Naive algorithms for enumerating rational points over or finite fields
over for general schemes.
Warning
Incorrect results and infinite loops may occur if using a wrong function. (For instance using an affine function for a projective scheme or a finite field function for a scheme defined over an infinite field.)
EXAMPLES:
Projective, over :
sage: from sage.schemes.projective.projective_rational_point import enum_projective_rational_field
sage: P.<X,Y,Z> = ProjectiveSpace(2,QQ)
sage: C = P.subscheme([X+Y-Z])
sage: enum_projective_rational_field(C,3)
[(-2 : 3 : 1), (-1 : 1 : 0), (-1 : 2 : 1), (-1/2 : 3/2 : 1),
(0 : 1 : 1), (1/3 : 2/3 : 1), (1/2 : 1/2 : 1), (2/3 : 1/3 : 1),
(1 : 0 : 1), (3/2 : -1/2 : 1), (2 : -1 : 1), (3 : -2 : 1)]
Projective over a finite field:
sage: from sage.schemes.projective.projective_rational_point import enum_projective_finite_field
sage: E = EllipticCurve('72').change_ring(GF(19))
sage: enum_projective_finite_field(E)
[(0 : 1 : 0), (1 : 0 : 1), (3 : 0 : 1), (4 : 9 : 1), (4 : 10 : 1),
(6 : 6 : 1), (6 : 13 : 1), (7 : 6 : 1), (7 : 13 : 1), (9 : 4 : 1),
(9 : 15 : 1), (12 : 8 : 1), (12 : 11 : 1), (13 : 8 : 1), (13 : 11 : 1),
(14 : 3 : 1), (14 : 16 : 1), (15 : 0 : 1), (16 : 9 : 1), (16 : 10 : 1),
(17 : 7 : 1), (17 : 12 : 1), (18 : 9 : 1), (18 : 10 : 1)]
AUTHORS:
Enumerates projective points on scheme X defined over a finite field.
INPUT:
OUTPUT:
EXAMPLES:
sage: F = GF(53)
sage: P.<X,Y,Z> = ProjectiveSpace(2,F)
sage: from sage.schemes.projective.projective_rational_point import enum_projective_finite_field
sage: len(enum_projective_finite_field(P(F)))
2863
sage: 53^2+53+1
2863
sage: F = GF(9,'a')
sage: P.<X,Y,Z> = ProjectiveSpace(2,F)
sage: C = Curve(X^3-Y^3+Z^2*Y)
sage: enum_projective_finite_field(C(F))
[(0 : 0 : 1), (0 : 1 : 1), (0 : 2 : 1), (1 : 1 : 0), (a + 1 : 2*a : 1),
(a + 1 : 2*a + 1 : 1), (a + 1 : 2*a + 2 : 1), (2*a + 2 : a : 1),
(2*a + 2 : a + 1 : 1), (2*a + 2 : a + 2 : 1)]
sage: F = GF(5)
sage: P2F.<X,Y,Z> = ProjectiveSpace(2,F)
sage: enum_projective_finite_field(P2F)
[(0 : 0 : 1), (0 : 1 : 0), (0 : 1 : 1), (0 : 2 : 1), (0 : 3 : 1), (0 : 4 : 1),
(1 : 0 : 0), (1 : 0 : 1), (1 : 1 : 0), (1 : 1 : 1), (1 : 2 : 1), (1 : 3 : 1),
(1 : 4 : 1), (2 : 0 : 1), (2 : 1 : 0), (2 : 1 : 1), (2 : 2 : 1), (2 : 3 : 1),
(2 : 4 : 1), (3 : 0 : 1), (3 : 1 : 0), (3 : 1 : 1), (3 : 2 : 1), (3 : 3 : 1),
(3 : 4 : 1), (4 : 0 : 1), (4 : 1 : 0), (4 : 1 : 1), (4 : 2 : 1), (4 : 3 : 1),
(4 : 4 : 1)]
ALGORITHM:
Checks all points in projective space to see if they lie on X.
Warning
If X is defined over an infinite field, this code will not finish!
AUTHORS:
Enumerates projective, rational points on scheme X of height up to bound B.
INPUT:
OUTPUT:
EXAMPLES:
sage: P.<X,Y,Z> = ProjectiveSpace(2,QQ)
sage: C = P.subscheme([X+Y-Z])
sage: from sage.schemes.projective.projective_rational_point import enum_projective_rational_field
sage: enum_projective_rational_field(C(QQ),6)
[(-5 : 6 : 1), (-4 : 5 : 1), (-3 : 4 : 1), (-2 : 3 : 1),
(-3/2 : 5/2 : 1), (-1 : 1 : 0), (-1 : 2 : 1), (-2/3 : 5/3 : 1),
(-1/2 : 3/2 : 1), (-1/3 : 4/3 : 1), (-1/4 : 5/4 : 1),
(-1/5 : 6/5 : 1), (0 : 1 : 1), (1/6 : 5/6 : 1), (1/5 : 4/5 : 1),
(1/4 : 3/4 : 1), (1/3 : 2/3 : 1), (2/5 : 3/5 : 1), (1/2 : 1/2 : 1),
(3/5 : 2/5 : 1), (2/3 : 1/3 : 1), (3/4 : 1/4 : 1), (4/5 : 1/5 : 1),
(5/6 : 1/6 : 1), (1 : 0 : 1), (6/5 : -1/5 : 1), (5/4 : -1/4 : 1),
(4/3 : -1/3 : 1), (3/2 : -1/2 : 1), (5/3 : -2/3 : 1), (2 : -1 : 1),
(5/2 : -3/2 : 1), (3 : -2 : 1), (4 : -3 : 1), (5 : -4 : 1),
(6 : -5 : 1)]
sage: enum_projective_rational_field(C,6) == enum_projective_rational_field(C(QQ),6)
True
sage: P3.<W,X,Y,Z> = ProjectiveSpace(3,QQ)
sage: enum_projective_rational_field(P3,1)
[(-1 : -1 : -1 : 1), (-1 : -1 : 0 : 1), (-1 : -1 : 1 : 0), (-1 : -1 : 1 : 1),
(-1 : 0 : -1 : 1), (-1 : 0 : 0 : 1), (-1 : 0 : 1 : 0), (-1 : 0 : 1 : 1),
(-1 : 1 : -1 : 1), (-1 : 1 : 0 : 0), (-1 : 1 : 0 : 1), (-1 : 1 : 1 : 0),
(-1 : 1 : 1 : 1), (0 : -1 : -1 : 1), (0 : -1 : 0 : 1), (0 : -1 : 1 : 0),
(0 : -1 : 1 : 1), (0 : 0 : -1 : 1), (0 : 0 : 0 : 1), (0 : 0 : 1 : 0),
(0 : 0 : 1 : 1), (0 : 1 : -1 : 1), (0 : 1 : 0 : 0), (0 : 1 : 0 : 1),
(0 : 1 : 1 : 0), (0 : 1 : 1 : 1), (1 : -1 : -1 : 1), (1 : -1 : 0 : 1),
(1 : -1 : 1 : 0), (1 : -1 : 1 : 1), (1 : 0 : -1 : 1), (1 : 0 : 0 : 0),
(1 : 0 : 0 : 1), (1 : 0 : 1 : 0), (1 : 0 : 1 : 1), (1 : 1 : -1 : 1),
(1 : 1 : 0 : 0), (1 : 1 : 0 : 1), (1 : 1 : 1 : 0), (1 : 1 : 1 : 1)]
ALGORITHM:
We just check all possible projective points in correct dimension of projective space to see if they lie on X.
AUTHORS: