A Tour of XMLUnit O e =y

What is XMLUnit?

XML Unit enables JUnit-style assertions to be made about the content and structure of XML It isan open
source project hosted at http://xmlunit.sourceforge.net that grew out of aneed to test a system that
generated and received custom XML messages. The problem that we faced was how to verify that the
system generated the correct message from a known set of inputs. Obviously we could usea DTD or a
schemato validate the message output, but this approach wouldn't allow us to distinguish between valid
XML with correct content (e.g. element <foo>bar</foo>) and valid XML with incorrect content (e.g.
element <foo>baz</foo>). What we really wanted was an assertXMLEquals() method, so we could
compare the message that we expected the system to generate and the message that the system actually
generated. And that was the beginning of XML Unit.

Quick tour

XMLUnit provides a single JUnit extension class, XMLTestCase, and a set of supporting classes that allow
assertions to be made about:

« Thedifferences between two pieces of XML (via Diff and Detail edDiff classes)

« Thevalidity of apiece of XML (via Validator class)

¢ The outcome of transforming a piece of XML using XSLT (via Transform class)

e Theevaluation of an XPath expression on a piece of XML (via SmpleXpathEngine class)

¢ Individua nodesin a piece of XML that are exposed by DOM Traversal (via NodeTest class)
XMLUnit can also treat HTML content, even badly-formed HTML, as valid XML to alow these
assertions to be made about web pages (via the HTMLDocumentBuilder class).

Glossary

Aswith many projects some words in XMLUnit have particular meanings so hereisa quick overview. A
piece of XML isa DOM Document, a String containing marked-up content, or a Source or Reader that
allows access to marked-up content within some resource. XMLUnit compares the expected control XML
to some actual test XML. The comparison can reveal that two pieces of XML areidentical, similar or
different. The unit of measurement used by the comparison is a difference, and differences can be either
recoverable or unrecoverable. Two pieces of XML areidentical if there are no differences between them,
similar if there are only recoverable differences between them, and different if there are any unrecoverable
differences between them.

Configuring XMLUnit

There are many Java XML parsers available, and XMLUnit should work with any JAXP compliant parser
library, such as Xerces from the Apache Jakarta project. To use the XSL and XPath features of XMLUnit a
Trax compliant transformation engine isrequired, such as Xalan, from the Apache Jakarta project. To
configure XMLUnit to use your parser and transformation engine set three System properties before any
testsarerun, eg.

System set Property("javax. xml . parsers. Docunent Bui | der Fact ory”,
"org. apache. xerces. j axp. Docunent Bui | der Factoryl nmpl ") ;

System set Property("javax. xnl . par sers. SAXPar ser Fact ory",

"org. apache. xerces. j axp. SAXPar ser Factoryl nmpl ") ;

System set Property("javax. xm . transform Transf or mer Fact ory",
"org. apache. xal an. processor. Transf or mer Fact oryl npl ") ;

Alternatively there are static methods on the XML Unit class that can be called directly. The advantage of
this approach isthat you can specify a different parser class for control and test XML and change the

! For mareinformation about JUnit see httn:/mamaw.iunit.ora.

current parser classat any timeIn your tests, should you need to make assertions apout the compatibility of
different parsers.

XM_Uni t . set Cont r ol Par ser (" org. apache. xerces. j axp. Docunent Bui | der Fact or yl
npl");
XM.Uni t . set Test Par ser (" org. apache. xerces. j axp. Docurent Bui | der Fact or yl npl

u),
XM.Uni t . set SAXPar ser Fact ory("org. apache. xer ces. j axp. SAXPar ser Fact or yl npl

XM_Uni t . set Transf or ner Fact ory(" or g. apache. xal an. pr ocessor. Tr ansf or ner Fac
torylnpl");

Writing XML comparison tests

Let’s say we have two pieces of XML that we wish to compare and assert that they are equal. We could
write asimpletest class likethis:

public class MyXM.Test Case extends XM.Test Case {
public MyXM.Test Case(String nane) {
super (nane) ;

public void testForEquality() throws Exception {
String nyControl XML = "<nmsg><uui d>0x00435A8C</ uui d></ nsg>";
String nyTest XML = "<nsg><l| ocal | d>2376</ | ocal | d></ nsg>";
assert XMLEqual (" Conparing test xm to control xm",
myControl XM., nyTest XM.) ;

