs.

”

6.6 Miscellaneous

This section contains assorted material thatesoa variety of topics.(As the manual expands, it will
probably be meed somewhere else.)

6.6.1 Lots of Dependencies
There are cases where you may want to nominate a whole category of files as depending on something else.
For example, you may want to say that all your fubar-language sources depend on your fubar caupiler Y
could say something such as

cascade [match_mask %0%.fubar [manifest]] = fubarcompiler;
but recall thateverythingwhich has afubar file as an ingredient will also i@fubarcomplier as an
ingredient. Thisnay not be what you wanted.

Recall, also, that compiler recipes carry specific informatigou could more specifically nominate the
compiler by saying
%0%.0: %0%.fubar: fubarcompiler

{
}

which would be much more seleai @&out which uses of.fubar files also depend on
fubarcompiler

fubarcompiler -c %0%.fubar -o [target];

There are times when writing cross-compilation recipes when yo t8 nominate an operating-system-
specific include file for all of the object files:
%1/%0%.0: %0%.c
{
/* general cross compiler recipe */
%1-gcc -¢ %0%.c -o [target];
}
/* All windows NT objects depend on this include file */
i386-NT/%0%.0: winnt.h;

You can also useatesto male you recipes more seleedi The gating expression may be just about
anything, but is often a pattern match or simple set membership.

%.0: %.c
if [in [target] foo.0 bar.o]
{
/* foo.o0 and bar.o are magic */
cc -DMAGIC [cc_flags] -c %.c;
}

The gate is most easily read as (tiiis condition)use this recipe”.

6.6.2 Error Processing

Cook stops processing a recipe at the first erlothe error occurs when constructing a command to be
executed, the command isot executed. Ifa recipe body contains more than one command, and one of
them gets an error (and doegdmvethe errok flag set) the rest of the command widit be executed.

In addition, if an error occurs whilexecuting a recipe bodyhe targets of the recipe will be deleted (on the
assumption that tlyeare probably only partially completed, or otherwise defegti To override this
behavior use thepreciousflag.

Peter Miller Page 27

Cook UserGuide

6.6.3 NFS
A perennial problem for building projects@ networks is that the clocks ddmhatch. Ifyou use théime-
adjustflag, this problem is largely sad. Thesimplest method is to put
set time-adjust;
at the top of your cookbook.

File fingerprints, while not directly relent to NFS, can offer significant performance immroents, as
they can eliminate mancases of unnecessary re-compilatidio. turn them on, use

set fingerprint;
at the top of your cookbook. See helfor more discussion of fingerprints.

6.6.4 Symbolic Links

Symbolic links are follaved to the actual file, when determining file modification times. The modification
time of the symbolic link itself is not usedThis means that “symlinkarms’ can be used when
constructing work areas, particularly when you want functionality more cantipdésearch_list can
provide.

6.7 File Fingerprints

Cook has the ability to supplement the last-modified time-stamps the operating system supplies for each file
with a *“fingerprint”. This is a cryptographically strong checksum, with an mind-bogglingly lo
probability that tve different files will have the same fingerprint.

When Cook needs to knoif a file has changed, it looks at the last-modified time-staifnip has changed

since the last time the fingerprint was calculated, the fingerprint is re-calculatid.fingerprints match,

Cook knows the file contents are unchanged, and uses the old time-stamp, and also syppzegean
actions which would otherwise happen if the file contents had actually changed. (Cook remembers the both
the nev and old time-stamps, so that it can bBc&nt about re-calculating checksums and still use the old
time stamp for out-of-date calculations.)

When recipe bodies are run, Cook knows that the target¢s) ten modified, so it doesmeed to re-
examine the operating systesridea of the last-modified time-stamp, it simply re-fingerprints.

It is tempting to try to achie ©mething similar by writing recipe bodies which onlyeswrite their
targets if thg actually changedE.g.

%.0: %.Cc
{
if [exists [target]] then
{
[CC] -0 %.tmp -c %.c;
if cmp %.tmp %.0\;
then mv %.tmp %.0\;
else rm %.tmp;
}
else
[CC] -0 %.0 -Cc %.c;
}

However, this will not work (whether or not you la fingerprints turned on)Largely as a defense aigst
NFS time synchronization problems and stupid systems with very coarse file time-stampski@vek’ *
that because the recipe body was run the taijedriged’, causing all dawn stream dependencies to be
considered out-of-date.

In addition, this recipe would lga te last-modified time-stamp out-of-date if the file was unchanged.
This means the recipeowld trigger again in the next Coolkeeution, ngding mary of the intended
savings.

Fingerprints are intended for this purpose, butehthe advantage of leaving the last-modified time-stamps
correct, and theneed to do half the I/O that tleen1) command doesAlso, all down stream dependent

Peter Miller Page 28

Cook UserGuide

files are touched, to ensure their last-modified time-stamps are also condistemally, if they needed to
be re-built for some other reason, therytiveuld be re-built, not simply touched.

While there is somewerhead in initially calculating the fingerprints for awnevork area, the repay that
overhead maw times wer. This is especially true if your system has generated code in it, particularly
generated include files, but there are also savings for siraplaller projects.

6.7.1 Turning Fingerprints On
To turn fingerprints on, you need to add the lines
set fingerprint;
set time-adjust;
to your cookbook.That second line is no essential, but it corrects last-modified time-stamps when NFS
time synchronization problems would otherwise cause inconsistent behavior.

While it is possible to turn fingerprints on for a subset of the files in your project, it is not as straigfttforw
as it may seem. There is nawto bind the fingerprint request to a single file, only to recipes, so you need
to use the‘set fingerprint " recipe flag on all recipes between the vaté source file and the
ultimate taget. Thistends to be messy.

6.7.2 Vanishing Dependencies
It is quite common that you need to neiltd a file if one of the dependencies is renetb Usually this is
quite hard to detect, because Cook has trouble seeing something thiheis)’compared to the preus
execution. Havever an ingenious method has been described by Gilles Lamiral <lamiral@mail.dotcom.fr>
which “remembers’though a file:

function contents-remember =

{
/* @1 = name of contents file */
/* @2..N = the value of [need] */
[write [args]];
}
function contents-changed =
{
/* @1 = name of contents file *
/* @2..N = the value of [need] */
if [not [exists [resolve [@1]]]] then
return O;
local old-contents = [collect_lines cat [resolve [@1]]];
/* return 0 if nothing disappeared, >0 if did disappear */
return [count [stringset [old-contents] - [tail [arg]]]];
}

libfred.a libfred.contents: [fred_obj]
set ["if" [contents-changed libfred.contents [fred_obj]]
"then" forced]

unlink
{
ar cq [target] [resolve [fred_obj]];
[contents-remember libfred.contents [fred_obij]];
}

Note: because the set clausevidumated when the target isauated, the [need]ariable is not ailable.

In this example, you must Y& alculated the final value of [fred_obj] before the recipe appears in the
cookbook. Thesvduation of the set clause also limits the application of this techniquelicierecipes; it

will not work for implicit (pattern) recipes, because the value of the pattern elements is wot &inthe
time the set clause isauated.

Peter Miller Page 29

Cook UserGuide

6.8 Coping with Links

You will notice that the deafult operation of Cook copes with links (hard links and symbolic links) rather
poorly. For example, the recipe
two: one

{

In one two;

will always conclude that filéwo is out-of-date. This is bacause filesneandtwo have exactly the same
time stamp.

If you specify a weadr time constraint, Cook will al@ this kind of recipe to be written, amat conclude
the files is alvays out of date:
two: one(weak)

{
}

The “(weak) " on the end of the ingredient name tells Cook to use the weak edge type, rather than the
strict edge type.

In one two;

This technique is useful for symbolic links, too.

One other thing which can beny useful for both link types, but particularly symbolic links to directories,
is the “set unlink' recipe flag.
two: one(weak)
set unlink
{

In -s one two;

This remaes the target (if necessary) before the recipe body is run.

6.9 Coping with Version Stamps

In some systems, the version stamp gererated forwery build, but you dort’want to relink zillions of
executables just becaise the version stamp has changed, but nothing else has.

By using the*(exists) " edge type, you can tell Cook that an ingredient is needed foea giget, ut
that it should neer be mnsidered to makthe target out-of-datef-or example:

#include "c"
all: progl prog2;
version.c:
set forced
{
date "'+#define VERSION \"%C\"" > [target];
}
progl: progl.o mylib.a version.o(exists)
{
gcc -o [target] [need];
}
prog2: prog2.0 mylib.a version.o(exists)
{
gcc -o [target] [need];
}

This cookbook will generate awerersion.cfile every time that Cook is run, and thus aaneersion.dfile.
However, the progl andprog? files will not be re-linked unless something else changed as well.

Peter Miller Page 30

Cook UserGuide

7. Cookbook Langua ge Definition

This chapter defines that language which cookbooks are written in. While some of its properties are similar
to C, do not be misled.

A number of sections appear within this chapter.
1. TheLexical Analysisection describes what the words of the cookbook language look like.

2. The Preprocessorsection describes the include mechanism and the conditional compilation
mechanism.

3. TheSyntax and Semantisgction describes owords in the cookbook may be combined to form
valid constructs (theyntay, and what these constructs mean ghmantics

The sections are laid out in the recommended reading order.

7.1 Lexical Analysis

The cookbook is made of a number of recipes, which are in turn maderd$.wThissection describes
what constitutes a word, and what does not.

7.1.1 Words and Keywords
Words are made of sequences of almogtdraracterand are separated by white space (including end-of-
line) or the special symbol€Cook is aways case sensi when reading cookbooks.

The characters={}[] are the special symbols, and are words in themselves, needing no delimiting.

In addition to the special symbols, some words, knowkeasords have special meaning tocook. The
keywords are:

else host-binding loopstop single-thread
fail if return then
function loop set unseten

You will meet the lkeywords in later sections.

7.1.2 Escape Sequences
The characteY is theescapecharacter If a character is preceded by ary specialness, if it had gnwill
be remwed. If it had no specialness it mayMeasome added.

This means that, if you want to udeas a word, rather than &yword, at least one of its characters needs
to be escaped, for exampié

The escape sequences which are special are as follows.

\b The backspace character
\f The form feed character
\n The newline or linefeed character
\r The carriage return character
\t The horizontal tab character
\nnn A character with a value afnhn where
nnn is an octal number of at most 3
digits.
An escaped end-of-line is totally ignored. It should be noted that a cookbook mayvacaryamn-
printing ASCII characters in it other than space, tab and end-of-line.

7.1.3 Quoting
Words, and sections of words, may be quoted. yffart of a word is quoted it cannot beeykord.

This means that, if you want to ugeas a word, rather than a&yvord, at least one of its characters needs
to be quoted, for exampld’.

Peter Miller Page 31

Cook UserGuide

Both single ') and double () quotes are understood legok, and one may enclose the othéf a quote is
escaped it does not open or close a quote as it usually would.

Cook does not lie rewlines within quotes.This is a generally good heuristic for catching unbalanced
quotes. Ifyou really want a newline within a string, use theescape.

7.1.4 Comments

Comments are delimited on the left By and on the right by/. If the/ character has been escaped or
guoted, it doest’introduce a comment. Comments may be nested. Comments may span multiple lines.
Comments are replaced by one logical space.

7.2 Preprocessor

The preprocessor may be thought of as doing a littlk wefore theSyntax and Semantisgction has its
turn.

The preprocessor is @dn by preprocessor diectives A preprocessor directt is a ine which starts with a
hash) character Each of the preprocessor direet is described belw.

7.2.1 include
The most common preprocessor direetis
#include" fil enane"

This preprocessor diregt is processed as if the contents of the named file had appeared in the cookbook,
rather than the preprocessor include dikexti

The most common use of the #include direxis to include system cookbook$or example, may small
programs can be deloped using the following simple cookbook:

#include "c"

#include "program"

The standard places to search are firgt@ath specified with the nclude command line option, and then
$HOME/.cookand therusr/share/cookn that order.

7.2.2 include-cooked

This directve looks similar to the one abg but do not be decetd.
#include-cooked filename..

You may name seeral filenames on the line, and thmay be expressions.

The search path used for these files is the same as that used for other cooked filessesaeh thst
variable and theesolvebuilt-in function for more information.The order in which you set ttseach list
and thettinclude-cookedlirectives is important. Alays set theseach list variable first, if you are going
to use it.

Files included in this way are checked, afterythavebeen read, to makwure thg are up-to-date. If the
are notcook brings them up-to-date and then re-reads the cookbook and srts o

You will only get a warning if the files are not foungllsually, cook will either succeed in constructing
them, in which case thewill be present the second time around, oatalferror will result from attempting
to construct them. Note that it is possible to go into an infinite loop, if the files are constantly out-of-date.

The commonest use of this construct is maintaining include file depsndsador source files.
obj = [fromto %.c %.0 [glob *.c]];

%.0: %.c

[cc] [cc_flags] -¢c %.c;
%.c.d: %.c
{

Peter Miller Page 32

Cook UserGuide

c_incl -prefix "%.0 "[target]": %.c™ -suffix ";
-no-cache %.c > [target];

}

#include-cooked [fromto %.0 %.c.d [obj]]
This cookbook fragment showswdnclude file dependencies are maintained. Notice the .d files have
a recipe to construct them, and thatytteee also included.Cook will bring them up-to-date if necessary
and then re-read the cookbook, so that it vgagé working with the current include dependenci€Ehe
doubly nested quotes are to insulate the spaces and special characters froookbatid the shell.)

You could usegcc -MM if you prefer (you will need some extra shell scripfjhe c_incl program

understands absent files better but ddesnderstand conditional compilation, argtc understands
conditional compilation but ges fatal errors for absent include filegvarning: If you are usingeach list

you must usec_incl Gcc returns complete paths, which will resultdook failing to notice when an
include file is copied from later in the search list to earéied then modified.

There are times when you dowant the#include-cooked directives to be ated upon.You can oer-
ride it using the--no-include-cooked command line option, Ui it is often easier to use the
[command-line-goals] variable, and say something like

#if [not [match %1clean%?2 [command-line-goals]]]

#include-cooked [fromto %.0 %.c.d [obj]]

#endif
This construct means that wheaean eplicit ‘‘clean " goal (or similar) is requested, thénclude-
cooked lines will not be performed. This is sensible, because cleaning actions usuallyeremo
dependengfiles; there is no point making sure ytaee up-to-date first.

7.2.3 include-cooked-nowarn
This directive is dmost identical to the one ab® but no warning is issued for absent files.

#include-cooked-nowarn filename..
You may name seal filenames on the line, and yhmay be expressions.
7.2.4 if

The #if directve may be used to conditionally pass tokens to the syntax and semantics processing.
Directives take the form

#if expressionl

somethingl

#elif expression2

something2

#else

something3

#endif
There may be gnnumber ofelif clauses, and thelse clause is optional. Only one of tlkemethings
will be passed through.

7.2.5 ifdef

This directve takes a similar form to th& directive, but with a different first line:
#ifdef variable

This is syntactic sugar for

#if [defined variable]
This is of most use in bracketidinclude directives.
7.2.6 ifndef

This directive takes a similar form to thé directive, but with a different first line:
#ifndef variable

This is syntactic sugar for
#if [not [defined variabld]]

This is of most use in bracketidgnclude directives.

Peter Miller Page 33

Cook UserGuide

7.2.7 pragma
This is for the addition of extensions.

7.2.7.1 once
This directve is to easure that include files in which it appears are included exactly once.

This directve has the form
#pragma once

7.2.7.2 unknown extensions
Any pragma extensions not recognized will be ignored.

Peter Miller Paye 34

Cook UserGuide

7.3 Syntax and Semantics

The syntax is described using “train traakiagrams, with prose descriptions of the related semantics.

7.3.1 Overall Structure
The general form of the cookbook is defined as

Lcc— f

e

A cookbook is defined as a sequence of statements. Each statement statexseuted.er a definition
of what it means when a statementisoaited, see the individual statement definitions.

cookbook

The nonterminal symbaitatementwill be defined in the sections belo
Please note that a statement is neegd evaluated when is is read, but at specific, well defined times.

7.3.2 The Compound Statement
A nonterminal symbol which will be referred to belas the compound_statemestymbol, defined as
follows:

cstmt \/{—\ \/}ﬂ
L

L

The compound statement may be used anywhere a statement may be, and in particular

stmt Nprerere
> cstmt

7.3.3 Variables and Expressions
Cook provides variables to the user to simplify things.

7.3.3.1 The Assignment Statement
It is possible to assign to variables with the following statement.

v) :

When this statement isxecuted, the ariable whose name the left hand expressiaiuates to will be
assigned the value that the right hand expressiornvhitaes to.

