


Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to specific pieces of
information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts set. The Liberation Fonts set is
also used in HTML editions if the set is installed on your system. If not, alternative but equivalent typefaces are displayed.
Note: Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These conventions, and the
circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight keys and key
combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current working directory, enter the 
cat my_next_bestselling_novel command at the shell prompt and press Enter to execute the
command.

The above includes a file name, a shell command and a key, all presented in mono-spaced bold and all distinguishable
thanks to context.

Key combinations can be distinguished from an individual key by the plus sign that connects each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to a virtual terminal.

The first example highlights a particular key to press. The second example highlights a key combination: a set of three
keys pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values mentioned within a
paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for directories. Each class
has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text; labeled buttons;
check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse  from the main menu bar to launch Mouse Preferences. In the
Buttons tab, click the Left-handed mouse check box and click Close to switch the primary mouse button
from the left to the right (making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories → Character Map from
the main menu bar. Next, choose Search → Find… from the Character Map menu bar, type the name of
the character in the Search field and click Next. The character you sought will be highlighted in the
Character Table. Double-click this highlighted character to place it in the Text to copy field and then
click the Copy button. Now switch back to your document and choose Edit → Paste  from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific menu names; and
buttons and text found within a GUI interface, all presented in proportional bold and all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or variable text. Italics
denotes text you do not input literally or displayed text that changes depending on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at a shell prompt. If the
remote machine is example.com and your username on that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file system. For example, to remount
the /home file system, the command is mount -o remount /home.

To see the version of a currently installed package, use the rpm -q package command. It will return a result
as follows: package-version-release.



Note the words in bold italics above — username, domain.name, file-system, package, version and release. Each word is a
placeholder, either for text you enter when issuing a command or for text displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and important term. For
example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books        Desktop   documentation  drafts  mss    photos   stuff  svn
books_tests  Desktop1  downloads      images  notes  scripts  svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
   public static void main(String args[]) 
       throws Exception
   {
      InitialContext iniCtx = new InitialContext();
      Object         ref    = iniCtx.lookup("EchoBean");
      EchoHome       home   = (EchoHome) ref;
      Echo           echo   = home.create();

      System.out.println("Created Echo");

      System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
   }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should have no negative
consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to the current session,
or services that need restarting before an update will apply. Ignoring a box labeled 'Important' will not cause data
loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual better, we would love
to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/bugzilla/ against the product systemtap.

When submitting a report, be sure to include the specific file or URL the report refers to and the manual's identifier:
SystemTap_Beginners_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when describing it. If you have
found an error, please include the section number and some of the surrounding text so we can find it easily.



Chapter 1. Introduction
SystemTap is a tracing and probing tool that allows users to study and monitor the activities of the computer system
(particularly, the kernel) in fine detail. It provides information similar to the output of tools like netstat, ps, top, and 
iostat; however, SystemTap is designed to provide more filtering and analysis options for collected information.

For system administrators, SystemTap can be used as a performance monitoring tool for Fedora. It is most useful when
other similar tools cannot precisely pinpoint a bottleneck in the system, requiring a deep analysis of kernel activity. In the
same manner, application developers can also use SystemTap to monitor, in finer detail, how their application behaves
within the Linux system.

1.1. Documentation Goals
SystemTap provides the infrastructure to monitor the running Linux kernel for detailed analysis. This can assist
administrators and developers in identifying the underlying cause of a bug or performance problem.

Without SystemTap, monitoring the activity of a running kernel would require a tedious instrument, recompile, install, and
reboot sequence. SystemTap is designed to eliminate this, allowing users to gather the same information by simply
running user-written SystemTap scripts.

However, SystemTap was initially designed for users with intermediate to advanced knowledge of the kernel. This makes
SystemTap less useful to administrators or developers with limited knowledge of and experience with the Linux kernel.
Moreover, much of the existing SystemTap documentation is similarly aimed at knowledgeable and experienced users.
This makes learning the tool similarly difficult.

To lower these barriers the SystemTap Beginners Guide was written with the following goals:

To introduce users to SystemTap, familiarize them with its architecture, and provide setup instructions.

To provide pre-written SystemTap scripts for monitoring detailed activity in different components of the system, along
with instructions on how to run them and analyze their output.

1.2. SystemTap Capabilities
SystemTap was originally developed to provide functionality for Fedora similar to previous Linux probing tools such as
dprobes and the Linux Trace Toolkit. SystemTap aims to supplement the existing suite of Linux monitoring tools by
providing users with the infrastructure to track kernel activity. In addition, SystemTap combines this capability with two
things:

Flexibility: SystemTap's framework allows users to develop simple scripts for investigating and monitoring a wide variety
of kernel functions, system calls, and other events that occur in kernel-space. With this, SystemTap is not so much a
tool as it is a system that allows you to develop your own kernel-specific forensic and monitoring tools.

Ease-Of-Use: as mentioned earlier, SystemTap allows users to probe kernel-space events without having to resort to
instrument, recompile, install, and reboot the kernel.

Most of the SystemTap scripts enumerated in Chapter 5, Useful SystemTap Scripts demonstrate system forensics and
monitoring capabilities not natively available with other similar tools (such as top, oprofile, or ps). These scripts are
provided to give readers extensive examples of the application of SystemTap, which in turn will educate them further on
the capabilities they can employ when writing their own SystemTap scripts.

Limitations

The current iteration of SystemTap allows for a multitude of options when probing kernel-space events for a wide range of
kernels. However, SystemTap's ability to probe user-space events is dependent on kernel support (the Utrace mechanism)
that is unavailable in many kernels. Thus, only some kernel versions support user-space probing. At present, the
developmental efforts of the SystemTap community are geared towards improving SystemTap's user-space probing
capabilities.



Chapter 2. Using SystemTap
This chapter instructs users how to install SystemTap, and provides an introduction on how to run SystemTap scripts.

2.1. Installation and Setup
To deploy SystemTap, you need to install the SystemTap packages along with the corresponding set of -devel, -
debuginfo and -debuginfo-common packages for your kernel. If your system has multiple kernels installed, and you
wish to use SystemTap on more than one kernel kernel, you will need to install the -devel and -debuginfo packages for
each of those kernel versions.

These procedures will be discussed in detail in the following sections.

Important

Many users confuse -debuginfo with -debug. Remember that the deployment of SystemTap requires the
installation of the -debuginfo package of the kernel, not the -debug version of the kernel.

2.1.1. Installing SystemTap
To deploy Systemtap, you will need to to install the following RPMs:

systemtap

systemtap-runtime

Assuming that yum is installed in the system, these two rpms can be installed with yum install systemtap systemtap-
runtime. Note that before you can use SystemTap, you will still need to install the required kernel information RPMs.

2.1.2. Installing Required Kernel Information RPMs
SystemTap needs information about the kernel in order to place instrumentation in it (i.e. probe it). This information also
allows SystemTap to generate the code for the instrumentation. This information is contained in the matching -devel, -
debuginfo, and -debuginfo-common packages for your kernel. The necessary -devel and -debuginfo packages for
the ordinary "vanilla" kernel are as follows:

kernel-debuginfo

kernel-debuginfo-common

kernel-devel

Likewise, the necessary packages for the PAE kernel would be kernel-PAE-debuginfo, kernel-PAE-debuginfo-
common, and kernel-PAE-devel.

To determine what kernel your system is currently using, use:

uname -r

For example, if you wish to use SystemTap on kernel version 2.6.18-53.el5 on an i686 machine, then you would need
to download and install the following RPMs:

kernel-debuginfo-2.6.18-53.1.13.el5.i686.rpm

kernel-debuginfo-common-2.6.18-53.1.13.el5.i686.rpm

kernel-devel-2.6.18-53.1.13.el5.i686.rpm

Important

The version, variant, and architecture of the -devel, -debuginfo and -debuginfo-common packages must match
the kernel you wish to probe with SystemTap exactly.

The easiest way to install the required kernel information packages is through yum install and debuginfo-install
commands. debuginfo-install is included with later versions of the yum-utils package (for example, version 1.1.10),
and also requires an appropriate yum repository from which to download and install -debuginfo/-debuginfo-common
packages. You can install the required -devel, -debuginfo, and -debuginfo-common packages for your kernel.

With the appropriate software repositories are enabled, install the corresponding packages for a specific kernel using yum
with the following commands:

yum install kernelname-devel-version

debuginfo-install kernelname-version

Replace kernelname with the appropriate kernel variant name (for example, kernel-PAE), and version with the target



kernel's version. For example, to install the required kernel information packages for the kernel-PAE-2.6.18-
53.1.13.el5 kernel, run:

yum install kernel-PAE-devel-2.6.18-53.1.13.el5

debuginfo-install kernel-PAE-2.6.18-53.1.13.el5

If you do not have yum and yum-utils installed (and you are unable to install them), you will have to manually download
and install the required kernel information packages. To generate the URL from which to download the required packages,
use the following script:

fedoradebugurl.sh

#! /bin/bash
echo -n "Enter nvr of kernel-debuginfo (e.g. 2.6.25-14.fc9.x86_64) " ; \
read NVR; \
BASE=`uname -m` ; \
NVR=`echo $NVR | sed s/.$BASE//` ; \
VERSION=`echo $NVR | awk -F- '{print $1}'` ; \
RELEASE=`echo $NVR | awk -F- '{print $2}'` ; \
echo "http://kojipkgs.fedoraproject.org/\
packages/kernel/$VERSION/$RELEASE/$BASE/"

Once you have manually downloaded the required packages to the machine, install the RPMs by running rpm --force -
ivh package_names.

2.1.3. Initial Testing
If you are currently using the kernel you wish to probe with SystemTap, you can immediately test whether the deployment
was successful. If not, you will need to reboot and load the appropriate kernel.

To start the test, run the command stap -v -e 'probe vfs.read {printf("read performed\n"); exit()}'. This
command simply instructs SystemTap to print read performed then exit properly once a virtual file system read is
detected. If the SystemTap deployment was successful, you should get output similar to the following:

Pass 1: parsed user script and 45 library script(s) in 340usr/0sys/358real ms.
Pass 2: analyzed script: 1 probe(s), 1 function(s), 0 embed(s), 0 global(s) in 
290usr/260sys/568real ms.
Pass 3: translated to C into "/tmp/stapiArgLX/stap_e5886fa50499994e6a87aacdc43cd392_399.c" in 
490usr/430sys/938real ms.
Pass 4: compiled C into "stap_e5886fa50499994e6a87aacdc43cd392_399.ko" in 
3310usr/430sys/3714real ms.
Pass 5: starting run.
read performed
Pass 5: run completed in 10usr/40sys/73real ms.

The last three lines of the output (i.e. beginning with Pass 5) indicate that SystemTap was able to successfully create the
instrumentation to probe the kernel, run the instrumentation, detect the event being probed (in this case, a virtual file
system read), and execute a valid handler (print text then close it with no errors).

2.2. Generating Instrumentation for Other Computers
When users run a SystemTap script, SystemTap builds a kernel module out of that script. SystemTap then loads the
module into the kernel, allowing it to extract the specified data directly from the kernel (refer to Procedure 3.1, “SystemTap
Session” in Section 3.1, “Architecture” for more information).

Normally, however, SystemTap scripts can only be run on systems where SystemTap is deployed (as in Section 2.1,
“Installation and Setup”). This could mean that if you want to run SystemTap on ten systems, you would need to deploy
SystemTap on all those systems. In some cases, this may be neither feasible nor desired. For instance, corporate policy
may prohibit an administrator from installing RPMs that provide compilers or debug information on specific machines,
which will prevent the deployment of SystemTap.

To work around this, you can resort to cross-instrumentation. Cross-instrumentation is the process of generating
SystemTap instrumentation module from a SystemTap script on one computer to be used on another computer. This
process offers the following benefits:

The kernel information packages for various machines can be installed on a single host machine.

Each target machine only needs one RPM to be installed to use the generated SystemTap instrumentation module: 
systemtap-runtime.



Note

For the sake of simplicity, we will be using the following terms throughout this section:

 instrumentation module — the kernel module built from a SystemTap script; i.e. the SystemTap module is built
on the host system, and will be loaded on the target kernel of target system.
 host system — the system on which you compile the instrumentation modules (from SystemTap scripts), to be
loaded on target systems.
 target system — the system for which you are building the instrumentation module (from SystemTap scripts).
 target kernel — the kernel of the target system. This is the kernel on which you wish to load/run the
instrumentation module.

Procedure 2.1. Configuring a Host System and Target Systems

1. Install the systemtap-runtime RPM on each target system.

2. Determine the kernel running on each target system by running uname -r on each target system.

3. Install SystemTap on the host system. You will be building the instrumentation module for the target systems on the
host system. For instructions on how to install SystemTap, refer to Section 2.1.1, “Installing SystemTap”.

4. Using the target kernel version determined earlier, install the target kernel and related RPMs on the host system by
the method described in Section 2.1.2, “Installing Required Kernel Information RPMs”. If multiple target systems use
different target kernels, you will need to repeat this step for each different kernel used on the target systems.

After performing Procedure 2.1, “Configuring a Host System and Target Systems”, you can now build the instrumentation
module (for any target system) on the host system.

To build the instrumentation module, run the following command on the host system (be sure to specify the appropriate
values):

stap -r kernel_version script -m module_name

Here, kernel_version refers to the version of the target kernel (the output of uname -r on the target machine), script
refers to the script to be converted into an instrumentation module, and module_name is the desired name of the
instrumentation module.

Note

To determine the architecture notation of a running kernel, run uname -m.

Once the instrumentation module is compiled, copy it to the target system and then load it using:

staprun module_name.ko

For example, to create the instrumentation module simple.ko from a SystemTap script named simple.stp for the target
kernel 2.6.18-92.1.10.el5 (on x86_64 architecture), use the following command:

stap -r 2.6.18-92.1.10.el5 -e 'probe vfs.read {exit()}' -m simple

This will create a module named simple.ko. To use the instrumentation module simple.ko, copy it to the target system
and run the following command (on the target system):

staprun simple.ko

Important

The host system must be the same architecture and running the same distribution of Linux as the target system in
order for the built instrumentation module to work.

2.3. Running SystemTap Scripts
SystemTap scripts are run through the command stap. stap can run SystemTap scripts from standard input or from file.

Running stap and staprun requires elevated privileges to the system. However, not all users can be granted root access
just to run SystemTap. In some cases, for instance, you may want to allow a non-privileged user to run SystemTap
instrumentation on his machine.

To allow ordinary users to run SystemTap without root access, add them to one of these user groups:

stapdev



Members of this group can use stap to run SystemTap scripts, or staprun to run SystemTap instrumentation
modules.

Running stap involves compiling SystemTap scripts into kernel modules and loading them into the kernel. This
requires elevated privileges to the system, which are granted to stapdev members. Unfortunately, such
privileges also grant effective root access to stapdev members. As such, you should only grant stapdev group
membership to users whom you can trust root access.

stapusr
Members of this group can only run staprun to run SystemTap instrumentation modules. In addition, they can
only run those modules from /lib/modules/kernel_version/systemtap/. Note that this directory must be
owned only by the root user, and must only be writable by the root user.

