

Contents

1 Introduction 5
1.1 What is Biopython? . 5

8 Swiss-Prot, Prosite, Prodoc, and ExPASy

78

8.1 Bio.SwissProt: Parsing Swiss-Prot files . 788.1.1 Parsing Swiss-Prot records

. .

788.1.2 Parsing the Swiss-Prot keyword and category list . 808.2 Bio.Prosite: Parsing Prosite records . 818.3 Bio.Prosite.Prodoc: Parsing Prodoc records . 828.4 Bio.ExPASy: Accessing the ExPASy server . 828.4.1 Retrieving a Swiss-Prot record . 838.4.2 Searching Swiss-Prot

. .

838.4.3 Retrieving Prosite and Prodoc records

. .

84

9 Going 3D: The PDB module

869.1 Structure representation . 869.1.1 Structure

. .

889.1.2 Model

11.3 Näıve Bayes

Chapter 1

http://www.python.org
http://www.python.org
http://www.biopython.org

– Standalone Blast from NCBI

– Clustalw alignment program.

• A standard sequence class that deals with sequences, ids on sequences, and sequence features.

http://biopython.org/wiki/Download
http://biopython.org/DIST/docs/install/Installation.pdf
http://biopython.org/DIST/docs/install/Installation.pdf
http://biopython.org/DIST/docs/install/Installation.html
http://numpy.scipy.org/

4.

http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/AlignIO

Chapter 2

http://www.python.org/doc/
http://biopython.org/DIST/docs/api/

followed by what you would type in:

>>> from Bio.Seq import Seq
>>> my_seq = Seq("AGTACACTGGT")
>>> my_seq
Seq('AGTACACTGGT', Alphabet())
>>> print my_seq
AGTACACTGGT
>>> my_seq.alphabet
Alphabet()What we have here is a sequence object with a generic alphabet-reflectingthefactwehave not spec- ifiedifthisisaDNAorproteinsequence(okay,aproteinwithalotofAlanines,Glycines,Cysteinesand

Threonines!).We’lltalkmoreaboutalphabetsinChapter

3 . In addition to having an alphabet, theSeqobject differs from the python string in the methods itsupports. You can’t do this with a plain string:

>>> my_seq
Seq('AGTACACTGGT', Alphabet())
>>> my_seq.complement()
Seq('TCATGTGACCA', Alphabet())
>>> my_seq.reverse_complement()
Seq('ACCAGTGTACT', Alphabet())The next most important class is theSeqRecordor Sequence Record. This holds a sequence (as a Seq object) with additional annotation including an identi�er, name and description. The Bio.SeqIOmodule for reading and writing sequence file formats works withSeqRecordobjects, which will be introduced below and covered in more detail by Chapter

4

. This covers the basic features and uses of the Biopython sequence class. Now that you’ve got some ideaof what it is like to interact with the Biopython libraries, it’s time to delve into the fun, fun world of dealing
with biological file formats!

http://www.flickr.com/search/?q=lady+slipper+orchid&s=int&z=t
http://www.flickr.com/search/?q=lady+slipper+orchid&s=int&z=t
http://images.google.com/images?q=lady%20slipper%20orchid

2.4 Parsing sequence file formats

A large part of much bioinformatics work involves dealing with the many types of file formats designed to
hold biological data. These files are loaded with interesting biological data, and a special challenge is parsing

http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Nucleotide
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.fasta
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.fasta

2.4.2 Simple GenBank parsing example

Now let’s load the GenBank file ls orchid.gbk instead - notice that the code to do this is almost identical
to the snippet used above for the FASTA file - the only difference is we change the filename and the format
string:

from Bio import SeqIO
handle = open("ls_orchid.gbk")
for seq_record in SeqIO.parse(handle, "genbank") :

print seq_record.id
print repr(seq_record.seq)
print len(seq_record)

handle.close()

This should give:

Z78533.1
Seq(’CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGG...CGC’, IUPACAmbiguousDNA())
740
...
Z78439.1
Seq(’CATTGTTGAGATCACATAATAATTGATCGAGTTAATCTGGAGGATCTGTTTACT...GCC’, IUPACAmbiguousDNA())
592

This time Bio.SeqIO

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk
http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/AlignIO
http://biopython.org/wiki/AlignIO
http://www.ncbi.nlm.nih.gov/Entrez/
http://www.ncbi.nlm.nih.gov/PubMed/
http://www.expasy.org/
http://scop.mrc-lmb.cam.ac.uk/scop/

The code in these modules basically makes it easy to write python code that interact with the CGI scripts
on these pages, so that you can get results in an easy to deal with format. In some cases, the results can be
tightly integrated with the Biopython parsers to make it even easier to extract information.