For example:
program_obj = foo.o bar.o baz.o;

Note: It is possible to wer-ride the value of tilt-in functions and variables with this statement. This will
not produce an error messagewieer it is usually not desirable as it will change the meaning of the rest of
your cookbook.

7.3.3.2 The Assign-Append Statement
It is possible to append to the value of variables with the following statement.

Peter Miller Page 35

Cook UserGuide

v) :

When this statement ixecuted, the ariable whose name the left hand expressiatuates to will hae its
value appended by the value that the right hand expressiowdlaates to. Expression values are lists of
words, appending means to append to the word list; it doemean appending to the last string of the
value.

For example:
program_obj += [glob "deeper/*.0"];

Note: It is possible to wer-ride the value of tilt-in functions and variables with this statement. This will
not produce an error message (unleguating them with no guments is an error), hwaver it is usually
not desirable as it will change the meaning of the rest of your cookbook.

7.3.3.3 The Setenv Statement
It is possible to assign to environment variables with the following statement.

(ssons) o

When this statement ixecuted, the environment variable whose name the left hgmegsion ealuates
to will be assigned the value that the right hand expressionvéstages to. It is an error if theaviable
does not already exist.

For example:
setenv PATH = [getenv PATH]":"[getenv HOME]/more-bin;

7.3.3.4 The Setenv-Append Statement
It is possible to append to the value of an environment variables with the following statement.

(ssens) o

When this statement ixecuted, the environment variable whose name the left hgmegsion ealuates
to will have its value appended by thalue that the right hand expression ligdleates to. Evaluation is
analogous to the assign-append statement.

For example:
setenv FRED += nurk;

7.3.3.5 Expressions
Many definitions malk reference to thexpr, dist and exprs nonterminal symbols. These are defined as
follows.

Theelistis a list of at least one expression,

elist < I a1 >

> epr

whereas thexprsis a list of zero or more expressions.

exprs

An expression is composed of words, variable references, functications, or concatenation of

Peter Miller Page 36

Cook UserGuide

expressions. Theoncatenation is implied by abutting theotyarts of the expression togetherg:
"[fred]>thing "is an indirection orfred concatenated with the literal wordthing ".

expr

When an[elist] expression is waluated, theelist is evaluated first. If the result is a single word, then a
variable of that name is searched.fdf found the value of arxpression of this form is the value of the
variable.

If there is no ariable of the gien name, or theelistevduated to more than one word, the first word istak
to be a built-in function name. If there is no function of this name it is an error.

The cat operator works as one would expect, joining the lastvof the left expression and the firsbna

of the right expression togethend otherwise leaving the order of thegyeessions alone. One usually uses
the trivial case of single wordkpressions. & more comple concatenations, see the [catenate] and [join]
built-in functions.

7.3.4 Recipes
A number of forms ofstatementare concerned with tellingook how to cook things. There are three
forms, theexplicit recipe, thamplicit recipe, and thengredientsrecipe.

7.3.5 The Explicit Recipe Statement
The explicit recipe has the form

The target(s) of the recipe are to the left of the colon, and the ingredienty, &eno the right. The
statements, usually commands, which are to be performed to (re)construct the target(s) are contained in the
compound statement. Tha&pressions are onlyduated into words when the recipe ieeuted. Recipe

bodies may hae local variables.

For example:
program: [program_obj]
{
/* use [need] rather than [program_obj] in case
there are additional ingredients recipes
(see below). */
cc -0 program [need];
}

The target ®pressions and recipe flags aneleated when the recipe is instantiated. The ingredients
expressions and the recipe gate aveluated at graph building timeThe body and use statements are
executed at graph walking time.

The recipes also teka“ host-binding attribute. Seehe chapter on Cooking in Parallel forvhaehis is
attribute is written and used. If the host binding flag isgi it is alvays used, ¥en when not cooking in
parallel. If it is not gven and you are cooking in parallel, it will dad@lt to the contents of the
[parallel_hosts] variable.

Peter Miller Page 37

Cook UserGuide

7.3.5.1 Recipe Flags
Theflagsare defined as follows.

flags

(s o

Recipe flags areveluated when the recipe targets avel@ated. Atthis time,noneof the [target], [tagets],
[need] or [younger] variables are set, and neither ayefthe pattern matches (%, %<c) available.

A number of flags may be used

clearstat Thdast-modified time of the files named ireeuted commands will be remed from
the last-modified time cache. This is essential for commands sueiflgsandmyl).

noclearstat Dmot clear entries from the last-modified time cache. This is usually the default.

default If no tagets are specified on the command line, the first recipe wittietizeiltflag will

be used. Not meaningful for implicit recipes.

nodefult If no targets are specified on the command line, and there are no recipes wéfatlie
flag set, the first recipaithout the nodefaultflag will be used.Not meaningful for
implicit recipes.

errok Exitstatus from commands will be ignored.

noerrok Ifthe noerrokflag is specified, the commands within the actions bound to the recipe must
always be successful. This is usually the default.

fingerprint Filefingerprints are used to supplement last-modified time information about files, which
is howv cookdetermines if a file is out-of-date and needs to beexbhokf a file appears to
have danged, from the last-modified time, it is fingerprinted, and the fingerprint
compared with what it was in the padthe file has changed if and only if the fingerprint
has also changedA cryptographically strong hash is used, so the chance of a file edit
producing an identical fingerprint is less than 1 in 2**200. Fingerprinting is disabled by
default.

nofingerprint Danot use file fingerprinting. This is usually the default.
forced Iftheforcedflag is specified, the actions bound to the recipe wilgd be galuated.

noforced Ifthe noforcedflag is specified, the actions bound to the recipe will\auated when
the recipe is logically out-of-date. This is usually the default.

gae-after-ingredients Thiflags causes the recipe gate to beluated after the ingredients Ve been
evduated and determined to be cookable. This is usually the default.

gae-before-ingredients Thifag causes the recipatg to be applied before the ingredients amtuated
and determined to be cookabl€his is useful if the ingredientyauation itself needs to
be conditional.

implicit-ingredients
This flag may be used to specify that a respegredients may be satisfied by implicit
recipes. Thiss usually the default.

no-implicit-ingredients
This flag may be used to specify that a resipegredients may not be satisfied by

implicit recipes; this is of most use with utilities such as RCS where the recipe writer
knows that the ingredients cannot be constructed.

Peter Miller Page 38

Cook

UserGuide

include-cooked-warning Thilag may be used to enable warnings when the relationship betweeeta tar

and a deried ingredient appears only in a dead cookbook. Thids usually the dedult.
This flag is only meaningful at the cookbookde it is not meaningful for indidial
recipes or commands.

no-include-cooked-warning Thifag may be used to disable warnings when the relationship between a

target and a deved ingredient appears only in a dexd cookbook. Thisflag is only
meaningful at the cookbook Vd, it is not meaningful for individial recipes or
commands.

ingredients-fingerprint Thiglag may be used to cause recipes to re-trigger when their ingredients list

chages in anway. This is especially useful, forxample, in causing libraries to be
rebuilt when a content source file is rered.

no-ingredients-fingerprint Cancelyaactive ingredients-fingerprinsetting.

match-mode-cook Use nati Cook pattern matching.

match-mode-regeUse POSIX regular expression pattern matching.

meter

nometer
mkdir

nomkdir

precious

noprecious

recurse

norecurse

silent

nosilent

stripdot

nostripdot

tell-position

no-tell-position

time-adjust

Peter Miller

Ifthe meterflag is specified, a summary of the CPU usage by the commands within this
recipe will be printed after each command. The silent optigaside this option.

Dot meter commands. This is usually the default.

If the mkdir flag is specified, the directories ofyatargets will be created before the
actions bound to the recipe arsleated.

If the nomkdirflag is specified, the directories ofyarargets will need to be created by
the actions bound to the recipe. This is usually the default.

Ifthe preciousflag is specified, if the actions bound to the recik the targets of the
recipe will not be deleted.

Ithe noprecioudlag is specified, if the actions bound to the recipe fall, the targets of the
recipe will be deleted.This is usually the default, so that erroneous targets will be re-
cooked.

Ifthis flag is specified, recipes will recurse upon theneself’one of their ingredients
matches one of their gets. Thixan cause problems, and so it is not the default.

Ithis flag is specified, the recipe will not recurse if one of its ingredients matches one of
its tagets. Thids the default.

Ifthesilentflag is specified, the commands within the actions bound to the recipe will not
be echoed.

Commandwill be echoed. This is usually the default.

Thisoption causesook to rema/e leading "./" prefixes from filename&his is usually
the default.

Thisoption causesook to leare leading "./" prefixes on filenames.

Thisoption causes the filename and line number to be printed when echoing commands
just before the are executed, in addition to the command itself.

Thisoption supresses the printing of the filename and line number when echoing
commands just before there executed. Thids usually the default.

Thisoption causegook to check the last-modified time of the targets of recipes, and
adjust them if necessaryp make are theg are consistent with (younger than) the last-
modified times of the ingredients. This usually adjusts the file time into the (near) future.
A warning message will be printed, telling yourhmary seconds the file was adjusted.

Page 39

Cook UserGuide

This results in more system calls, and cawshings down on some systefns

no-time-adjust Daot adjust the file last-modified times after performing the body of a recipe. This is
usually the default.

time-adjust-back This option causemk to force the last-modified time of the targets of recipes to be
exactly one (1) second younger than their youngest ingredient. This usually adjusts the
file time into the (recent) pasA warning message will be printed, telling youshmany
seconds the file was adjusted. This results in more system calls, and wahisls
down on some systemsThis is primarily useful when some later process is going to
compress file modification times; this provides smarter compression.

unlink If the unlink flag is specified, of antargets will be unlinked before the actions bound to
the recipe are performed.

nounlink If the nounlink flag is specified, the recipe targets are not rehdefore the actions
bound to the recipe are performed. This is usually the default.

Each flag may also be specified in thgaige, by adding a "no" prefix, to werride ary existing positve
default setting. There is a strict precedence defined for the variegls & flag setting, see the end of the
"How Cook Works" chapter for details.

7.3.5.2 Recipe Gate
Each recipe may lva agate The gate is a way of specifying a conditional recipe; if the condition is not
true, the recipe is not used. The condition is in addition to the condition that the ingredients are cookable.

gae

() om

For example:
program: [program_obj]
if [not [in horrible.o [program_obj]]]
{

}

7.3.5.3 Then Clause
There are times when it is necessary tovktimat a recipe has been applied, but because the recipe was up-

to-date, the recipe body was not run.
LCthen H cstmt

The then-clause is rurvery time the recipe is appliedyen if the recipe is up-to-date. It will be run after
the recipe bodyif the recipe body is run. All of the usual percent (%) substitutions and automadbles
will apply. Recipe then-clauses mayvaslocal variables.

cC -0 program [program_obj];

use

For example:
program: [program_obj]
{
cC -0 program [program_obj];
}

6. This flag was once named thapdate’ flag. Thename was changed to more closely reflect its function. The old name
continues to work.

Peter Miller Page 40

Cook UserGuide

then
{

}

7.3.5.4 Double Colon

Most cookbooks are constructed so thatabk finds a suitable recipe for the target it is currently
constructing, it will apply the recipe and then conclude that it has finished constructingéte lasome
rare cases you will antcook to keep going after applying a recip& ecify this use a “double colan’
construction:

This operates li& a rormal explicit recipe, bt cook will continue on looking for recipes after applying this
one. Assoon as an applicable “single colbonécipe is found and appliedpok will conclude that it has
finished constructing the target.

install-set += program;

For example:
all:: programs
{ [print "all programs done"];
LII:: libraries
{ [print "all libraries done'T;
}

7.3.6 The Implicit Recipe Statement
Implicit recipes are distinguished fromxgdicit recipes in that and implicit recipe has a target witea ’
character in it.

7.3.6.1 Simple Form

In general the user will rarely need to use the implicit recipe form, as there are a huge range of implicit
recipes already defined in the system default recipes.

An example of this recipe form is
%: %.g9z
{

gzcat %.gz > %;

This recipe tell€ook how to use thegzcafl) program.

7.3.6.2 Complex Form

The implicit recipe recipe has a second form where there areetw of ingredients, separated by another
colon. Inthis form, the ingredients specified in the first ingredients list are used to determine the
applicability of the recipe; if these are all constructible then the recipe will be applied; @emot
constructible then the recipe will not be applidtithe recipe is applied, the ingredients specified in the
second ingredients list are required to be constructible the second ingredients list section is known as
theforced ingredientsection.

Note: if you want the first ingredients list to be empty youstseparate the twoolons with a space,
otherwisecook will think this is a “double colori’r ecipe.

An example of this is the C recipe
%.0: %.c: [collect c_incl -api %.c]

{

cc -c %.c;

Peter Miller Page 41

Cook UserGuide

}

This recipe is applied if th&.cfile can be constructed, and is not applied if it cannot be construthed.
include dependencies are onkpeessed if the recipe is going to be applied; but ¥ tre expressed, tlye
mustbe constructible. This means that absent include files generate dn error

The nave form of this recipe
%.0: %.c [collect c_incl -api %.c]

{

cc -c %.c;

will attempt to apply the_incl command before thes.c file is guaranteed toxest. Thisis because the
exprs2is performed after thexprs1all exist (because tgeare constructible, thehavebeen constructed).
In this nave form, absent include files result in the recipe not being applied.

7.3.6.3 Double Colon

Just as explicit recipes ¥&a ‘double colon’form, so do both types of implicit recipes. The semantics are
identical, with cook looking for more than one applicable implicit recipe, but stopping if it finds an
applicable “single colon’i mplicit recipe.

As stated earlier in this manuabok first scans for explicit recipes before scanning for implicit recipis.
an explicit recipe has been appliedpk will not also look for applicable implicit recipesyen if all the
applicable explicit recipes were double colon recipes.

7.3.7 The Ingredients Recipe Statement
The ingredients recipe has the form

The target(s) of the recipe are to the left of the colon, and the prerequisites are to th€hggatare no
statements to perform to cook thegets of this recipe, it is simply supplementary ty ather recipe,
usually an implicit recipe.

For example:
program: batman.o robin.o;

The right-hand-side expressions are ongeated into words when the recipe is instantiated.
Ingredients recipes are usually explicit, but it is also valid to use implicit ingredients recipes.

For example:
some-%-program: %.0;

7.3.8 The Cascade Recipe Statement
The cascade recipe statement has the form

This recipe specifies on its right-hand-side additional ingredients yareaipe which has
ingredients mentioned on the left-hand-side of this cascade recipe.

Unlike dl other recipe forms, both the left-hand-siéad the right-hand-side are
evduated when the recipe is instantiated.

For example:
cascade batman.c = robin.h;

7. This is not the recommended way of determining C include dependencies, see the “Include Deperdwamiesfor more
information.

Peter Miller Page 42

Cook UserGuide

cascade somelib.a = some-deeper-lib.a;

7.3.9 Commands
Commands may takseveal forms incook. They al have ae thing in common; tlyeexecute a command.

7.3.10 The Simple Command Statement
The simplest command form is

stmt ﬁ’ elist H flags }%@

When eecuted, theelistis evaluated into a wrd list and used as a command to be passed to the operating
system. OrUNIX this usually means that a shell isdked to run the command, unless the string contains
no shell meta-characters.

Theflagsare those which may be specified in the explicit recipe stateriibey. havea higher precedence
than either theetstatement or the recipe flags.

Some characters in commands are special both to the shell and toYoookill need to quote or escape
these characters. Each commandxiceted in a separate process, sodthecommand will not work, you
will need to combine it with the ralant commands, not forgetting to escape the semicglpoh@racters.

When Cook needs to\voke a $ell to execute a command, it uses the shell named inSRé&ELL
ervironment \ariable. Ifthe cookbook is to be used byariety of users, each with a different shell setting,
it may be useful to add a

setenv SHELL = /bin/sh;
line at the top of your cookbook.

It is also important to note that unless #reok flag has been specified, the shell will beegithe -e
option, which will cause it to exit immediately after the first command

which returns a non-zero exit status. This can be important when

commands in the .profile or .bashrc (or similar) file fails.

7.3.11 The Data Command Statement
For programs which requirstdin to be supplied byook to perform their functions, the data command
statement has been provided.

stmt o elist |5 flags | y=(data)= expr |(dataend)

In this form, theexpr is evaluated and used as input to the command. Betweeddteeand dataend
keywords the definition of the special symbols and whitespace change. There are ordgetial
symbols,[and], to dlow functions and variable references to appear in #pression. Inaddition,
whitespace ceases tovieats usual specialness; it is handed to the command, instead.