Below is a list of commonly used stap options:

-v
Makes the output of the SystemTap session more verbose. You can repeat this option (for example, stap -vvv 
script.stp) to provide more details on the script's execution. This option is particularly useful if you encounter
any errors in running the script.

For more information about common SystemTap script errors, refer to Chapter 6, Understanding SystemTap
Errors.

-o filename
Sends the standard output to file (filename).

-S size,count
Limit files to size megabytes and limit the number of files kept around to count. The file names will have a
sequence number suffix. This option implements logrotate operations for SystemTap.

-x process ID
Sets the SystemTap handler function target() to the specified process ID. For more information about 
target(), refer to SystemTap Functions.

-c 'command'
Sets the SystemTap handler function target() to the specified command and runs the SystemTap
instrumentation for the duration of the specified command. For more information about target(), refer to
SystemTap Functions.

-e 'script'
Use script string rather than a file as input for systemtap translator.

-F
Use SystemTap's Flight recorder mode and make the script a background process. For more information about
flight recorder mode, refer to Section 2.3.1, “SystemTap Flight Recorder Mode”.

You can also instruct stap to run scripts from standard input using the switch -. To illustrate:

Example 2.1. Running Scripts From Standard Input

echo "probe timer.s(1) {exit()}" | stap -

Example 2.1, “Running Scripts From Standard Input” instructs stap to run the script passed by echo to standard input.
Any stap options you wish to use should be inserted before the - switch; for instance, to make the example in
Example 2.1, “Running Scripts From Standard Input” more verbose, the command would be:

echo "probe timer.s(1) {exit()}" | stap -v -

For more information about stap, refer to man stap.

To run SystemTap instrumentation (i.e. the kernel module built from SystemTap scripts during a cross-instrumentation),
use staprun instead. For more information about staprun and cross-instrumentation, refer to Section 2.2, “Generating
Instrumentation for Other Computers”.



Note

The stap options -v and -o also work for staprun. For more information about staprun, refer to man staprun.

2.3.1. SystemTap Flight Recorder Mode
SystemTap's flight recorder mode allows you to run a SystemTap script run for long periods and just focus on recent
output. The flight recorder mode (the -F option) limits the amount of output generated. There are two variations of the
flight recorder mode: in-memory and file mode. In both cases the SystemTap script runs as a background process.

2.3.1.1. In-memory Flight Recorder
When flight recorder mode (the -F option) is used without a file name SystemTap uses a buffer in kernel memory to store
the output of the script. The SystemTap instrumentation module will load and the probes start running, the instrumentation
will then detach and be put in the background. When the interesting event occurs, you can reattach to the instrumentation
and see the recent output in the memory buffer and any continuing output. The following command starts a script using
the flight recorder in-memory mode:

stap -F iotime.stp

Once the script starts, you will see a message like the following that provides the command to reconnect to the running
script:

Disconnecting from systemtap module.
To reconnect, type "staprun -A stap_5dd0073edcb1f13f7565d8c343063e68_19556"

When the interesting event occurs, you reattach to the currently running script and output the recent data in the memory
buffer and get continuing output with the following command:

staprun -A stap_5dd0073edcb1f13f7565d8c343063e68_19556

By default the kernel buffer is 1MB in size and it can be increased with the -s option specifying the size in megabytes
(rounded up to the next power over 2) for the buffer. For example -s2 on the SystemTap command line would specify 2MB
for the buffer.

2.3.1.2. File Flight Recorder
The flight recorder mode can also store data to files. The number and size of the files kept is controlled by the -S option
followed by two numerical arguments separated by a comma. The first argument is the maximum size in megabytes for the
each output file. The second argument is the number of recent files to keep. The file name is specified by the -o option
followed by the name. SystemTap will add a number suffix to the file name to indicate the order of the files. The following
will start SystemTap in file flight recorder mode with the output going to files named /tmp/iotime.log.[0-9]+ and each
file 1MB or smaller and keeping latest two files:

stap -F -o /tmp/pfaults.log -S 1,2  pfaults.stp

The number printed by the command is the process ID. Sending a SIGTERM to the process will shutdown the SystemTap
script and stop the data collection. For example if the previous command listed the 7590 as the process ID, the following
command whould shutdown the systemtap script:

kill -s SIGTERM 7590

Only the most recent two file generated by the script are kept and the older files are been removed. Thus, ls -sh 
/tmp/pfaults.log.* shows the only two files:

1020K /tmp/pfaults.log.5    44K /tmp/pfaults.log.6

One can look at the highest number file for the latest data, in this case /tmp/pfaults.log.6.



Chapter 3. Understanding How SystemTap Works
SystemTap allows users to write and reuse simple scripts to deeply examine the activities of a running Linux system.
These scripts can be designed to extract data, filter it, and summarize it quickly (and safely), enabling the diagnosis of
complex performance (or even functional) problems.

The essential idea behind a SystemTap script is to name events, and to give them handlers. When SystemTap runs the
script, SystemTap monitors for the event; once the event occurs, the Linux kernel then runs the handler as a quick sub-
routine, then resumes.

There are several kind of events; entering/exiting a function, timer expiration, session termination, etc. A handler is a
series of script language statements that specify the work to be done whenever the event occurs. This work normally
includes extracting data from the event context, storing them into internal variables, and printing results.

3.1. Architecture
A SystemTap session begins when you run a SystemTap script. This session occurs in the following fashion:

Procedure 3.1. SystemTap Session

1. First, SystemTap checks the script against the existing tapset library (normally in 
/usr/share/systemtap/tapset/ for any tapsets used. SystemTap will then substitute any located tapsets with
their corresponding definitions in the tapset library.

2. SystemTap then translates the script to C, running the system C compiler to create a kernel module from it. The
tools that perform this step are contained in the systemtap package (refer to Section 2.1.1, “Installing SystemTap”
for more information).

3. SystemTap loads the module, then enables all the probes (events and handlers) in the script. The staprun in the 
systemtap-runtime package (refer to Section 2.1.1, “Installing SystemTap” for more information) provides this
functionality.

4. As the events occur, their corresponding handlers are executed.

5. Once the SystemTap session is terminated, the probes are disabled, and the kernel module is unloaded.

This sequence is driven from a single command-line program: stap. This program is SystemTap's main front-end tool. For
more information about stap, refer to man stap (once SystemTap is properly installed on your machine).

3.2. SystemTap Scripts
For the most part, SystemTap scripts are the foundation of each SystemTap session. SystemTap scripts instruct
SystemTap on what type of information to collect, and what to do once that information is collected.

As stated in Chapter 3, Understanding How SystemTap Works, SystemTap scripts are made up of two components:
events and handlers. Once a SystemTap session is underway, SystemTap monitors the operating system for the specified
events and executes the handlers as they occur.

Note

An event and its corresponding handler is collectively called a probe. A SystemTap script can have multiple probes.
A probe's handler is commonly referred to as a probe body.

In terms of application development, using events and handlers is similar to instrumenting the code by inserting diagnostic
print statements in a program's sequence of commands. These diagnostic print statements allow you to view a history of
commands executed once the program is run.

SystemTap scripts allow insertion of the instrumentation code without recompilation of the code and allows more flexibility
with regard to handlers. Events serve as the triggers for handlers to run; handlers can be specified to record specified
data and print it in a certain manner.

Format

SystemTap scripts use the file extension .stp, and contains probes written in the following format:

probe event {statements}

SystemTap supports multiple events per probe; multiple events are delimited by a comma (,). If multiple events are
specified in a single probe, SystemTap will execute the handler when any of the specified events occur.

Each probe has a corresponding statement block. This statement block is enclosed in braces ({ }) and contains the
statements to be executed per event. SystemTap executes these statements in sequence; special separators or
terminators are generally not necessary between multiple statements.



Note

Statement blocks in SystemTap scripts follow the same syntax and semantics as the C programming language. A
statement block can be nested within another statement block.

Systemtap allows you to write functions to factor out code to be used by a number of probes. Thus, rather than repeatedly
writing the same series of statements in multiple probes, you can just place the instructions in a function, as in:

function function_name(arguments) {statements}
probe event {function_name(arguments)}

The statements in function_name are executed when the probe for event executes. The arguments are optional
values passed into the function.

Important

Section 3.2, “SystemTap Scripts” is designed to introduce readers to the basics of SystemTap scripts. To
understand SystemTap scripts better, it is advisable that you refer to Chapter 5, Useful SystemTap Scripts; each
section therein provides a detailed explanation of the script, its events, handlers, and expected output.

3.2.1. Event
SystemTap events can be broadly classified into two types: synchronous and asynchronous.

Synchronous Events

A synchronous event occurs when any process executes an instruction at a particular location in kernel code. This gives
other events a reference point from which more contextual data may be available.

Examples of synchronous events include:

syscall.system_call
The entry to the system call system_call. If the exit from a syscall is desired, appending a .return to the event
monitor the exit of the system call instead. For example, to specify the entry and exit of the system call close, use
syscall.close and syscall.close.return respectively.

vfs.file_operation
The entry to the file_operation event for Virtual File System (VFS). Similar to syscall event, appending a 
.return to the event monitors the exit of the file_operation operation.

kernel.function("function")
The entry to the kernel function function. For example, kernel.function("sys_open") refers to the "event"
that occurs when the kernel function sys_open is called by any thread in the system. To specify the return of the
kernel function sys_open, append the return string to the event statement; i.e. 
kernel.function("sys_open").return.

When defining probe events, you can use asterisk (*) for wildcards. You can also trace the entry or exit of a
function in a kernel source file. Consider the following example:

Example 3.1. wildcards.stp

probe kernel.function("*@net/socket.c") { }
probe kernel.function("*@net/socket.c").return { }

In the previous example, the first probe's event specifies the entry of ALL functions in the kernel source file 
net/socket.c. The second probe specifies the exit of all those functions. Note that in this example, there are no
statements in the handler; as such, no information will be collected or displayed.

kernel.trace("tracepoint")
The static probe for tracepoint. Recent kernels (2.6.30 and newer) include instrumentation for specific events
in the kernel. These events are statically marked with tracepoints. One example of a tracepoint available in
systemtap is kernel.trace("kfree_skb") which indicates each time a network buffer is freed in the kernel.

module("module").function("function")
Allows you to probe functions within modules. For example:



Example 3.2. moduleprobe.stp

probe module("ext3").function("*") { }
probe module("ext3").function("*").return { }

The first probe in Example 3.2, “moduleprobe.stp” points to the entry of all functions for the ext3 module. The
second probe points to the exits of all functions for that same module; the use of the .return suffix is similar to 
kernel.function(). Note that the probes in Example 3.2, “moduleprobe.stp” do not contain statements in the
probe handlers, and as such will not print any useful data (as in Example 3.1, “wildcards.stp”).

A system's kernel modules are typically located in /lib/modules/kernel_version, where kernel_version
refers to the currently loaded kernel version. Modules use the file name extension .ko.

Asynchronous Events

Asynchronous events are not tied to a particular instruction or location in code. This family of probe points consists mainly
of counters, timers, and similar constructs.

Examples of asynchronous events include:

begin
The startup of a SystemTap session; i.e. as soon as the SystemTap script is run.

end
The end of a SystemTap session.

timer events
An event that specifies a handler to be executed periodically. For example:

Example 3.3. timer-s.stp

probe timer.s(4)
{
  printf("hello world\n")
}

Example 3.3, “timer-s.stp” is an example of a probe that prints hello world every 4 seconds. Note that you can
also use the following timer events:

timer.ms(milliseconds)

timer.us(microseconds)

timer.ns(nanoseconds)

timer.hz(hertz)

timer.jiffies(jiffies)

When used in conjunction with other probes that collect information, timer events allows you to print out get
periodic updates and see how that information changes over time.

Important

SystemTap supports the use of a large collection of probe events. For more information about supported events,
refer to man stapprobes. The SEE ALSO section of man stapprobes also contains links to other man pages that
discuss supported events for specific subsystems and components.

3.2.2. Systemtap Handler/Body
Consider the following sample script:



Example 3.4. helloworld.stp

probe begin
{
  printf ("hello world\n")
  exit ()
}

In Example 3.4, “helloworld.stp”, the event begin (i.e. the start of the session) triggers the handler enclosed in { }, which
simply prints hello world followed by a new-line, then exits.

Note

SystemTap scripts continue to run until the exit() function executes. If the users wants to stop the execution of
the script, it can interrupted manually with Ctrl+C.

printf ( ) Statements

The printf () statement is one of the simplest functions for printing data. printf () can also be used to display data
using a wide variety of SystemTap functions in the following format:

  printf ("format string\n", arguments)

The format string specifies how arguments should be printed. The format string of Example 3.4, “helloworld.stp”
simply instructs SystemTap to print hello world, and contains no format specifiers.

You can use the format specifiers %s (for strings) and %d (for numbers) in format strings, depending on your list of
arguments. Format strings can have multiple format specifiers, each matching a corresponding argument; multiple
arguments are delimited by a comma (,).

Note

Semantically, the SystemTap printf function is very similar to its C language counterpart. The aforementioned
syntax and format for SystemTap's printf function is identical to that of the C-style printf.

To illustrate this, consider the following probe example:

Example 3.5. variables-in-printf-statements.stp

probe syscall.open
{
  printf ("%s(%d) open\n", execname(), pid())
}

Example 3.5, “variables-in-printf-statements.stp” instructs SystemTap to probe all entries to the system call open; for each
event, it prints the current execname() (a string with the executable name) and pid() (the current process ID number),
followed by the word open. A snippet of this probe's output would look like:

vmware-guestd(2206) open
hald(2360) open
hald(2360) open
hald(2360) open
df(3433) open
df(3433) open
df(3433) open
hald(2360) open

SystemTap Functions

SystemTap supports a wide variety of functions that can be used as printf () arguments. Example 3.5, “variables-in-
printf-statements.stp” uses the SystemTap functions execname() (name of the process that called a kernel
function/performed a system call) and pid() (current process ID).

The following is a list of commonly-used SystemTap functions:

tid()
The ID of the current thread.



uid()
The ID of the current user.

cpu()
The current CPU number.

gettimeofday_s()
The number of seconds since UNIX epoch (January 1, 1970).

ctime()
Convert number of seconds since UNIX epoch to date.

pp()
A string describing the probe point currently being handled.

thread_indent()
This particular function is quite useful, providing you with a way to better organize your print results. The function
takes one argument, an indentation delta, which indicates how many spaces to add or remove from a thread's
"indentation counter". It then returns a string with some generic trace data along with an appropriate number of
indentation spaces.

The generic data included in the returned string includes a timestamp (number of microseconds since the first call
to thread_indent() by the thread), a process name, and the thread ID. This allows you to identify what
functions were called, who called them, and the duration of each function call.

If call entries and exits immediately precede each other, it is easy to match them. However, in most cases, after a
first function call entry is made several other call entries and exits may be made before the first call exits. The
indentation counter helps you match an entry with its corresponding exit by indenting the next function call if it is
not the exit of the previous one.