2.6 What to do next

http://biopython.org/wiki/Mailing_lists

http://www.chem.qmw.ac.uk/iupac/

>>> my_seq = Seq("AGTACACTGGT")
>>> my_seq
Seq(’AGTACACTGGT’, Alphabet())
>>> my_seq.alphabet
Alphabet()

Note that using the Bio.SeqUtils.GC()

You can also use the Seq object directly with a %s placeholder when using the python string formatting
or interpolation operator (%):

3.6 Nucleotide sequences and (reverse) complements

>>> from Bio.Seq import Seq
>>> from Bio.Alphabet import IUPAC
>>> coding_dna = Seq("ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG", IUPAC.unambiguous_dna)
>>> coding_dna
Seq(’ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG’, IUPACUnambiguousDNA())
>>> template_dna = coding_dna.reverse_complement()
>>> template_dna
Seq(’CTATCGGGCACCCTTTCAGCGGCCCATTACAATGGCCAT’, IUPACUnambiguousDNA())

You can also translate directly from the coding strand DNA sequence:

>>> from Bio.Seq import Seq
>>> from Bio.Alphabet import IUPAC
>>> coding_dna = Seq("ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG", IUPAC.unambiguous_dna)
>>> coding_dna
Seq(’ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG’, IUPACUnambiguousDNA())
>>> coding_dna.translate()
Seq(’MAIVMGR*KGAR*’, HasStopCodon(IUPACProtein(), ’*’))

ftp://ftp.ncbi.nlm.nih.gov/entrez/misc/data/gc.prt

>>> from Bio.Data import CodonTable
>>> standard_table = CodonTable.unambiguous_dna_by_name["Standard"]
>>> mito_table = CodonTable.unambiguous_dna_by_name["Vertebrate Mitochondrial"]

Alternatively, these tables are labeled with ID numbers 1 and 2, respectively:

>>> from Bio.Data import CodonTable
>>> standard_table = CodonTable.unambiguous_dna_by_id[1]
>>> mito_table = CodonTable.unambiguous_dna_by_id[2]

You compare the actual tables visually by printing them:

>>> print standard_table
Table 1 Standard, SGC0

| T | C | A | G |
--+---------+---------+---------+---------+--
T | TTT F | TCT S | TAT Y | TGT C | T
T | TTC F | TCC S | TAC Y | TGC C | C
T | TTA L | TCA S | TAA Stop| TGA Stop| A
T | TTG L(s)| TCG S | TAG Stop| TGG W | G
--+---------+---------+---------+---------+--
C | CTT L | CCT P | CAT H | CGT R | T

http://biopython.org/wiki/SeqIO

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.fasta
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk
http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/SeqIO

print second_record.id
print second_record.description

handle.close()

Note that if you try and use .next() and there are no more results, you’ll either get back the special
Python object None or a StopIteration exception.

You can of course still use a for loop with a list of SeqRecord objects. Using a list is much more flexible
than an iterator (for example, you can determine the number of records from the length of the list), but
does need more memory because it will hold all the records in memory at once.

4.1.4 Extracting data

The SeqRecord object and its annotation structures are described more fully in Section 13.1. For now, as an
example of how annotations are stored, we’ll look at the output from parsing the first record in the GenBank
file ls

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.fasta

You can check by hand, but for every record the species name is in the description line as the second
word. This means if we break up each record’s .description

This should give:

Z78533.1 JUEoWn6DPhgZ9nAyowsgtoD9TTo
Z78532.1 MN/s0q9zDoCVEEc+k/IFwCNF2pY
...
Z78439.1 H+JfaShya/4yyAj7IbMqgNkxdxQ

Now, recall the Bio.SeqIO.to_dict() function’s key_function

+"TGEGLEWGVLFGFGPGLTVETVVLHSVAT", generic_protein),
id="gi|13925890|gb|AAK49457.1|",
description="chalcone synthase [Nicotiana tabacum]")

my_records = [rec1, rec2, rec3]