For those of you familiar with writing shell scripts, this is analogoubdm documents. lallows you to
create an input file without creating an explicit temporary fitealso allows you to create files that you
could not create usingchoredirected into the fife

Thedata keyword must be the last on a line, whitespace afted#be keyword up to and including end-of-
line, will notbe given to the command.

The dataend keyword must appear alone on a line, optionally surrounded by whitespace; if it is not alone,
it is not adataend keyword and will not terminate the expression.

An example of this may be useful.
{usr/fred/%: %

{

8. For example, Windows NT has a ludicrously small command line length limit.

Peter Miller Page 43

Cook UserGuide

newgrp fred;
data
cp % /usr/fred/%
dataend

The newgrgl) command is used to change thead#éfgroup of a process, and then thra dhell; so the
“cp” is executed by this sub-shell when it reads its standard inifube directory/usr/fredhas read-only
permissions for others, and group write permissions, and belonged tofgrdugnd you were a member
of groupfred, the ab@e implicit recipe could be used to gpfhe file.

Here is an example of twato cope with stupidly short NT command lines:
%.LIB: [%_obj]

{
cat > %.contents;

data

[unsplit "\n" [unix-to-dos [need]]]

dataend
link -lib "“/out:"[unix-to-dos [target]] @%.contents;
rm %.contents;

}

The “@somethin§ m eans the linker should read file names fromsibraethindile.

This technique will also work with Unix if you f1@ nore then 5MB of command linegumentsand the
program is written to hae a option something lik this (mary havea-f option).

7.3.12 The Set Statement
It is possible to werride the dedults used byook or even those specified by thEOOK environment
variable, by using theetstatement.

The flag values are those mentioned inftagsclause of the explicit recipe statemeMany command-
line options hae gquivalent flag settings. There is nanset’ statement, to restore the default settings, b
it is possible to set flags the other wiy adding or removing the “noprefix.

To st flags for individual recipes, use tha@gsclause of the recipe statements.

To st flags for individual commands, use flagsclause of the command statements.

7.3.12.1 Examples
Fingerprinting is not used by drflt, because it can cause & firprises, and takes a little more CPTb
enable fingerprinting for you project, place the statement

set fingerprint;
somavhere near the start of yotttowto.cookfile. The-No_FingerPrint command line option can still
overide this, but the default behavior will be to use fingerprints.

To prevent echoing of commands as ytere executed, place

set silent;
somavhere in yourHowto.cookfile. The-NoSilent command line option can stiliverride this, but the
default behavior will be not to echo commands.

7.3.13 The Fail Statement
Cook can be forced to think that a recipe has failed by the uses & kistatement.

stmt ﬁail H exprs ’9@

This is hugely useful when programs do not return a usgfustatus, kit do fail. If they haveprinted an

Peter Miller Paye 44

Cook UserGuide

error message, but not produced the output file, you could use the Fail statement without arguments:
fred: other stuff

set unlink
{
brain-dead [need] -o [target];
if [not [exists [target]]] then
fail;
}

If you give the Fail statement grerguments, the will be printed as an error message before the recipe
fails:
fred: other stuff

set unlink
{
brain-dead [need] -o [target];
if [not [exists [target]]] then
fail Did not produce [target] file.;
}

7.3.14 The If Statement
The if statement has one ofdorms.

% expr F(then)% stmt }
\9(elseH stmt ’—/

In nested if statements, tiekse will bind to the closestlselessif. An expression is false if and only if all
of its words are null or it has no words.

Note that one or both of the subordinate statements may be compound statements, should you need to say
something more comptehan a single statement.

7.3.15 The Loop and Loopend Statements
Looping is provided for irtook by the generic infinite loop construct defined helo

stmt N \
/Kloop H stmt |

A facility is provided to break out of a loop atygioint.

stmt .
>(loopstop }=(;)

The statement following thieop directive is executed repeatedly fover. Theloopstop statement is only
semantically valid within the scope ofapp statement.

Here is an example of hoto use the loop statement:

dirs=abcd;
src =;

tmp = [dirs];
loop

{

tmp_dir = [head [tmp]];
if [not [tmp_dir]] then

loopstop;
tmp = [tail [tmp]];

Peter Miller Page 45

Cook UserGuide

src = [src] [glob [tmp_dir]"/*.c";

}

There is also a “for eacH’oop variant, allowing a more terse expression of exactly the same thing
dirs=abcd,;
src =;

loop tmp_dir = [dirs]
{

}

You can use loopstop within such a loop. Note that the loop bagstbe a compound statement.

7.3.16 Functions
It is possible to define your own functions.

7.3.16.1 Function Definition
User-defined functions are specified using something similar to an assignment.

function /5 -

Functions must be defined beforeytlaee used.

src = [src] [glob [tmp_dir]"/*.c";

You need to mak aure you do not re-define a built-in-function as this masehdre consequences.

7.3.16.2 The Return Statement

You return values from a function by using the return statement;

stmt {return H exprs }9@

Note that return statements are not meaningful outside a function definition.

7.3.16.3 Function Arguments

The arguments to the function are passed in‘dng™variable. Eactargument is also separately defined in
the ‘@1” to “‘@9” variables for direct accesglf there are more than 9, you will need to ugedrd n
[arg]]” for argument 10 and later). These variables are unique for each funetioatian, @en if they are
nested.

You can use the “@1to ‘@9 variables as local variables if youvearo need of their values.

All of these special names are thread safe and recursion Bedey function ivokation receres its avn
set of them.

7.3.16.4 Example
An example of a function definition is a “capitalizEinction:
function capitalize =

{
@1=;
loop @2 = [downcase [arg]]
{
@1 += [upcase [substr 1 1 [@2]]][substr 2 99 [@2]];
}
return [@1];
}

This function capitalizes the first letter of each of its arguments.

User-defined functions arevioked in the same way a built-in functions.

Peter Miller Paye 46

Cook UserGuide

host = [os node];
Host = [capitalize [host]];

See the “Function Librarysection for additional function examples which are distributed with Cook.

7.3.16.5 Function Call Statement
User defined functions may bevgked in the same way as built-in functions, butytimeay also be inoked
in the same way as commands, providing a form of subroutine.

stmt e - - -
\\functlon H elist ’9@

If the function return &lue is not zero, it is considered to fail, just as a command wailld The
commonest use of this is toviske the built-in print function for debugging cookbooks.
function print [__FILE__][LINE_] hello [getenv USER];

These function calls may be used in recipe bodies, or in the general cookbook.

7.3.16.6 Local Variables
Functions can he local \ariables simply by using the ond local on the left-hand-side of the
assignment. Caneeeds to be taken with th@op statement and the= assignment, as the variable needs
to be established as a local variafiist.

function capitalize =

{

local result = ;
local tmp =
loop tmp = [downcase [arg]]

{
}

return [result];

result += [upcase [substr 1 1 [tmp]]][substr 2 99 [tmp]];

}

Functions may hae & mary local variables as thdike.

Local variables are reentranfou can write recursie functions, and eachvacation of the function has an
independent set of local variables.

Local variables are thread-saf¥ou can use the same user-defined function ia parallel threads, and
their local variables are completely independent.

The “arg” and “@1” to “*@9” variables are implicitly local.

Peter Miller Page 47

Cook UserGuide

8. Built-In Functions
This chapter defines each of the built-in functionsamfk

A built-in function is irvoked by using an expression of the form
[func-name a arg ..]
in most places where a literal word is valid.

8.1 addprefix

The addprefixfunction is used to add a prefix to a list oords. Thisfunction requires at least one
argument. Thdirst argument is a prefix to be added to the second and subsequent arguments.

8.1.1 See Also
addsuffix, patsubst, prepost, subst

8.2 addsuffix

The addsuffixfunction is used to add a suffix to a list obnds. Thisfunction requires at least one
argument. Thdirst argument is a suffix to be added to the second and subsequent arguments.

8.2.1 See Also
addprefix, patsubst, prepost, subst

8.3 and

This function requires at least awerguments, upon which it forms a logical conjunction. Tlaue
returned is "1" (true) if none of the arguments are " (false), otherwise "™ (false) is returned.

8.3.1 Example

The following cookbook fragment showsviato use the [and] function in conditional recipes.
#if [and [defined change] [defined baseline]]
...do something...
#endif

This fragment will onlydo somethingf both thechangeandbaselinevariables are defined.

8.3.2 Caveat
This function is rather clumsynd probably needs to be replaced by a better syntax within the cokbook
grammar itself.

This function does not short-circuitauation.

8.3.3 See Also
or, not

Peter Miller Page 48

Cook UserGuide

8.4 basename

The basenamdreats each argument as filenames, and extractsitathe suffix of each filename. If the
filename contains a period, the basenameas/thing up to (but not including) the period. Otherwise, the
basename is the entire filename.

Please note: this is not the same behavior as the hbdenam@) utility. For this, [basename
[notdir argg] or[fromto %0%.c %0% argg may be more appropriate.

8.4.1 Example
Expression Result
[basename foo.c] foo
[basename foo/bai] foo/bar
[basename baz] baz
[basename foo/bar/baz] foo/bar/baz

8.4.2 See Also

addsuffix, dirname, entryname, fromto, notdirffix

8.4.3 Caveat

This function is almost nothing kkthe Unix command of the same nanieoperates in this manner for
compatibility with other packages.

8.5 cando

This function is used to test whether Cook knowss io cook the gven targets. Itreturns all of the
arguments for which desritions can be found, or nothing if none can.

8.5.1 Caveat
This will use as much of the cookbook as has been read in up to the point where this functionTiigsed.
can mean that crucial recipess/baet to be parsed and instantiated.

8.5.2 See Also
cook, uptodate

8.6 catenate

This function requires zero or moregaments. |fho aguments are supplied, the result is an empiydw
list. If one or more arguments are supplied, the result is a word list of one word being the catenation of all
of the arguments.

8.6.1 Example

Expression Result

[catenate a] a

[catenate a b] ab

[catenatea""b] "ab"
Quotes used in the results for clarity.

8.6.2 See Also

split, unsplit, prepost, join

Peter Miller Page 49

Cook UserGuide

8.7 collect_lines

The arguments are interpreted as a command to be passed to the operatingTystesult is one "ard"
for each line of the output of the command.

8.7.1 Example
To read each line of a file into a variable:
files = [collect_lines cat file];
Spaces and tabs in the input lines will be preserved in the "words" of the result.

8.7.2 See Also
collect, execute, glob, read, read_lines, write

8.7.3 Caveat
You will probably get better performance using #iaclude-cooked directive, and a recipe to create
the included file.

8.8 collect

The arguments are interpreted as a command to be passed to the operating Bysteznult is one ard
for each white-space separated word of the output of the command.

The command will not be echoed unless the -No_Silent option is specified on the command line.

8.8.1 Example
Read the date and time and assign it to a variable:
now = [collect date];
Do not use the collect function to expand a filename wildcard, used the [glob] function instead.

8.8.2 See Also

collect_lines, recute, glob, read, read_lines, write

8.8.3 Also Known As
shell

8.9 cook

This function requires one or moregaments, filenames to be tested to see i Hne up-to-date, and be
brought up-to-date if theare not. The result are true ("1") if the files are (now) up-to-date, or false (") if
they could not be built.

8.9.1 Caveat
This will use as much of the cookbook as has been read in up to the point where this functionTifissed.
can mean that crucial recipesvbaet to be parsed and instantiated.

This function works one argument at a time. This isvelothan the main cookbook, which will pursue all
targets simultaneously.

8.9.2 See Also
cando, uptodate

Peter Miller Page 50

Cook UserGuide

8.10 count

This function requires zero or moregaments. Theesult is a word list of one word containing the
(decimal) length of the argument word list.

8.10.1 Example

This cookbook fragment echoes the number of files, and then the name of the last file:
echo There are [count [files]] files.;
echo The last file is [word [count [files]] [files]].;

8.10.2 See Also
head, tail, word

8.10.3 Also Known As

words

8.11 defined

This function requires a single argument, the name of a variable to be testettemce. Itreturns "1"
(true) if the named variable is defined and "™ (false) if it is not.

8.11.1 Example
This function is most often seen in conditional portions of cookbooks:
if [defined baseline] then
cc_flags = [cc_flags] -I[baseline];

8.12 dirname

This function requires one or more arguments, the names of files which wélltieir directory parts
extracted.

8.12.1 Example

Expression Result

[dirname a] ‘pwd

[dirname a/b] a

[dirname a/b/c] a/b
When the answer auld be “.” (the current directory), the result is instead the absolute path of the current
directory This allows repeated [dirname] applications to climb the directory tree, no matter where you
start. Seeelative_dirnameor one which returns “.i nstead.

8.12.2 See Also
basename, entryname, notgiathname, relate _dirname, suffix

8.12.3 Also Known As
dir

Peter Miller Page 51

Cook UserGuide

8.13 dir

This function requires one or more arguments, the names of files which wélltheir directory parts
extracted.

8.13.1 Example

Expression Result
[dir a] .

[dira/b] a

[dir a/b/c] alb

8.13.2 See Also
basename, entryname, notgliathname, relaie_dirname, suffix

8.13.3 Also Known As
dirname

8.14 dos-path

This function requires one or more arguments, which will be@ted from a UNIX path into a DOS path.
This is of most use underidows-NT, to convert Cook’s internal pathnames into DOS pathnamgkhe
UNIX porting layer usually hides this from Cook.)

8.14.1 Example

Expression Result
[dos-path a/bl/c] a\b\c
[dos-path //c/temp] c:\temp

[dos-path //server/sti)f \\server\stuff

8.14.2 See Also
un-dos-path
8.15 downcase

This function requires one or more arguments, words to be forced into lower case.

8.15.1 Example

Expression Result
[downcase FOQ] foo
[downcase Bar] bar
[downcase baz] baz

8.15.2 See Also
upcase

Peter Miller Page 52

Cook UserGuide

8.16 entryname

This function requires one or moregaments, the names of files which willvieatheir entry name parts
extracted.

8.16.1 Example

Expression Result
[entryname foo.c] foo.c
[entryname foo/bac] barc
[entryname baz] baz

8.16.2 See Also
basename, disuffix

8.16.3 Also Known As
notdir

8.17 execute

This function requires at least oneggament, and&cutes the command\gin by the aguments. Ifthe
executed command returns non-zero exit status the resulting value is "™ (false), otherwise it is "1" (true).

The command will not be echoed unless the -No_Silent option is specified on the command line.

8.17.1 Caveat
This function is not often required as its functionalityvailable in a more useful form as recipe bodies.

8.17.2 Example
To get access to a wide range of Unix command, sutésg$), you can use this function in conditionals
if [not [test -d fubar]] then

{
rm -f fubar;
mkdir fubar;
}
8.17.3 See Also
collect
8.18 exists

This function requires one gument, being the name of a file to test fdisience. Theesulting word list
is " (false) if the file does not exist, and "1" (true) if the file does exist.

8.18.1 Example
To remove the target of a recipe before building it again:

%.a: [%_obj]

{
if [exists [target]] then
rm [target]
set clearstat;
[ar] gc [target] [%_obj];
}

Note: youmustuse the clearstat, because otherwise cotskat cache” will be incorrect.

This is only an gample. Itis better to perform this particular activity using thenlink’’ flag. Seehe
[find_command] function, belg for an example.

Peter Miller Page 53

Cook UserGuide

8.18.2 See Also
cando, find_command, uptodate
8.19 exists-symlink

This function requires one gument, being the name of a file to test &istence. Theest will not follow
symbolic links, so it may be used to test for tkistence of symbolic links themsels. Theresulting vord
listis "™ (false) if the file does not exist, and "1" (true) if the file does exist.

8.19.1 See Also
exists, readlink

8.20 expr

This function may be used to calculate simple integer arithma&peessions. Thenumbers and the
operators are expected to each be a sepamgienant. Theesult is a string containing the value of the
evduated expression.

8.20.1 Operators
The following operators are understood. ¥iavethe same precedence as the egent C operators.

Operator Associatity

() -
[-
* | % -
+ - -
<< >> —
< <= > >= —
== I= N
& -
- —
| -
&& -
| -
?: -

Please note that there is no short-circudleation of the?: or &&or|| operators.

You may need to quote some of the operators, to insulate them from their usual Cook interpretation (colon
and equals characters in particular).

Numbers may be gén in decimal, octal (with @ prefix), or hexadecimal (with @x prefix). Theresult is
always decimal.