}

}

The assertXMLEqual test will passif the control and test XML are either smilar or identical. Obvioudly in
this case the pieces of XML are different and the test will fail. The failure message indicates both what the
difference is and the Xpath locations of the nodes that were being compared:

Conparing test xml to control xm

[different] Expected elenent tag nane 'uuid but was 'localld -
comparing <uuid...> at /nmsg[1l]/uuid[1] to <localld...> at

/meg[1]/ 1 ocal I d[1]

When comparing pieces of XML, the XMLTestCase actually creates an instance of the Diff class. The Diff
class stores theresult of an XML comparison and makes it available through the methods similar() and
identical (). The assertXMLEquals() method tests the value of Diff.similar() and the assertXMLIdentical ()
method tests the value of Diff.identical ().

It is easy to create a Diff ingance directly without using the XML TestCase dass as bel ow:

public void test XM.ldentical ()throws Exception {
String nyControl XML =
"<struct><i nt>3</i nt ><bool ean>f al se</ bool ean></ st ruct >";
String nyTest XML =
"<struct ><bool ean>f al se</ bool ean><i nt >3</i nt ></ struct >";
Diff nyDiff = new D ff(nyControl XM, nyTest XM.);
assertTrue(“XM. simlar * + nyDiff.toString(),
nmyDiff.simlar());
assert True(“XM. identical " + nyDiff.toString(),
myDi ff.identical());

Thistest fails as two pieces of XML are similar but not identical if their nodes occur in a different
sequence. The failure message reported by JUnit from the call to myDiff.toString() looks like this:
[not identical] Expected sequence of child nodes '0' but was '1' -
conparing <int...> at /struct[1]/int[1] to <int...> at /struct[1]/int[1]

For efficiency reasons a Diff stops the comparison process as soon asthe first differenceisfound. To get all
the differences between two pieces of XML an ingance of the DetailedDiff class, a subclass of Diff, is
required. Note that a DetailedDiff is constructed using an existing Diff instance.

Cconsider thistest that uses a DetalledDITT:

public void testAl |l D fferences() throws Exception {
String nyControl XML = "<news><item id=\"1\">War</itenp"
+ "<itenm id=\"2\">P| ague</item"
+ "<iten id=\"3\">Fam ne</itenmr</ news>";
String nyTest XML = "<news><item i d=\"1\">Peace</itenp"
+ "<itenm id=\"2\">Heal th</itemnm"
+ "<itenm id=\"3\">Pl enty</itenr</ news>";
DetailedD ff nyDiff = new Detail edDiff(
new Di ff(myControl XM., nyTest XM.));
List allDifferences = nyDiff.getAl I D fferences();
assertEqual s(nyDiff.toString(), 2, allD fferences.size());

}
Thistest fails with the message below as each of the 3 news items differs between the control and test
XML:
[different] Expected text value 'War' but was 'Peace' - conparing <item
oooWar</itens at /news[1]/itenf1]/text()[1] to <item...>Peace</itenp
at /news[1]/itenf1]/text()[1]
[different] Expected text value 'Plague' but was 'Health' - conparing
<item...>Plague</iten> at /news[1l]/iten]f2]/text()[1] to <item
...>Health</itenr at /news[1l]/iten2]/text()[1]
[different] Expected text value 'Fam ne' but was 'Plenty' - conparing
<item...>Famne</itenm> at /news[1]/iten]{3]/text()[1] to <item
...>Plenty</itenr at /news[1l]/iten]3]/text()[1]
expected <2> but was <3>

The List returned from the getAll Differences() method contains Difference instances. These instances
describe both the type? of difference found between a control node and test node and the NodeDetail of
those nodes (including the XPeth location of each node). Difference instances are passed at runtimein
natification eventsto aregistered Differencelistener, an interface whose default implementation is
provided by the Diff class.

However it is possible to override this default behaviour by implementing the interface in your own class.
The IgnoreTextAndAttributeVal uesDifferencelListener classisan example of how to implement a custom
DifferenceListener. It allows an XML comparison to be made that ignores differencesin the values of text
and attribute nodes, for example when comparing a skeleton or outline piece of XML to some generated
XML.