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk

records = (make_rc_record(rec) for rec in SeqIO.parse(in_handle, "fasta") if len(rec)<700)

from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
from Bio.Alphabet import generic_protein

record = SeqRecord(Seq("MMYQQGCFAGGTVLRLAKDLAENNRGARVLVVCSEITAVTFRGPSETHLDSMVGQALFGD" \
+"GAGAVIVGSDPDLSVERPLYELVWTGATLLPDSEGAIDGHLREVGLTFHLLKDVPGLISK" \
+"NIEKSLKEAFTPLGISDWNSTFWIAHPGGPAILDQVEAKLGLKEEKMRATREVLSEYGNM" \
+"SSAC", generic_protein),

id="gi|14150838|gb|AAK54648.1|AF376133_1",
description="chalcone synthase [Cucumis sativus]")

print record.format("fasta")

which should give:

>gi|14150838|gb|AAK54648.1|AF376133_1 chalcone synthase [Cucumis sativus]
MMYQQGCFAGGTVLRLAKDLAENNRGARVLVVCSEITAVTFRGPSETHLDSMVGQALFGD
GAGAVIVGSDPDLSVERPLYELVWTGATLLPDSEGAIDGHLREVGLTFHLLKDVPGLISK
NIEKSLKEAFTPLGISDWNSTFWIAHPGGPAILDQVEAKLGLKEEKMRATREVLSEYGNM
SSAC

This format method takes a single mandatory argument, a lower case string which is supported by
Bio.SeqIO as an output format. However, some of the file formats Bio.SeqIO can write to

Chapter 5

Sequence Alignment Input/Output

In this chapter we’ll discuss the Bio.AlignIO module, which is very similar to the Bio.SeqIO module from
the previous chapter, but deals with

http://biopython.org/wiki/AlignIO

http://pfam.sanger.ac.uk/family/alignment/download/gzipped?acc=PF05371&alnType=seed
http://pfam.sanger.ac.uk/family/alignment/download/gzipped?acc=PF05371&alnType=seed

print "Alignment length %i" % alignment.get_alignment_length()
for record in alignment :

print "%s - %s" % (record.seq, record.id)

http://pfam.sanger.ac.uk/family?acc=PF05371

http://biopython.org/wiki/AlignIO
http://biopython.org/wiki/AlignIO

Epsilon CCCAAC

from Bio import AlignIO
alignments = list(AlignIO.parse(open("resampled.phy"), "phylip"))
last_align = alignments[-1]
first_align = alignments[0]

5.1.3 Ambiguous Alignments

Many alignment file formats can explicitly store more than one alignment, and the division between each
alignment is clear. However, when a general sequence file format has been used there is no such block
structure. The most common such situation is when alignments have been saved in the FASTA file format.
For example consider the following:

>Alpha
ACTACGACTAGCTCAG--G
>Beta
ACTACCGCTAGCTCAGAAG
>Gamma
ACTACGGCTAGCACAGAAG
>Alpha
ACTACGACTAGCTCAGG--
>Beta
ACTACCGCTAGCTCAGAAG
>Gamma
ACTACGGCTAGCACAGAAG

This could be a single alignment containing six sequences (with repeated identifiers). Or, judging from the

Chapter 6

BLAST

Hey, everybody loves BLAST right? I mean, geez, how can get it get any easier to do comparisons between
one of your sequences and every other sequence in the known world? But, of course, this section isn’t about
how cool BLAST is, since we already know that. It is about the problem with BLAST – it can be really
difficult to deal with the volume of data generated by large runs, and to automate BLAST runs in general.

Fortunately, the Biopython folks know this only too well, so they’ve developed lots of tools for dealing
with BLAST and making things much easier. This section details how to use these tools and do useful things
with them.

Dealing with BLAST can be split up into two steps, both of which can be done from within Biopython.

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/
ftp://ftp.ncbi.nlm.nih.gov/toolbox/
ftp://ftp.ncbi.nlm.nih.gov/blast/documents/formatdb.html
ftp://ftp.ncbi.nlm.nih.gov/blast/documents/formatdb.html

>>> my_blast_db = "/home/mdehoon/Data/Genomes/Databases/bsubtilis"
I used formatdb to create a BLAST database named bsubtilis
(for Bacillus subtilis) consisting of the following three files:
/home/mdehoon/Data/Genomes/Databases/bsubtilis.nhr
/home/mdehoon/Data/Genomes/Databases/bsubtilis.nin
/home/mdehoon/Data/Genomes/Databases/bsubtilis.nsq

file:examples/m_cold.fasta
http://biopython.org/DIST/docs/tutorial/examples/m_cold.fasta
http://www.ncbi.nlm.nih.gov/BLAST/blast_program.html
http://www.ncbi.nlm.nih.gov/BLAST/blast_program.html

http://www.ncbi.nlm.nih.gov/BLAST/blast_databases.html

6.3 Saving BLAST output

Before parsing the results, it is often useful to save them into a file so that you can use them later without
having to go back and re-blasting everything. I find this especially useful when debugging my code that
extracts info from the BLAST files, but it could also be useful just for making backups of things you’ve done.

