Bisect — version 1.0-alpha
http://bisect.x9c.fr

Copyright (© 2008 Xavier Clerc — bisect@x9c.fr
Released under the GPL version 3

July 6, 2008

Abstract: This document presents Bisect, its purpose and the way it works. This document is
structured in three parts explaining first how to build, and how to run Bisect. Then, the last part
lists known issues.

Introduction

Bisect is a code coverage tool for the Objective Caml language!. Its name stems from the following
acronym: Bisect is an Insanely Short-sized and Elementary Coverage Tool. The shortness of the
source files can be seen as a tribute to the camlp4 tool and API bundled with the standard Objec-
tive Caml distribution.

Code coverage is a mean of software testing. Associated with for example unit or functional testing,
the goal of code coverage is to measure the portion of the application source code that has actually
been tested. To achieve this goal, the code coverage tool defines points in the source code and
memorizes at runtime (in fact, when tests are run) if the execution path of the program passes
at these points. The so-called points are places of interest in the source code; as an example, the
branches of an if or match construct are interesting points, to ensure that all alternatives have
been tested. In practive, code coverage is often performed in three steps:

e first, the application is instrumented: this means that (the compiled form of) the application
is enhanced in such a way that it will count at runtime how many times the application passed
at a given point;

e then, the tests are actually run, producing some runtime-data about code coverage;

e finally, a report is produced from the data produced at the previous step; this report shows
which points were actually passed through during tests.

Bisect performs statement and condition coverage, but not path coverage. This means that it
only counts how many times the application passed at each point, independently of which was the
statement previously executed. At the opposite, path coverage is not only interested in points but
also in paths, the goal being to ensure that every possible execution path has been followed.

'The official Caml website can be reached at http://caml.inria.fr and contains the full development suite
(compilers, tools, virtual machine, etc.) as well as links to third-party contributions.

http://bisect.x9c.fr
mailto:bisect@x9c.fr
http://caml.inria.fr

Code coverage is a useful software metric but, being based on tests, it cannot ensure that a program
is correct. For program correction, one should consider more involved tools and formalisms such as
model checking, or proof systems. Code coverage is still convenient in practive because it is a much
simpler method.

Bisect, in its 1.0-alpha version, is designed to work with version 3.10.2 of Objective Caml. Bisect
is released under the GPL version 3. This licensing scheme should not cause any problem, as
instrumented applications are intended to be used during developement but should not be released
publicly. Bugs should be reported at http://bugs.x9c.fr.

Building Bisect

Bisect can be built from sources using make, and Objective Caml version 3.10.2. Under usual
circumstances, there should be no need to edit the Makefile. The following targets are available:

all compiles all files, adn generates html documentation;
common compiles the "Common’ module;

runtime compiles the 'Runtime’ module;

instrument compiles the 'Instrument’ module;

report compiles the report executable;

html-doc generates html documentation;

clean-all deletes all produced files (including documentation);
clean deletes all produced files (excluding documentation);
clean-doc deletes documentation files;

install copies executable and library files;

tests runs the tests.

One may notice that the instrument module will be compiled into Ojective Caml bytecode only,
while the other modules will be compiled into bytecode as well as native formats (and even Java
format if the ocamljava compiler is present).

Running Bisect

As previously stated, using a code coverage tool usually requires to follow three steps: instrumen-
tation, execution, and report. Bisect is no exception in this respect; the following sections discuss
each of these three steps.

http://bugs.x9c.fr

Instrumenting the application

Bisect instruments the application at compile-time using a camlp4-based preprocessor. It allows
the user to choose exactly which module (i.e. source file) of the application should be instrument.
Code sample 1 shows how to instrument a file named source.ml during compilation (the very same
effect can be achieved using either ocamlopt or ocamljava as a replacement of ocamlc). During
this step, Bisect will produce a file named source.cmp. Files with the cmp extension contain point
information for a given source file, that is: identifiers, positions, and kinds of points. Of course, the
usual cmi, cmo, cmx, and cmj files are also produced, depending on the compiler acutally invoked.
It is necessary to pass the -I +bisect option to the compiler because instrumentation adds calls
to functions defined in the runtime modules of Bisect.

Code sample 1 Compiling and instrumenting a file.

ocamlc -c¢ -I +bisect -pp ’camlp4o /path/to/instrument.cma’ source.ml

Linking a program containing instrumented modules is not different from classical linking, except
that one should link the Bisect library to the produced executable. This is usually done by adding
one of the following to the linking command-line:

e -I +bisect bisect.cma (for ocamlc version);
e -I +bisect bisect.cmxa (for ocamlopt version);

e -I +bisect bisect.cmja (for ocamljava version).