Consider the following example on the use of thread_indent():

Example 3.6. thread_indent.stp

probe kernel.function("*@net/socket.c").call
{
  printf ("%s -> %s\n", thread_indent(1), probefunc())
}
probe kernel.function("*@net/socket.c").return
{
  printf ("%s <- %s\n", thread_indent(-1), probefunc())
}

Example 3.6, “thread_indent.stp” prints out the thread_indent() and probe functions at each event in the
following format:

0 ftp(7223): -> sys_socketcall
1159 ftp(7223):  -> sys_socket
2173 ftp(7223):   -> __sock_create
2286 ftp(7223):    -> sock_alloc_inode
2737 ftp(7223):    <- sock_alloc_inode
3349 ftp(7223):    -> sock_alloc
3389 ftp(7223):    <- sock_alloc
3417 ftp(7223):   <- __sock_create
4117 ftp(7223):   -> sock_create
4160 ftp(7223):   <- sock_create
4301 ftp(7223):   -> sock_map_fd
4644 ftp(7223):    -> sock_map_file
4699 ftp(7223):    <- sock_map_file
4715 ftp(7223):   <- sock_map_fd
4732 ftp(7223):  <- sys_socket
4775 ftp(7223): <- sys_socketcall

This sample output contains the following information:

The time (in microseconds) since the initial thread_indent() call for the thread (included in the string from 
thread_indent()).

The process name (and its corresponding ID) that made the function call (included in the string from 
thread_indent()).

An arrow signifying whether the call was an entry (<-) or an exit (->); the indentations help you match specific



function call entries with their corresponding exits.

The name of the function called by the process.

name
Identifies the name of a specific system call. This variable can only be used in probes that use the event 
syscall.system_call.

target()
Used in conjunction with stap script -x process ID or stap script -c command. If you want to specify a
script to take an argument of a process ID or command, use target() as the variable in the script to refer to it.
For example:

Example 3.7. targetexample.stp

probe syscall.* {
  if (pid() == target())
    printf("%s\n", name)
}

When Example 3.7, “targetexample.stp” is run with the argument -x process ID, it watches all system calls (as
specified by the event syscall.*) and prints out the name of all system calls made by the specified process.

This has the same effect as specifying if (pid() == process ID) each time you wish to target a specific
process. However, using target() makes it easier for you to re-use the script, giving you the ability to simply
pass a process ID as an argument each time you wish to run the script (e.g. stap targetexample.stp -x 
process ID).

For more information about supported SystemTap functions, refer to man stapfuncs.

3.3. Basic SystemTap Handler Constructs
SystemTap supports the use of several basic constructs in handlers. The syntax for most of these handler constructs are
mostly based on C and awk syntax. This section describes several of the most useful SystemTap handler constructs,
which should provide you with enough information to write simple yet useful SystemTap scripts.

3.3.1. Variables
Variables can be used freely throughout a handler; simply choose a name, assign a value from a function or expression to
it, and use it in an expression. SystemTap automatically identifies whether a variable should be typed as a string or
integer, based on the type of the values assigned to it. For instance, if you use set the variable foo to 
gettimeofday_s() (as in foo = gettimeofday_s()), then foo is typed as a number and can be printed in a printf()
with the integer format specifier (%d).

Note, however, that by default variables are only local to the probe they are used in. This means that variables are
initialized, used and disposed at each probe handler invocation. To share a variable between probes, declare the variable
name using global outside of the probes. Consider the following example:

Example 3.8. timer-jiffies.stp

global count_jiffies, count_ms
probe timer.jiffies(100) { count_jiffies ++ }
probe timer.ms(100) { count_ms ++ }
probe timer.ms(12345)
{
  hz=(1000*count_jiffies) / count_ms
  printf ("jiffies:ms ratio %d:%d => CONFIG_HZ=%d\n",
    count_jiffies, count_ms, hz)
  exit ()
}

Example 3.8, “timer-jiffies.stp” computes the CONFIG_HZ setting of the kernel using timers that count jiffies and
milliseconds, then computing accordingly. The global statement allows the script to use the variables count_jiffies
and count_ms (set in their own respective probes) to be shared with probe timer.ms(12345).



Note

The ++ notation in Example 3.8, “timer-jiffies.stp” (i.e. count_jiffies ++ and count_ms ++) is used to increment
the value of a variable by 1. In the following probe, count_jiffies is incremented by 1 every 100 jiffies:

probe timer.jiffies(100) { count_jiffies ++ }

In this instance, SystemTap understands that count_jiffies is an integer. Because no initial value was assigned
to count_jiffies, its initial value is zero by default.

3.3.2. Target Variables
The probe events that map to actual locations in the code (for example kernel.function("function") and 
kernel.statement("statement")) allow the use of target variables to obtain the value of variables visible at that
location in the code. You can use the -L option to list the target variable available at a probe point. If the debug
information is installed for the running kernel, you can run the following command to find out what target variables are
available for the vfs_read function:

stap -L 'kernel.function("vfs_read")'

This will yield something similar to the following:

kernel.function("vfs_read@fs/read_write.c:277") $file:struct file* $buf:char* $count:size_t 
$pos:loff_t*

Each target variable is proceeded by a “$” and the type of the target variable follows the “:”. The kernel's vfs_read
function has $file (pointer to structure describing the file), $buf (pointer to the user-space memory to store the read
data), $count (number of bytes to read), and $pos (position to start reading from in the file) target variables at the entry
to the function.

When a target variable is not local to the probe point, like a global external variable or a file local static variable defined in
another file then it can be referenced through “@var("varname@src/file.c")”.

SystemTap tracks the typing information of the target variable and can examine the fields of a structure with the ->
operator. The -> operator can be chained to look at data structures contained within data structures and follow pointers to
other data structures. The -> operator will obtain the value in the field of the structure. The -> operator is used regardless
whether accessing a field in a substructure or accessing another structure through a pointer.

For example to access a field of the static files_stat target variable defined in fs/file_table.c (which holds some of the
current file system sysctl tunables), one could write:

stap -e 'probe kernel.function("vfs_read") {
           printf ("current files_stat max_files: %d\n",
                   @var("files_stat@fs/file_table.c")->max_files);
           exit(); }'

Which will yield something similar to the following:

current files_stat max_files: 386070

For pointers to base types such as integers and strings there are a number of functions listed below to access kernel-
space data. The first argument for each functions is the pointer to the data item. Similar functions are described in
Section 4.2, “Accessing User-Space Target Variables” for accessing target variables in user-space code.

kernel_char(address)
Obtain the character at address from kernel memory.

kernel_short(address)
Obtain the short at address from kernel memory.

kernel_int(address)
Obtain the int at address from kernel memory.

kernel_long(address)
Obtain the long at address from kernel memory

kernel_string(address)
Obtain the string at address from kernel memory.



kernel_string_n(address, n)
Obtain the string at address from the kernel memory and limits the string to n bytes.

3.3.2.1. Pretty Printing Target Variables
SystemTap scripts are often used to observe what is happening within the code. In many cases just printing the values of
the various context variables is sufficient. SystemTap makes a number operations available that can generate printable
strings for target variables:

$$vars
Expands to a character string that is equivalent to sprintf("parm1=%x ... parmN=%x var1=%x ... 
varN=%x", parm1, ..., parmN, var1, ..., varN) for each variable in scope at the probe point. Some
values may be printed as “=?” if their run-time location cannot be found.

$$locals
Expands to a subset of $$vars containing only the local variables.

$$parms
Expands to a subset of $$vars containing only the function parameters.

$$return
Is available in return probes only. It expands to a string that is equivalent to sprintf("return=%x", $return)
if the probed function has a return value, or else an empty string.

Below is a command-line script that prints the values of the parameters passed into the function vfs_read:

stap -e 'probe kernel.function("vfs_read") {printf("%s\n", $$parms); exit(); }'

There are four parameters passed into vfs_read: file, buf, count, and pos. The $$parms generates a string for the
parameters passed into the function. In this case all but the count parameter are pointers. The following is an example of
the output from the previous command-line script:

file=0xffff8800b40d4c80 buf=0x7fff634403e0 count=0x2004 pos=0xffff8800af96df48

Having the address a pointer points to may not be useful. You might be more interested in the fields of the data structure
the pointer points to. You can use the “$” suffix to pretty print the data structure. The following command-line example
uses the pretty printing suffix to print more details about the data structures passed into the function vfs_read:

stap -e 'probe kernel.function("vfs_read") {printf("%s\n", $$parms$); exit(); }'

The previous command line will generate something similar to the following with the fields of the data structure included in
the output:

file={.f_u={...}, .f_path={...}, .f_op=0xffffffffa06e1d80, .f_lock={...}, .f_count={...}, 
.f_flags=34818, .f_mode=31, .f_pos=0, .f_owner={...}, .f_cred=0xffff88013148fc80, .f_ra=
{...}, .f_version=0, .f_security=0xffff8800b8dce560, .private_data=0x0, .f_ep_links={...}, 
.f_mapping=0xffff880037f8fdf8} buf="" count=8196 pos=-131938753921208

With the “$” suffix fields that are composed of data structures are not expanded. The “$$” suffix will print the values
contained within the nested data structures. Below is an example using the “$$” suffix:

stap -e 'probe kernel.function("vfs_read") {printf("%s\n", $$parms$$); exit(); }'

The “$$” suffix, like all strings, is limited to the maximum string size. Below is a represenative output from the previous
command-line script, which is truncated because of the string size limit:

file={.f_u={.fu_list={.next=0xffff8801336ca0e8, .prev=0xffff88012ded0840}, .fu_rcuhead=
{.next=0xffff8801336ca0e8, .func=0xffff88012ded0840}}, .f_path={.mnt=0xffff880132fc97c0, 
.dentry=0xffff88001a889cc0}, .f_op=0xffffffffa06f64c0, .f_lock={.raw_lock={.slock=196611}}, 
.f_count={.counter=2}, .f_flags=34818, .f_mode=31, .f_pos=0, .f_owner={.lock={.raw_lock=
{.lock=16777216}}, .pid=0x0, .pid_type=0, .uid=0, .euid=0, .signum=0}, 
.f_cred=0xffff880130129a80, .f_ra={.start=0, .size=0, .async_size=0, .ra_pages=32, .

3.3.2.2. Typecasting
In most cases SystemTap can determine a variable's type from the debug information. However, code may use void
pointers for variables (for example memory allocation routines) and typing information is not available. Also the typing



information available within a probe handler is not available within a function; SystemTap functions arguments use a long
in place of a typed pointer. SystemTap's @cast operator (first available in SystemTap 0.9) can be used to indicate the
correct type of the object.

The Example 3.9, “Casting Example” is from the task.stp tapset. The function returns the value of the state field from a 
task_struct pointed to by the long task. The first argument of the @cast operator, task, is the pointer to the object.
The second argument is the type to cast the object to, task_struct. The third arument lists what file that the type
definition information comes from and is optional. With the @cast operator the various fields of this particular 
task_struct task can be accessed; in this example the state field is obtained.

Example 3.9. Casting Example

function task_state:long (task:long)
{
    return @cast(task, "task_struct", "kernel<linux/sched.h>")->state
}

3.3.2.3. Checking Target Variable Availablility
As code evolves the target variables available may change. The @defined makes it easier to handle those variations in
the available target variables. The @defined provides a test to see if a particular target variable is available. The result of
this test can be used to select the appropriate expression.

The Example 3.10, “Testing target variable available Example” from the memory.stp tapset provides an probe event alias.
Some version of the kernel functions being probed have an argument $flags. When available, the $flags argument is
used to generate the local variable write_access. The versions of the probed functions that do not have the $flags
argument have a $write argument and that is used instead for the local variable write_access.

Example 3.10. Testing target variable available Example

probe vm.pagefault = kernel.function("__handle_mm_fault@mm/memory.c") ?,
                     kernel.function("handle_mm_fault@mm/memory.c") ?
{
        name = "pagefault"
        write_access = (@defined($flags)
   ? $flags & FAULT_FLAG_WRITE : $write_access)
 address =  $address
}

3.3.3. Conditional Statements
In some cases, the output of a SystemTap script may be too big. To address this, you need to further refine the script's
logic in order to delimit the output into something more relevant or useful to your probe.

You can do this by using conditionals in handlers. SystemTap accepts the following types of conditional statements:

If/Else Statements
Format:

if (condition)
  statement1
else
  statement2

The statement1 is executed if the condition expression is non-zero. The statement2 is executed if the 
condition expression is zero. The else clause (else statement2) is optional. Both statement1 and 
statement2 can be statement blocks.



Example 3.11. ifelse.stp

global countread, countnonread
probe kernel.function("vfs_read"),kernel.function("vfs_write")
{
  if (probefunc()=="vfs_read")
    countread ++
  else
    countnonread ++
}
probe timer.s(5) { exit() }
probe end
{
  printf("VFS reads total %d\n VFS writes total %d\n", countread, countnonread)
}

Example 3.11, “ifelse.stp” is a script that counts how many virtual file system reads (vfs_read) and writes
(vfs_write) the system performs within a 5-second span. When run, the script increments the value of the
variable countread by 1 if the name of the function it probed matches vfs_read (as noted by the condition if 
(probefunc()=="vfs_read")); otherwise, it increments countnonread (else {countnonread ++}).

While Loops
Format:

while (condition)
  statement

So long as condition is non-zero the block of statements in statement are executed. The statement is often
a statement block and it must change a value so condition will eventually be zero.

For Loops
Format:

for (initialization; conditional; increment) statement

The for loop is simply shorthand for a while loop. The following is the equivalent while loop:

initialization
while (conditional) {
   statement
   increment
}

Conditional Operators

Aside from == ("is equal to"), you can also use the following operators in your conditional statements:

>=
Greater than or equal to

<=
Less than or equal to

!=
Is not equal to

3.3.4. Command-Line Arguments
You can also allow a SystemTap script to accept simple command-line arguments using a $ or @ immediately followed by
the number of the argument on the command line. Use $ if you are expecting the user to enter an integer as a command-
line argument, and @ if you are expecting a string.

Example 3.12. commandlineargs.stp

probe kernel.function(@1) { }
probe kernel.function(@1).return { }



Example 3.12, “commandlineargs.stp” is similar to Example 3.1, “wildcards.stp”, except that it allows you to pass the kernel
function to be probed as a command-line argument (as in stap commandlineargs.stp kernel function). You can
also specify the script to accept multiple command-line arguments, noting them as @1, @2, and so on, in the order they are
entered by the user.

3.4. Associative Arrays
SystemTap also supports the use of associative arrays. While an ordinary variable represents a single value, associative
arrays can represent a collection of values. Simply put, an associative array is a collection of unique keys; each key in the
array has a value associated with it.

Since associative arrays are normally processed in multiple probes (as we will demonstrate later), they should be declared
as global variables in the SystemTap script. The syntax for accessing an element in an associative array is similar to that
of awk, and is as follows:

array_name[index_expression]

Here, the array_name is any arbitrary name the array uses. The index_expression is used to refer to a specific unique
key in the array. To illustrate, let us try to build an array named foo that specifies the ages of three people (i.e. the unique
keys): tom, dick, and harry. To assign them the ages (i.e. associated values) of 23, 24, and 25 respectively, we'd use
the following array statements:

Example 3.13. Basic Array Statements

foo["tom"] = 23
foo["dick"] = 24
foo["harry"] = 25

You can specify up to nine index expressions in an array statement, each one delimited by a comma (,). This is useful if
you wish to have a key that contains multiple pieces of information. The following line from disktop.stp uses 5 elements for
the key: process ID, executable name, user ID, parent process ID, and string "W". It associates the value of devname with
that key.

device[pid(),execname(),uid(),ppid(),"W"] = devname

Important

All associate arrays must be declared as global, regardless of whether the associate array is used in one or
multiple probes.