8.20.2 See Also

count

Peter Miller Paye 54

Cook UserGuide

8.21 filter_out

This function requires one or moregaments. Thdirst argument is a pattern, the second and later
arguments are strings to matchaatgt this pattern. The resulting wordlist contains those arguments which
did not match the patternvgn as he first argument.

8.21.1 Example

Expression Result

[filter_out %.c a.c a.0] a.o
[filter_out %.cc a.ca.0] a.ca.o

8.21.2 Match Mode
This function is affected by the selected match mode. SdeléhBlame Patternshapter for details.

8.21.3 See Also

filter, stringset

8.22 filter

This function requires one or moregaments. Thdirst argument is a pattern, the second and later
arguments are strings to matchaatgt this pattern. The resulting wordlist contains those arguments which
matched the pattern\gn as he first argument.

8.22.1 Example

Expression Result

[filter %.c a.c a.0] a.c
[filter %.cc a.c a.0]

8.22.2 Match Mode
This function is affected by the selected match mode. SdeléhBlame Patternshapter for details.

8.22.3 See Also

filter_out, stringset

8.22.4 Also Known As
match_mask

8.23 find_command

This function requires at least ongament, being the names of commands to search forARsPThe
resulting word list contains either ™ (false) or a fully qualified path name for each command gi

8.23.1 Example
Some systems requiranlib(1) to be run on archés, and some do not. Here is a simple way to test:
ranlib = [find_command ranlib];

%.a: [%_obj]

set unlink
{
ar qc [target] [%_obj];
if [ranlib] then
[ranlib] [target];
}

Peter Miller Page 55

Cook UserGuide

8.23.2 See Also
cando, exists, uptodate

8.24 findstring

The findstring function is used to match a fixed string against a set of stiihgsfunction takes at least

one agument. Thdirst argument is the fixed string, the second and subsequgmhants are matched
against the first. The result contains one word for each of the second and subsequent arguments, each will
either be the empty string (false) or the string to be matched, if a match was found.

8.24.1 Example

Expression Result
[findstringaabc] a™""
[findstring a b]
Quotes are for clarityto enphasize the empty strings. Because the empty string is "false", this can be used
in anif statement:
if [findstring fish [sources]] then
sources = [sources] hook.c;

8.24.2 See Also

filter-out, match, match_mask, patsubst, stringset, subst

8.25 firstword

This function requires zero or moregaments. Theavordlist returned is empty if there were n@aments,
or the first argument if there were arguments.

8.25.1 Example

You can iterate along a list using theop statement combined with tliestwordandtail functions:

dirs=abcd;
src =;

tmp = [dirs];
loop

{

tmp_dir = [firstword [tmp]];
if [not [tmp_dir]] then
loopstop;
tmp = [tail [tmp]];
src = [src] [glob [tmp_dir]"/*.c";
}

More efficient ways exist to do this, this an example only.

8.25.2 See Also
count, glob, fromto, prepost, tail, word

8.25.3 Also Known As
head

Peter Miller Page 56

Cook UserGuide

8.26 fromto

This function requires at least tvarguments. Fromtgives the user access to the pattern transformations
awailable tocook. The first argument is the "from" form, the seconguanent is the "to" form. All other
arguments are mapped from one to the other.

8.26.1 Example
Given a list of C source files, generate a list of object files as follows:
obj = [fromto %.c %.0 [src]];

8.26.2 See Also
filter, filter_out, subst

See the pattern matching chapter for more information about patterns.

8.26.3 Match Mode
This function is affected by the selected match mode. SdeléhBlame Patternshapter for details.

8.26.4 Also Known As
patsubst

8.27 getenv

Each agument is treated as the name of an environmemible. Theaesult is the value of eachgaiment
variable, or "™ if it does not exist (consistent with command shell behaviour).

8.27.1 Example
To read the value of the TERM environment variable:

term = [getenv TERM];

Values of variables are not automagically set from the environment, you must set each one explicitly:
cc = [getenv CC];
if [not [cc]] then
CcC = gcc;
8.27.2 See Also

find_command, home

8.28 glob

Each argument is treated assl{l) file name pattern, andkganded accordingly The resulting list of
filenames is sorted lexicographically.

You may need to quote the pattern, to protect square brackets from the meaning cook attaches to them.

Note: The character sequenée is a comment introduceend is a frequent source of problems when
combined with thelob function. Remembetio quoteglob arguments which need this character sequence.
See the [head] function, b&lpfor an example of this.

8.28.1 Example

To find the sources in the current directory:
src = [glob *.c];
obj = [fromto %.c %.0 [src]];

8.28.2 See Also
filter, filter_out, shell

8.28.3 Also Known As
wildcard

Peter Miller Page 57

Cook UserGuide

8.29 head

This function requires zero or moregaments. Theavordlist returned is empty if there were n@aments,
or the first argument if there were arguments.

8.29.1 Example

You can iterate along a list using tleop statement combined with tieadandtail functions:

dirs=abcd;
src =;

tmp = [dirs];
loop

{

tmp_dir = [head [tmp]];
if [not [tmp_dir]] then
loopstop;
tmp = [tail [tmp]];
src = [src] [glob [tmp_dir]"/*.c";
}

More efficient ways exist to do this, this an example only.

8.29.2 See Also
count, glob, fromto, prepost, tail, word

8.29.3 Also Known As
firstword

8.30 home

The homefunction is used to find the home directory of the named us&ng.may name more than one
user If no users are named, it returns the home directory of the current user.

8.31 if

This function requires one or more arguments, the arguments before the "tbeh'ame used as a
condition. Ifthe condition is true the words between the "then" word and the "else" word are the result,
otherwise the wrds after the "else" word are thalwe. The'else" clause is optional. There is nho way to
escape the "then" and "else" words.

8.31.1 Example
Here is an example of th&f*’ function. Pleaseote that'if’’, ‘‘then” and “else” are reserved words, so
you need to quote them before\tivéll be recognised on the function context.

%: %_obj

set ["if" [defined all_shallow] "then" shallow]
{

[cc] -o [target] [%_obj];
}

8.31.2 Caveat
It is often clearer to use tlilestatementhan this function.

The recipe flags arevaluated at the same time as the recipgdes. Noneof the [target], [targets], [need],
[younger] variables or pattern matches (%, #it), are set at this time.

Peter Miller Page 58

Cook UserGuide

8.32 in

This function requires one or moregaments. Thevordlist returned is a single word: the indef the
matching word (1 based) if the first argument is equal yoathe later ones; or ™ (false) if not.

This function can also be used for equality testing, just use a single element in the set.

Because it returns the index, the return valus can be used wijthdit§ or [words] functions.

8.32.1 Example
Frequently seen in conditional parts of recipes:
%: [%_obj]

{
[cc] -o [target] [%0_obj];
if [in [target] [private]] then
chmod og-rwx [target];
}

8.32.2 See Also
stringset, word, words
8.33 interior_files

This function requires zero guments. Theesult is the list of files which are interior to the depengenc
graph. (Filesvhich are constructed by a recipe.) This function is only meaningful within a recipe body.

8.33.1 See Also
leaf_files function, graph_interior_file variable, graph_interior_pattern variable
8.34 join

The join function is used to join tarsets of strings togethedement by element. The argument list must
contain an 'een number of aguments, with the first half joined pair-wise with the last half. There is no
marker of ag kind between the lists, so the user needs to ensyrargadoth the same length.

8.34.1 Example

Expression Result
[joinabcd] achd
[join a b] ab

8.34.2 See Also

basename, catenate, suffix

Peter Miller Page 59

Cook UserGuide

8.35 leaf files

This function requires zero guments. Theesult is the list of files which are les of the dependenc
graph. (Fileswhich are not constructed by a recip&his function is only meaningful within a recipe
body.

8.35.1 See Also

interior_files function, graph_leaf_file variable, graph_leaf pattern variable

8.36 matches

This function requires one or moregaments. Thdirst argument is a pattern, the second and later
arguments are strings to match against the pattern. The resulting wordlist contains "™ (false) if did not
match and the 1-based list ixdgrue) if it did.

The returned list indemay be used in combination with the [words] function.

8.36.1 Example
This function may be used to test for strings whickeha @rticular form:
if [matches %1C%?2 [version]] then
cc_flags = [cc_flags] -DDEBUG
If the version contains a Capital-C charactieen turn on debugging.

8.36.2 Match Mode
This function is affected by the selected match mode. SdgélehBlame Patternshapter for details.

8.36.3 See Also
filter, filter-out, words

8.37 match_mask

This function requires one or moregaments. Thdirst argument is a pattern, the second and later
arguments are strings to match against this pattern. The resubirtflist contains those arguments which
matched the pattern\gn as he first argument.

8.37.1 Example

Expression Result

[match_mask %.c a.c a.0] a.c
[match_mask %.cc a.c a.0]

8.37.2 Match Mode
This function is affected by the selected match mode. Sdgélehslame Patternshapter for details.

8.37.3 See Also
filter-out, findstring, stringset

8.37.4 Also Known As
filter

Peter Miller Page 60

Cook UserGuide

8.38 mtime

This function requires one gument, the name of a file to fetch the last-modified time of. The resulting
wordlist is ™ (false) is the file does nokist, or a string containing a (sortable) representation of the date
and time the files were last modified.

8.38.1 See Also

exists, mtime-seconds, sort_newest

8.39 mtime-seconds

This function requires one gument, the name of a file to fetch the last-modified time of. The resulting
wordlist is "™ (false) is the file does natist, or a string containing number of seconds since the epoch that
the files were last modified. This is more useful than [mtime] for doing arithmetic on.

8.39.1 See Also

exists, expymtime, sort_newest

8.40 notdir

This function requires one or more arguments, the names of files which vélltier entry name parts
extracted.

8.40.1 Example

Expression Result
[notdir foo.c] foo.c
[notdir foo/barc] barc
[notdir baz] baz

8.40.2 See Also
basename, dirname, relati dirname, suffix

8.40.3 Also Known As
entryname

8.41 not

This function requires zero or more arguments, the value to be logicghiede Itreturns "1" (true) if all
of the arguments are "™ (false), or there are ngumments; and returns "™ (false) otherwise. This is
symmetric with the definition of true and false for

8.41.1 Example
This is often seen in recipes:

%1/%0%2.0: %1/%0%2.c
single-thread %2.0

{
if [not [exists [dirname [target]]]] then
mkdir -p [dirname [target]]
set clearstat;
[cc] [cc_flags] -1%1 %1/%0%2.c;
mv %?2.0 [target];
}

Note that %0 matches zero or more whole filename portions, including the trailing slash. See the chapter
on pattern matching for more information.

This is an example onlyThe “mkdir” recipe flag creates the directory more efficiently.

Peter Miller Page 61

Cook UserGuide

8.41.2 See Also
and, or
8.42 operating_system

This function requires zero or moregaments. Theaesulting wordlist contains the values ddrwus
attributes of the operating system, as named in tgenaents. Ifno attributes are named, "system" is
assumed. Beiwis a list of attributes:

node Thename of the computeook is presently running on.
system Thename of the operating systemok is presently being run undeFor example: if you

were running on SunOS 4.1.3, this would retnriOS'.

release Thepecific release of operating system, within natonek is presently being run under
For example: if you were running on SunOS 4.1.3, this would retdrh.3 "

version \ersion information. For SunOS 4.1.3, this would return the kernel build number
other systems it is often the kernel patch release number.

machine Thename of the hardare cook is presently running onFor example: If you were
running on SunOS 4.1.3 this would retusuii4 " or similar.

This function may be abbreviated to "0s".

8.42.1 Example

This function is usually used to determine the architecture (either system or machine):
arch=[os system]-[os release]-[os machine];
if [matches Sun0S-4.1%1-sun4%?2 [arch]] then

arch = sun4;
else if [matches SunOS-5.%1-sun4%?2 [arch]] then
arch = sunb5;

else if [matches SunOS-5.%1-i86pc [arch]] then
arch = sunbpc;

else if [matches ConvexOS-%1-%2 [arch]] then
arch = convex;

else
arch = unknown;

8.42.2 Caveat

This function is implemented using thamam€2) system call. Some systems do not implement this
correctly and therefore this function is less useful than it should be, and needs the pattern match appropach
used abee.

8.42.3 See Also

collect

8.42.4 Also Known As
0s

Peter Miller Page 62

Cook UserGuide

8.43 options

This functions takes no guments. Theesults is a complete list @ookoptions, exactly describing the
current options settings. This intended for use in constructing reeesikinvocations.

The option setting generated are a combination of the command line options useakéocaook, the
contents of the COOK environmenanable, the results of thését” command and the variouseét”
clauses.

8.43.1 Example
The top leel cookbook for a recurge project structure can be as follows:
%:

{
dirlist = [dirname [glob */Howto.cook’]];
loop
{
dir = [head [dirlist]];
if [not [dir]] then
loopstop;
dirlist = [tail [dirlist]];
cd [dir]\; cook [options] %;
}
}
/*

* T his recipe sets the default.
* |t d oesn't actually do anything.
*/
all;;
Please note the % hiding on the end of the nestelcommand, this is v the target is communicated to
the nestedook invocation.

8.43.2 Caveat

Recursve Gook is not recommended, because it segments the depgrgtaph and forces Cook toalk
the graph in (potentially) the wrong orderhis introduces a number of significant problemssingle top-
level cookbook is recommended.

8.43.3 See Also
The supplied ‘tecursive” cookbook does exactly this. In order to use it, you neddoato.cookfile
containing the single line

#include "recursive"

Peter Miller Page 63

Cook UserGuide

8.44 or

This function requires at least awarguments, upon which it forms a logical disjunctiomhe \alue
returned is "1" (true) if anone of the arguments is not " (false), otherwise " (false) is returned.

8.44.1 See Also
and, not

8.45 pathname

The function requires one or more arguments, being files names to be replaced with their full path names.

8.45.1 Example
Relatve rmmes are made absolute, and redundant slashes and dots aeslremo
pwd = [pathname .];

8.45.2 See Also

basename, dirname, entryname

8.46 patsubst

This function requires at leastavarguments. BRtsubst gies the user access to the pattern transformations
awailable tocook. The first agument is the "from" form, the second argument is the "to" form. All other
arguments are mapped from one to the other.

8.46.1 Example
Given a list of C source files, generate a list of object files as follows:
obj = [patsubst %.c %.0 [src]];

8.46.2 Match Mode
This function is affected by the selected match mode. SdeléhBlame Patternshapter for details.

8.46.3 See Also

filter, filter_out, subst

8.46.4 Also Known As
fromto

8.47 prepost

This function must hae & least tvo aaguments. Thdirst agument is a prefix and the second argument is a
suffix. Theresulting word list is the third and later arguments eaetnghe prefix and stik as defined by
the first and second arguments.

8.47.1 Example

Expression Result
[prepost sund4/ .0 ab] sun4/a.o sund/b.o
[prepost -1 ™ . bl] -1. -1bl

8.47.2 See Also

addprefix, addsuffix, patsubst, subst

Peter Miller Paye 64

Cook UserGuide

8.48 print

The arguments are printed as an informmatimessage. Theisual output wrapping is performed.he
function returns the empty list as a result.

This function is frequently use to debug cookbooks.

8.49 quote

Each argument is quoted by double quotes, with s#dicial characters escaped as necessary.

8.49.1 See Also
collect, execute
8.50 read_lines

The argument is interpreted as the name okifile to be read. The result is one word for each line of the
file.

8.50.1 Example
Read a thexamplefile and assign it to a variable:
example = [read_lines example];

8.50.2 See Also

collect, collect_lines, read, write

8.51 readlink

The arguments are assumed to be symbolic links, and thieesvare read. It is a fatal error if the files
named are not symbolic links.

8.51.1 See Also

collect, exists-symlink

8.52 read

The agument is interpreted as the name of a text file to be read. The result is one word for each white-
space separated word of the file.

8.52.1 Example
Read a thexamplefile and assign it to a variable:
example = [read example];

8.52.2 See Also

collect, collect_lines, read_lines, write

9. Seesh(1) andcsh(1) for more information.

Peter Miller Page 65

Cook UserGuide

8.53 relative_dirname

This function requires one or more arguments, the names of files which wllthair directory parts
extracted.

8.53.1 Example

Expression Result

[relative_dirname a]

[relative_dirname a/b] a

[relative_dirname a/b/c] a/b
Seedirnameif you want to climb the directory tree with repeated applicatioalstive_dirnamewill
continue to return “.once the current directory is reached.

