Return the Hecke algebra of the symmetric group on the T basis.
EXAMPLES:
sage: HeckeAlgebraSymmetricGroupT(QQ, 3)
Hecke algebra of the symmetric group of order 3 on the T basis over Univariate Polynomial Ring in q over Rational Field
sage: HeckeAlgebraSymmetricGroupT(QQ, 3, 2)
Hecke algebra of the symmetric group of order 3 with q=2 on the T basis over Rational Field
Bases: sage.combinat.combinatorial_algebra.CombinatorialAlgebra
TESTS:
sage: HeckeAlgebraSymmetricGroupT(QQ, 3)
Hecke algebra of the symmetric group of order 3 on the T basis over Univariate Polynomial Ring in q over Rational Field
sage: HeckeAlgebraSymmetricGroupT(QQ, 3, q=1)
Hecke algebra of the symmetric group of order 3 with q=1 on the T basis over Rational Field
EXAMPLES:
sage: HeckeAlgebraSymmetricGroupT(QQ, 3).q()
q
sage: HeckeAlgebraSymmetricGroupT(QQ, 3, 2).q()
2
Bases: sage.combinat.symmetric_group_algebra.HeckeAlgebraSymmetricGroup_generic
TESTS:
sage: H3 = HeckeAlgebraSymmetricGroupT(QQ, 3)
sage: H3 == loads(dumps(H3))
True
Return the generators of the algebra.
EXAMPLES:
sage: HeckeAlgebraSymmetricGroupT(QQ,3).algebra_generators()
[T[2, 1, 3], T[1, 3, 2]]
Return the Jucys-Murphy element of the Hecke algebra. The
Jucys-Murphy elements generate the maximal commutative sub-algebra
of the Hecke algebra.
EXAMPLES:
sage: H3 = HeckeAlgebraSymmetricGroupT(QQ,3)
sage: j2 = H3.jucys_murphy(2); j2
q*T[1, 2, 3] + (q-1)*T[2, 1, 3]
sage: j3 = H3.jucys_murphy(3); j3
q^2*T[1, 2, 3] + (q^2-q)*T[1, 3, 2] + (q-1)*T[3, 2, 1]
sage: j2*j3 == j3*j2
True
sage: j0 = H3.jucys_murphy(1); j0 == H3.one()
True
sage: H3.jucys_murphy(0)
Traceback (most recent call last):
...
ValueError: k (= 0) must be between 1 and n (= 3)
EXAMPLES:
sage: H3 = HeckeAlgebraSymmetricGroupT(QQ,3)
sage: H3.t(1)
T[2, 1, 3]
sage: H3.t(2)
T[1, 3, 2]
sage: H3.t(0)
Traceback (most recent call last):
...
ValueError: i (= 0) must be between 1 and n-1 (= 2)
Return the action of T_i on a.
EXAMPLES:
sage: H3 = HeckeAlgebraSymmetricGroupT(QQ, 3)
sage: a = H3([2,1,3])+2*H3([1,2,3])
sage: H3.t_action(a, 1)
q*T[1, 2, 3] + (q+1)*T[2, 1, 3]
sage: H3.t(1)*a
q*T[1, 2, 3] + (q+1)*T[2, 1, 3]
EXAMPLES:
sage: H3 = HeckeAlgebraSymmetricGroupT(QQ, 3)
sage: H3.t_action_on_basis(Permutation([2,1,3]), 1)
q*T[1, 2, 3] + (q-1)*T[2, 1, 3]
sage: H3.t_action_on_basis(Permutation([1,2,3]), 1)
T[2, 1, 3]
sage: H3 = HeckeAlgebraSymmetricGroupT(QQ, 3, 1)
sage: H3.t_action_on_basis(Permutation([2,1,3]), 1)
T[1, 2, 3]
sage: H3.t_action_on_basis(Permutation([1,3,2]), 2)
T[1, 2, 3]
Return the symmetric group algebra of order n over the ring R.