3.5. Array Operations in SystemTap
This section enumerates some of the most commonly used array operations in SystemTap.

3.5.1. Assigning an Associated Value
Use = to set an associated value to indexed unique pairs, as in:

array_name[index_expression] = value

Example 3.13, “Basic Array Statements” shows a very basic example of how to set an explicit associated value to a unique
key. You can also use a handler function as both your index_expression and value. For example, you can use arrays
to set a timestamp as the associated value to a process name (which you wish to use as your unique key), as in:

Example 3.14. Associating Timestamps to Process Names

foo[tid()] = gettimeofday_s()

Whenever an event invokes the statement in Example 3.14, “Associating Timestamps to Process Names”, SystemTap
returns the appropriate tid() value (i.e. the ID of a thread, which is then used as the unique key). At the same time,
SystemTap also uses the function gettimeofday_s() to set the corresponding timestamp as the associated value to the
unique key defined by the function tid(). This creates an array composed of key pairs containing thread IDs and
timestamps.

In this same example, if tid() returns a value that is already defined in the array foo, the operator will discard the original
associated value to it, and replace it with the current timestamp from gettimeofday_s().



3.5.2. Reading Values From Arrays
You can also read values from an array the same way you would read the value of a variable. To do so, include the 
array_name[index_expression] statement as an element in a mathematical expression. For example:

Example 3.15. Using Array Values in Simple Computations

delta = gettimeofday_s() - foo[tid()]

This example assumes that the array foo was built using the construct in Example 3.14, “Associating Timestamps to
Process Names” (from Section 3.5.1, “Assigning an Associated Value”). This sets a timestamp that will serve as a
reference point, to be used in computing for delta.

The construct in Example 3.15, “Using Array Values in Simple Computations” computes a value for the variable delta by
subtracting the associated value of the key tid() from the current gettimeofday_s(). The construct does this by
reading the value of tid() from the array. This particular construct is useful for determining the time between two events,
such as the start and completion of a read operation.

Note

If the index_expression cannot find the unique key, it returns a value of 0 (for numerical operations, such as
Example 3.15, “Using Array Values in Simple Computations”) or a null/empty string value (for string operations) by
default.

3.5.3. Incrementing Associated Values
Use ++ to increment the associated value of a unique key in an array, as in:

array_name[index_expression] ++

Again, you can also use a handler function for your index_expression. For example, if you wanted to tally how many
times a specific process performed a read to the virtual file system (using the event vfs.read), you can use the following
probe:

Example 3.16. vfsreads.stp

probe vfs.read
{
  reads[execname()] ++
}

In Example 3.16, “vfsreads.stp”, the first time that the probe returns the process name gnome-terminal (i.e. the first time 
gnome-terminal performs a VFS read), that process name is set as the unique key gnome-terminal with an associated
value of 1. The next time that the probe returns the process name gnome-terminal, SystemTap increments the
associated value of gnome-terminal by 1. SystemTap performs this operation for all process names as the probe returns
them.

3.5.4. Processing Multiple Elements in an Array
Once you've collected enough information in an array, you will need to retrieve and process all elements in that array to
make it useful. Consider Example 3.16, “vfsreads.stp”: the script collects information about how many VFS reads each
process performs, but does not specify what to do with it. The obvious means for making Example 3.16, “vfsreads.stp”
useful is to print the key pairs in the array reads, but how?

The best way to process all key pairs in an array (as an iteration) is to use the foreach statement. Consider the following
example:

Example 3.17. cumulative-vfsreads.stp

global reads
probe vfs.read
{
  reads[execname()] ++
}
probe timer.s(3)
{
  foreach (count in reads)
    printf("%s : %d \n", count, reads[count])
}



In the second probe of Example 3.17, “cumulative-vfsreads.stp”, the foreach statement uses the variable count to
reference each iteration of a unique key in the array reads. The reads[count] array statement in the same probe
retrieves the associated value of each unique key.

Given what we know about the first probe in Example 3.17, “cumulative-vfsreads.stp”, the script prints VFS-read statistics
every 3 seconds, displaying names of processes that performed a VFS-read along with a corresponding VFS-read count.

Now, remember that the foreach statement in Example 3.17, “cumulative-vfsreads.stp” prints all iterations of process
names in the array, and in no particular order. You can instruct the script to process the iterations in a particular order by
using + (ascending) or - (descending). In addition, you can also limit the number of iterations the script needs to process
with the limit value option.

For example, consider the following replacement probe:

probe timer.s(3)
{
  foreach (count in reads- limit 10)
    printf("%s : %d \n", count, reads[count])
}

This foreach statement instructs the script to process the elements in the array reads in descending order (of associated
value). The limit 10 option instructs the foreach to only process the first ten iterations (i.e. print the first 10, starting
with the highest value).

3.5.5. Clearing/Deleting Arrays and Array Elements
Sometimes, you may need to clear the associated values in array elements, or reset an entire array for re-use in another
probe. Example 3.17, “cumulative-vfsreads.stp” in Section 3.5.4, “Processing Multiple Elements in an Array” allows you to
track how the number of VFS reads per process grows over time, but it does not show you the number of VFS reads each
process makes per 3-second period.

To do that, you will need to clear the values accumulated by the array. You can accomplish this using the delete operator
to delete elements in an array, or an entire array. Consider the following example:

Example 3.18. noncumulative-vfsreads.stp

global reads
probe vfs.read
{
  reads[execname()] ++
}
probe timer.s(3)
{
  foreach (count in reads)
    printf("%s : %d \n", count, reads[count])
  delete reads
}

In Example 3.18, “noncumulative-vfsreads.stp”, the second probe prints the number of VFS reads each process made
within the probed 3-second period only. The delete reads statement clears the reads array within the probe.



Note

You can have multiple array operations within the same probe. Using the examples from Section 3.5.4, “Processing
Multiple Elements in an Array” and Section 3.5.5, “Clearing/Deleting Arrays and Array Elements” , you can track the
number of VFS reads each process makes per 3-second period and tally the cumulative VFS reads of those same
processes. Consider the following example:

global reads, totalreads

probe vfs.read
{
  reads[execname()] ++
  totalreads[execname()] ++
}

probe timer.s(3)
{
  printf("=======\n")
  foreach (count in reads-)
    printf("%s : %d \n", count, reads[count])
  delete reads
}

probe end
{
  printf("TOTALS\n")
  foreach (total in totalreads-)
    printf("%s : %d \n", total, totalreads[total])
}

In this example, the arrays reads and totalreads track the same information, and are printed out in a similar
fashion. The only difference here is that reads is cleared every 3-second period, whereas totalreads keeps
growing.

3.5.6. Using Arrays in Conditional Statements
You can also use associative arrays in if statements. This is useful if you want to execute a subroutine once a value in
the array matches a certain condition. Consider the following example:

Example 3.19. vfsreads-print-if-1kb.stp

global reads
probe vfs.read
{
  reads[execname()] ++
}

probe timer.s(3)
{
  printf("=======\n")
  foreach (count in reads-)
    if (reads[count] >= 1024)
      printf("%s : %dkB \n", count, reads[count]/1024)
    else
      printf("%s : %dB \n", count, reads[count])
}

Every three seconds, Example 3.19, “vfsreads-print-if-1kb.stp” prints out a list of all processes, along with how many times
each process performed a VFS read. If the associated value of a process name is equal or greater than 1024, the if
statement in the script converts and prints it out in kB.

Testing for Membership

You can also test whether a specific unique key is a member of an array. Further, membership in an array can be used in 
if statements, as in:

if([index_expression] in array_name) statement

To illustrate this, consider the following example:



Example 3.20. vfsreads-stop-on-stapio2.stp

global reads

probe vfs.read
{
  reads[execname()] ++
}

probe timer.s(3)
{
  printf("=======\n")
  foreach (count in reads+)
    printf("%s : %d \n", count, reads[count])
  if(["stapio"] in reads) {
    printf("stapio read detected, exiting\n")
    exit()
  }
}

The if(["stapio"] in reads) statement instructs the script to print stapio read detected, exiting once the
unique key stapio is added to the array reads.

3.5.7. Computing for Statistical Aggregates
Statistical aggregates are used to collect statistics on numerical values where it is important to accumulate new data
quickly and in large volume (i.e. storing only aggregated stream statistics). Statistical aggregates can be used in global
variables or as elements in an array.

To add value to a statistical aggregate, use the operator <<< value.

Example 3.21. stat-aggregates.stp

global reads
probe vfs.read
{
  reads[execname()] <<< count
}

In Example 3.21, “stat-aggregates.stp”, the operator <<< count stores the amount returned by count to to the associated
value of the corresponding execname() in the reads array. Remember, these values are stored; they are not added to
the associated values of each unique key, nor are they used to replace the current associated values. In a manner of
speaking, think of it as having each unique key (execname()) having multiple associated values, accumulating with each
probe handler run.

Note

In the context of Example 3.21, “stat-aggregates.stp”, count returns the amount of data read by the returned 
execname() to the virtual file system.

To extract data collected by statistical aggregates, use the syntax format @extractor(variable/array index 
expression). extractor can be any of the following integer extractors:

count
Returns the number of all values stored into the variable/array index expression. Given the sample probe in
Example 3.21, “stat-aggregates.stp”, the expression @count(reads[execname()]) will return how many values
are stored in each unique key in array reads.

sum
Returns the sum of all values stored into the variable/array index expression. Again, given sample probe in
Example 3.21, “stat-aggregates.stp”, the expression @sum(reads[execname()]) will return the total of all values
stored in each unique key in array reads.

min
Returns the smallest among all the values stored in the variable/array index expression.

max
Returns the largest among all the values stored in the variable/array index expression.



avg
Returns the average of all values stored in the variable/array index expression.

When using statistical aggregates, you can also build array constructs that use multiple index expressions (to a maximum
of 5). This is helpful in capturing additional contextual information during a probe. For example:

Example 3.22. Multiple Array Indexes

global reads
probe vfs.read
{
  reads[execname(),pid()] <<< 1
}
probe timer.s(3)
{
  foreach([var1,var2] in reads)
    printf("%s (%d) : %d \n", var1, var2, @count(reads[var1,var2]))
}

In Example 3.22, “Multiple Array Indexes”, the first probe tracks how many times each process performs a VFS read. What
makes this different from earlier examples is that this array associates a performed read to both a process name and its
corresponding process ID.

The second probe in Example 3.22, “Multiple Array Indexes” demonstrates how to process and print the information
collected by the array reads. Note how the foreach statement uses the same number of variables (i.e. var1 and var2)
contained in the first instance of the array reads from the first probe.

3.6. Tapsets
Tapsets are scripts that form a library of pre-written probes and functions to be used in SystemTap scripts. When a user
runs a SystemTap script, SystemTap checks the script's probe events and handlers against the tapset library; SystemTap
then loads the corresponding probes and functions before translating the script to C (refer to Section 3.1, “Architecture”
for information on what transpires in a SystemTap session).

Like SystemTap scripts, tapsets use the file name extension .stp. The standard library of tapsets is located in 
/usr/share/systemtap/tapset/ by default. However, unlike SystemTap scripts, tapsets are not meant for direct
execution; rather, they constitute the library from which other scripts can pull definitions.

Simply put, the tapset library is an abstraction layer designed to make it easier for users to define events and functions. In
a manner of speaking, tapsets provide useful aliases for functions that users may want to specify as an event; knowing the
proper alias to use is, for the most part, easier than remembering specific kernel functions that might vary between kernel
versions.

Several handlers and functions in Section 3.2.1, “Event” and SystemTap Functions are defined in tapsets. For example, 
thread_indent() is defined in indent.stp.



Chapter 4. User-Space Probing
SystemTap initially focused on kernel-space probing. However, there are many instances where user-space probing can
help diagnose a problem. SystemTap 0.6 added support to allow probing user-space processes. SystemTap includes
support for probing the entry into and return from a function in user-space processes, probing predefined markers in user-
space code, and monitoring user-process events.

SystemTap requires the uprobes module to perform user-space probing. If your Linux kernel is version 3.5 or higher, it
already includes uprobes. The following command can verify whether the current kernel supports uprobes natively:

grep CONFIG_UPROBES /boot/config-`uname -r`

If uprobes is integrated, the output should be:

CONFIG_UPROBES=y

If you are running a kernel prior to version 3.5, SystemTap will automatically build the uprobes module. However, you will
also need the utrace kernel extensions, which is required by the SystemTap user-space probing to track various user-
space events. More details about the utrace infrastructure are available at http://sourceware.org/systemtap/wiki/utrace.
The following command determines whether the currently running Linux kernel provides the needed utrace support:

grep CONFIG_UTRACE /boot/config-`uname -r`

If the Linux kernel supports user-space probing, the following output is printed:

CONFIG_UTRACE=y

4.1. User-Space Events
All user-space event probes begin with process. The process events can be limited to a specific running process by
specifying the process ID. The process events can also be limited to monitoring a particular executable by specifying the
path to executable (PATH). SystemTap makes use of the PATH environment variable, so both the name used on the
command-line to start the executable and the absolute path to the executable can be used. Several of the user-space
probe events limit their scope to a particular executable name (PATH) because SystemTap must use debug information to
statically analyze where to place the probes. But for many user-space probe events, the process ID and executable name
are optional. Any process event in the list below that include process ID or the path to the executable must include those
arguments. The process ID and path to the executable are optional for the process events that do not list them:

process("PATH").function("function")
The entry to the user-space function function for the executable PATH. This event is the user-space analogue
of the kernel.function("function") event. It allows wildcards for the function function and .return suffix.

process("PATH").statement("statement")
The earliest instruction in the code for statement. This is the user-space analogue of 
kernel.statement("statement").

process("PATH").mark("marker")
The static probe point marker defined in PATH. Wildcards can be used for marker to specify mutiple marks with a
single probe. The static probe points may also have numbered arguments ($1, $2, etc.) available to the probe. A
variety of user-space packages such as Java include these static probe points. Most packages that provide static
probe points also provide aliases for the raw user-space mark events. Below is one such alias for the x86_64
Java hotspot JVM:

probe hotspot.gc_begin =
  process("/usr/lib/jvm/java-1.6.0-openjdk-
1.6.0.0.x86_64/jre/lib/amd64/server/libjvm.so").mark("gc__begin")

process.begin
User-space process is created. This can be limited to a particular process ID or a full path to the executable.

process.thread.begin
User-space thread is created. This can be limited to a particular process ID or a full path to the executable.

process.end
User-space process died. This can be limited to a particular process ID or a full path to the executable.

process.thread.end



User-space thread is destroyed. This can be limited to a particular process ID or a full path to the executable.

process.syscall
User-space process makes a system call. The system call number is available via $syscall context variable, and
the fist six arguments are available via $arg1 through $arg6. The ".return" suffix will place the probe at the return
from the system call. For the "syscall.return" the return value is available through the $return context variable.
This can be limited to a particular process ID or a full path to the executable.