8.53.2 See Also
basename, dirname, entryname, nofsithname, suffix

8.53.3 Also Known As
reldir

8.54 resolve

This huiltin function is used to resadvfle names when using tlseach list variable to locate files.This
builtin function produces resolved file names as outpthis is useful when taking partial copies of a
source to perform controlled updates. The targets of recipesveagsatooked into the current directory.

8.54.1 Example
This function is used in cookbooks which usegbarh list functionality:
search_list = . baseline;

%.0: %.c

{

}

The cookbooks distributed with Cook contain full support forsisrch_list functionality They are a
good source of examples ofvado write recipes which taktis into account.

8.55 shell

The arguments are interpreted as a command to be passed to the operating Bystenult is one ard
for each white-space separated word of the output of the command.

[cc] [cc_flags] [addprefix -I [search_list]] [resolve %.c];

The command will not be echoed unless the -No_Silent option is specified on the command line.

8.55.1 Example
Read the date and time and assign it to a variable:
now = [shell date];
Do not use the shell function to expand a filename wildcard, used the [wildcard] function instead.

8.55.2 See Also
collect_lines, recute, wildcard

8.55.3 Also Known As
collect

Peter Miller Paye 66

Cook UserGuide

8.56 sort_newest

The aguments are sorted by file last-modified time, youngest to oldest. File names are resolved first (see
the resole function, belay). Absenffiles will be sorted to the start of the list.

8.56.1 Example
This function is often used to "shorten thaitiwhen building large project, so that the file you edited most
recently is recompiled almost immediately:

src = [glob *.c];

obj = [sort_newest [fromto %.c %.0 [src]]];

This trick does not alays work as expected, and candagnificant time for little result.

8.56.2 See Also
fromto, glob, sort

8.57 sort

The arguments are sorted lexicographically.

Note: Duplicates ar@motremoved. Usethestringsetfunction if you want to do this.

8.57.1 See Also

sort_newest, stringset

8.58 split

The split function is used to split strings into multiple stringsegithe separatorThis function requires at
least one gument. Thdirst argument is the separator charadtes second and subsequent arguments are
to be separated. The result is the separated strings, each as a separate word.

8.58.1 Example

Expression Result

[split ;" "foo:bar:baz"] foo bar baz
[split " " "New York"] New York
Each of the words in the result is a separate string.

This can be useful in splitting an environment variable into sepamatiswr example:
path = [split ":" [getenv PATH]];

8.58.2 See Also

unsplit, join, catenate, strip

Peter Miller Page 67

Cook UserGuide

8.59 stringset

Logical operations are performed on sets of strings. These include conjurgt@miraplicit, disjunction
(*) and difference).

8.59.1 Example

Expression Result

[stringset a b a] ab
[stringseta b c * a] a
[stringsetabc-a] bc
[stringsetab-c+d] abd

The can be very useful in constructing lists of source files:
src = [stringset [glob "*.[cyl]"] - y.tab.c lex.yy.c];

8.59.2 See Also
filter, filter_out, glob, in, patsubst, subst

8.60 stripdot

Thestripdotfunction is used to renve leading “\ ” directories from each of the path name arguments.

8.60.1 Example

Expression Result
[stripdot ./foo.c] foo.c
[stripdot baro] baro
[stripdot /fubar] /fubar

8.60.2 See Also
set stripdot

8.61 strip

The strip function is used to renve leading and trailing white space fromosds. Internalsequences of
white space are replaced by a single space.

8.61.1 Example

Expression Result

[strip" " "foo " " bar'] " foo bar
[strip " really big "] "really big"
Quotes are used here for clayiggd are not present in the internal representation of strings.

8.61.2 See Also
split

Peter Miller Page 68

Cook UserGuide

8.62 substr

Thesubstrfunction is used to perform substringtmcton. Thefirst argument is the starting position in the
string, starting from one. The second argument is the number of charactextraict. e Thirst and
subsequent arguments will be processed to extract sub-strings.

8.62.1 Example

Expression Result

[substr 1 1 Peter] P
[substr 3 99 Miller] ller

8.62.2 See Also
subst, patsubst

8.63 subst

The substfunction is used to perform string substitutions on itgiarents. Thigunction requires at least
two arguments. Thefirst argument is the "from" string, the second@ument is the "to" string.All
occurreneces of "from" are replaced with "to" in the third and subsequent arguments.

8.63.1 Example
This is a litteral replacement, not a pattern replacement:

Expression Result

[subst bufialo cress water.bidlo] water.cress
[subst .c .o test.c] test.o

[subst .c .o stat.cache.c] stat.oache.o

Note that last case: it is not selgeti

8.63.2 See Also
filter, filter_out, patsubst

8.64 suffix

The suffixfunction treats each argument as a filename, and extracts tixefsuh each. If the filename
contains a period, the suffix igeeything starting with the last period. Otherwise, the suffix is the empty
string (as opposed to nothing at all).

8.64.1 Example

Expression Result
[suffix a.c foo hy] .c™My
[suffix stat.cache.c] .c
[suffix .eric]

Quotes are used here for clayigd are not present in the internal representation of strings.

The suffixfunctions in this way to alle sensible results when using tfeén function to re-unite filenames
dismembered by theasenameandsuffixfunctions.

8.64.2 See Also

basename, dirname, entryname, join, patsubst

Peter Miller Page 69

Cook UserGuide

8.65 tall

This function requires zero or moregaments. Theavord list returned will be empty if there is less than
two arguments, otherwise it will consist of the second and later arguments.

8.65.1 See Also

count, head, word

8.66 un-dos-path

This function requires one or more arguments, which will be@ted from a DOS path into a UNIX path.
This is of most use underiWdows-NT, to convert DOS pathnames into Coackinternal pathnameg(The
UNIX porting layer usually hides this from Cook.)

8.66.1 Example

Expression Result
[un-dos-path a\b\c] a/blc
[un-dos-path c:\temp] /lcltemp

[un-dos-path \\servenstilif //server/stuff

8.66.2 See Also
dos-path

8.67 unsplit

Theunsplitfunction is used to glue strings togethasing the specified glue. The first argument is tieé te
to go between each of the second and subsequent arguments.

8.67.1 Example

Expression Result
[unsplit ":" one tvo three] "one:two:three"
[unsplit " " four five 9x] "four five 9x"

The quotes are necessary to isolate characters such as colon and space whidulktbakrmally treat
differently.

8.67.2 See Also
catenate, prepost, split

Peter Miller Page 70

Cook UserGuide

8.68 upcase

This function requires one or more arguments, words to be forced into upper case.

8.68.1 Example

Expression Result
[upcase FOO] FOO
[upcase Bar] BAR
[upcase baz] BAZ

8.68.2 See Also

downcase

8.69 uptodate

This function may be used to determine if files are up-to-dateturns a word list containing the names of
the up-to-date files, or empty if none of them are up-to-detey are not brought up to date if tlyeare not
already This function requires one or more arguments.

8.69.1 Caveat
This will use as much of the cookbook as has been read in up to the point where this functionTifissed.
can mean that crucial recipes/baet to be parsed and instanciated.

8.69.2 See Also

cando, cook

8.70 wildcard

Each argument is treated assl{l) file name pattern, and expanded accordinglige resulting list of
filenames is sorted lexicographically.

You may need to quote the pattern, to protect square brackets from the meaning cook attaches to them.

Note: The character sequenée is a comment introduceend is a frequent source of problems when
combined with thewildcard function. Remembeto quotewildcard arguments which need this character
sequence.

8.70.1 Example

To find the sources in the current directory:
src = [wildcard *.c];
obj = [patsubst %.c %.0 [src]];

8.70.2 See Also
filter, filter_out, patsubst

8.70.3 Also Known As
glob

Peter Miller Page 71

Cook UserGuide

8.70.4 Wordlist

This function may be used to extract a list of words from a larger list. The first argument is the starting
position, and the second argument is the ending poistion, weluShe third and subsequentgaments

are the list to be extracted from. Positions are numbered starting from 1. If the start is bigger than the end,
they will be quietly svapped. Ifthe start is bigger than the list, the result will be empty.

8.70.4.1 Example

Expression Result
[wordlist 2 3 foo bar baz] bar baz
[wordlist 1 1 foo bar baz] foo
[wordlist 7 3 foo bar baz] baz

There are a number of functions which are similar

Expression Similato
[wordlist 1 1list] [headlist]
[wordlist 2 9999list] [tail list]
[wordlist N N list] [word N lisf]

8.70.4.2 See Also
firstword head, tail, word, words

8.71 word

Theword function is used to extract a specifiond from a list of verds. Thefunction requires at least one
argument. Thdirst argument is the number of the word to extract from tbedlist. Thewordlist is the
second and subsequengaments. Arempty list will be returned if you ask for an elemerfttbe end of
the list.

8.71.1 Example

Expression Result

[word 1 one tw three] one
[word 2 one tw three] two
[word 3 one tw three] three
[word 5 one tw three]

The last element of a list of words may be extracted as:
last = [word [count [list]] [list]];

8.71.2 See Also
count, head

Peter Miller Page 72

Cook UserGuide

8.72 words

This function requires zero or moregaments. Theesult is a word list of one word containing the
(decimal) length of the argument word list.

8.72.1 Example

This cookbook fragment echoes the number of files, and then the name of the last file:
echo There are [words [files]] files.;
echo The last file is [word [words [files]] [files]].;

8.72.2 See Also
head, tail, word

8.72.3 Also Known As

count

8.73 write

This function requires one or moregaments. Thdirst argument is the name of the file to write, the
second an later arguments are lines to be written to thgTikés is specifically a text file.) The result is an
empty word list.

This function is very useful in writing command line file forindlows-NT, due to its absurdly short
command line interface.

8.73.1 See Also
read, read_lines

Peter Miller Page 73

Cook UserGuide

9. Predefined Variables

A number of variables are defined tgok at run-time.

9.1 arg

This is the arguments list for user-defined functiohsdividual arguments are split out int@1” to
“@9". Thesecan also be used at automaticiables. Cautionarg and the automatic variables ateared
for parallel eecution, causing weird interactions if yoxeeute a command within the function.

9.2 command-line-goals

The value of this variable is the goals specified on the command ling, iffamone were specified, and the
default goal is in effect, the value will be empty.

9.3 FILE

The value of this ariable is the logical name of the file which contains it. In the caggénofude-
cooked files, the plgsical name may be obtained using the [resolve] function. The logical name may be
set using thetline directive.

9.4 __FUNCTION__

The value of this variable is the name of the function whixétuges it. It is not set for the global
cookbook scope or the recipe body scope.

9.5 graph_leaf file

File names which are listed in this variable could be leaf files of the depgngaph. (Seealso the
leaf filesfunction, for Cooks idea of the leaf files.)

9.6 graph_exterior_file
File names which are listed in this variable cannot be preseny iwaanin the dependegpgraph.
9.7 graph_interior_file

File names which are listed in thianable could be interior files of the dependegmaph. (Sealso the
interior_filesfunction, for Cooks idea of the interior files.)

9.8 graph_leaf pattern

File names which match the patterns in ttdgable could be leaf files of the dependeg@ph. (Sealso
theleaf_filesfunction, for Cooks idea of the leaf files.)

9.9 graph_exterior_pattern

File names which match the patterns in this variable cannot be preseptwayaim the dependegngraph.

9.10 graph_interior_pattern

File names which match the patterns in ttasiable could be interior files of the dependegmaph. (See
also thenterior_filesfunction, for Cooks idea of the interior files.)

9.11 _ LINE__

The value of this variable is the line number within of the file which contains it. The line number may be
set using thetline directive.

9.12 need

The ingredients of the recipe currently being cooked.

Peter Miller Paye 74

Cook UserGuide

9.13 parallel_hosts

This variable may be set to indicate a list of hosts to use to distributecthgien of recipe bodies.

9.14 parallel_jobs

This variable may be set to the number of parakketation threads to perform simultaneousBefaults to
1if not set.

9.15 parallel_rsh

This variable may be set to the command useddoute commands on remote machines. Assumes ¢o tak
argument in the same form as the BISB(1) command. Defaults torsh” i f not set.

9.16 search_list

This variable may be set to a list of directories to be searched for targets and ingredients. This list is
initially the current directory (.) and will slays hare the current directory prepended if it is not present.
This is useful when taking partial copies of a source to perform controlled updates. ts®ihebuilt-in

function to determine what file name cook actually found. The targets of recipeware e@boked into the
current directory.

The cookbooks distributed with Cook contain full support forsiarch_list functionality They are a
good source of examples ofvado write recipes which takthis into account.

9.17 self

The namecook was invoked as, usually "cook".Be careful what you call cook, because anything with the
string "cook" in it will be changed, including ubnot limited to) file sufxes and environmentaviable
names.

9.18 target

The target of the recipe currently being cooked, or the first target if there is more than one.

9.19 targets

The targets of the recipe currently being asabk Thisincludes all tagets of the recipe, should there be
more than one.

9.20 thread-id

This variable has a unique value for eagbcation thread, for the lifetime of that thread. This value may
be used to construct thread-uniqueiable names, thread-unique temporary file names, or anything else
that needs to be unique to eacotecaition thread. The thread IDs are re-used, and geraehreads in
sequence may kia the same thread ID; it is only guaranteed that no other simultaneous threadevitidha
same thread ID. By re-using thread IDs, generatmihble names are also re-usedgiding memory
bloat.

9.21 younger

The subset of the ingredients of the recipe currently being cooked which are younger than the target.

9.22 version

The version otook currently executing.

Peter Miller Page 75

Cook UserGuide

10. Functions Library

There is a file of functionsvailable to you by using a
#include "functions”
line in your cookbook. The file defines a number of useful functions.

The functions in the file also seras @amples of hav you can write your own functions.

10.1 capitalize

The capitalizefunction maps all of its arguments into lower case, and then the first letter of gaoteat
is mapped to upper case. Zero, one or more arguments mayebe gi

10.2 defined-or-null

The defined-or-nullfunction may be used to determine ifariable has been set (on the command line, for
example) and return its value if so, otherwise return the empty list.

This function should only be ygn one argument - the name of the variable to look fadditional
arguments will be ignored.Too few aguments will produce a complaint about the " variable being
undefined.

10.3 defined-or-default

The defined-or-defaulfunction may be used to determine if a variable has been set (on the command line,
for example) and return its value if so, otherwise return thenglefault value.

The first argument is the name of the variable to look for.

The second and later arguments (if present) are treultdleflue to be used if the named variable is not
defined. Optional.

10.4 repeat

The repeatfunction is used to repeatedly call another function, once for each of the specjfiateats.
The can be useful when dealing with functions which do not automaticly acgepiett lists in the form
you require.

There are maninstances where the repeat function call be used tntle avoid used to the “loop {
loopstop }' construct.

The first argument is the name of the function yoantvcalled. This function must accept a single
argument.

The second and subsequent arguments are arguaeesuo be passed to the named function, one at a
time.

The results of the irocations of the function are accumulated in the order in whichwlege calculated.
The accumulated results are returned.

10.5 variable_by path

The variable_by_pathfunction is used to>aract the union of option settings redat to a particular
compilation or link. By using aariable prefix, this function may be used to obtain the setting of a wide
variety of options and commands.

Global \ariables are searched in a no particular order for the necessary information. All are searched, all
found are used.

For example, the function calvariable_by path cc_flags foo/bar/baz.c] will hunt for
variables with the following namesc_flags foo/bar/baz.c and cc_flags_foo/bar and
cc_flags _foo andcc_flags . Itis expected that the vast majority of theswiables will not be set.

Duplicates are renved.

Peter Miller Page 76

Cook UserGuide

11. Actions when Cooking
This section describes whaiok does when you ask it to cook something.

Cook performs the following actions in the order stated.

11.1 Scan the COOK Environment Variable

The COOK ervironment variable is looked forlf it is found, it is treated as if it consisted afok
command line guments. Onlythe -Help option is illegd. This could result is very strange behavior if
used incorrectly.

This feature is supplied torerride cook’s default with your own preferences.

11.2 Scan the Command Line

The command line is scanned as defined in chapter 3.

11.3 Locate the Cookbook

The current directory is scanned for the cookbook. Names which a cookbook veagdiade

howvto.cook Howto.cook .hmeto.cook
howvto.cook Havto.cook .hav.to.cook
cookfile Cookfile .cookrc
cook file Cook.file .cook.rc
The first so named file found in the current directory will be uSgw order of search is not definedou
are strongly advised to ¥ just one of these name forms in yamlirectory The nameHowto.cookis the
preferred form.