EXAMPLES:
sage: QS3 = SymmetricGroupAlgebra(QQ, 3); QS3
Symmetric group algebra of order 3 over Rational Field
sage: QS3(1)
[1, 2, 3]
sage: QS3(2)
2*[1, 2, 3]
sage: basis = [QS3(p) for p in Permutations(3)]
sage: a = sum(basis); a
[1, 2, 3] + [1, 3, 2] + [2, 1, 3] + [2, 3, 1] + [3, 1, 2] + [3, 2, 1]
sage: a^2
6*[1, 2, 3] + 6*[1, 3, 2] + 6*[2, 1, 3] + 6*[2, 3, 1] + 6*[3, 1, 2] + 6*[3, 2, 1]
sage: a^2 == 6*a
True
sage: b = QS3([3, 1, 2])
sage: b
[3, 1, 2]
sage: b*a
[1, 2, 3] + [1, 3, 2] + [2, 1, 3] + [2, 3, 1] + [3, 1, 2] + [3, 2, 1]
sage: b*a == a
True
The canonical embedding from the symmetric group algebra of order
to the symmetric group algebra of order
is available as
a coercion:
sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: QS4 = SymmetricGroupAlgebra(QQ, 4)
sage: QS4.coerce_map_from(QS3)
Generic morphism:
From: Symmetric group algebra of order 3 over Rational Field
To: Symmetric group algebra of order 4 over Rational Field
sage: x3 = QS3([3,1,2]) + 2 * QS3([2,3,1]); x3
2*[2, 3, 1] + [3, 1, 2]
sage: QS4(x3)
2*[2, 3, 1, 4] + [3, 1, 2, 4]
This allows for mixed expressions:
sage: x4 = 3*QS4([3, 1, 4, 2])
sage: x3 + x4
2*[2, 3, 1, 4] + [3, 1, 2, 4] + 3*[3, 1, 4, 2]
sage: QS0 = SymmetricGroupAlgebra(QQ, 0)
sage: QS1 = SymmetricGroupAlgebra(QQ, 1)
sage: x0 = QS0([])
sage: x1 = QS1([1])
sage: x0 * x1
[1]
sage: x3 - (2*x0 + x1) - x4
-3*[1, 2, 3, 4] + 2*[2, 3, 1, 4] + [3, 1, 2, 4] - 3*[3, 1, 4, 2]
Caveat: to achieve this, constructing SymmetricGroupAlgebra(QQ, 10) currently triggers the construction of all symmetric group algebras of smaller order. Is this a feature we really want to have?
TESTS:
sage: TestSuite(QS3).run()
Bases: sage.combinat.free_module.CombinatorialFreeModule
TESTS:
sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: TestSuite(QS3).run()
Return generators of this group algebra (as algebra) as a list of permutations.
The generators used for the group algebra of are the
transposition
and the
-cycle
,
unless
(in which case no generators are needed).
EXAMPLES:
sage: SymmetricGroupAlgebra(ZZ,5).algebra_generators()
[[2, 1, 3, 4, 5], [2, 3, 4, 5, 1]]
sage: SymmetricGroupAlgebra(QQ,0).algebra_generators()
[]
sage: SymmetricGroupAlgebra(QQ,1).algebra_generators()
[]
Return the canonical embedding of self into other.
INPUT:
EXAMPLES:
sage: QS2 = SymmetricGroupAlgebra(QQ, 2)
sage: QS4 = SymmetricGroupAlgebra(QQ, 4)
sage: phi = QS2.canonical_embedding(QS4); phi
Generic morphism:
From: Symmetric group algebra of order 2 over Rational Field
To: Symmetric group algebra of order 4 over Rational Field
sage: x = QS2([2,1]) + 2 * QS2([1,2])
sage: phi(x)
2*[1, 2, 3, 4] + [2, 1, 3, 4]
sage: loads(dumps(phi))
Generic morphism:
From: Symmetric group algebra of order 2 over Rational Field
To: Symmetric group algebra of order 4 over Rational Field
Return the centrally primitive idempotent for the symmetric group
of order corresponding to the irreducible representation
indexed by the partition p.
EXAMPLES:
sage: QS3 = SymmetricGroupAlgebra(QQ,3)
sage: QS3.cpi([2,1])
2/3*[1, 2, 3] - 1/3*[2, 3, 1] - 1/3*[3, 1, 2]
sage: QS3.cpi([3])
1/6*[1, 2, 3] + 1/6*[1, 3, 2] + 1/6*[2, 1, 3] + 1/6*[2, 3, 1] + 1/6*[3, 1, 2] + 1/6*[3, 2, 1]
sage: QS3.cpi([1,1,1])
1/6*[1, 2, 3] - 1/6*[1, 3, 2] - 1/6*[2, 1, 3] + 1/6*[2, 3, 1] + 1/6*[3, 1, 2] - 1/6*[3, 2, 1]
sage: QS0 = SymmetricGroupAlgebra(QQ, 0)
sage: QS0.cpi(Partition([]))
[]
TESTS:
sage: QS3.cpi([2,2])
Traceback (most recent call last):
...