4.2. Accessing User-Space Target Variables
User-space target variables can be accessed in the same manner as described in Section 3.3.2, “Target Variables”.
However, in Linux there are separate address spaces for the user and kernel code. When using "->" operator SystemTap
will access the appropriate address space. For pointers to base types such as integers and strings there are a number of
functions listed below to access user-space data. The first argument for each functions is the pointer to the data item.

user_char(address)
Obtain the character at address for the current user process.

user_short(address)
Obtain the short at address for the current user process.

user_int(address)
Obtain the int at address for the current user process.

user_long(address)
Obtain the long at address for the current user process.

user_string(address)
Obtain the string at address for the current user process.

user_string_n(address, n)
Obtain the string at address for the current user process and limits the string to n bytes.

4.3. User-Space Stack Backtraces
The probe point (pp) function indicates which particular event triggered the SystemTap event handler. A probe on the
entry into a function would list the function name. However, in many cases the same probe point event may be triggered by
many different modules in the program; this is particularly true for functions in shared libraries. A SystemTap backtrace of
the user-space stack can provide additional context on how the probe point event is triggered.

The user-space stack backtrace generation is complicated by the compiler producing code optimized to eliminate stack
frame pointers. However, the compiler also includes information in the debug information section to allow debugging tools
to produce stack backtraces. SystemTap user-space stack backtrace mechanism makes use of that debug information to
walk the stack to generate stack traces for 32-bit and 64-bit x86 processors; other processor architectures do not yet
support the use of debug information to unwind the user-space stack. You will need to use the -d executable for the
application executable and -ldd for shared libraries to ensure that the needed debug information is used to produce the
user-space stack backtraces.

If you want to see how the function xmalloc function is being called by the command ls, you could use the user-space
backtrack functions to provide that information. With the debuginfo for the ls command installed the following SystemTap
command will provide a backtrace each time the xmalloc function is called:

stap -d /bin/ls --ldd \
-e 'probe process("ls").function("xmalloc") {print_usyms(ubacktrace())}' \
-c "ls /"

When the SystemTap script runs will have output similar to the following:



bin dev   lib   media  net      proc sbin  sys  var
boot etc   lib64   misc  op_session  profilerc selinux  tmp
cgroup home  lost+found  mnt  opt      root srv  usr
 0x4116c0 : xmalloc+0x0/0x20 [/bin/ls]
 0x4116fc : xmemdup+0x1c/0x40 [/bin/ls]
 0x40e68b : clone_quoting_options+0x3b/0x50 [/bin/ls]
 0x4087e4 : main+0x3b4/0x1900 [/bin/ls]
 0x3fa441ec5d : __libc_start_main+0xfd/0x1d0 [/lib64/libc-2.12.so]
 0x402799 : _start+0x29/0x2c [/bin/ls]
 0x4116c0 : xmalloc+0x0/0x20 [/bin/ls]
 0x4116fc : xmemdup+0x1c/0x40 [/bin/ls]
 0x40e68b : clone_quoting_options+0x3b/0x50 [/bin/ls]
 0x40884a : main+0x41a/0x1900 [/bin/ls]
 0x3fa441ec5d : __libc_start_main+0xfd/0x1d0 [/lib64/libc-2.12.so]
 ...

For more details on the functions available for user-space stack backtraces look at the ucontext-symbols.stp and 
ucontext-unwind.stp tapsets. The descriptions of the functions in those tapsets can also be found in the SystemTap
Tapset Reference Manual.



Chapter 5. Useful SystemTap Scripts
This chapter enumerates several SystemTap scripts you can use to monitor and investigate different subsystems. All of
these scripts are available at /usr/share/systemtap/testsuite/systemtap.examples/ once you install the 
systemtap-testsuite RPM.

5.1. Network
The following sections showcase scripts that trace network-related functions and build a profile of network activity.

5.1.1. Network Profiling
This section describes how to profile network activity. nettop.stp provides a glimpse into how much network traffic each
process is generating on a machine.

nettop.stp

#! /usr/bin/env stap

global ifxmit, ifrecv
global ifmerged

probe netdev.transmit
{
  ifxmit[pid(), dev_name, execname(), uid()] <<< length
}

probe netdev.receive
{
  ifrecv[pid(), dev_name, execname(), uid()] <<< length
}

function print_activity()
{
  printf("%5s %5s %-7s %7s %7s %7s %7s %-15s\n",
         "PID", "UID", "DEV", "XMIT_PK", "RECV_PK",
         "XMIT_KB", "RECV_KB", "COMMAND")

  foreach ([pid, dev, exec, uid] in ifrecv) {
   ifmerged[pid, dev, exec, uid] += @count(ifrecv[pid,dev,exec,uid]);
  }
  foreach ([pid, dev, exec, uid] in ifxmit) {
   ifmerged[pid, dev, exec, uid] += @count(ifxmit[pid,dev,exec,uid]);
  }
  foreach ([pid, dev, exec, uid] in ifmerged-) {
    n_xmit = @count(ifxmit[pid, dev, exec, uid])
    n_recv = @count(ifrecv[pid, dev, exec, uid])
    printf("%5d %5d %-7s %7d %7d %7d %7d %-15s\n",
           pid, uid, dev, n_xmit, n_recv,
           n_xmit ? @sum(ifxmit[pid, dev, exec, uid])/1024 : 0,
           n_recv ? @sum(ifrecv[pid, dev, exec, uid])/1024 : 0,
           exec)
  }

  print("\n")

  delete ifxmit
  delete ifrecv
  delete ifmerged
}

probe timer.ms(5000), end, error
{
  print_activity()
}

Note that function print_activity() uses the following expressions:

n_xmit ? @sum(ifxmit[pid, dev, exec, uid])/1024 : 0
n_recv ? @sum(ifrecv[pid, dev, exec, uid])/1024 : 0

These expressions are if/else conditionals. The first statement is simply a more concise way of writing the following psuedo
code:

if n_recv != 0 then
  @sum(ifrecv[pid, dev, exec, uid])/1024
else
  0



nettop.stp tracks which processes are generating network traffic on the system, and provides the following information
about each process:

PID — the ID of the listed process.

UID — user ID. A user ID of 0 refers to the root user.

DEV — which ethernet device the process used to send / receive data (e.g. eth0, eth1)

XMIT_PK — number of packets transmitted by the process

RECV_PK — number of packets received by the process

XMIT_KB — amount of data sent by the process, in kilobytes

RECV_KB — amount of data received by the service, in kilobytes

nettop.stp provides network profile sampling every 5 seconds. You can change this setting by editing probe 
timer.ms(5000) accordingly. Example 5.1, “nettop.stp Sample Output” contains an excerpt of the output from nettop.stp
over a 20-second period:

Example 5.1. nettop.stp Sample Output

[...]
  PID   UID DEV     XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND
    0     0 eth0          0       5       0       0 swapper
11178     0 eth0          2       0       0       0 synergyc

  PID   UID DEV     XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND
 2886     4 eth0         79       0       5       0 cups-polld
11362     0 eth0          0      61       0       5 firefox
    0     0 eth0          3      32       0       3 swapper
 2886     4 lo            4       4       0       0 cups-polld
11178     0 eth0          3       0       0       0 synergyc

  PID   UID DEV     XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND
    0     0 eth0          0       6       0       0 swapper
 2886     4 lo            2       2       0       0 cups-polld
11178     0 eth0          3       0       0       0 synergyc
 3611     0 eth0          0       1       0       0 Xorg

  PID   UID DEV     XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND
    0     0 eth0          3      42       0       2 swapper
11178     0 eth0         43       1       3       0 synergyc
11362     0 eth0          0       7       0       0 firefox
 3897     0 eth0          0       1       0       0 multiload-apple
[...]

5.1.2. Tracing Functions Called in Network Socket Code
This section describes how to trace functions called from the kernel's net/socket.c file. This task helps you identify, in
finer detail, how each process interacts with the network at the kernel level.

socket-trace.stp

#! /usr/bin/env stap

probe kernel.function("*@net/socket.c").call {
  printf ("%s -> %s\n", thread_indent(1), ppfunc())
}
probe kernel.function("*@net/socket.c").return {
  printf ("%s <- %s\n", thread_indent(-1), ppfunc())
}

socket-trace.stp is identical to Example 3.6, “thread_indent.stp”, which was earlier used in SystemTap Functions to
illustrate how thread_indent() works.



Example 5.2. socket-trace.stp Sample Output

[...]
0 Xorg(3611): -> sock_poll
3 Xorg(3611): <- sock_poll
0 Xorg(3611): -> sock_poll
3 Xorg(3611): <- sock_poll
0 gnome-terminal(11106): -> sock_poll
5 gnome-terminal(11106): <- sock_poll
0 scim-bridge(3883): -> sock_poll
3 scim-bridge(3883): <- sock_poll
0 scim-bridge(3883): -> sys_socketcall
4 scim-bridge(3883):  -> sys_recv
8 scim-bridge(3883):   -> sys_recvfrom
12 scim-bridge(3883):-> sock_from_file
16 scim-bridge(3883):<- sock_from_file
20 scim-bridge(3883):-> sock_recvmsg
24 scim-bridge(3883):<- sock_recvmsg
28 scim-bridge(3883):   <- sys_recvfrom
31 scim-bridge(3883):  <- sys_recv
35 scim-bridge(3883): <- sys_socketcall
[...]

Example 5.2, “socket-trace.stp Sample Output” contains a 3-second excerpt of the output for socket-trace.stp. For more
information about the output of this script as provided by thread_indent(), refer to SystemTap Functions Example 3.6,
“thread_indent.stp”.

5.1.3. Monitoring Incoming TCP Connections
This section illustrates how to monitor incoming TCP connections. This task is useful in identifying any unauthorized,
suspicious, or otherwise unwanted network access requests in real time.

tcp_connections.stp

#! /usr/bin/env stap

probe begin {
  printf("%6s %16s %6s %6s %16s\n",
         "UID", "CMD", "PID", "PORT", "IP_SOURCE")
}

probe kernel.function("tcp_accept").return?,
      kernel.function("inet_csk_accept").return? {
  sock = $return
  if (sock != 0)
    printf("%6d %16s %6d %6d %16s\n", uid(), execname(), pid(),
           inet_get_local_port(sock), inet_get_ip_source(sock))
}

While tcp_connections.stp is running, it will print out the following information about any incoming TCP connections
accepted by the system in real time:

Current UID

CMD - the command accepting the connection

PID of the command

Port used by the connection

IP address from which the TCP connection originated

Example 5.3. tcp_connections.stp Sample Output

UID            CMD    PID   PORT        IP_SOURCE
0             sshd   3165     22      10.64.0.227
0             sshd   3165     22      10.64.0.227

5.1.4. Monitoring TCP Packets
This section illustrates how to monitor TCP packets received by the system. This is useful in analyzing network traffic
generated by applications running on the system.

tcpdumplike.stp



 #! /usr/bin/env stap

// A TCP dump like example

probe begin, timer.s(1) {
  printf("-----------------------------------------------------------------\n")
  printf("       Source IP         Dest IP  SPort  DPort  U  A  P  R  S  F \n")
  printf("-----------------------------------------------------------------\n")
}

probe udp.recvmsg /* ,udp.sendmsg */ {
  printf(" %15s %15s  %5d  %5d  UDP\n",
         saddr, daddr, sport, dport)
}

probe tcp.receive {
  printf(" %15s %15s  %5d  %5d  %d  %d  %d  %d  %d  %d\n",
         saddr, daddr, sport, dport, urg, ack, psh, rst, syn, fin)
}

While tcpdumplike.stp is running, it will print out the following information about any received TCP packets in real time:

Source and destination IP address (saddr, daddr, respectively)

Source and destination ports (sport, dport, respectively)

Packet flags

To determine the flags used by the packet, tcpdumplike.stp uses the following functions:

urg - urgent

ack - acknowledgement

psh - push

rst - reset

syn - synchronize

fin - finished

The aforementioned functions return 1 or 0 to specify whether the packet uses the corresponding flag.

Example 5.4. tcpdumplike.stp Sample Output

-----------------------------------------------------------------
       Source IP         Dest IP  SPort  DPort  U  A  P  R  S  F
-----------------------------------------------------------------
  209.85.229.147       10.0.2.15     80  20373  0  1  1  0  0  0
  92.122.126.240       10.0.2.15     80  53214  0  1  0  0  1  0
  92.122.126.240       10.0.2.15     80  53214  0  1  0  0  0  0
  209.85.229.118       10.0.2.15     80  63433  0  1  0  0  1  0
  209.85.229.118       10.0.2.15     80  63433  0  1  0  0  0  0
  209.85.229.147       10.0.2.15     80  21141  0  1  1  0  0  0
  209.85.229.147       10.0.2.15     80  21141  0  1  1  0  0  0
  209.85.229.147       10.0.2.15     80  21141  0  1  1  0  0  0
  209.85.229.147       10.0.2.15     80  21141  0  1  1  0  0  0
  209.85.229.147       10.0.2.15     80  21141  0  1  1  0  0  0
  209.85.229.118       10.0.2.15     80  63433  0  1  1  0  0  0
[...]

5.1.5. Monitoring Network Packets Drops in Kernel
The network stack in Linux can discard packets for various reasons. Some Linux kernels include a tracepoint, 
kernel.trace("kfree_skb"), which easily tracks where packets are discarded. dropwatch.stp uses 
kernel.trace("kfree_skb") to trace packet discards; the script summarizes which locations discard packets every
five-second interval.

dropwatch.stp



#! /usr/bin/env stap

############################################################
# Dropwatch.stp
# Author: Neil Horman <nhorman@redhat.com>
# An example script to mimic the behavior of the dropwatch utility
# http://fedorahosted.org/dropwatch
############################################################

# Array to hold the list of drop points we find
global locations

# Note when we turn the monitor on and off
probe begin { printf("Monitoring for dropped packets\n") }
probe end { printf("Stopping dropped packet monitor\n") }

# increment a drop counter for every location we drop at
probe kernel.trace("kfree_skb") { locations[$location] <<< 1 }

# Every 5 seconds report our drop locations
probe timer.sec(5)
{
  printf("\n")
  foreach (l in locations-) {
    printf("%d packets dropped at %s\n",
           @count(locations[l]), symname(l))
  }
  delete locations
}

The kernel.trace("kfree_skb") traces which places in the kernel drop network packets. The 
kernel.trace("kfree_skb") has two arguments: a pointer to the buffer being freed ($skb) and the location in kernel
code the buffer is being freed ($location). The dropwatch.stp script provides the function containing $location where
possible. The information to map $location back to the function is not in the instrumentation by default. On Systemtap
1.4 the --all-modules option will include the required mapping information and the following command can be used to
run the script:

stap --all-modules dropwatch.stp

On older versions of Systemtap you can use the following command to emulate the --all-modules option:

stap -dkernel \
`cat /proc/modules | awk 'BEGIN { ORS = " " } {print "-d"$1}'` \
dropwatch.stp

Running the dropwatch.stp script 15 seconds would result in output similar in Example 5.5, “dropwatch.stp Sample Output”.
The output lists the number of misses for each tracepoint location with either the function name or the address.

