N (variable)
NBaseProp.DoubleInduction.R [in Coq.Numbers.Natural.Abstract.NBase]
NBaseProp.DoubleInduction.R_wd [in Coq.Numbers.Natural.Abstract.NBase]
NBaseProp.PairInduction.A [in Coq.Numbers.Natural.Abstract.NBase]
NBaseProp.PairInduction.A_wd [in Coq.Numbers.Natural.Abstract.NBase]
NBaseProp.TwoDimensionalInduction.R [in Coq.Numbers.Natural.Abstract.NBase]
NBaseProp.TwoDimensionalInduction.R_wd [in Coq.Numbers.Natural.Abstract.NBase]
NOrderProp.RelElim.R [in Coq.Numbers.Natural.Abstract.NOrder]
NOrderProp.RelElim.R_wd [in Coq.Numbers.Natural.Abstract.NOrder]
NStrongRecProp.StrongRecursion.A [in Coq.Numbers.Natural.Abstract.NStrongRec]
NStrongRecProp.StrongRecursion.Aeq [in Coq.Numbers.Natural.Abstract.NStrongRec]
NStrongRecProp.StrongRecursion.Aeq_equiv [in Coq.Numbers.Natural.Abstract.NStrongRec]
NStrongRecProp.StrongRecursion.FixPoint.f [in Coq.Numbers.Natural.Abstract.NStrongRec]
NStrongRecProp.StrongRecursion.FixPoint.f_wd [in Coq.Numbers.Natural.Abstract.NStrongRec]
NStrongRecProp.StrongRecursion.FixPoint.step_good [in Coq.Numbers.Natural.Abstract.NStrongRec]
NTypeIsNAxioms.Induction.A [in Coq.Numbers.Natural.SpecViaZ.NSigNAxioms]
NTypeIsNAxioms.Induction.AS [in Coq.Numbers.Natural.SpecViaZ.NSigNAxioms]
NTypeIsNAxioms.Induction.A_wd [in Coq.Numbers.Natural.SpecViaZ.NSigNAxioms]
NTypeIsNAxioms.Induction.A0 [in Coq.Numbers.Natural.SpecViaZ.NSigNAxioms]
NTypeIsNAxioms.Induction.B [in Coq.Numbers.Natural.SpecViaZ.NSigNAxioms]
NZBaseProp.CentralInduction.A [in Coq.Numbers.NatInt.NZBase]
NZBaseProp.CentralInduction.A_wd [in Coq.Numbers.NatInt.NZBase]
NZCyclicAxiomsMod.Induction.A [in Coq.Numbers.Cyclic.Abstract.NZCyclic]
NZCyclicAxiomsMod.Induction.AS [in Coq.Numbers.Cyclic.Abstract.NZCyclic]
NZCyclicAxiomsMod.Induction.A_wd [in Coq.Numbers.Cyclic.Abstract.NZCyclic]
NZCyclicAxiomsMod.Induction.A0 [in Coq.Numbers.Cyclic.Abstract.NZCyclic]
NZCyclicAxiomsMod.Induction.B [in Coq.Numbers.Cyclic.Abstract.NZCyclic]
NZDomainProp.InitialDontExists.succ_onto [in Coq.Numbers.NatInt.NZDomain]
NZDomainProp.InitialExists.init [in Coq.Numbers.NatInt.NZDomain]
NZDomainProp.InitialExists.Initial [in Coq.Numbers.NatInt.NZDomain]
NZDomainProp.InitialExists.SuccPred.eq_decidable [in Coq.Numbers.NatInt.NZDomain]
NZOrderProp.Induction.A [in Coq.Numbers.NatInt.NZOrder]
NZOrderProp.Induction.A_wd [in Coq.Numbers.NatInt.NZOrder]
NZOrderProp.Induction.Center.LeftInduction.A' [in Coq.Numbers.NatInt.NZOrder]
NZOrderProp.Induction.Center.LeftInduction.left_step'' [in Coq.Numbers.NatInt.NZOrder]
NZOrderProp.Induction.Center.LeftInduction.left_step' [in Coq.Numbers.NatInt.NZOrder]
NZOrderProp.Induction.Center.LeftInduction.left_step [in Coq.Numbers.NatInt.NZOrder]
NZOrderProp.Induction.Center.RightInduction.A' [in Coq.Numbers.NatInt.NZOrder]
NZOrderProp.Induction.Center.RightInduction.right_step'' [in Coq.Numbers.NatInt.NZOrder]
NZOrderProp.Induction.Center.RightInduction.right_step' [in Coq.Numbers.NatInt.NZOrder]
NZOrderProp.Induction.Center.RightInduction.right_step [in Coq.Numbers.NatInt.NZOrder]
NZOrderProp.Induction.Center.z [in Coq.Numbers.NatInt.NZOrder]
NZOrderProp.WF.Rgt [in Coq.Numbers.NatInt.NZOrder]
NZOrderProp.WF.Rlt [in Coq.Numbers.NatInt.NZOrder]
NZOrderProp.WF.z [in Coq.Numbers.NatInt.NZOrder]