Thefollowing test illustrates the use of a custom DifferenceListener:

public void testConpareToSkel etonXM.() throws Exception {
String nmyControl XML = "<| ocati on><street-address>22 any
street </ street-address><post code>XY00 99Z</ post code></| ocati on>";
String nyTest XML = "<l ocati on><street-address>20 east
cheap</ street - addr ess><post code>EC3M 1EB</ post code></| ocati on>";
Di fferencelLi stener nyDifferencelistener =
new | gnoreText AndAttri but eVal uesDi f f erenceli stener();
Dff nyDff = new Diff(nyControl XM., nyTest XWM.) ;
myDi ff. overri deDi fferencelLi stener(nyDifferencelLi st ener);
assert True("test XML matches control skel eton XM.",
nyDiff.simlar());
}

The DifferenceEngine class generates the eventsthat are passed to a Differencelistener implementation as
two pieces of XML are compared. Using recursion it navigates through the nodes in the control XML
DOM, and determines which node in thetest XML DOM qualifies for comparison to the current control

2 A full set of prototype Difference instances - one for each type of difference - is defined using final static
fiddsin the DifferenceConstants dlass

node. 1 he qualitying test node will match the control Node's node type, as well as the node name and
namespace (if defined for the control node).

However when the control node is an Element, it isless straightforward to determine which test Element
qualifies for comparison as the parent node may contain repeated child Elements with the same name and
namespace. So for Element nodes, an ingance of the ElementQualifier interface is used determine whether
a given test Element node qualifies for comparison with a control Element node. This separates the decision
about whether two Elements should be compared from the decision about whether those two Elements are
considered similar. By default an ElementNameQualifier classis used that compares the n™ child <abc>
test element to the n™ child <abc> control element, i.e. the sequence of the child elementsin the test XML
isimportant. However this default behaviour can be overridden using an ElementNameAndTextQualifier or
ElementNameAndAttributesQualifier.

The test below demonstrates the use of a custom ElementQualifier:

public void testRepeatedChil dEl enents() throws Exception {
String myControl XML = "<suite>"
+ "<test status=\"pass\">FirstTest Case</test>"
+ "<test status=\"pass\">SecondTest Case</test></suite>";
String nyTest XML = "<suite>"
+ "<test status=\"pass\">SecondTest Case</test>"
+ "<test status=\"pass\">FirstTestCase</test></suite>";

assert XM_Not Equal (" Repeated child elenents in different sequence
order are not equal by default",
myControl XM., nyTest XM.) ;

Dff nyDff = new Diff(nyControl XM., nyTest XM.) ;
nmyDi ff. overri deEl ement Qual ifier(
new El ement NaneAndText Qualifier());
assert XMLEqual ("But they are equal when an El enentQualifier
controls which test elenent is conpared with each control elenent”,
myDi ff, true);
}

Comparing XML Transformations

XMLUnit can test XSL transformations at ahigh level using the Transform class that wraps an
javax.xml.transform.Transformer instance. Knowing the input XML, input stylesheet and expected output
XML we can assert that the output of the transformation matches the expected output as follows:

public void testXSLTr ansformatlon() t hrows Exception {
String nylnput XM = "...";
File myStyl esheetFile = new Fi | e("...");
Transform nyTransform =
new Transforn(nyl nput XM_, rrySt yI esheetFil e);
String rryExpect edQut put XML =
Dff nyDff = new Di ff(nyExpect edQut put XM, rryTransfor n;
assert True(" XSL transformati on worked as expected"
nyDiff.simlar());

The getResultString() and getResultDocument() methods of the Transform class can be used to access the
result of the XSL transformation programmatically if required, for example as below:

public void testAnot her XSLTr ansf or mat i on() t hrows Exception {
File nylnput XMLFile = new File("),
File rryStersheetFHe-newFlIe(")
Transform nyTransforn = new Transf or m(
new StreanBour ce(myl nput XM_Fi | e),
new StreantSource(nyStyl esheetFile));

LOCUMENT MyEXPECT eAUUT PUL XIVL =
XMLUni t . bui | dDocunent (XNLUm t. get Control Parser(),
new Fil eReader("..."));

Dff nyDff = new D ff(rryExpectedOJt put XM,
my Tr ansf or m get Resul t Docunent ()) ;

assert True(" XSL transformation wor ked as expect ed",
nyDiff.simlar());