Example 5.5. dropwatch.stp Sample Output

Monitoring for dropped packets

1762 packets dropped at unix_stream_recvmsg
4 packets dropped at tun_do_read
2 packets dropped at nf_hook_slow

467 packets dropped at unix_stream_recvmsg
20 packets dropped at nf_hook_slow
6 packets dropped at tun_do_read

446 packets dropped at unix_stream_recvmsg
4 packets dropped at tun_do_read
4 packets dropped at nf_hook_slow
Stopping dropped packet monitor

When the script is being compiled on one machine and run on another the --all-modules and /proc/modules directory
are not available; the symname function will just print out the raw address. To make the raw address of packet drops more
meaningful, refer to the /boot/System.map-`uname -r` file. This file lists the starting addresses for each function,
allowing you to map the addresses in the output of Example 5.5, “dropwatch.stp Sample Output” to a specific function
name. Given the following snippet of the /boot/System.map-`uname -r` file, the address 0xffffffff8149a8ed maps to the
function unix_stream_recvmsg:



[...]
ffffffff8149a420 t unix_dgram_poll
ffffffff8149a5e0 t unix_stream_recvmsg
ffffffff8149ad00 t unix_find_other
[...]

5.2. Disk
The following sections showcase scripts that monitor disk and I/O activity.

5.2.1. Summarizing Disk Read/Write Traffic
This section describes how to identify which processes are performing the heaviest disk reads/writes to the system.

disktop.stp



#!/usr/bin/env stap 
#
# Copyright (C) 2007 Oracle Corp.
#
# Get the status of reading/writing disk every 5 seconds,
# output top ten entries 
#
# This is free software,GNU General Public License (GPL);
# either version 2, or (at your option) any later version.
#
# Usage:
#  ./disktop.stp
#

global io_stat,device
global read_bytes,write_bytes

probe vfs.read.return {
  if ($return>0) {
    if (devname!="N/A") {/*skip read from cache*/
      io_stat[pid(),execname(),uid(),ppid(),"R"] += $return
      device[pid(),execname(),uid(),ppid(),"R"] = devname
      read_bytes += $return
    }
  }
}

probe vfs.write.return {
  if ($return>0) {
    if (devname!="N/A") { /*skip update cache*/
      io_stat[pid(),execname(),uid(),ppid(),"W"] += $return
      device[pid(),execname(),uid(),ppid(),"W"] = devname
      write_bytes += $return
    }
  }
}

probe timer.ms(5000) {
  /* skip non-read/write disk */
  if (read_bytes+write_bytes) {

    printf("\n%-25s, %-8s%4dKb/sec, %-7s%6dKb, %-7s%6dKb\n\n",
           ctime(gettimeofday_s()),
           "Average:", ((read_bytes+write_bytes)/1024)/5,
           "Read:",read_bytes/1024,
           "Write:",write_bytes/1024)

    /* print header */
    printf("%8s %8s %8s %25s %8s %4s %12s\n",
           "UID","PID","PPID","CMD","DEVICE","T","BYTES")
  }
  /* print top ten I/O */
  foreach ([process,cmd,userid,parent,action] in io_stat- limit 10)
    printf("%8d %8d %8d %25s %8s %4s %12d\n",
           userid,process,parent,cmd,
           device[process,cmd,userid,parent,action],
           action,io_stat[process,cmd,userid,parent,action])

  /* clear data */
  delete io_stat
  delete device
  read_bytes = 0
  write_bytes = 0  
}

probe end{
  delete io_stat
  delete device
  delete read_bytes
  delete write_bytes
}

disktop.stp outputs the top ten processes responsible for the heaviest reads/writes to disk. Example 5.6, “disktop.stp
Sample Output” displays a sample output for this script, and includes the following data per listed process:

UID — user ID. A user ID of 0 refers to the root user.

PID — the ID of the listed process.

PPID — the process ID of the listed process's parent process.

CMD — the name of the listed process.



DEVICE — which storage device the listed process is reading from or writing to.

T — the type of action performed by the listed process; W refers to write, while R refers to read.

BYTES — the amount of data read to or written from disk.

The time and date in the output of disktop.stp is returned by the functions ctime() and gettimeofday_s(). ctime()
derives calendar time in terms of seconds passed since the Unix epoch (January 1, 1970). gettimeofday_s() counts the
actual number of seconds since Unix epoch, which gives a fairly accurate human-readable timestamp for the output.

In this script, the $return is a local variable that stores the actual number of bytes each process reads or writes from the
virtual file system. $return can only be used in return probes (e.g. vfs.read.return and vfs.read.return).

Example 5.6. disktop.stp Sample Output

[...]
Mon Sep 29 03:38:28 2008 , Average:  19Kb/sec, Read: 7Kb, Write: 89Kb

UID      PID     PPID                       CMD   DEVICE    T    BYTES
0    26319    26294                   firefox     sda5    W        90229
0     2758     2757           pam_timestamp_c     sda5    R         8064
0     2885        1                     cupsd     sda5    W         1678

Mon Sep 29 03:38:38 2008 , Average:   1Kb/sec, Read: 7Kb, Write: 1Kb

UID      PID     PPID                       CMD   DEVICE    T    BYTES
0     2758     2757           pam_timestamp_c     sda5    R         8064
0     2885        1                     cupsd     sda5    W         1678

5.2.2. Tracking I/O Time For Each File Read or Write
This section describes how to monitor the amount of time it takes for each process to read from or write to any file. This is
useful if you wish to determine what files are slow to load on a given system.

iotime.stp

#! /usr/bin/env stap

/*
 * Copyright (C) 2006-2007 Red Hat Inc.
 * 
 * This copyrighted material is made available to anyone wishing to use,
 * modify, copy, or redistribute it subject to the terms and conditions
 * of the GNU General Public License v.2.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 * Print out the amount of time spent in the read and write systemcall
 * when each file opened by the process is closed. Note that the systemtap 
 * script needs to be running before the open operations occur for
 * the script to record data.
 *
 * This script could be used to to find out which files are slow to load
 * on a machine. e.g.
 *
 * stap iotime.stp -c 'firefox'
 *
 * Output format is:
 * timestamp pid (executabable) info_type path ...
 *
 * 200283135 2573 (cupsd) access /etc/printcap read: 0 write: 7063
 * 200283143 2573 (cupsd) iotime /etc/printcap time: 69
 *
 */

global start
global time_io

function timestamp:long() { return gettimeofday_us() - start }

function proc:string() { return sprintf("%d (%s)", pid(), execname()) }

probe begin { start = gettimeofday_us() }

global filehandles, fileread, filewrite

probe syscall.open.return {
  filename = user_string($filename)



  if ($return != -1) {
    filehandles[pid(), $return] = filename
  } else {
    printf("%d %s access %s fail\n", timestamp(), proc(), filename)
  }
}

probe syscall.read.return {
  p = pid()
  fd = $fd
  bytes = $return
  time = gettimeofday_us() - @entry(gettimeofday_us())
  if (bytes > 0)
    fileread[p, fd] += bytes
  time_io[p, fd] <<< time
}

probe syscall.write.return {
  p = pid()
  fd = $fd
  bytes = $return
  time = gettimeofday_us() - @entry(gettimeofday_us())
  if (bytes > 0)
    filewrite[p, fd] += bytes
  time_io[p, fd] <<< time
}

probe syscall.close {
  if ([pid(), $fd] in filehandles) {
    printf("%d %s access %s read: %d write: %d\n",
           timestamp(), proc(), filehandles[pid(), $fd],
           fileread[pid(), $fd], filewrite[pid(), $fd])
    if (@count(time_io[pid(), $fd]))
      printf("%d %s iotime %s time: %d\n",  timestamp(), proc(),
             filehandles[pid(), $fd], @sum(time_io[pid(), $fd]))
   }
  delete fileread[pid(), $fd]
  delete filewrite[pid(), $fd]
  delete filehandles[pid(), $fd]
  delete time_io[pid(),$fd]
}

iotime.stp tracks each time a system call opens, closes, reads from, and writes to a file. For each file any system call
accesses, iotime.stp counts the number of microseconds it takes for any reads or writes to finish and tracks the amount of
data (in bytes) read from or written to the file.

iotime.stp also uses the local variable $count to track the amount of data (in bytes) that any system call attempts to read
or write. Note that $return (as used in disktop.stp from Section 5.2.1, “Summarizing Disk Read/Write Traffic”) stores the
actual amount of data read/written. $count can only be used on probes that track data reads or writes (e.g. 
syscall.read and syscall.write).

Example 5.7. iotime.stp Sample Output

[...]
825946 3364 (NetworkManager) access /sys/class/net/eth0/carrier read: 8190 write: 0
825955 3364 (NetworkManager) iotime /sys/class/net/eth0/carrier time: 9
[...]
117061 2460 (pcscd) access /dev/bus/usb/003/001 read: 43 write: 0
117065 2460 (pcscd) iotime /dev/bus/usb/003/001 time: 7
[...]
3973737 2886 (sendmail) access /proc/loadavg read: 4096 write: 0
3973744 2886 (sendmail) iotime /proc/loadavg time: 11
[...]

Example 5.7, “iotime.stp Sample Output” prints out the following data:

A timestamp, in microseconds.

Process ID and process name.

An access or iotime flag.

The file accessed.

If a process was able to read or write any data, a pair of access and iotime lines should appear together. The access
line's timestamp refers to the time that a given process started accessing a file; at the end of the line, it will show the
amount of data read/written (in bytes). The iotime line will show the amount of time (in microseconds) that the process
took in order to perform the read or write.



If an access line is not followed by an iotime line, it simply means that the process did not read or write any data.

5.2.3. Track Cumulative IO
This section describes how to track the cumulative amount of I/O to the system.

traceio.stp

#! /usr/bin/env stap
# traceio.stp
# Copyright (C) 2007 Red Hat, Inc., Eugene Teo <eteo@redhat.com>
# Copyright (C) 2009 Kai Meyer <kai@unixlords.com>
#   Fixed a bug that allows this to run longer
#   And added the humanreadable function
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License version 2 as
# published by the Free Software Foundation.
#

global reads, writes, total_io

probe vfs.read.return {
  if ($return > 0) {
    reads[pid(),execname()] += $return
    total_io[pid(),execname()] += $return
  }
}

probe vfs.write.return {
  if ($return > 0) {
    writes[pid(),execname()] += $return
    total_io[pid(),execname()] += $return
  }
}

function humanreadable(bytes) {
  if (bytes > 1024*1024*1024) {
    return sprintf("%d GiB", bytes/1024/1024/1024)
  } else if (bytes > 1024*1024) {
    return sprintf("%d MiB", bytes/1024/1024)
  } else if (bytes > 1024) {
    return sprintf("%d KiB", bytes/1024)
  } else {
    return sprintf("%d   B", bytes)
  }
}

probe timer.s(1) {
  foreach([p,e] in total_io- limit 10)
    printf("%8d %15s r: %12s w: %12s\n",
           p, e, humanreadable(reads[p,e]),
           humanreadable(writes[p,e]))
  printf("\n")
  # Note we don't zero out reads, writes and total_io,
  # so the values are cumulative since the script started.
}

traceio.stp prints the top ten executables generating I/O traffic over time. In addition, it also tracks the cumulative amount
of I/O reads and writes done by those ten executables. This information is tracked and printed out in 1-second intervals,
and in descending order.

Note that traceio.stp also uses the local variable $return, which is also used by disktop.stp from Section 5.2.1,
“Summarizing Disk Read/Write Traffic”.



Example 5.8. traceio.stp Sample Output

[...]
           Xorg r:   583401 KiB w:        0 KiB
       floaters r:       96 KiB w:     7130 KiB
multiload-apple r:      538 KiB w:      537 KiB
           sshd r:       71 KiB w:       72 KiB
pam_timestamp_c r:      138 KiB w:        0 KiB
        staprun r:       51 KiB w:       51 KiB
          snmpd r:       46 KiB w:        0 KiB
          pcscd r:       28 KiB w:        0 KiB
     irqbalance r:       27 KiB w:        4 KiB
          cupsd r:        4 KiB w:       18 KiB

           Xorg r:   588140 KiB w:        0 KiB
       floaters r:       97 KiB w:     7143 KiB
multiload-apple r:      543 KiB w:      542 KiB
           sshd r:       72 KiB w:       72 KiB
pam_timestamp_c r:      138 KiB w:        0 KiB
        staprun r:       51 KiB w:       51 KiB
          snmpd r:       46 KiB w:        0 KiB
          pcscd r:       28 KiB w:        0 KiB
     irqbalance r:       27 KiB w:        4 KiB
          cupsd r:        4 KiB w:       18 KiB

5.2.4. I/O Monitoring (By Device)
This section describes how to monitor I/O activity on a specific device.

traceio2.stp

#! /usr/bin/env stap

global device_of_interest

probe begin {
  /* The following is not the most efficient way to do this.
      One could directly put the result of usrdev2kerndev()
      into device_of_interest.  However, want to test out
      the other device functions */
  dev = usrdev2kerndev($1)
  device_of_interest = MKDEV(MAJOR(dev), MINOR(dev))
}

probe vfs.write, vfs.read
{
  if (dev == device_of_interest)
    printf ("%s(%d) %s 0x%x\n",
            execname(), pid(), probefunc(), dev)
}

traceio2.stp takes 1 argument: the whole device number. To get this number, use stat -c "0x%D" directory, where 
directory is located in the device you wish to monitor.

The usrdev2kerndev() function converts the whole device number into the format understood by the kernel. The output
produced by usrdev2kerndev() is used in conjunction with the MKDEV(), MINOR(), and MAJOR() functions to determine
the major and minor numbers of a specific device.

The output of traceio2.stp includes the name and ID of any process performing a read/write, the function it is performing
(i.e. vfs_read or vfs_write), and the kernel device number.

The following example is an excerpt from the full output of stap traceio2.stp 0x805, where 0x805 is the whole device
number of /home. /home resides in /dev/sda5, which is the device we wish to monitor.

Example 5.9. traceio2.stp Sample Output

[...]
synergyc(3722) vfs_read 0x800005
synergyc(3722) vfs_read 0x800005
cupsd(2889) vfs_write 0x800005
cupsd(2889) vfs_write 0x800005
cupsd(2889) vfs_write 0x800005
[...]



5.2.5. Monitoring Reads and Writes to a File
This section describes how to monitor reads from and writes to a file in real time.

inodewatch.stp

#! /usr/bin/env stap

probe vfs.write, vfs.read
{
  # dev and ino are defined by vfs.write and vfs.read
  if (dev == MKDEV($1,$2) # major/minor device
      && ino == $3)
    printf ("%s(%d) %s 0x%x/%u\n",
      execname(), pid(), probefunc(), dev, ino)
}

inodewatch.stp takes the following information about the file as arguments on the command line:

The file's major device number.

The file's minor device number.

The file's inode number.

To get this information, use stat -c '%D %i' filename, where filename is an absolute path.