11.4 Form the Listing Filename

The listing file, if not explicitly named in the environmemtriable or on the command line, will be the
name of the cookbook, with wisuffix removed and 'list " appended.

11.5 Create the Listing file

The listing file is createdlf cook is executing in the background, or tAROT Ty option has been specified,
stdoutand stderr will be redirected into the listing filelf cook is executing in the foreground, and the
-NoT Ty option has not been specifiaidoutandstderrwill be redirected into a pipe totag1) command;
which will, in turn, coly the output into the named file.

A heading line with the name of the file and the date, is generated.

11.6 Scan the Cookbook

When cook reads the cookbook itvduates all of the statements it finds in it. Usually these statements
instantiate recipes, although other things are possible.

Recipes contain statements that are n@luated immediatelybut which are remembered for later
execution when cooking a tget. Themeaning of a cookbook is defined in chapter X.

11.7 Determine targets to cook

If no target files are named on the command line, thgetarof the first defined explicit or ingredients
recipe. lItis an error if this is none.

11.8 Cooking a Target

A derivation graph is formed using all of the gats given. Oncethe denvation graph is formed, it will be
walked, looking for files which are out of date.

Peter Miller Page 77

Cook UserGuide

To huild the denation graph for a target, each the following steps is performed in the oxgar gi
1. Cook exploits knowledge of the dexdtion graph that the user may provide to it:

- If the graph_exterior_filevariable is set, and the file name is listed in it, the file is not a leaf,
and the deviation will backtrack and try another alternai

- If the graph_exterior_patterrvariable is set, and the file name matches one of the patterns
listed in it, the file is not a leaf, and the dation will backtrack and try another alternagi

. If the graph_leaf filevariable is set, and the file name is listed in it, the file is a leaf file of the
derivation. Thereis no need to attempt to applyyarcipes. lwill be an error if the file does
not exist.

- If the graph_leaf patterrvariable is set, and the file name matches one of the patterns listed
in it, the file is a leaf file of the degtion. Thereis no need to attempt to applyyarecipes.
It will be an error if the file does not exist.
These optimizations require an accurate source file manifest, but can result is substantial
performance impnzements.

2. Cook scans through the instantiated ingredients recipes in the orderwthie defined. All
ingredients recipes with the target in their target list are used.

If a recipe is used, thenyimgredients also lva their dervvation graph constructed. Whenralking
the graph, if ay of the ingredients are younger than the target, all other explicit or implicit recipes
with the same target will be deemed to be out of tfate.

3. Cook then scans through the instantiateglieit recipes in the order tlyavere defined. All gplicit
recipes with the target in their target list are used.

If a recipe is a used, the ingredients alseehheir dervation graph constructed. When walking the
graph, if aly ingredients are out of date or the target does notyst (@r the "forced” flag is set in

the recipes setclause) the recipe body will be performed. If a recipe has no ingredients, it will not
be performed, unless the target does not yet exist, or it is forced.

4. If the target was not in the target list ofyaplicit recipe,cook then scans the instantiated implicit
recipes in the order thiewere defined, in tev passes. Implicitecipes which not not ka pattern
elements in the basename of the targets are scanned before implicit recipes whigh térans
in the basenameUsually this has no significant effect,virever in heavily heterogeneousuids
this method is often used in constructing the dependiles, so that all architectures may use the
one implicit dependencrecipe, rather than statingeey architecture xplicitly. Within each pass,
the order of scan is the order of definition.

Implicit recipe tagets and ingredients may contain a wildcard charay Which is wly they are
implicit. Whenexpressions areveluated into word lists in an implicit recipe,yaword containing
the wildcard characteffg) will be expanded out by the current wildcard expansion.

If the target matches a pattern in the targets of an implicit recipe, it is a candidate ingredient
of a candidate recipe is recwdy cooked. If ary ingredient cannot be cooked, then the implicit
recipe is not used. If all ingredients can be cooked, then the implicit recipe is used.

If an implicit recipe is a used, the forced ingredients alse teeir dervation graph constructedt
is an error if a forced ingredient cannot be constructed.

Only the first implicit recipe to get to this point is used. The scan stops at this point.

5. If the taget is not the subject of pnngredients or explicit recipe, and no implicit recipes can be
applied, then seral derivations are attempted, in the order specified:

10. Atarget which does not exist yet is considered to be infinitely ancient, and/énythieg is younger than it.

Peter Miller Page 78

Cook UserGuide

If the graph_interior_filevariable is set, and the file name is listed in it, the file is a not leaf
file of the denation. Cookwill backtrack and try another alternagi

If the graph_interior_patterrvariable is set, and the file name matches one of the patterns
listed in it, the file is a not leaf file of the degtion. Cookwill backtrack and try another
alternatve.

If the graph_leaf filevariable is set, and the file name is listed in it, the file is a leaf file of the
derivation. Itwill be an error if the file does not exist.

If the graph_leaf patterivariable is set, and the file name matches one of the patterns listed
in it, the file is a leaf file of the dedtion. Itwill be an error if the file does not exist.

If either of thegraph_leaf fileor graph_leaf patterrvariables are set, then the file is not a
leaf, and the deration will backtrack and try another alternai

If the file exists, then it is up to date, and the file is a leaf file of theatien.

If the file does notyast thenCook doesnt know how, and the dewnation will backtrack and
try another alternate.

If a command in the body of amecipe &il, cook will not that body awy further and will not perform the
body of ary recipe for which the target of the failed actions was an ingredient, directly or indirectly.

Cook will trap recursve looping of targets.
- If the file exists, the it is up to date, or

- If the file does not exist theawok doesnt know how.

11.9 The Dependency Graph

The abwe ction describes ko Cook derves the dependencgraph. Oncethe dependencgraph has
been deried, it is then valked. Thenext section describes a little abouth@ook walks the dependenc
graph.

Cook is a simple kind ofxpert system.You give it a set of of recipes for loto construct things, and a
target to be constructedThe recipes can be decomposed into pair-wise ordered dependencies between
files.

Cook determines ho to build the taget by constructing directed acyclic gagph The \ertexes of this
graph are the files in the system, the edges in this graph are the inter-file dependdmciedges of the
graph are directed because the pdge dependencies are ordered resulting acyclic graph — things
which look like loops are resolved by the direction of the edges.

For example, if you hae a ample cookbook (with the recipe bodies omitted for simplicity likis:
program: one.o two.o;
one.o: one.c one.h;
two.o: two.c two.h one.h;

here is the corresponding directed acyclic graph.

Peter Miller Page 79

Cook UserGuide

There are seeral things that can be done with the graph once it has beerdleri

* It can be walked to verify and regenerate the referential integrity of the files (the usual case), or

« it can walked to print the pair-wise dependencies{plags option), or

* it can be valked to generate a shell script (#seript ~ option) which does something very similar to
the first option.

11.9.1 Edge Types
Each of the arrows in the amgaph hae a pecific type.

strict edges mean that Cook will decide that ayéaris out-of-date if its time stamp is not strictly
younger than all of the ingredients. This is almostags what you want.

weak edges mean that Cook will decide that a target is out-of-date if its time stamp is olderytbfin an
the ingredients. This means that the times stamps of the target and ingredients may be equal -
this is useful for hard links and symbolic linkgou specify edges of this type by appending the
“(weak) " string to the name of the ingredient.

exsts edges mean that Cook will arrange for the ingredient to beecbbkfore the recipe is runytb
the time stamjis not consulted The ingredient cannotver make the target out-of-date. This is
useful form coping with version stamps which change often, but yot\want to re-link unless
something else change¥ou gecify edges of this type by appending th{exists) " string
to the name of the ingredient.
The default edge type isstrict”. You can use the "time-adjust” setting (see the "set" command) ® mak
this simpler on very fast machines.

11.10 File Status

Cook determines the time a file was last modified by asking the operating system. Because this operation
tends to be performed frequenttypok maintains a cache of this information, rather thanemaklundant
calls to the operating system. Because this information is cached, it is possitbekfsrmemory of a
file's last-modified time to become inconsistent with thesfitetual last-modified time. In particulazook
doenot ask the operating system for the "new" last-modified time of a recipe target once a recipe body is
completed. Carefulise of theset clearstat clause will generally prent this. For example, the
following recipe needs to create a directory when writing its output:

bin/%: [%_obj]

{
if [not [exists bin]] then
mkdir bin;
[cc] -o [target] [need];
}

If there were seeral programs being cooked, eln/foo andbin/bar, the second timeook performed the
recipe, it would erroneously attempt to reake bin directory a second time - contrary to the tebhis is
becauségexists binJused the cache, and nothing tet®k that the cache is mowrong. Therecipe should

Peter Miller Page 80

Cook UserGuide

have been written
bin/%: [%_obj]

if [not [exists bin]] then
mkdir bin
set clearstat;
[cc] -o [target] [need];

which tellscook that it should remee any fies named in thenkdir command from the cache.

An alternatve way of performing the alve example is to set thekdir recipe flag:
bin/%: [%_obj]
set mkdir

{
[cc] -o [target] [need];

This flag instructscook to create the directory for the gt before running the recipe bodyhere is a
similar unlink flag, which unlinks the targets of the recipe before running the recipe Bbége two flags
take care of most, but not all, uses of ttlearstatflag.

A second mechanism used tgok to determine the last-modified times of files is affilgerprint This is

a ayptographically strong hash of the contents of a file. The chance® affferent files having the same
fingerprint is less than 1 in 2**200f cook notices that a file has changed, because its last-modified time
has changed, a fingerprint is ¢mk of the file and compared with the remembered fingerprint. If the
fingerprints difer, the file is considered to be fdifent. Ifthe fingerprints match, the file is considered not
to have changed.

This description of fingerprints is somewhat simplified, the actual mechanics depends on remembering tw
different last-modified times, as well as the fingerprint, in a file catieok.fpin the current directory.

Fingerprinting can cause some surprisésr example, when you use theuch(1) commandcook will
often fail to do anything, and report instead tha#ryghing is up-to-date. This is because the fingerprint
has not changed. In this situation, either reentne .cook.fpfile, or use theNo_Finger Print command
line option.

Peter Miller Page 81

Cook UserGuide

12. Option Precedence

At various points in the description there are a number of flags and options with the same, qr similar
names. Thesare in fact different hels of the same option.

The different lgels, from highest precedence to lowest, are as follows.
Error Thislevel is used to disable undesirable side effects when an error occurs.

Command Line Options specified on the command lineeroide almost eerything. Thereare some
isolated cases where there is no egant command line optionThey are in scope for
the entirecook session.

Execute Whera command attached to a recipe i®euted, the flags in theset’ clause are gen
this precedenceThey are in scope for the duration of theeeution of the command the
are bound to.

Recipe Whera recipe is considered for use, the flags in Hee tlause are gen the precedence.
They are in scope for thewvaluation of the ingredients names and tkecation of the
recipe body; theare not in scope while cooking the ingredients.

Cookbook Whera 'set’ statement is encountered in the cookbook, the option aea tiis priority.
They are in scope until the end of tleeok session.

Environment Variable
When the options in theCOOK ervironment variable are set, there gwven this
precedence. Tlyeare in scope for the enti@ok session.

Default All options hae a cbfault setting. The dellts noted in chapter 3 areven this
precedence. Tlyeare in scope for the enti@ok session.

Peter Miller Page 82

Cook UserGuide

13. File name patterns
There are tw pattern matchers to choose from.

The tough part about designing a pattern matcher for somethen@ditk is thatideally the patterns must

be reversible. Thats, it must be possible to use the same string both as a pattern to be matched against and
as a template for building a string once a pattern has matched. Rathibelidliference between the left

and right sides of an editor search-and-replace command in an editor using the same description for both
the search pattern and the replace template. Thisyiclaksic regular expressions are not the default.

The choice of which pattern matcher to use is dictated by flag settings:

set match-mode-cook
This causes patterns to be matched using Gowkive patterns. Thiss the default.

set match-mode-regex
This causes patterns to be matched using regular expressions.

The match mode to use may be set at the cookbwek le
set match-mode-cook;
or at the recipe iel

%.0: %.c

set match-mode-cook
{

[cc] -0 %.0 -c %.c;
}

if you want to change your mind temporarily.

The match mode alsofa€ts match functions, such fiker, filter_out fromto match_maskmatchesand
patsubst If you use these in your user-defined functions, you need to be extra careful about this.

The match mode also affects the graph variables, used to specify explicit graph interior and leaf files.

13.1 Cook Patterns

The natve ook pattern matcher has symmetric left-hand-side and right-hand-side pafbisss best
demonstrated with an example recipe:
%.c %.h: %.y
set match-mode-cook

{
yacc -d %.y;
mv yy.tab.c %.c;
mv yy.tab.h %.h;
}

Notice hav the left-hand-side of the recipe (the targets) uses the same style of patterns as the right-hand-
side (the ingredients and the recipe body).

This matcher has elen match "fields", referenced & and%0 to %9. The % character can be escaped
as%%. The% and%1 to %9 forms match ay character except slasf;(these forms may not match a
leading empty string, tovaid problems with false matches against absolute pathe.% 0 form matches
all characters, but must be either emmtyhavewhole path components, including the trailihgn each
component.

A few examples will mak this clearer:

string doesiot match

%.c snot/fred.c
%1/%2.c etc/boolfred.c

Peter Miller Page 83

Cook UserGuide

string matches setting
%.cC fred.c %="fred"
%1/%2.c snot/fred.c %1="snot"
%2="fred"
%0%5.c fred.c %0=""
%5="fred"
%0%6.c snot/fred.c %0="snot/"
%6="fred"
%0%7.c etc/boo/fred.c %0="etc/boo/"
%7="fred"
lusr/%1/%1%2/%3.%2%4 /usr/man/manl/fred.1¥61="man"
%2="1"
%3="fred"
%4="x"

The %0 behaior is designed to ali@ patterns to rangever subtrees in a controlled manneXote that the
use of this sort of pattern in a recipe will result in deeper searches thanwbeetgie designer auld
expect.

13.1.1 Examples
There are tw main places where patterns are used: withrtach_maslkand fromto functions, and in
recipes.

You can perform file name filtering and rewriting as follows:
source_files = [collect cat MANIFEST];
object_files =
[fromto %0%.c %0%.0 [match_mask %0%.c [manifest]]]
[fromto %0%.y %0%.gen.o [match_mask %0%.y [manifest]]]

The recipes to go with the almfiles may be
%0%.0: %0%.c
single-thread ["if* %0 "then" %.0]

{
/* note: no slash before dot */
cc -C -19%0. %0%.c;
if %0 then
mv %.0 %0%.0;
}

This recipe can compile files in a d@r project, where source files appear in a number of sub-directories.
The *-19%0.” ensures that there are locally include-able files in the sub-directories. 1948 had been
entirely omitted from the recipe, it will only compile files in the current directory.

A commonyaccrecipe, used when there is more than one yacc grammar in a project, ledkslik
%0%.gen.c %0%.gen.h: %0%.y
single-thread yy.tab.c yy.tab.h

{
yacc -d %0%.y
yy = [collect echo %0% | sed "'s/["A-Za-z0-9]/_/"T;
sed "'s/[yY]lyY]/'[yy]"_/g" yy.tab.c > %0%.gen.c;
sed "s/yYIlyY]/"lyy]"_/g" yy.tab.h > %0%.gen.h;
rm yy.tab.c yy.tab.h;

}

To be nore selectie &out the “%0’ portion, use more pattern elements before or after it.

Peter Miller Paye 84

Cook UserGuide

13.2 Regular Expressions

The regular expression pattern matcher uses POSjXaeepressions. Ihas asymmetric left-hand-side
and right-hand-side patterns. This is best demonstrated with an example recipe:
WCEHOW.c WCA)Wh: Wy
set match-mode-regex
{

yacc -d \\1.y;
mv yy.tab.c \\1.c;
mv yy.tab.h \1.h;

Notice hav the left-hand-side of the recipe (the targets) uses a completely different style of patterns as the
right-hand-side (the ingredients and the recipe body).

All those backslashes are necesshegause Cook uniformly applies C escapes to strings when it reads
them, and it doeshknow you mean a regular expression backslash until you use it in a recipe context.

Seere_forma(7) for a definition of POSIX 1003.2 regular expressions; you want the “bR4s.

Please note that characters which are special to Cook will need to be escaped with a backslash, or enclosed
in quotes. These include curly brace$ (‘and “} "), square brackets‘[*’ and “]'’), colon (“'") and

equals (='"). Backslashalways needs to be escaped, whether encoded in a string or not, because within a
string it serves to escape the string terminator.