>>> for blast_record in blast_records:
... # Do something with blast_record

Basically, you can do anything you want to with the info in the BLAST report once you have parsed it.

Figure 6.2: Class diagram for the PSIBlast Record class.

56

... print hsp.query[0:75] + ’...’

... print hsp.match[0:75] + ’...’

... print hsp.sbjct[0:75] + ’...’

If you also read the section 6.4 on parsing BLAST XML output, you’ll notice that the above code is
identical to what is found in that section. Once you parse something into a record class you can deal with
it independent of the format of the original BLAST info you were parsing. Pretty snazzy!

Sure, parsing one record is great, but I’ve got a BLAST file with tons of records – how can I parse them
all? Well, fear not, the answer lies in the very next section.

6.6.3 Finding a bad record somewhere in a huge file

– item[1] – The id of the input record that caused the error. This is really useful if you want to
record all of the records that are causing problems.

As mentioned, with each error generated, the BlastErrorParser will write the offending record to the
specified error_handle

http://www.ncbi.nlm.nih.gov/Entrez
http://www.ncbi.nlm.nih.gov/entrez/utils/
http://www.ncbi.nlm.nih.gov/entrez/utils/
http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html#UserSystemRequirements
http://eutils.ncbi.nlm.nih.gov

>>> record["DbInfo"]["Description"]
’PubMed bibliographic record’
>>> record["DbInfo"]["Count"]
’17989604’
>>> record["DbInfo"]["LastUpdate"]
’2008/05/24 06:45’

Try record["DbInfo"].keys()

http://www.ncbi.nlm.nih.gov/entrez/query/static/esearch_help.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/epost_help.html

http://www.ncbi.nlm.nih.gov/entrez/query/static/esummary_help.html

>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are

http://www.ncbi.nlm.nih.gov/entrez/query/static/efetchseq_help.html

http://www.ncbi.nlm.nih.gov/entrez/query/static/elink_help.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/egquery_help.html

>>> from Bio import Entrez

http://www.ncbi.nlm.nih.gov/entrez/query/static/espell_help.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/efetch_help.html

>>> record["PMID"]
’12230038’
>>> record["AB"]
’Bioinformatics research is often difficult to do with commercial software.
The Open Source BioPerl, BioPython and Biojava projects provide toolkits with
multiple functionality that make it easier to create customised pipelines or
analysis. This review briefly compares the quirks of the underlying languages
and the functionality, documentation, utility and relative advantages of the
Bio counterparts, particularly from the point of view of the beginning
biologist programmer.’

http://www.ncbi.nlm.nih.gov/PubMed/

http://www.ncbi.nlm.nih.gov/

>>> record["IdList"][0]
’158330’

Now, we use efetch to download this entry in the Taxonomy database, and then parse it:

>>> handle = Entrez.efetch(db="Taxonomy", id="158330", retmode="xml")
>>> records = Entrez.read(handle)

Again, this record stores lots of information:

>>> records[0].keys()
[u’Lineage’, u’Division’, u’ParentTaxId’, u’PubDate’, u’LineageEx’,
u’CreateDate’, u’TaxId’, u’Rank’, u’GeneticCode’, u’ScientificName’,
u’MitoGeneticCode’, u’UpdateDate’]

We can get the lineage directly from this record:

However, you also get given two additional pieces of information, the WebEnv session cookie, and the
QueryKey:

>>> webenv = search_results["WebEnv"]
>>> query_key = search_results["QueryKey"]

Having stored these values in variables

out_handle.write(data)
out_handle.close()

Chapter 8

Swiss-Prot, Prosite, Prodoc, and
ExPASy

8.1 Bio.SwissProt: Parsing Swiss-Prot files

Swiss-Prot (http://www.expasy.org/sprot

http://www.expasy.org/sprot

ftp://ftp.expasy.org/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.dat.gz