For instance: if you wish to monitor /etc/crontab, run stat -c '%D %i' /etc/crontab first. This gives the following
output:

805 1078319

805 is the base-16 (hexadecimal) device number. The lower two digits are the minor device number and the upper digits
are the major number. 1078319 is the inode number. To start monitoring /etc/crontab, run stap inodewatch.stp 
0x8 0x05 1078319 (The 0x prefixes indicate base-16 values.

The output of this command contains the name and ID of any process performing a read/write, the function it is performing
(i.e. vfs_read or vfs_write), the device number (in hex format), and the inode number. Example 5.10, “inodewatch.stp
Sample Output” contains the output of stap inodewatch.stp 0x8 0x05 1078319 (when cat /etc/crontab is
executed while the script is running) :

Example 5.10. inodewatch.stp Sample Output

cat(16437) vfs_read 0x800005/1078319
cat(16437) vfs_read 0x800005/1078319

5.2.6. Monitoring Changes to File Attributes
This section describes how to monitor if any processes are changing the attributes of a targeted file, in real time.

inodewatch2.stp

#! /usr/bin/env stap

global ATTR_MODE = 1

probe kernel.function("setattr_copy")!,
      kernel.function("generic_setattr")!,
      kernel.function("inode_setattr") {
  dev_nr = $inode->i_sb->s_dev
  inode_nr = $inode->i_ino

  if (dev_nr == MKDEV($1,$2) # major/minor device
      && inode_nr == $3
      && $attr->ia_valid & ATTR_MODE)
    printf ("%s(%d) %s 0x%x/%u %o %d\n",
      execname(), pid(), probefunc(), dev_nr, inode_nr, $attr->ia_mode, uid())
}

Like inodewatch.stp from Section 5.2.5, “Monitoring Reads and Writes to a File”, inodewatch2.stp takes the targeted file's
device number (in integer format) and inode number as arguments. For more information on how to retrieve this
information, refer to Section 5.2.5, “Monitoring Reads and Writes to a File”.

The output for inodewatch2.stp is similar to that of inodewatch.stp, except that inodewatch2.stp also contains the attribute
changes to the monitored file, as well as the ID of the user responsible (uid()). Example 5.11, “inodewatch2.stp Sample
Output” shows the output of inodewatch2.stp while monitoring /home/joe/bigfile when user joe executes chmod 777 
/home/joe/bigfile and chmod 666 /home/joe/bigfile.



Example 5.11. inodewatch2.stp Sample Output

chmod(17448) inode_setattr 0x800005/6011835 100777 500
chmod(17449) inode_setattr 0x800005/6011835 100666 500

5.2.7. Periodically Print I/O Block Time
This section describes how to track the amount of time each block I/O requests spends waiting for completion. This is
useful in determining whether there are too many outstanding block I/O operations at any given time.

ioblktime.stp

#! /usr/bin/env stap

global req_time%[25000], etimes

probe ioblock.request
{
  req_time[$bio] = gettimeofday_us()
}

probe ioblock.end
{
  t = gettimeofday_us()
  s =  req_time[$bio]
  delete req_time[$bio]
  if (s) {
    etimes[devname, bio_rw_str(rw)] <<< t - s
  }
}

/* for time being delete things that get merged with others */
probe kernel.trace("block_bio_frontmerge"),
      kernel.trace("block_bio_backmerge")
{
  delete req_time[$bio]
}

probe timer.s(10), end {
  ansi_clear_screen()
  printf("%10s %3s %10s %10s %10s\n",
         "device", "rw", "total (us)", "count", "avg (us)")
  foreach ([dev,rw] in etimes - limit 20) {
    printf("%10s %3s %10d %10d %10d\n", dev, rw,
           @sum(etimes[dev,rw]), @count(etimes[dev,rw]), @avg(etimes[dev,rw]))
  }
  delete etimes
}

ioblktime.stp computes the average waiting time for block I/O per device, and prints a list every 10 seconds. As always,
you can revise this refresh rate by editing the specified value in probe timer.s(10), end {.

In some cases, there can be too many outstanding block I/O operations, at which point the script can exceed the default
number of MAXMAPENTRIES. MAXMAPENTRIES is the maximum number of rows in an array if the array size is not specified
explicitly when declared. If the script exceeds the default MAXMAPENTRIES value of 2048, run the script again with the stap
option -DMAXMAPENTRIES=10000.

Example 5.12. ioblktime.stp Sample Output

    device  rw total (us)      count   avg (us)
       sda   W       9659          6       1609
      dm-0   W      20278          6       3379
      dm-0   R      20524          5       4104
       sda   R      19277          5       3855

Example 5.12, “ioblktime.stp Sample Output” displays the device name, operations performed (rw), total wait time of all
operations (total(us)), number of operations (count), and average wait time for all those operations (avg (us)). The
times tallied by the script are in microseconds.

5.3. Profiling
The following sections showcase scripts that profile kernel activity by monitoring function calls.

5.3.1. Counting Function Calls Made



This section describes how to identify how many times the system called a specific kernel function in a 30-second sample.
Depending on your use of wildcards, you can also use this script to target multiple kernel functions.

functioncallcount.stp

#! /usr/bin/env stap
# The following line command will probe all the functions
# in kernel's memory management code:
#
# stap  functioncallcount.stp "*@mm/*.c"

probe kernel.function(@1).call {  # probe functions listed on commandline
  called[probefunc()] <<< 1  # add a count efficiently
}

global called

probe end {
  foreach (fn in called-)  # Sort by call count (in decreasing order)
  #       (fn+ in called)  # Sort by function name
    printf("%s %d\n", fn, @count(called[fn]))
  exit()
}

functioncallcount.stp takes the targeted kernel function as an argument. The argument supports wildcards, which enables
you to target multiple kernel functions up to a certain extent.

The output of functioncallcount.stp contains the name of the function called and how many times it was called during the
sample time (in alphabetical order). Example 5.13, “functioncallcount.stp Sample Output” contains an excerpt from the
output of stap functioncallcount.stp "*@mm/*.c":

Example 5.13. functioncallcount.stp Sample Output

[...]
__vma_link 97
__vma_link_file 66
__vma_link_list 97
__vma_link_rb 97
__xchg 103
add_page_to_active_list 102
add_page_to_inactive_list 19
add_to_page_cache 19
add_to_page_cache_lru 7
all_vm_events 6
alloc_pages_node 4630
alloc_slabmgmt 67
anon_vma_alloc 62
anon_vma_free 62
anon_vma_lock 66
anon_vma_prepare 98
anon_vma_unlink 97
anon_vma_unlock 66
arch_get_unmapped_area_topdown 94
arch_get_unmapped_exec_area 3
arch_unmap_area_topdown 97
atomic_add 2
atomic_add_negative 97
atomic_dec_and_test 5153
atomic_inc 470
atomic_inc_and_test 1
[...]

5.3.2. Call Graph Tracing
This section describes how to trace incoming and outgoing function calls.

para-callgraph.stp



#! /usr/bin/env stap

function trace(entry_p, extra) {
  %( $# > 1 %? if (tid() in trace) %)
  printf("%s%s%s %s\n",
         thread_indent (entry_p),
         (entry_p>0?"->":"<-"),
         ppfunc (),
         extra)
}

%( $# > 1 %?
global trace
probe $2.call {
  trace[tid()] = 1
}
probe $2.return {
  delete trace[tid()]
}
%)

probe $1.call   { trace(1, $$parms) }
probe $1.return { trace(-1, $$return) }

para-callgraph.stp takes two command-line arguments:

The function/s whose entry/exit call you'd like to trace ($1).

A second optional trigger function ($2), which enables or disables tracing on a per-thread basis. Tracing in each
thread will continue as long as the trigger function has not exited yet.

para-callgraph.stp uses thread_indent(); as such, its output contains the timestamp, process name, and thread ID of 
$1 (i.e. the probe function you are tracing). For more information about thread_indent(), refer to its entry in SystemTap
Functions.

The following example contains an excerpt from the output for stap para-callgraph.stp 
'kernel.function("*@fs/*.c")' 'kernel.function("sys_read")':

Example 5.14. para-callgraph.stp Sample Output

[...]
   267 gnome-terminal(2921): <-do_sync_read return=0xfffffffffffffff5
   269 gnome-terminal(2921):<-vfs_read return=0xfffffffffffffff5
     0 gnome-terminal(2921):->fput file=0xffff880111eebbc0
     2 gnome-terminal(2921):<-fput
     0 gnome-terminal(2921):->fget_light fd=0x3 fput_needed=0xffff88010544df54
     3 gnome-terminal(2921):<-fget_light return=0xffff8801116ce980
     0 gnome-terminal(2921):->vfs_read file=0xffff8801116ce980 buf=0xc86504 count=0x1000 
pos=0xffff88010544df48
     4 gnome-terminal(2921): ->rw_verify_area read_write=0x0 file=0xffff8801116ce980 
ppos=0xffff88010544df48 count=0x1000
     7 gnome-terminal(2921): <-rw_verify_area return=0x1000
    12 gnome-terminal(2921): ->do_sync_read filp=0xffff8801116ce980 buf=0xc86504 len=0x1000 
ppos=0xffff88010544df48
    15 gnome-terminal(2921): <-do_sync_read return=0xfffffffffffffff5
    18 gnome-terminal(2921):<-vfs_read return=0xfffffffffffffff5
     0 gnome-terminal(2921):->fput file=0xffff8801116ce980

5.3.3. Determining Time Spent in Kernel and User Space
This section illustrates how to determine the amount of time any given thread is spending in either kernel or user-space.

thread-times.stp



#! /usr/bin/env stap

probe perf.sw.cpu_clock!, timer.profile {
  // NB: To avoid contention on SMP machines, no global scalars/arrays used,
  // only contention-free statistics aggregates.
  tid=tid(); e=execname()
  if (!user_mode())
    kticks[e,tid] <<< 1
  else
    uticks[e,tid] <<< 1
  ticks <<< 1
  tids[e,tid] <<< 1
}

global uticks, kticks, ticks

global tids

probe timer.s(5), end {
  allticks = @count(ticks)
  printf ("%16s %5s %7s %7s (of %d ticks)\n",
          "comm", "tid", "%user", "%kernel", allticks)
  foreach ([e,tid] in tids- limit 20) {
    uscaled = @count(uticks[e,tid])*10000/allticks
    kscaled = @count(kticks[e,tid])*10000/allticks
    printf ("%16s %5d %3d.%02d%% %3d.%02d%%\n",
      e, tid, uscaled/100, uscaled%100, kscaled/100, kscaled%100)
  }
  printf("\n")

  delete uticks
  delete kticks
  delete ticks
  delete tids
}

thread-times.stp lists the top 20 processes currently taking up CPU time within a 5-second sample, along with the total
number of CPU ticks made during the sample. The output of this script also notes the percentage of CPU time each
process used, as well as whether that time was spent in kernel space or user space.

Example 5.15, “thread-times.stp Sample Output” contains a 5-second sample of the output for thread-times.stp:

Example 5.15. thread-times.stp Sample Output

  tid   %user %kernel (of 20002 ticks)
    0   0.00%  87.88%
32169   5.24%   0.03%
 9815   3.33%   0.36%
 9859   0.95%   0.00%
 3611   0.56%   0.12%
 9861   0.62%   0.01%
11106   0.37%   0.02%
32167   0.08%   0.08%
 3897   0.01%   0.08%
 3800   0.03%   0.00%
 2886   0.02%   0.00%
 3243   0.00%   0.01%
 3862   0.01%   0.00%
 3782   0.00%   0.00%
21767   0.00%   0.00%
 2522   0.00%   0.00%
 3883   0.00%   0.00%
 3775   0.00%   0.00%
 3943   0.00%   0.00%
 3873   0.00%   0.00%

5.3.4. Monitoring Polling Applications
This section describes how to identify and monitor which applications are polling. Doing so allows you to track
unnecessary or excessive polling, which can help you pinpoint areas for improvement in terms of CPU usage and power
savings.

timeout.stp

#! /usr/bin/env stap
# Copyright (C) 2009 Red Hat, Inc.
# Written by Ulrich Drepper <drepper@redhat.com>



# Modified by William Cohen <wcohen@redhat.com>

global process, timeout_count, to
global poll_timeout, epoll_timeout, select_timeout, itimer_timeout
global nanosleep_timeout, futex_timeout, signal_timeout

probe syscall.poll, syscall.epoll_wait {
  if (timeout) to[pid()]=timeout
}

probe syscall.poll.return {
  p = pid()
  if ($return == 0 && to[p] > 0 ) {
    poll_timeout[p]++
    timeout_count[p]++
    process[p] = execname()
    delete to[p]
  }
}

probe syscall.epoll_wait.return {
  p = pid()
  if ($return == 0 && to[p] > 0 ) {
    epoll_timeout[p]++
    timeout_count[p]++
    process[p] = execname()
    delete to[p]
  }
}

probe syscall.select.return {
  if ($return == 0) {
    p = pid()
    select_timeout[p]++
    timeout_count[p]++
    process[p] = execname()
  }
}

probe syscall.futex.return {
  if (errno_str($return) == "ETIMEDOUT") {
    p = pid()
    futex_timeout[p]++
    timeout_count[p]++
    process[p] = execname()
  }
}

probe syscall.nanosleep.return {
  if ($return == 0) {
    p = pid()
    nanosleep_timeout[p]++
    timeout_count[p]++
    process[p] = execname()
  }
}

probe kernel.function("it_real_fn") {
  p = pid()
  itimer_timeout[p]++
  timeout_count[p]++
  process[p] = execname()
}

probe syscall.rt_sigtimedwait.return {
  if (errno_str($return) == "EAGAIN") {
    p = pid()
    signal_timeout[p]++
    timeout_count[p]++
    process[p] = execname()
  }
}

probe syscall.exit {
  p = pid()
  if (p in process) {
    delete process[p]
    delete timeout_count[p]
    delete poll_timeout[p]
    delete epoll_timeout[p]
    delete select_timeout[p]
    delete itimer_timeout[p]



    delete futex_timeout[p]
    delete nanosleep_timeout[p]
    delete signal_timeout[p]
  }
}

probe timer.s(1) {
  ansi_clear_screen()
  printf ("  pid |   poll  select   epoll  itimer   futex nanosle  signal| process\n")
  foreach (p in timeout_count- limit 20) {
     printf ("%5d |%7d %7d %7d %7d %7d %7d %7d| %-.38s\n", p,
              poll_timeout[p], select_timeout[p],
              epoll_timeout[p], itimer_timeout[p],
              futex_timeout[p], nanosleep_timeout[p],
              signal_timeout[p], process[p])
  }
}

timeout.stp tracks how many times each of the following system calls completed due to time expiring rather than due to an
actual event occurring:

poll

select

epoll

itimer

futex

nanosleep

signal

Example 5.16. timeout.stp Sample Output

  uid |   poll  select   epoll  itimer   futex nanosle  signal| process
28937 | 148793       0       0    4727   37288       0       0| firefox
22945 |      0   56949       0       1       0       0       0| scim-bridge
    0 |      0       0       0   36414       0       0       0| swapper
 4275 |  23140       0       0       1       0       0       0| mixer_applet2
 4191 |      0   14405       0       0       0       0       0| scim-launcher
22941 |   7908       1       0      62       0       0       0| gnome-terminal
 4261 |      0       0       0       2       0    7622       0| escd
 3695 |      0       0       0       0       0    7622       0| gdm-binary
 3483 |      0    7206       0       0       0       0       0| dhcdbd
 4189 |   6916       0       0       2       0       0       0| scim-panel-gtk
 1863 |   5767       0       0       0       0       0       0| iscsid
 2562 |      0    2881       0       1       0    1438       0| pcscd
 4257 |   4255       0       0       1       0       0       0| gnome-power-man
 4278 |   3876       0       0      60       0       0       0| multiload-apple
 4083 |      0    1331       0    1728       0       0       0| Xorg
 3921 |   1603       0       0       0       0       0       0| gam_server
 4248 |   1591       0       0       0       0       0       0| nm-applet
 3165 |      0    1441       0       0       0       0       0| xterm
29548 |      0    1440       0       0       0       0       0| httpd
 1862 |      0       0       0       0       0    1438       0| iscsid

You can increase the sample time by editing the second probe (timer.s(1)). The output of timeout.stp contains the
name and UID of the top 20 polling applications, along with how many times each application performed each polling
system call (over time). Example 5.16, “timeout.stp Sample Output” contains an excerpt of the script. In this particular
example firefox is doing an excessive amount of polling due to a plugin module.

