next | previous | forward | backward | up | top | index | toc | directory | Macaulay 2 web site

isConnected -- determines if a (hyper)graph is connected

Synopsis

Description

This function checks if the (hyper)graph is connected. It relies on the numConnectedComponents.
i1 : S = QQ[a..e];
i2 : g = graph {a*b,b*c,c*d,d*e,a*e} -- the 5-cycle (connected)

o2 = Graph{edges => {{a, b}, {b, c}, {c, d}, {a, e}, {d, e}}}
           ring => S
           vertices => {a, b, c, d, e}

o2 : Graph
i3 : h = graph {a*b,b*c,c*a,d*e} -- a 3-cycle and a disjoint edge (not connected)

o3 = Graph{edges => {{a, b}, {a, c}, {b, c}, {d, e}}}
           ring => S
           vertices => {a, b, c, d, e}

o3 : Graph
i4 : isConnected g

o4 = true
i5 : isConnected h

o5 = false

See also

Ways to use isConnected :