Or, using a for loop over the record iterator:

>>> from Bio import SwissProt
>>> descriptions = []
>>> handle = open("uniprot_sprot.dat")
>>> for record in SwissProt.parse(handle) :
... descriptions.append(record.description)
...
>>> len(descriptions)
290484

Because this is such a large input file, either way takes about seven minutes on my new desktop computer
(using the uncompressed uniprot_sprot.dat

The entries in this file can be parsed by the parse function in the Bio.SwissProt.KeyWList module.
Each entry is then stored as a

ftp://ftp.expasy.org/databases/prosite/prosite.dat

>>> record.accession
’PS00005’
>>> record.name
’PKC_PHOSPHO_SITE’
>>> record.pdoc
’PDOC00005’

http://www.expasy.org
http://www.expasy.org

sprot search ful To search for a Swiss-Prot record

sprot search de To search for a Swiss-Prot record

To access this web server from a Python script, we use the Bio.ExPASy module.

http://www.expasy.org/cgi-bin/sprot-search-de
http://www.expasy.org/cgi-bin/sprot-search-ful
http://www.expasy.org/cgi-bin/sprot-search-ful

>>> from Bio import ExPASy

>>> from Bio import ExPASy
>>> handle = ExPASy.get_prodoc_entry(’PDOC00001’)
>>> html = handle.read()
>>> output = open("myprodocrecord.html", "w")
>>> output.write(html)
>>> output.close()

For these functions, an invalid accession number returns an error message in HTML format.

85

Chapter 9

Going 3D: The PDB module

Biopython also allows you to explore the extensive realm of macromolecular structure. Biopython comes
with a PDBParser class that produces a Structure object. The Structure object can be used to access the
atomic data in the file in a convenient manner.

9.1 Structure representation

A macromolecular structure is represented using a structure, model chain, residue, atom (or SMCRA)

Figure 9.1: UML diagram of the SMCRA data structure used to represent a macromolecular structure.87

full_id=residue.get_full_id()

print full_id

residue name GLC) with sequence identifier 10 would have residue id (’’H GLC’’, 10, ’’ ’’)

9.2 Disorder

9.2.1 General approach

would have id “SER” in the DisorderedResidue object, while residue Cys 60 would have id “CYS”. The user
can select the active Residue object in a DisorderedResidue object via this id.

9.5.1.1 Duplicate residues

One structure contains two amino acid residues in one chain with the same sequence identifier (resseq 3)
and icode. Upon inspection it was found that this chain contains the residues Thr A3, . . . , Gly A202, Leu
A3, Glu A204. Clearly, Leu A3 should be Leu A203. A couple of similar situations exist for structure 1FFK
(which e.g. contains Gly B64, Met B65, Glu B65, Thr B67, i.e. residue Glu B65 should be Glu B66).

9.5.1.2 Duplicate atoms

Chapter 10

http://genepop.curtin.edu.au/

(’Other1’, [(1, 1), (4, 3), (200, 200)],
]

]

http://cmpg.unibe.ch/software/simcoal2/
http://cmpg.unibe.ch/software/simcoal2/

Figure 10.1: A bottleneck

Chapter 11

Supervised learning methods

11.1 The Logistic Regression Model

[15, -180.41],
[-26, -181.73],
[58, -259.87],
[126, -414.53],
[191, -249.57],
[113, -265.28],
[145, -312.99],
[154, -213.83],
[147, -380.85],
[93, -291.13]]

>>> ys = [1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
0,
0,
0,
0,
0,
0,
0]

>>> model = LogisticRegression.train(xs, ys)

Here, xs and ys are the training data: xs contains the predictor variables for each gene pair, and ys

11.2.2 Initializing a k

By default, all neighbors are given an equal weight.

Chapter 12

Cookbook – Cool things to do with it

12.1 Sequence parsing plus simple plots

This section shows some more examples of sequence parsing, using the Bio.SeqIO module described in
Chapter 4

http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.fasta

pylab.ylabel("Count")
pylab.show()

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.fasta

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.fasta

Figure 12.3: Nucleotide dot plot of two orchid sequence lengths (using pylab’s imshow function).