5.3.5. Tracking Most Frequently Used System Calls
timeout.stp from Section 5.3.4, “Monitoring Polling Applications” helps you identify which applications are polling by
examining a small subset of system calls ( poll, select, epoll, itimer, futex, nanosleep, and signal). However, in
some systems, an excessive number of system calls outside that small subset might be responsible for time spent in the
kernel. If you suspect that an application is using system calls excessively, you need to identify the most frequently used
system calls on the system. To do this, use topsys.stp.

topsys.stp



#! /usr/bin/env stap
#
# This script continuously lists the top 20 systemcalls in the interval 
# 5 seconds
#

global syscalls_count

probe syscall.* {
  syscalls_count[name]++
}

function print_systop () {
  printf ("%25s %10s\n", "SYSCALL", "COUNT")
  foreach (syscall in syscalls_count- limit 20) {
    printf("%25s %10d\n", syscall, syscalls_count[syscall])
  }
  delete syscalls_count
}

probe timer.s(5) {
  print_systop ()
  printf("--------------------------------------------------------------\n")
}

topsys.stp lists the top 20 system calls used by the system per 5-second interval. It also lists how many times each system
call was used during that period. Refer to Example 5.17, “topsys.stp Sample Output” for a sample output.

Example 5.17. topsys.stp Sample Output

--------------------------------------------------------------
                  SYSCALL      COUNT
             gettimeofday       1857
                     read       1821
                    ioctl       1568
                     poll       1033
                    close        638
                     open        503
                   select        455
                    write        391
                   writev        335
                    futex        303
                  recvmsg        251
                   socket        137
            clock_gettime        124
           rt_sigprocmask        121
                   sendto        120
                setitimer        106
                     stat         90
                     time         81
                sigreturn         72
                    fstat         66
--------------------------------------------------------------

5.3.6. Tracking System Call Volume Per Process
This section illustrates how to determine which processes are performing the highest volume of system calls. In previous
sections, we've described how to monitor the top system calls used by the system over time (Section 5.3.5, “Tracking Most
Frequently Used System Calls”). We've also described how to identify which applications use a specific set of "polling
suspect" system calls the most (Section 5.3.4, “Monitoring Polling Applications”). Monitoring the volume of system calls
made by each process provides more data in investigating your system for polling processes and other resource hogs.

syscalls_by_proc.stp



#! /usr/bin/env stap

# Copyright (C) 2006 IBM Corp.
#
# This file is part of systemtap, and is free software.  You can
# redistribute it and/or modify it under the terms of the GNU General
# Public License (GPL); either version 2, or (at your option) any
# later version.

#
# Print the system call count by process name in descending order.
#

global syscalls

probe begin {
  print ("Collecting data... Type Ctrl-C to exit and display results\n")
}

probe syscall.* {
  syscalls[execname()]++
}

probe end {
  printf ("%-10s %-s\n", "#SysCalls", "Process Name")
  foreach (proc in syscalls-)
    printf("%-10d %-s\n", syscalls[proc], proc)
}

syscalls_by_proc.stp lists the top 20 processes performing the highest number of system calls. It also lists how many
system calls each process performed during the time period. Refer to Example 5.18, “topsys.stp Sample Output” for a
sample output.

Example 5.18. topsys.stp Sample Output

Collecting data... Type Ctrl-C to exit and display results
#SysCalls  Process Name
1577       multiload-apple
692        synergyc
408        pcscd
376        mixer_applet2
299        gnome-terminal
293        Xorg
206        scim-panel-gtk
95         gnome-power-man
90         artsd
85         dhcdbd
84         scim-bridge
78         gnome-screensav
66         scim-launcher
[...]

If you prefer the output to display the process IDs instead of the process names, use the following script instead.

syscalls_by_pid.stp



#! /usr/bin/env stap

# Copyright (C) 2006 IBM Corp.
#
# This file is part of systemtap, and is free software.  You can
# redistribute it and/or modify it under the terms of the GNU General
# Public License (GPL); either version 2, or (at your option) any
# later version.

#
# Print the system call count by process ID in descending order.
#

global syscalls

probe begin {
  print ("Collecting data... Type Ctrl-C to exit and display results\n")
}

probe syscall.* {
  syscalls[pid()]++
}

probe end {
  printf ("%-10s %-s\n", "#SysCalls", "PID")
  foreach (pid in syscalls-)
    printf("%-10d %-d\n", syscalls[pid], pid)
}

As indicated in the output, you need to manually exit the script in order to display the results. You can add a timed
expiration to either script by simply adding a timer.s() probe; for example, to instruct the script to expire after 5 seconds,
add the following probe to the script:

probe timer.s(5)
{
 exit()
}

5.4. Identifying Contended User-Space Locks
This section describes how to identify contended user-space locks throughout the system within a specific time period.
The ability to identify contended user-space locks can help you investigate poor program performance that you suspect
may be caused by futex contentions.

Simply put, futex contention occurs when multiple processes are trying to access the same lock variable at the same
time. This can result in a poor performance because the lock serializes execution; one process obtains the lock while the
other processes must wait for the lock variable to become available again.

The futexes.stp script probes the futex system call to show lock contention.

futexes.stp

#! /usr/bin/env stap

# This script tries to identify contended user-space locks by hooking
# into the futex system call.

global FUTEX_WAIT = 0 /*, FUTEX_WAKE = 1 */
global FUTEX_PRIVATE_FLAG = 128 /* linux 2.6.22+ */
global FUTEX_CLOCK_REALTIME = 256 /* linux 2.6.29+ */

global lock_waits # long-lived stats on (tid,lock) blockage elapsed time
global process_names # long-lived pid-to-execname mapping

probe syscall.futex.return {  
  if (($op & ~(FUTEX_PRIVATE_FLAG|FUTEX_CLOCK_REALTIME)) != FUTEX_WAIT) next
  process_names[pid()] = execname()
  elapsed = gettimeofday_us() - @entry(gettimeofday_us())
  lock_waits[pid(), $uaddr] <<< elapsed
}

probe end {
  foreach ([pid+, lock] in lock_waits) 
    printf ("%s[%d] lock %p contended %d times, %d avg us\n",
            process_names[pid], pid, lock, @count(lock_waits[pid,lock]),
            @avg(lock_waits[pid,lock]))
}



futexes.stp needs to be manually stopped; upon exit, it prints the following information:

Name and ID of the process responsible for a contention

The location of the contested lock variable

How many times the lock variable was contended

Average time of contention throughout the probe

Example 5.19, “futexes.stp Sample Output” contains an excerpt from the output of futexes.stp upon exiting the script (after
approximately 20 seconds).

Example 5.19. futexes.stp Sample Output

[...]
automount[2825] lock 0x00bc7784 contended 18 times, 999931 avg us
synergyc[3686] lock 0x0861e96c contended 192 times, 101991 avg us
synergyc[3758] lock 0x08d98744 contended 192 times, 101990 avg us
synergyc[3938] lock 0x0982a8b4 contended 192 times, 101997 avg us
[...]



Chapter 6. Understanding SystemTap Errors
This chapter explains the most common errors you may encounter while using SystemTap.

6.1. Parse and Semantic Errors
These types of errors occur while SystemTap attempts to parse and translate the script into C, prior to being converted
into a kernel module. For example type errors result from operations that assign invalid values to variables or arrays.

parse error: expected foo, saw bar

The script contains a grammatical/typographical error. SystemTap detected type of construct that is incorrect, given the
context of the probe.

The following invalid SystemTap script is missing its probe handlers:

probe vfs.read
probe vfs.write

It results in the following error message showing that the parser was expecting something other than the probe keyword in
column 1 of line 2:

parse error: expected one of '. , ( ? ! { = +='
 saw: keyword at perror.stp:2:1
1 parse error(s).

parse error: embedded code in unprivileged script

The script contains unsafe embedded C code (blocks of code surrounded by %{ %}. SystemTap allows you to embed C
code in a script, which is useful if there are no tapsets to suit your purposes. However, embedded C constructs are not
safe; as such, SystemTap warns you with this error if such constructs appear in the script.

If you are sure of the safety of any similar constructs in the script and are member of stapdev group (or have root
privileges), run the script in "guru" mode by using the option -g (i.e. stap -g script).

semantic error: type mismatch for identifier 'foo' ... string vs. long

The function foo in the script used the wrong type (i.e. %s or %d). This error will present itself in Example 6.1, “error-
variable.stp”, because the function execname() returns a string the format specifier should be a %s, not %d.

Example 6.1. error-variable.stp

probe syscall.open
{
  printf ("%d(%d) open\n", execname(), pid())
}

semantic error: unresolved type for identifier 'foo'

The identifier (e.g. a variable) was used, but no type (integer or string) could be determined. This occurs, for instance, if
you use a variable in a printf statement while the script never assigns a value to the variable.

semantic error: Expecting symbol or array index expression

SystemTap could not assign a value to a variable or to a location in an array. The destination for the assignment is not a
valid destination. The following example code would generate this error:

probe begin { printf("x") = 1 }

while searching for arity N function, semantic error: unresolved function call

A function call or array index expression in the script used an invalid number of arguments/parameters. In SystemTap arity
can either refer to the number of indices for an array, or the number of parameters to a function.

semantic error: array locals not supported, missing global declaration?

The script used an array operation without declaring the array as a global variable (global variables can be declared after
their use in SystemTap scripts). Similar messages appear if an array is used, but with inconsistent arities.

semantic error: variable ’foo’ modied during ’foreach’ iteration

The array foo is being modifed (being assigned to or deleted from) within an active foreach loop. This error also displays
if an operation within the script performs a function call within the foreach loop.



semantic error: probe point mismatch at position N, while resolving probe point foo

SystemTap did not understand what the event or SystemTap function foo refers to. This usually means that SystemTap
could not find a match for foo in the tapset library. The N refers to the line and column of the error.

semantic error: no match for probe point, while resolving probe point foo

The events/handler function foo could not be resolved altogether, for a variety of reasons. This error occurs when the
script contains the event kernel.function("blah"), and blah does not exist. In some cases, the error could also mean
the script contains an invalid kernel file name or source line number.

semantic error: unresolved target-symbol expression

A handler in the script references a target variable, but the value of the variable could not be resolved. This error could
also mean that a handler is referencing a target variable that is not valid in the context when it was referenced. This may
be a result of compiler optimization of the generated code.

semantic error: libdw failure

There was a problem processing the debugging information. In most cases, this error results from the installation of a 
kernel-debuginfo RPM whose version does not match the probed kernel exactly. The installed kernel-debuginfo
RPM itself may have some consistency/correctness problems.

semantic error: cannot find foo debuginfo

SystemTap could not find a suitable kernel-debuginfo at all.

6.2. Run Time Errors and Warnings
Runtime errors and warnings occur when the SystemTap instrumentation has been installed and is collecting data on the
system.

WARNING: Number of errors: N, skipped probes: M

Errors and/or skipped probes occurred during this run. Both N and M are the counts of the number of probes that were not
executed due to conditions such as too much time required to execute event handlers over an interval of time.

division by 0

The script code performed an invalid division.

aggregate element not found

A statistics extractor function other than @count was invoked on an aggregate that has not had any values accumulated
yet. This is similar to a division by zero.

aggregation overflow

An array containing aggregate values contains too many distinct key pairs at this time.

MAXNESTING exceeded

Too many levels of function call nesting were attempted. The default nesting of function calls allowed is 10.

MAXACTION exceeded

The probe handler attempted to execute too many statements in the probe handler. The default number of actions allowed
in a probe handler is 1000.

kernel/user string copy fault at ADDR

The probe handler attempted to copy a string from kernel or user-space at an invalid address (ADDR).

pointer dereference fault

There was a fault encountered during a pointer dereference operation such as a target variable evaluation.



Chapter 7. References
This chapter enumerates other references for more information about SystemTap. It is advisable that you refer to these
sources in the course of writing advanced probes and tapsets.

SystemTap Wiki
The SystemTap Wiki is a collection of links and articles related to the deployment, usage, and development of
SystemTap. You can find it at http://sourceware.org/systemtap/wiki/HomePage.

SystemTap Tutorial
Much of the content in this book comes from the SystemTap Tutorial. The SystemTap Tutorial is a more
appropriate reference for users with intermediate to advanced knowledge of C++ and kernel development, and
can be found at http://sourceware.org/systemtap/tutorial/.

man stapprobes
The stapprobes man page enumerates a variety of probe points supported by SystemTap, along with additional
aliases defined by the SystemTap tapset library. The bottom of the man page includes a list of other man pages
enumerating similar probe points for specific system components, such as tapset::scsi, tapset::kprocess, 
tapset::signal, etc.

man stapfuncs
The stapfuncs man page enumerates numerous functions supported by the SystemTap tapset library, along
with the prescribed syntax for each one. Note, however, that this is not a complete list of all supported functions;
there are more undocumented functions available.

SystemTap Tapset Reference Manual
The SystemTap Tapset Reference Manual at http://sourceware.org/systemtap/tapsets/ describes the individual
predefined functions and probe points of the tapsets greater detail.

SystemTap Language Reference
This document is a comprehensive reference of SystemTap's language constructs and syntax. It is recommended
for users with a rudimentary to intermediate knowledge of C++ and other similar programming languages. The
SystemTap Language Reference is available to all users at http://sourceware.org/systemtap/langref/

Tapset Developers Guide
Once you have sufficient proficiency in writing SystemTap scripts, you can then try your hand out on writing your
own tapsets. The Tapset Developers Guide describes how to add functions to your tapset library.

Test Suite
The systemtap-testsuite package allows you to test the entire SystemTap toolchain without having to build
from source. In addition, it also contains numerous examples of SystemTap scripts you can study and test; some
of these scripts are also documented in Chapter 5, Useful SystemTap Scripts.

By default, the example scripts included in systemtap-testsuite are located in 
/usr/share/systemtap/testsuite/systemtap.examples.
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