Z (notation)
_ === _ [in Coq.Numbers.Integer.Abstract.ZBits]
0 [in Coq.Numbers.NatInt.NZAxioms]
[+| _ |] [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
[-| _ |] [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
[| _ |] [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
[|| _ ||] [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
[| _ |] [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
[+| _ |] [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
[-| _ |] [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
[| _ |] [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
[|| _ ||] [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
_ <= _ (NScope) [in Coq.Numbers.Integer.NatPairs.ZNatPairs]
_ < _ (NScope) [in Coq.Numbers.Integer.NatPairs.ZNatPairs]
_ * _ (NScope) [in Coq.Numbers.Integer.NatPairs.ZNatPairs]
_ - _ (NScope) [in Coq.Numbers.Integer.NatPairs.ZNatPairs]
_ + _ (NScope) [in Coq.Numbers.Integer.NatPairs.ZNatPairs]
_ ~= _ (NScope) [in Coq.Numbers.Integer.NatPairs.ZNatPairs]
_ == _ (NScope) [in Coq.Numbers.Integer.NatPairs.ZNatPairs]
0 (NScope) [in Coq.Numbers.Integer.NatPairs.ZNatPairs]
1 (NScope) [in Coq.Numbers.Integer.NatPairs.ZNatPairs]
2 (NScope) [in Coq.Numbers.Integer.NatPairs.ZNatPairs]
_ <= _ (ZScope) [in Coq.Numbers.Integer.NatPairs.ZNatPairs]
_ < _ (ZScope) [in Coq.Numbers.Integer.NatPairs.ZNatPairs]
_ * _ (ZScope) [in Coq.Numbers.Integer.NatPairs.ZNatPairs]
_ - _ (ZScope) [in Coq.Numbers.Integer.NatPairs.ZNatPairs]
_ + _ (ZScope) [in Coq.Numbers.Integer.NatPairs.ZNatPairs]
_ ~= _ (ZScope) [in Coq.Numbers.Integer.NatPairs.ZNatPairs]
_ == _ (ZScope) [in Coq.Numbers.Integer.NatPairs.ZNatPairs]
- _ (ZScope) [in Coq.Numbers.Integer.NatPairs.ZNatPairs]
0 (ZScope) [in Coq.Numbers.Integer.NatPairs.ZNatPairs]
1 (ZScope) [in Coq.Numbers.Integer.NatPairs.ZNatPairs]
2 (ZScope) [in Coq.Numbers.Integer.NatPairs.ZNatPairs]
( _ | _ ) [in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
_ < _ [in Coq.Numbers.Integer.SpecViaZ.ZSig]
_ <= _ [in Coq.Numbers.Integer.SpecViaZ.ZSig]
- _ [in Coq.Numbers.Integer.SpecViaZ.ZSig]
_ ^ _ [in Coq.Numbers.Integer.SpecViaZ.ZSig]
_ * _ [in Coq.Numbers.Integer.SpecViaZ.ZSig]
_ - _ [in Coq.Numbers.Integer.SpecViaZ.ZSig]
_ + _ [in Coq.Numbers.Integer.SpecViaZ.ZSig]
2 [in Coq.Numbers.Integer.SpecViaZ.ZSig]
1 [in Coq.Numbers.Integer.SpecViaZ.ZSig]
0 [in Coq.Numbers.Integer.SpecViaZ.ZSig]
_ == _ [in Coq.Numbers.Integer.SpecViaZ.ZSig]
[ _ ] [in Coq.Numbers.Integer.SpecViaZ.ZSig]
[ _ ] [in Coq.Numbers.Integer.SpecViaZ.ZSig]
[[ _ ]] [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
[-| _ |] [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
[+| _ |] [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
[| _ |] [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
_ ÷ _ (Z_scope) [in Coq.ZArith.BinIntDef]
_ mod _ (Z_scope) [in Coq.ZArith.BinIntDef]
_ / _ (Z_scope) [in Coq.ZArith.BinIntDef]
_ >? _ (Z_scope) [in Coq.ZArith.BinIntDef]
_ >=? _ (Z_scope) [in Coq.ZArith.BinIntDef]
_ _ (Z_scope) [in Coq.ZArith.BinIntDef]
_ <=? _ (Z_scope) [in Coq.ZArith.BinIntDef]
_ =? _ (Z_scope) [in Coq.ZArith.BinIntDef]
_ ?= _ (Z_scope) [in Coq.ZArith.BinIntDef]
_ ^ _ (Z_scope) [in Coq.ZArith.BinIntDef]
_ * _ (Z_scope) [in Coq.ZArith.BinIntDef]
_ - _ (Z_scope) [in Coq.ZArith.BinIntDef]
- _ (Z_scope) [in Coq.ZArith.BinIntDef]
_ + _ (Z_scope) [in Coq.ZArith.BinIntDef]
_ < _ <= _ (Z_scope) [in Coq.ZArith.BinInt]
_ < _ < _ (Z_scope) [in Coq.ZArith.BinInt]
_ <= _ < _ (Z_scope) [in Coq.ZArith.BinInt]
_ <= _ <= _ (Z_scope) [in Coq.ZArith.BinInt]
_ > _ (Z_scope) [in Coq.ZArith.BinInt]
_ >= _ (Z_scope) [in Coq.ZArith.BinInt]
_ < _ (Z_scope) [in Coq.ZArith.BinInt]
_ <= _ (Z_scope) [in Coq.ZArith.BinInt]
( _ | _ ) [in Coq.ZArith.BinInt]