}

Validation Tests

XML parsersthat validate apiece of XML against aDTD are common, however they rely on aDTD
reference being present in the XML, and they can only validate againgt a single DTD. When writing a
system that exchanges XML messages with third parties there are times when you would like to validate
the XML againg aDTD that is not available to the recipient of the message and so cannot be referenced in
the messageitself. XMLUnit provides a Validator classfor this purpose.

public void testValidation() throws Exception {
XM.Uni t . get Test Docunent Bui | der Fact ory(). setVal i dating(true);
/1 As the docunent is parsed it is validated against its
referenced DID

Docunent nyTest Docunent = XM.Unit. buil dTest Docunment ("...");
String nySystemd = "...";
String nyDTDUrl = new Fil e(").toURL().toExternal Forn();

Val i dator myVal i dator = new Val i dat or (
myTest Docunent, nySystem d, nyDTDUI);

assert True("test docunent validates agai nst unreferenced DID',
nyVal i dator.isValid());

}

Xpath Tests

One of the strengths of XML isthe ability to programmatically extract specific parts of a document using
XPath expressions. The XML TestCase class offers a number of XPath related assertion methods, as
demonsgtrated in thistest:

public void testXPaths() throws Exception {
String nmySol ar SystenXM. = "<sol ar - syst enp"
+ "<planet nane='Earth' position="3" supportsLife='yes'/>"
+ "<pl anet nane='Venus' position='4"'/></solar-systenp";
assert Xpat hExi sts("//pl anet[€nane="Earth']", nySol ar Syst enXM.) ;
assert Not Xpat hExi sts("//star[€hanme=" al pha centauri']"
nySol ar Syst enXM.) ;
assert Xpat hskEqual ("// pl anet[€Chane="Earth']",
“//planet[@osition="3"]1", nySol ar Syst enXM.) ;
assert Xpat hsNot Equal ("// pl anet [€hane=' Venus']", "
"/ planet[€supportsLife="yes']", mnmySol ar Syst emXM.) ;

}

When an XPath expression is evaluated against a piece of XML a NodeList is created that containsthe
matching Nodes. The methods in the previous test — assertXPathExists, assertNotXPathExists,
assertXPathsEqual, and assertXPathsNotEqual — use these NodeLists. However, the contents of a NodeList
can be flattened (or String-ified) to asingle value, and XMLUnit also allows assertions to be made about
thissingle value, asin this test®:

public void testXPat hVal ues() throws Exception {
String nyJavaFl avours = "<java-fl avours>"
+ "<jvm current="sonme platforms' >1. 1. x</jvmp"
+ "<jvm current="'no' >1. 2. x</j vme"
+ "<jvm current="yes' >1. 3. x</jvmp"

3 Each of the assertXnath. ..(\ methods uses the SmnleXnathFnaine dassto evaluate an Xnath exoression.

+ <jvim current=yes latest= yes >1.4. X</]vlp</]ava-
fl avour s>";

assert Xpat hEval uat esTo("2", "count(//jvn[Ccurrent="yes'])",
nmyJavaFl avour s) ;

assert Xpat hval ueskEqual ("//jvn[4]/ @atest", "//jvn[4]/ @urrent",
nyJavaFl avours) ;

assert Xpat hval uesNot Equal ("//jvn[2]/ @urrent", "
“I1yvn[3]/ @urrent", nyJavaFl avours);

Xpaths are especially useful where a document is made up largely of known, unchanging content with only
asmall amount of changing content created by the system. One of the main areas where constant
‘boilerplate’ markup is combined with system generated markup is of course in web applications. The
power of XPath expressions can make testing web page output quitetrivia, and XMLUnit supplies a means
of converting even very badly formed HTML into XML to aid this approach to testing.