You dso need to remember that dot”() is a @mmon character in filenames, and frequenty significant in
file name patters, but it is a regular expression wildcaodi need to escape it to mak literal.

You need to ma& asolutely certain that when recipesvbanore than one left-hand-size (as in the yacc
example) that the patteradl assign identical values to their nested sub-expressions.

The usual right-hand-side replacements aalable: an escaped number is replaced withritle nested
sub-epression; and the ampersan@&’(") is replaced by the whole left-hand-side (if yowéarore than
one left-hand-side, this is ambiguous). Backslash may be used to escape them.

13.2.1 Examples
There are tw main places where patterns are used: withrtach_maslkand fromto functions, and in
recipes.

You can perform file name filtering and rewriting as follows:
set match-mode-regex;
source_files = [collect cat MANIFEST];
object_files =
[fromto W(.*\W)\\.c \1.0
[match_mask W\(.*\)\\.c [manifest]]]
[fromto W(.*\W)\\.y \1.gen.o
[match_mask W\(.*\)\\.y [manifest]]]

The recipes to go with the almfiles may be
W(W\o: \l.c

"then” [notdir \\1.0]]

{
cc -c -I[[relative_dirname \\1] \\1.c;
if [not [in [relative_dirname \\1] .]] then
mv [notdir \1.0] \\1.0;
}

This recipe can compile files in a d@r project, where source files appear in a number of sub-directories.
The “-I\\1.” ensures that there are locally include-able files in the sub-directories.

Peter Miller Page 85

Cook UserGuide

A commonyaccrecipe, used when there is more than one yacc grammar in a project, ledkislik
WCAWO\.gen.c \(.*\)\\.gen.h: \\1.y
single-thread yy.tab.c yy.tab.h

{
yacc -d \\1.y
yy = [collect echo \\1 | sed "'s/['A-Za-z0-9])/_/"T;
sed "s/lyY]lyY)/"[yyl"_/g" yy.tab.c > \\1.gen.c;
sed "s/lyY]lyY)"[yyl"_/g" yy.tab.h > \\1.gen.h;
rm yy.tab.c yy.tab.h;

}

To be nore selectie éout the W\(.*\\) " portion, use more pattern elements before or after it.

Peter Miller Page 86

Cook UserGuide

14. Supplied Cookbooks

A number of cookbooks are supplied wiibok. To make use of one, a preprocessor direetdf the form
#include" whi chone"
must appear at the start of your cookbook.

Cook does not hee any built-in" recipes. All recipes are stored in text files, soytae more easily read,
understood, copied, hacked or corrected. The supplied cookbwels the /usr/share/cooklirectory.

You may supply your own "system" recipes, by placing cookbooks into a directory $&lleE/.coolor
using the-lnclude command line option, possibly in yoh€OOKenvironment variable.

14.1 as

This cookbook defines hoto use the assembler.

14.1.1 recipes

%.0: %.s Construct object files from assembler source files.

14.1.2 variables

as Theassembler command. Not altered if already defined.

as_flags Optionto pass the assembler commamdbt altered if already defined. The default is
empty.

as_src Assembleyource files in the current directory.

dot_src Sourcdiles constructable in the current directory (unioned wikistang setting, if
necessary).

dot_obj Objectfiles constructable in the current directory (unioned witiisteng setting, if
necessary).

dot_clean Filesvhich may be remaed from the current directory in a clean target.

14.2 c

This cookbook describes Wwdo work with C files. Include file dependencies are automatically determined.

14.2.1 recipes

%.0: %.c Construct object files form C source files, with automatic include file depegndenc
detection.

%.In: %.c Construct lint object files from C source files, with automatic include file depgndenc
detection.

14.2.2 variables

c_incl TheC include dependeganiffer command. Not altered if already defined.

cc TheC compiler command. Not altered if already defined.

lint Thelint command. Not altered if already defined.

cc_flags Optiongo pass to the C compiler command. Not altered if already defiflee.defult
is "-O".

cc_include_flags Optionpassed to the C compiler and c_incl controlling include file searchia.
altered if already defined. The default is empty.

cC_src Csource files in the current directory.

Peter Miller Page 87

Cook UserGuide

dot_src Sourcdiles constructable in the current directory (unioned wikisteng setting, if
necessary).

dot_obj Objectfiles constructable in the current directory (unioned witiisteng setting, if
necessary).

dot_clean Filesvhich may be remeed from the current directory in a clean target.

dot_lint_obj Lint object files constructable in the current directory (unioned with existing setting, if
necessary).

14.2.3 See Also
The “library” cookbook, for linking C sources into a library.
The “program’ cookbook, for linking C sources into a program.

14.3 77

This cookbook describes wao work with Fortran files.

14.3.1 recipes

%.0: %.f77 Construct object files form Fortran source files.

14.3.2 variables

fr7 TheFortran compiler command. Not altered if already defined.

fr7_flags Optiondo pass to the dftran compiler command. Not altered if already defingétle
default is "-O".

f77_src fortran source files in the current directory.

dot_src Sourcdiles constructable in the current directory (unioned wikiisteng setting, if
necessary).

dot_obj Objectfiles constructable in the current directory (unioned witiisteng setting, if
necessary).

dot_clean Filesvhich may be remeed from the current directory in a clean target.

14.3.3 See Also
The “library”’ cookbook, for linking Fortran sources into a library.
The “program’ cookbook, for linking Fortran sources into a program.

14.4 g77

This cookbook is the same as tHé7’’ cookbook, but it sets th@7 variable to the GNU Fortran compiler
g77.

Peter Miller Page 88

Cook UserGuide

14.5 gcc

This cookbook is the same as the' ‘@okbook, but it sets thec variable to the GNU C compilegcc .
14.6 home

This cookbook defined where certain directories are, and some common uses of those directovies, relati
to SHOME.

14.6.1 variables

home Thecurrent users’ home directory.

bin Thedirectory to place program binaries into.
include Thedirectory to place include files into.

lib Thedirectory to place libraries into.

cc_include_flags Thenclude] directory is appended to the search options.

cc_link_flags Th4lib] directory is appended to the search options.

14.7 lex

This cookbook describes wdo work with lex files.

14.7.1 recipes

%.c: %.1 Construct C source files fronxlsource files.

14.7.2 variables

lex The lec command. Notltered if already defined.

lex_flags Optiongo pass to the lecommand. Notltered if already defined. The default is empty

lex_src Lex source files in the current directory.

dot_src Sourcdiles constructible in the current directory (unioned witlisng setting, if
necessary).

dot_obj Objectfiles constructible in the current directory (unioned witkiseng setting, if
necessary).

dot_clean Filesvhich may be remeed from the current directory in a clean target.

dot_lint_obj Lint object files constructible in the current directory (unioned with existing setting, if
necessary).

Peter Miller Page 89

Cook UserGuide

14.8 library

This cookbook defines oto construct a library.

If an include file (or files) are defined for this libragpu will have o gopend them to [install] in your
Howto.cooKile.

14.8.1 variables

all targets of the all recipe

install tagets of the install recipe

me The name of the library to be constructefefaults to the last component of the
pathname of the current directory.

ar Thearchve mmmand.

install tagets of the install command. Only defined if the [lib] variable is defined.

14.8.2 recipes

all constructhe targets defined in [all].

clean remue the files named in [dot_clean].

clobber remue the files name in [dot_clean] and [all].

install Constructhe files named in [install]. Only defined if the [lib] variable is defined.
uninstall Remue the files named in [install]. Only defined if the [lib] variable is defined.
14.9 print

This cookbook is used to print files. It will almost certainly need to be changedkfgrsite.

14.9.1 recipes

%.lw: %.ps Print a PostScript file.

%.Ip: % Print a text file.

14.9.2 variables

Ip Theprint command. Not altered if already defined.

Ip_flags Optionpassed to the print command. Not altered if already defined. Defaults to empty.

Peter Miller Page 90

Cook

UserGuide

14.10 program

This cookbook defines oto construct a program.

If your program uses gribraries, you will hae © gopend them to [Id_libraries] in yotttowto.cookile.

14.10.1 variables

all
install
Id

Id_flags

Id_libraries

me

Targets of the all recipe.
tagets of the install recipe

Thename of the linker command. Not altered if already defirfeet to the same as the
“cc” variable if set, otherwise set to the same as‘thé " variable if set, otherwise set
to “Id”.

Notaltered if already defined. The default is empty.

Optiongassed to the C compiler when linking, these are typically library search paths
(-L) and libraries {|). Notaltered if already defined. The default is empty.

Thename of the program to be constructddefaults to the last component of the
pathname of the current directory.

14.10.2 recipes

all
clean
clobber
install

uninstall

Constructhe targets named in [all].

Remee te files named in [dot_clean].

Remee te files named in [dot_clean] and [all].

Constructhe files named in [install]l. Only defined if the [lib] variable is defined.

Remue the files named in [install]. Only defined if the [lib] variable is defined.

14.10.3 See Also

The “c” cookbook, for C sources.

The “f77" cookbook, for Fortran sources.

The “usr” or ‘‘usr.local’ or ‘‘home’ cookbooks, for defining install locations.

14.11 rcs

This cookbook is used to extract files from RCS.

14.11.1 recipes

%: RCS/%,v

%: %,V

Extract files from RCS.
Extract files from RCS.

14.11.2 variables

co

co_flags

Peter Miller

TheRCS checkout command.

Flagfor the co command, default to empty.

Page 91

Cook UserGuide

14.12 recursive

This cookbook may be used to construct rewersiook direwctory structures, where the topde
cookbook only imokes cokbooks in deeper directories.

All largets gien to this cookbook result in all sub-directories containinglavto.cookfile having cook
invoked with the same target.

14.12.1 Recipes
Theall recipe is defined, but it does nothing, it only exists to set the default target name.

14.13 sccs

This cookbook is used to extract files from SCCS.

14.13.1 recipes

%: SCCS/s.% Extract files from SCCS.

%: s.% Extract files from SCCS.

14.13.2 variables

get TheSCCS get command.

get flags Flagfor the get command, default to empty.

14.14 text

This cookbook is used to process text documents.

Include file dependencies are automatically deteciBae requirements for various preprocessors are
automatically detecteck(g.eqgn, tbl, pic, graf).

14.14.1 recipes

%.ps: %.t PostScript for generic *fafource.

%: %.t Straight text from *rdfsource.

14.14.2 variables

text_incl Thetext_incl command (finds include dependencies). Not altered if already set.
text_rof The text_rof command (finds preprocessor requirements). Not altered if already set.
roff_flags Aguments passed toxteroff, and indirectly to the *rdfprogram. Notaltered if already

set. Deéfults to empty.

Peter Miller Page 92

Cook UserGuide

14.15 usr.local

This cookbook defined where certain directories are, and some common uses of those directovies, relati
to /usr/local.

14.15.1 variables

bin Thedirectory to place program binaries into.
include Thedirectory to place include files into.
lib Thedirectory to place libraries into.

cc_include_flags Thenclude] directory is added to the search options.

cc_link_flags Th4lib] directory is added to the search options.

14.16 usr

This cookbook defined where certain directories are, velati/usr.

14.16.1 variables

bin Thedirectory to place program binaries into.
include Thedirectory to place include files into.
lib Thedirectory to place libraries into.

14.17 yacc_many

This cookbook describes Wao use yacc. The difference with the "yacc" cookbook is that this cookbook
allows you to hae nore that one yacc generated parser in the same program, by using theseld$}ic
hack of the output.

14.18 yacc
This cookbook describes Wdo use yacc.
You will have o add "-d" to the [yacc_flags] variable if you want %.h files generated.

If a y.outputfile is constructed, it will be med to %.list.
14.18.1 recipes

%.c %.h: %.y Construct C source and header files from yacc source files. Applied if -d in [yacc_flags].

%.c: %.y Construct C source files from yacc source files. Applied if -d not in [yacc_flags].

14.18.2 variables

yacc_src Ydcc source files in the current directory.

dot_src Sourcdiles constructable in the current directory (unioned wikisteng setting, if
necessary).

dot_obj Objectfiles constructable in the current directory (unioned witiisteng setting, if
necessary).

dot_clean Filesvhich may be remeed from the current directory in a clean target.

dot_lint_obj Lint object files constructable in the current directory (unioned with existing setting, if
necessary).

Peter Miller Page 93

Cook

UserGuide

15. Glossary

This document employs a number of terms specifooi.

body

command

cook

cookbook

explicit recipe

fingerprint

flag

A set of statements, usually commands, to be performedd&the targets of arecipe
after theingrediens exist.

A command is a list of words to be passed todjherating systerto be &ecuted.

When used as a verb, refers to the actioosk would perform to create darge,
according to someecipe

A file containing input focook, usuallyrecipes.

An explicit recipe is one where thargets wmntain no patterns. That is, there are no
percent (%) characters in anof thetargets.

A cryptographically strong hash of the contents of a file, use to determine if the file
contents hee canged.

A flag modifies the behavior of a cook sessiecipe or command.

forced ingredientA files which must exist beforetarget file of animplicit recipemay be cookd. The

function

gate

implicit recipe

ingredient

inability to construct a forced ingredient is an error.
A function is an action applied to a word list.

A gate is a condition which allows the conditional application oé@pe The acte
condition is in addition to the requirement that the ingredients are cookable.

An implicit recipe is a recipe with patterns in tia@gets. Thatis, there is a percentdg’)
character in at least one of ttaggets.

A files which must exist before target file may be coo&d. Inanimplicit recipethe
inability to construct of an ingredient means that téape will not be applied. In an
explicit recipe the inability to construct an ingredient is an error.

last-modified time

recipe

target

touch

variable

Peter Miller

unix imbues files with seeral attritutes. Oneof these is a time-stamp of when the file
was last modified. Usually this is when the file was last written to.

A recipeconsists of seeral parts.
1. Aset oftarges to be ooked,
2. Aset of ingredients of thosargets, and
3. Anoptional set of forced ingredients.
4. Anoptional set of flags.
5. Anoptional gate.
6. Anoptional body .

The object of aecipg a ting which is cooked.

UNIX imbues files with seeral attritutes. Oneof these is a time-stamp of when the file
was last modified. Usually this is when the filasvlast written to, heever it is possible

to simply adjust this attribute, rather than actually writing to the file; this is colloquially
known agouchng a file.

A variable is a named place holder foraedue. Thevalue may be changed.

Page 94

CONTENTS

Ta1r ol 011 o] o PR STOUPTPPPPI 1
1.1 Why YOU Want D USE COOK ..ottt e e e e e e e a e eeaaae s 1
1.2 How to USe thiS MANUADcooiiiiiiiee et a e e e e e e e s 2
R B Y o T (=T o o 1] (o] YU P TR TP 2
COOK frOM the OULSIAEeeeeiiiiie ettt e e e e ettt e et e e e e e e s s e s aabbbbeeeeaaaaaeeaeaannnnes 3
2.1 What can COOK O fOF ME?....... e e e e e e e 3
2.2 What iS COOK TOING? ...ttt ettt e e e e e e s e s bbb e e e e et e e e e e e e e e annbbabeeeeaaaaeas 3
2.3 What can COOKBAYS TO?eeiiiiiiiiiiie et e e e e e e e 3
2.4 1f SOMETNING JOEBS WIOMQ ...ceitiiiiiiiiiiitttie et e e e e ettt et e e e e e e e s e e aab bbbttt e e aae e e e e s e nnnbbsbeeeaaaaaeas 3
2.5 The Refer@nce ManUAL...........cooi et e e e e e e e e e nnae e ee e 4
COoO0K from @ COOKIDOOKeeiiiiiiiiiiei ettt e e e e e e e e e e e b b e b e e e e e aaaeas 5
T R VAV o 1 e [0 1T @ To] [qe [0 1T T TP 5
3.2 Hovdoltell COok What t0 dO? ... e e 5
3.3 Creating @ COOKDOOKcoi ittt et e e e e e e e e s e bbb e aeeeeaaaeeeeaaaanas 6
Co0KING 1N PArallE] ...ttt et e e e e e et e et e e e e e e e e e s nnbbbaeeeaaaans 8
o R 7o 191 4 F= 1o (o [I 1 TS @ o1 [] o H PP PP 8
4.2 COOKDOOK VArTADIEeeeiiiiiieeiii ettt e e e e e e et e e e e e e e e e as 8
R T B (T | o T4 o [T PUPPPRTT 8
N 1 o o3 (] T PR PP 9
A5 VIrtUAl MACKNINE ittt e e e e e e e e e s bbb b et e e e e e e e e e e e e e annenneees 9
4.6 Virtual Maching, REVISITEAcoiiiiiiiiiiiiiie ittt e e e e e e e e e anneees 11
INCIUAE File DEPENUENCIESottt e ettt e e e e e e e e e e s nbnb b e et e e e aaaaeeeaaannnenes 13
5.1 The Manual MethOUooiiiiii et e e e e e e e e e e eaaaae s 13
5.2 Debugging COOKDOOKScoiiiiiiiee et a e e e e e e e e e e 13
TR T oo] [TP PUTPT RPN 14
5.4 The SMall MENOMeeiiiiiiiiiie ettt e e e e e e e s e bee e e e aaaeae e s 14
5.5 The Large MethOd ...t e e e e e e e e e e s 15
5.6 The Cascade MethO e e e e e e 16
5.7 Dependencies on D@l FIES uuiiiiiiiiiiie e 17
5.8 Renaming INCIUAE FIlESt e e e e e e e 17
BUIIAING LArgE PIrOJECIS ...eeiiiiiiieiiii ittt et e e e e e ettt e e e e e e e e e e s bbbbesaeeaeaaaeeesaaaann 18
6.1 WhOIE ProjeCt BUIlOeeiiiiiieiiiiie ettt e et e e e e e e aeeeeaaae s 18
6.2 Private WOIK AIBAS ...eoeiiiiii ittt ettt e e e e e e e e e s s b e b e areeeaaaaaaeaan 22
6.3 Whole Project BUild AVANTAgES........oooieiiiiieiiiiae ettt e e e e e 24
6.4 Heterogenous BUIld ...t 25
6.5 INSLAIlING THINGS ettt e e e e e et e e e e e e e e e e e s annbbeseeeaaaaeeas 26
6.6 MISCEIIANEOUS ...ttt e e e e e e e e bbb et e e e e e e e e e e e e s b bbbeeeaaaaaaeeeas 27
6.7 File FINGEIPIINTS ...ttt et et e e e e e e s e bbbt e e e e e e e e e e e e e annbbnbeeeeeaeaeas 28
LS S T ©7o] o] o To /11 g I 1 ST PP PP PRPTPPN 30
6.9 Coping With VEISION SEAMPS ...cciiiiiiiiiiiitii ittt e e e e e e e e e e e s e nnnereeeees 30
Cookbook Language DefiNitioN...............eeiiiiiiiiiiiiie et e e e e e e e e 31
A R (o= 1N g = VS U TP T TP 31
7.1.1 WOrds and KYWOIAS ...cooiiiieeeie ettt e e e e e e e e e ar e eaaaaa s 31
T7.1.2 ESCAPE SEUUEICES. ... i e eeeeeee et ettt a e e e e e e e e e e e e e e aeteeeeeeeeeeesssbsbsbannnnnns 31
% T © 10T 1o T TSP EPPTTT P 31
T.1.4 COMIMENTS ..ottt e oo e e et e e e e e e e e e eeee et eeeeeeeeeesbbbeba b abas e n e e e e e e e e e e eaaaaaas 32

A A o (=] o] o Tod= Tt o | O T PP TP PP TR PR 32
% R 1 T 1§ o = U TP PO PPPRTT 32
7.2.2 INCIUAE-COOKEMoeeeiiiiiiiiiii et e e e e eas 32
7.2.3 INCIUAE-COOKEA-MIBIN ... a e e e e e 33
A S | PP P P PPPPPPRPOPPPPPN 33
T.2.5 AT e 33
T.2.6 INAET e e e e r e e e e e e e e e e aan 33
A I o) 1= 10 |1 - R PP U TP PTPT PP 34
7.3 SYNtAX N0 SEMANTICS......iiieeeieiieiei e ettt et e e e e e e e e e st bbb e e eeeeaaaaaeeaaaasnnbeseeeeaeaaaaeeesaaannes 35
7.3.1 OVEIAIl STIUCTUIEeeeiiiiiiii ettt ettt e e e e e e st e et e e e e e e e e e e s e enneeereees 35
7.3.2 The Compound STAtEMENT......cciiii it ee e e e e e e 35
7.3.3 Variables and EXPre@SSIONS.cuuii ittt e e e e e ettt e e e e e e e e e e rbbb e e eeaeaaaaaeas 35
S T o L= Tol o1 TP PUPUUTTRP 37
7.3.5 The Explicit Recipe State@mMent............uuiiiiiiiiiiiiiiiie e 37
7.3.6 The Implicit RECipe StatemMENt..........uuiiiiiiiiieee e 41
7.3.7 The Ingredients Recipe StatemMeNL..........oooiiiiiiiiiiiiie e 42
7.3.8 The Cascade ReCipe StatemMEeNL...........uiiiiiiiiiiiiiiiiie e 42
7.3.9 COMMANAS ...etiiiiiiiiiae ettt e e e e ettt et e e e e e e e s s e abbbbeeeeeeaaaeeesaaannsbebeeeaaaaaaaaaeas 43
7.3.10 The Simple Command StateMENL..........ccciiiiiiiiiiiiiie e 43
7.3.11 The Data Command STatemMENL...........uuiiiiiiiiiaiiiiiiiie e e e eaeees 43
7.3.12 The Set STAtEIMENL........uiiiiiiiiiiae ettt e e e e e e s s ib b ae e e e e e e e e e e e e aaannnes 44
7.3.13 The Fail STAtEMENL......ccoiii it e e e e e e e eeeeas 44
7.3.14 The If STAEMENTeeiiiiiiie ettt e e e e e e e e e e e e s e rnneeeeeees 45
7.3.15 The Loop and Loopend StatemMeENtS.......couuia it e e eee e 45
7.3. 16 FUNCHOMNS ...etteiiiiiiieeee ettt e ettt et e e e e e e e e e s bbbt ettt e e eaaeeeesaannnbbeeeeeeaaaaeesaaannns 46
8. BUII-IN FUNCLIONS ..ottt e e e e e e e et e e et e e e e e e e e e annbbebaeeeeaas 48
S0 Y To [0 | o] (=) [G TP RTRT PR 48
ST A To [0 <1 U QPP PUPTPRPRPN 48
SRS T o[TP PPRURTTR 48
B4 DASENAME ... e e e e e bbbt e e e e e e e e e e s e e aeees 49
ST T o= g o [0 J TP UTTPT PP 49
S I I o= 1 (=10 F- (= S TP U TP PP 49
S T A oo | L= od 11 = 50
oS T oo | =T ot AT TP TP PPPPRRT 50
SRS oo o] QPP TU T OO PPURPURTRR 50
< 700 IO o701 | | A TP PPTPTRUPRPPP 51
S0 I o 1= 1110 1= o [PPSR PPUPTPP 51
S0 2o 1 F= 10 T PP TR TP 51
S G T o || TP PP PP PRPPP 52
S0 o [0 1S o = i o TP T TR 52
S ST o (o)1 Tor= T TP PPTRT PR 52
S T K =T 0 117/ 0 T= 10 [T O PP T TP T TP U PP PR PR 53
S TR A = of U | (= T TR 53
o S I =[S £ T TP U UTT PP 53
8.19 @XISIS-SYMIINK et e e e e e e e e e e e e e a e a e e e aaaaeaeas 54
S T O <o SO TP PP PP PTPTPUPPPPPUPPPRPRPN: 54
S 230 R 111 =1 o | PPN 55
S 111 =] PP T TP PP PUPPURTRR 55
LS 722 T 1110 To I oo 1 0] 110> o o IR 55
S 1100 (<3 {11 o To TP PPTTT PR 56
SIS T 1165111 o] o PP TP PUPTRRPRPN 56
02 G T 1 (0] 101 (o TP PPURPPP TN 57

S T A o 1= (= o VTP PP P T PP PPTPTPRRR 57
02 S T o | (o] o PP T TP PP PUPPURTRR 57
02 B o 1= o [P T TP PUPPURTRR 58
RS0 B o (o] 1 1= TP PP UTT PRSP 58
SR 3 | TP EPP PP 58
S TR 72 | o H P PP U TP UTP TR PP 59
G IC J 101 (=Y o] g 1= 59
SR 7 S o] | o TP UP TP 59
SR LT (=Y 1 111 PPN 60
B.36 MALCNES ...ttt e e oo oottt e e e e e e e e e e b e b e et e et e e e e e e e e e e nnbbabreeeaaaaeas 60
SR A 10 = (o o T 2T T 60
LTRSS B o 1111141 T TP TP PP PPPPRRT 61
8.39 MUME-SECONUSttt e ettt et e e e e e e s e s e bbbt aeeeeeeaaaeeesaaannbbsbneeaaaaaaaeaaan 61
S 1O B o (o) (o [ST UTU PR PPRP 61
S T R ¢ [0 | ST O P PR UPUPPPPPPPPTPPRPIRt 61
o o] o L= T = Lo o IS V] (=] 1 TP UPPPTPTN 62

ST 5 B o] 1[0 LS TP PPURTPPT 63
S I S o] G TP U TP U TP TR PP 64
o LT o= 11 g =10 TP PRTRT PR 64
BLAB PALSUDSE ...eeiiiiiiie ettt e e e e e e e e e e e e b a b et e e e e e e e e e e e e e e nnbbabreeeeaaaeas 64
BLAT PIEPOST ...t e e e e e e e e e e ettt et e ettt te b e b —aha— e e e e e e e e e e aeaeaaeeeeeaeeananes 64
o S T o 1 1 | A PP TU TP UPPPUPPURTRR 65
ST Le o B o) (T PP UPPRRPRPPPN 65
SR (=Y Vo I 1 = 65
TSN A (=7 To |1 G PP TR TP 65
TSy (=T To PP TP PUPPURTRR 65
TR T (=1 F= /T o 1 F= T 1= PPN 66

ST I (=T To] 1Y PP PPURTPPN 66
855 SREI e e e e e e e e e e s e bbb beeeeaaaaaaaaaaaa 66
8.50 SOM _NMEBWEST ...iiiiiiiiie ettt ettt e et e e e e et et e e e et e e et e e e e e e e e a s 67
S TR Y A o | o A TP TP TPTSTPP 67
ST S T o] | AP TP PUUPPPUPPURTRR 67
ST IS (1] 0o [T PP TP 68
G101 (1] oo (o SRR T PSRRI 68
LG A 1 o TP PUPPURTRR 68
G210 o1 | TP UTT PR PPRP 69
G2 BT o1 TP PETPTT PR 69
BB SUMTIX oottt e e e a e e et e e e e e e s e e a b bbb et e e e e aa e e e e e e e nanrereeees 69
LG 1S T - | TP PPRUPT T 70
G TC I U B [0 1S3 o T= 11 [T PTUTT TP 70
TG AU 1 0 1] o] TP PPUPTPPT 70
B.B8 UGS .o e e oot oot et et e ettt te b e b — e e e e e e e e e e aeaaaaeeaeeeeeananes 71
LG TS I U] o) (ol P (= TR TP 71
S Y/ [(o= o PP TP PUPTRTPRP 71
S A T Y o TP PUTPT TR 72
S 2 Y] (o [TP UTT T PPRP 73
o T Y41 (= PP UTPT TR 73
Predefined VAriabIes e aa e 74
1S 20 R - 1 (o T PP P O PO UUPUPPPPPPPPTPPPPIRt 74
9.2 cOMMANA-NINE-QOAISeuiiiiiiiieiiii et e e e e e e e e e s e nanb e e e eeaaae s 74

1S R T ! | PP PPP TP 74
S 10 | N [I [TP UPPPPPT 74

10.

11.

12.
13.

14.

9.5 graph_lEaf file ... e a e e e e e 74
9.6 graph_eXterior_fil@eeoiiiii e a e e e e 74
9.7 graph_interior_fil@ e a e e e e 74
9.8 graph_leaf PAterneooo e e e aaa e e e 74
0.9 graph_eXterior _PAIEIN.... ... e ettt e e e e e e e e e e e e e e e e e e nn b e e aeeeas 74
9.10 graph_iNtEriIOr_PATEINue ittt e e e e e e e e e s s bbbt e e e e e e e e e e e e e aannbnbeeaeeeas 74
.10 LINE it r e e e e e e e b e e e e e e e e e e n e e e e nnes 74
LS 1= T=To P PP PPPPPPRRPN 74
S 0 B B o T= 1= 11 1] T 1] £ PR T P PRSPPI 75
9.14 parallel_JODS ... e a e a e e e e s 75
&I T o T= 1= 11 1= €] TP TUTT TR 75
S I T === T o o T 1 75
S T | TSP POP PRSPPI 75
LS TR T =1 (o 1= TP TPURRRPPPPPP 75
S TR R T =1 (0 1= £ T TP PP TP PP PP PTTRRR 75
S O B (0] (=T To Ko PP PP PPP P PPPPPPN 75
1S A R Y[10 [0T [TP U TP PR TP 75
S Y £ (o] T PP PP PP P PP PP PPPPPPPP 75
FUNCHIONS LIDIAIY ..ottt ettt e e e e e e e e ab bt e et e e e e e e e e e e e aannbbbeeeeaaaaaaeaeas 76
O R o7 T o] = | [= TP EUPT TR 76
10.2 defiN@-OI-NUIL ..oooeeeee et e e s e e e e e r e e e e e e 76
10.3 defiN@d-Or-AeFAUILocuiiiie et e s 76
O =T 01T | A O TP P PP T PP PR 76
10.5 variable DY Path ... e e e e e e 76
ACHONS WNEN COOKING ...veeiieiitiiiee sttt ettt e ket e et e e e st e e e e e sab et e e s aabb e e e e e aanbeeeeessnbneeeeeans 77
11.1 Scan the COOK Environment Variable............coocuiiiiiiiiiiiiic e 77
11.2 Scan the CommMAaNd LiNE.........ooiiiiiiiiiieiiiiie ettt s s e e srre e e e 77
11.3 Locate the COOKDOOK..........eeiiiiiiiiiei it e s 77
11.4 Form the LiSting FIENAMEccoiiiiiiie e e e e e e 77
11.5 Create the LiStiNG fille ...t a e e 77
11.6 Scan the COOKDOOK...........ueiiiiiiiii e 77
11.7 Determing targetS t0 COOKuuutiiiiiiii ittt e e e et e et e e e e e e e e e eb b b beeeeaeaaaeeeeaaannnes 77
IR I T ({1 [o = N = (0[] TP PPPPTRTT 77
11.9 The DependeBaSraph oocoiiiiiiii e e e e a e e e 79
11,00 FlE STATUSueeeeiieiiiieie ettt ettt et e et e e st e e s st e e s e st b et e e e b b et e e s e nrr e e e e e nnes 80
(@1 1[o] gl el (=Tol=To [T o ol T PP TP PPURUPTRP 82
FIlE NMAMIE PALIEINS. ..ttt ettt ettt e e e e e e e s e e bbbt e et et e e e e e e e e e e nnnbbsbeeeeaaaaaaaaan 83
S T R 0o T Q) = 11 =] 1 PP PP POPPPPPTOUPPRPP 83
13.2 REQUIAI EXPIESSIONS. ...ceeiiiiiiie ittt et et e e e e e ettt e e e e e e e e e e s s e aaabbbbeeeeeaaaaaeasaaannnbbnaeeaaaaaeens 85
SUPPIIEA COOKDOOKSceeeiiiiiee ettt e e e e et e e e e e s e e e e e nnees 87
LD BS iiiiiiiiiiii e e et e e ettt e e e e e e s n et r e e e e e e n e 87
I o PP PO P PP P PPPPPPPPPPPPRPN 87
I S PO PP O PP PPPPPPPPRPRN 88
o TP PP P P PPPPRP TP 88
I o o] o TP TPPTPPPP 89
I T (o]0 TS PO P PP P PPPPPPPON 89
I [PP PP P PP PPPPPPPPRPPN 89
I 11 o] = 1 VTP SUOTPPPPUPPPPT 90
R oo | ST URUT TP 90
I O I o doTo | =1 o KOO PP PP P PUPUPUPUPPPRURPRN 91

0t 15 O (o 91

F4.12 TECUISIE oeuieiiiiiiiiee e e ettt e e e e ettt e e e et et eeeees e e baeeeees s ettt eeseestaaa s eesesstannseesssstansseesensstanaaesenns 92
7 B T ol ot PRSP 92
I (= AP RPRR 92
7 R U 1= [Tt | OO PPPPPPPR 93
7 I U = PSR PPRPPRN 93
o V7= Vol o 1 =T 0|V T PP PP PPRPP 93
Y 7= Vo] o T TP TSP O UURUPPPPPPPPP 93
ST €11 11T o TP PRPPT PR 94

Vi

