I (instance)
iff_inverse_impl_subrelation [in Coq.Classes.Morphisms]
iff_impl_subrelation [in Coq.Classes.Morphisms]
iff_setoid [in Coq.Classes.SetoidClass]
iff_iff_iff_impl_morphism [in Coq.Classes.Morphisms_Prop]
iff_equivalence [in Coq.Classes.RelationClasses]
iff_Transitive [in Coq.Classes.RelationClasses]
iff_Symmetric [in Coq.Classes.RelationClasses]
iff_Reflexive [in Coq.Classes.RelationClasses]
if_eqA [in Coq.Sorting.PermutSetoid]
impl_Transitive [in Coq.Classes.RelationClasses]
impl_Reflexive [in Coq.Classes.RelationClasses]
InA_compat [in Coq.Lists.SetoidList]
InfA_compat [in Coq.Lists.SetoidList]
int31_specs [in Coq.Numbers.Cyclic.Int31.Cyclic31]
int31_ops [in Coq.Numbers.Cyclic.Int31.Cyclic31]
IN.In_compat [in Coq.MSets.MSetInterface]
IsAddSubMul.add_wd [in Coq.Numbers.NatInt.NZAxioms]
IsAddSubMul.mul_wd [in Coq.Numbers.NatInt.NZAxioms]
IsAddSubMul.sub_wd [in Coq.Numbers.NatInt.NZAxioms]
IsEq.eq_equiv [in Coq.Structures.Equalities]
IsNZDomain.pred_wd [in Coq.Numbers.NatInt.NZAxioms]
IsNZDomain.succ_wd [in Coq.Numbers.NatInt.NZAxioms]
IsNZOrd.lt_wd [in Coq.Numbers.NatInt.NZAxioms]
IsOpp.opp_wd [in Coq.Numbers.Integer.Abstract.ZAxioms]
IsStrOrder.lt_compat [in Coq.Structures.Orders]
IsStrOrder.lt_strorder [in Coq.Structures.Orders]