The HTMLDocumentBuilder class uses the Swing HTML parser to convert marked-up content to Sax
events. The TolerantSaxDocumentBuilder class handles the Sax eventsto build up a DOM document in a
tolerant fashion i.e. without mandating that opened €lements are closed. (In apurely XML world this class
would have no purpose as there are plenty of Sax event handlersthat can build DOM documents from well
formed content). The test below illustrates how the use of these classes:

public void testXpathslnHTM.() throws Exception {
String soneBadl yFor medHTM. = "<htm ><titl e>Ugh</titl e>"
+ "<body><hl>Headi ng"
+ "<li 1d="1">temOne<li id="2">tem Two";
Tol er ant SaxDocunent Bui | der t ol er ant SaxDocunent Bui | der =
new Tol er ant SaxDocurnent Bui | der (XMLUni t . get Test Parser());
HTM.Docunent Bui | der ht ml Docunent Bui | der = "
new HTM_Docunent Bui | der (t ol er ant SaxDocunent Bui | der) ;
Document wel | For mredDocunent = "
ht M Docunent Bui | der . par se(soneBadl yFor medHTM.) ;
assert Xpat hEval uat esTo("Item One", "/htm /body//li[@d="1"]", "
wel | For medDocurnent) ;

}

One of the key points about using Xpathswith HTML content isthat extracting values in tests requires the
values to beidentifiable. (Thisisjust another way of saying that testing HTML is easer when it iswritten
to betestable)) In the previous example id attributes were used to identify thelist item values that needed to
be testable, however class attributes or span and div tags can aso be used to identify specific content for
testing.

Testing by Tree Walking

The DOM specification allows a Document to optionally implement the DocumentTraversal interface. This
interface allows an application to iterate over the Nodes contained in a Document, or to ‘walk the DOM
tree’. The XMLUnit NodeTest class and NodeTester interface make use of DocumentTraversal to expose
individual Nodes in tests: the former handl es the mechanics of iteration, and the latter allows custom test
strategies to be implemented. A sampletest strategy is supplied by the CountingNodeTester class that
counts the nodes presented to it and compares the actual count to an expected count. The test below
illustrates its use:

public void testCountingNodeTester() throws Exception {
String test XML = "<fibonacci ><val >1</ val ><val >2</ val ><val >3</ val >"
+ "<val >5</val ><val >9</val ></fi bonacci >";
Count i ngNodeTest er counti ngNodeTest er = new Counti ngNodeTest er (4);
assert NodeTest Passes(test XM, counti ngNodeTester, Node. TEXT _NODE);

}
Thistest failsas there are 5 text nodes, and JUnit supplies the following message:

expectea noae test 10 pass, put 1t 1Tallear Lountea o noae(s) pout
expected 4

Notethat if your DOM implementation does not support the DocumentTraversal interface then XML Unit
will throw an Illegal ArgumentException informing you that you cannot use the NodeTest or NodeTester
classes. Unfortunately even if your DOM implementation does support DocumentTraversal, attributes are
not exposed by iteration: however they can be examined from the Element node that contains them.

While the previous test could have been easily performed using XPath, there are times when Node iteration
ismore powerful. In generd, thisistrue when there are programmatic relationships between nodes that can
be more easily tested iteratively. The following test uses a custom NodeTester classtoillusgtrate the
potential:

public void testCustomNodeTester() throws Exception {
String test XML = "<fibonacci ><val >1</val ><val >2</ val ><val >3</val >"
+ "<val >5</val ><val >9</ val ></fi bonacci >";
NodeTest nodeTest = new NodeTest (test XM.);
assert NodeTest Passes(nodeTest, new Fi bonacci NodeTester (),
new short[] {Node. TEXT_NODE, Node. ELEMENT_NODE}, true);

}
private class Fibonacci NodeTester extends Abstract NodeTester {
private int nextVal = 1, lastVal = 1, priorVval = O;
public void testText(Text text) throws NodeTest Exception {
int val = Integer.parselnt(text.getData());
if (nextval !'= val)
t hrow new NodeTest Excepti on("l ncorrect val ue", text);
next Val = val + |astVal;
priorVal = |astVal;
| astval = val;

public void testEl ement (El ement el enent)
t hrows NodeTest Exception {
String name = el enent. get Local Nane();
if ("fibonacci".equal s(name) || "val".equal s(nane)) {
return;

t hrow new NodeTest Excepti on(" Unexpected el ement”, el enent);

}

public voi d novoreNodes(NodeTest nodeTest)
t hrows NodeTest Exception {

}

}

The test fails because the XML contains the wrong value for the last number in the sequence:
Expected node test to pass, but it failed! Incorrect value [#text: 9]

Tim Bacon timbacon@users.sourceforge.net January 2003

