Dualtree {waveslim}R Documentation

Dual-tree Complex Discrete Wavelet Transform

Description

One- and two-dimensional dual-tree complex discrete wavelet transforms developed by Kingsbury and Selesnick et al.

Usage

dualtree(x, J, Faf, af)
idualtree(w, J, Fsf, sf)
dualtree2D(x, J, Faf, af)
idualtree2D(w, J, Fsf, sf)

Arguments

x $N$-point vector or $M{times}N$ matrix.
w DWT coefficients.
J number of stages.
Faf analysis filters for the first stage.
af analysis filters for the remaining stages.
Fsf synthesis filters for the last stage.
sf synthesis filters for the preceeding stages.

Details

In one dimension $N$ is divisible by $2^J$ and $N>=2^{J-1}cdotmbox{length}(mbox{af})$.

In two dimensions, these two conditions must hold for both $M$ and $N$.

Value

For the analysis of x, the output is

w DWT coefficients. Each wavelet scale is a list containing the real and imaginary parts. The final scale ($J+1$) contains the low-pass filter coefficients.
y output signal

Author(s)

Matlab: S. Cai, K. Li and I. Selesnick; R port: B. Whitcher

References

WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY http://taco.poly.edu/WaveletSoftware/

See Also

FSfarras, farras, convolve, cshift, afb, sfb.

Examples

## EXAMPLE: dualtree
x = rnorm(512)
J = 4
Faf = FSfarras()$af
Fsf = FSfarras()$sf
af = dualfilt1()$af
sf = dualfilt1()$sf
w = dualtree(x, J, Faf, af)
y = idualtree(w, J, Fsf, sf)
err = x - y
max(abs(err))

## Example: dualtree2D
x = matrix(rnorm(64*64), 64, 64)
J = 3
Faf = FSfarras()$af
Fsf = FSfarras()$sf
af = dualfilt1()$af
sf = dualfilt1()$sf
w = dualtree2D(x, J, Faf, af)
y = idualtree2D(w, J, Fsf, sf)
err = x - y
max(abs(err))

## Display 2D wavelets of dualtree2D.m

J <- 4
L <- 3 * 2^(J+1)
N <- L / 2^J
Faf <- FSfarras()$af
Fsf <- FSfarras()$sf
af <- dualfilt1()$af
sf <- dualfilt1()$sf
x <- matrix(0, 2*L, 3*L)
w <- dualtree2D(x, J, Faf, af)
w[[J]][[1]][[1]][N/2, N/2+0*N] <- 1
w[[J]][[1]][[2]][N/2, N/2+1*N] <- 1
w[[J]][[1]][[3]][N/2, N/2+2*N] <- 1
w[[J]][[2]][[1]][N/2+N, N/2+0*N] <- 1
w[[J]][[2]][[2]][N/2+N, N/2+1*N] <- 1
w[[J]][[2]][[3]][N/2+N, N/2+2*N] <- 1
y <- idualtree2D(w, J, Fsf, sf)
image(t(y), col=grey(0:64/64), axes=FALSE)

[Package waveslim version 1.6.1 Index]