Running the instrumented application

Running an instrumented application is not different from running any application compiled with
an Objective Caml compiler. However, Bisect will produce runtime data in a file each time the ap-
plication is run. A new file will be created at each invocation, the first one being bisect0001.out,
the second one bisect0002.out, and so on. It is also possible to define the scheme used for file
names by setting the BISECT_FILE environment variable. If BISECT_FILE is equal to file, files will
be named filen.out where n is a natural value padded with zeroes to 4 digits (i.e. “0001”, “0002”,
and so on).

Bisect can also be parametrized using another environment variable: BISECT_SILENT. If this variable
is set to either “YES” or “ON” (defaulting to “OFF”), then Bisect will not output any message at
runtime. If not silent, Bisect will output a message on the standard error in two situations:

e the output file for runtime data cannot be created at program initialization;

e the runtime data cannnot be written at program termination.

Generating the coverage report

In order to generate the coverage report for the instrumented application, it is sufficient to invoke
the bisect-report executable (alternatively either bisect-report.opt, or bisect-report. jar).
This program recognizes the following command-line switches:

-version prints version and exit;

-verbose sets verbose mode;

-tab-size <int> sets tabulation size in output;

-html <dir> sets HTML output mode, and writes html files in given directory;
-help or --help displays the list of options.

The user should also provide on the command-line the list of the runtime data files that should be
used to produce the report. As a result, a typical invocation is: bisect-report -html report
bisectx*.out.

When the HTML output mode is chosen, a bunch a files is produced: one index.html file, and
one file per instrumented module. The index.html file provides application-wide statistics about
coverage, as well as links to the other files. The module files provides module-wide statistics, as
well as a duplicate of the module source, enhanced with point information. Points are represented
in the source as special comments having the form (*[n]*) where n indicates how many times the
point was passed at runtime. For easier appreciation, colors are also used to annotate source lines:

e a line will be green-colored if it contains points whose values are all strictly positive;

a line will be red-colored if it contains points whose values are all equal to zero;

a line will be yellow-colored if it contains some points whose values are all equal to zero, and
some others whose values are strictly positive;

a line will not be colored at all if it contains no point.

Example

Code sample 2 shows the makefile used for the compilation (with instrumentation), run, and report
phases for a one-file application.

Known issues

Bisect suffers from the following issues:

e Bisect, being based on camlp4, performs a purely syntaxtic treatment. It can thus sometimes
produce unaccurate results due to semantics subtleties. For a concrete example consider lazy
operators: in expressions such as el && e2 or el || e2, Bisect adds points to both el and
e2 to allow the user to know which parts of the whole expression were actually evaluated.
However, it is possible that the programmer redifined one of these operator in such a way
that its new semantics is no more lazy (e.g. let (&%) = (+). In this case, Bisect will still
add points to subexpressions even if they appear useless>. A dual issue would occur is a
programmer defined a new operator with lazy semantics (e.g. external (++) : bool ->
bool -> = "Ysequor"), in this case Bisect will not define points for subexpressions while

they would clearly be of interest.

20ne may notice that it could not be possible to overcome this problem by keeping track of local (i.e. file)
redefinitions, as the redefinition may occur in another module that has been opened.

Code sample 2 Example makefile.

default: clean compile run report

clean:
rm -fr report
rm -f *.cm* *.out bytecode
compile:
ocamlc -c -I +bisect \
-pp ’camlp4o /usr/local/lib/ocaml/bisect/instrument.cma’ source.ml
ocamlc -o bytecode -I +bisect bisect.cma source.cmo
run:
./bytecode
report:

bisect-report -html report bisect*.out

some point labels (e.g. (x[0]*)) may appear at the wrong place (e.g. inside an expression
rather than at its start), it is partly due to some location bug in camlp4 (cf. bug #0004521
at url http://caml.inria.fr/mantis/view.php?id=4521) but may also be due to Bisect
bugs (including in the clumsy code trying to overcome this camlp4 bug);

when linking the tested application, the Bisect module should be linked as (one of) the
first ones; indeed, the Bisect runtime performs some operations at initialization, such as
determining the target file for runtime information: the current working directory should
hence not have been modified by another module (it is also possible to use BISECT_FILE to
specify an absolute path);

for performance reasons, Objective Caml ints are used store store point data; it implies that
one should not use the report executable on a 32-bit architecture if the tested application has
been instrumented and run on a 64-bit architecture?;

when using relative paths at the instrumentation step, the report executable should be
launched from the same directory.

3This is indeed an over-cautious recommendation, as the Objective Caml gracefully handles platforms differences;
one should only get unaccurate results (but not false results in the sense of neither an unvisited will not be considered
as visited, nor the opposite) when working at the 32-bit limit.

http://caml.inria.fr/mantis/view.php?id=4521

	Introduction
	Building Bisect
	Running Bisect
	Known issues