Figure 12.4: Nucleotide dot plot of two orchid sequence lengths (using pylab’s scatter function).

http://www-igbmc.u-strasbg.fr/BioInfo/ClustalX/Top.html
file:examples/opuntia.fasta
http://biopython.org/DIST/docs/tutorial/examples/opuntia.fasta

from Bio.Clustalw import MultipleAlignCL

cline = MultipleAlignCL(os.path.join(os.curdir, "opuntia.fasta"))
cline.set_output("test.aln")

First we import the MultipleAlignCL object, which models running a multiple alignment from clustalw.
We then initialize the command line, with a single argument of the fasta file that we are going to be using

12.2.4 Position Specific Score Matrices

Position specific score matrices (PSSMs) summarize the alignment information in a different way than a
consensus, and may be useful for different tasks. Basically, a PSSM is a count matrix. For each column in
the alignment, the number of each alphabet letters is counted and totaled. The totals are displayed relative
to some representative sequence along the left axis. This sequence may be the consesus sequence, but can
also be any sequence in the alignment. For instance for the alignment,

GTATC
AT--C
CTGTC

the PSSM is:

G A T C
G 1 1 0 1
T 0 0 3 0
A 1 1 0 0
T 0 0 2 0
C 0 0 0 3

Let’s assume we’ve got an alignment object called c_align. To get a PSSM with the consensus sequence
along the side we first get a summary object and calculate the consensus sequence:

summary_align = AlignInfo.SummaryInfo(c_align)
consensus = summary_align.dumb_consensus()

C 0.0 7.0 0.0 0.0
A 7.0 0.0 0.0 0.0
T 0.0 0.0 0.0 7.0
T 1.0 0.0 0.0 6.0
...

You can access any element of the PSSM by subscripting like your_pssm[sequence_number][residue_count_name].
For instance, to get the counts for the ’A’ residue in the second element of the above PSSM you would do:

>>> print my_pssm[1]["A"]
7.0

http://www.lecb.ncifcrf.gov/~toms/paper/primer/
http://www.lecb.ncifcrf.gov/~toms/paper/primer/

expect_freq = {

file:examples/protein.aln
http://biopython.org/DIST/docs/tutorial/examples/protein.aln

• exp_freq_table

http://www.biosql.org/
http://open-bio.org/
http://biopython.org/wiki/BioSQL
http://www.ebi.ac.uk/interpro/

• Function

•

>>> from Bio.Seq import Seq
>>> simple_seq = Seq("GATC")
>>> from Bio.SeqRecord import SeqRecord
>>> simple_seq_r = SeqRecord(simple_seq)

Additionally, you can also pass the id, name and description to the initialization function, but if not they
will be set as strings indicating they are unknown, and can be modified subsequently:

ref db – This works along with ref to provide a cross sequence reference. If there is a reference, ref_db
will be set as None if the reference is in the same database, and will be set to the name of the database
otherwise.

strand

I just mention this because sometimes I get confused between the two.

(e)

Chapter 14

Where to go from here – contributing

http://www.rpm.org

Macintosh – We would love to find someone who wants to maintain a Macintosh distribution, and make
it available in a Macintosh friendly format like bin-hex. This would basically include finding a way
to compile everything on the Mac, making sure all of the code written by us UNIX-based developers
works well on the Mac, and providing any Mac-friendly hints for us.

http://bugzilla.open-bio.org/
http://bugzilla.open-bio.org/
http://biopython.org/wiki/Contributing
http://biopython.org/wiki/Scriptcentral

file:examples/m_cold.fasta
http://biopython.org/DIST/docs/tutorial/examples/m_cold.fasta

	Introduction
	What is Biopython?
	What can I find in the Biopython package

	Installing Biopython
	FAQ

	Quick Start -- What can you do with Biopython?
	General overview of what Biopython provides
	Working with sequences
	A usage example
	Parsing sequence file formats
	Simple FASTA parsing example
	Simple GenBank parsing example
	I love parsing -- please don't stop talking about it!

	Connecting with biological databases
	What to do next

	Sequence objects
	Sequences and Alphabets
	Sequences act like strings
	Slicing a sequence
	Turning Seq objects into strings
	Concatenating or adding sequences
	Nucleotide sequences and (reverse) complements
	Transcription
	Translation
	Translation Tables
	MutableSeq objects
	Working with directly strings

	Sequence Input/Output
	Parsing or Reading Sequences
	Reading Sequence Files
	Iterating over the records in a sequence file
	Getting a list of the records in a sequence file
	Extracting data

	Parsing sequences from the net
	Parsing GenBank records from the net
	Parsing SwissProt sequences from the net

	Sequence files as Dictionaries
	Specifying the dictionary keys
	Indexing a dictionary using the SEGUID checksum

	Writing Sequence Files
	Converting between sequence file formats
	Converting a file of sequences to their reverse complements
	Getting your SeqRecord objects as formatted strings

	Sequence Alignment Input/Output
	Parsing or Reading Sequence Alignments
	Single Alignments
	Multiple Alignments
	Ambiguous Alignments

	Writing Alignments
	Converting between sequence alignment file formats
	Getting your Alignment objects as formatted strings

	BLAST
	Running BLAST locally
	Running BLAST over the Internet
	Saving BLAST output
	Parsing BLAST output
	The BLAST record class
	Deprecated BLAST parsers
	Parsing plain-text BLAST output
	Parsing a file full of BLAST runs
	Finding a bad record somewhere in a huge file

	Dealing with PSI-BLAST
	Dealing with RPS-BLAST

	Accessing NCBI's Entrez databases
	Entrez Guidelines
	EInfo: Obtaining information about the Entrez databases
	ESearch: Searching the Entrez databases
	EPost: Uploading a list of identifiers
	ESummary: Retrieving summaries from primary IDs
	EFetch: Downloading full records from Entrez
	ELink
	EGQuery: Obtaining counts for search terms
	ESpell: Obtaining spelling suggestions
	Specialized parsers
	Parsing Medline records

	Examples
	PubMed and Medline
	Searching, downloading, and parsing Entrez Nucleotide records
	Searching, downloading, and parsing GenBank records
	Finding the lineage of an organism

	Using the history and WebEnv
	Searching for and downloading sequences using the history
	Searching for and downloading abstracts using the history

	Swiss-Prot, Prosite, Prodoc, and ExPASy
	Bio.SwissProt: Parsing Swiss-Prot files
	Parsing Swiss-Prot records
	Parsing the Swiss-Prot keyword and category list

	Bio.Prosite: Parsing Prosite records
	Bio.Prosite.Prodoc: Parsing Prodoc records
	Bio.ExPASy: Accessing the ExPASy server
	Retrieving a Swiss-Prot record
	Searching Swiss-Prot
	Retrieving Prosite and Prodoc records

	Going 3D: The PDB module
	Structure representation
	Structure
	Model
	Chain
	Residue
	Atom

	Disorder
	General approach
	Disordered atoms
	Disordered residues

	Hetero residues
	Associated problems
	Water residues
	Other hetero residues

	Some random usage examples
	Common problems in PDB files
	Examples
	Automatic correction
	Fatal errors

	Other features

	Bio.PopGen: Population genetics
	GenePop
	Coalescent simulation
	Creating scenarios
	Running SIMCOAL2

	Other applications
	FDist: Detecting selection and molecular adaptation

	Future Developments

	Supervised learning methods
	The Logistic Regression Model
	Background and Purpose
	Training the logistic regression model
	Using the logistic regression model for classification
	Logistic Regression, Linear Discriminant Analysis, and Support Vector Machines

	k-Nearest Neighbors
	Background and purpose
	Initializing a k-nearest neighbors model
	Using a k-nearest neighbors model for classification

	Naïve Bayes
	Maximum Entropy
	Markov Models

	Cookbook -- Cool things to do with it
	Sequence parsing plus simple plots
	Histogram of sequence lengths
	Plot of sequence GC%
	Nucleotide dot plots

	Dealing with alignments
	Clustalw
	Calculating summary information
	Calculating a quick consensus sequence
	Position Specific Score Matrices
	Information Content
	Translating between Alignment formats

	Substitution Matrices
	Using common substitution matrices
	Creating your own substitution matrix from an alignment

	BioSQL -- storing sequences in a relational database
	InterPro

	Advanced
	The SeqRecord and SeqFeature classes
	Sequence IDs and Descriptions -- dealing with SeqRecords
	Features and Annotations -- SeqFeatures

	Regression Testing Framework
	Writing a Regression Test

	Parser Design
	Substitution Matrices
	SubsMat
	FreqTable

	Where to go from here -- contributing to Biopython
	Maintaining a distribution for a platform
	Bug Reports + Feature Requests
	Contributing Code

	Appendix: Useful stuff about Python
	What the heck is a handle?
	Creating a handle from a string