TypeError: p (= [2, 2]) must be a partition of n (= 3)
Return a list of the centrally primitive idempotents of self.
EXAMPLES:
sage: QS3 = SymmetricGroupAlgebra(QQ,3)
sage: a = QS3.cpis()
sage: a[0] # [3]
1/6*[1, 2, 3] + 1/6*[1, 3, 2] + 1/6*[2, 1, 3] + 1/6*[2, 3, 1] + 1/6*[3, 1, 2] + 1/6*[3, 2, 1]
sage: a[1] # [2, 1]
2/3*[1, 2, 3] - 1/3*[2, 3, 1] - 1/3*[3, 1, 2]
Return the discrete Fourier transform for self.
EXAMPLES:
sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: QS3.dft()
[ 1 1 1 1 1 1]
[ 1 1/2 -1 -1/2 -1/2 1/2]
[ 0 3/4 0 3/4 -3/4 -3/4]
[ 0 1 0 -1 1 -1]
[ 1 -1/2 1 -1/2 -1/2 -1/2]
[ 1 -1 -1 1 1 -1]
Return the seminormal basis element of self corresponding to the pair of tableaux itab and ktab.
EXAMPLES:
sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: a = QS3.epsilon_ik([[1,2,3]], [[1,2,3]]); a
1/6*[1, 2, 3] + 1/6*[1, 3, 2] + 1/6*[2, 1, 3] + 1/6*[2, 3, 1] + 1/6*[3, 1, 2] + 1/6*[3, 2, 1]
sage: QS3.dft()*vector(a)
(1, 0, 0, 0, 0, 0)
sage: a = QS3.epsilon_ik([[1,2],[3]], [[1,2],[3]]); a
1/3*[1, 2, 3] - 1/6*[1, 3, 2] + 1/3*[2, 1, 3] - 1/6*[2, 3, 1] - 1/6*[3, 1, 2] - 1/6*[3, 2, 1]
sage: QS3.dft()*vector(a)
(0, 0, 0, 0, 1, 0)
Return the underlying group.
EXAMPLES:
sage: SymmetricGroupAlgebra(QQ,4).group()
Symmetric group of order 4! as a permutation group
Return the Jucys-Murphy element (also known as a
Young-Jucys-Murphy element) for the symmetric group
algebra self.
EXAMPLES:
sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: QS3.jucys_murphy(1)
0
sage: QS3.jucys_murphy(2)
[2, 1, 3]
sage: QS3.jucys_murphy(3)
[1, 3, 2] + [3, 2, 1]
sage: QS4 = SymmetricGroupAlgebra(QQ, 4)
sage: j3 = QS4.jucys_murphy(3); j3
[1, 3, 2, 4] + [3, 2, 1, 4]
sage: j4 = QS4.jucys_murphy(4); j4
[1, 2, 4, 3] + [1, 4, 3, 2] + [4, 2, 3, 1]
sage: j3*j4 == j4*j3
True
sage: QS5 = SymmetricGroupAlgebra(QQ, 5)
sage: QS5.jucys_murphy(4)
[1, 2, 4, 3, 5] + [1, 4, 3, 2, 5] + [4, 2, 3, 1, 5]
TESTS:
sage: QS3.jucys_murphy(4)
Traceback (most recent call last):
...
ValueError: k (= 4) must be between 1 and n (= 3) (inclusive)
Convert permutation into a permutation, possibly extending it to the appropriate size, and return the corresponding basis element of self.
EXAMPLES:
sage: QS5 = SymmetricGroupAlgebra(QQ, 5)
sage: QS5.monomial_from_smaller_permutation([])
[1, 2, 3, 4, 5]
sage: QS5.monomial_from_smaller_permutation(Permutation([3,1,2]))
[3, 1, 2, 4, 5]
sage: QS5.monomial_from_smaller_permutation([5,3,4,1,2])
[5, 3, 4, 1, 2]
TESTS:
sage: QS5.monomial_from_smaller_permutation([5,3,4,1,2]).parent()
Symmetric group algebra of order 5 over Rational Field
Return the identity of the symmetric group, as per AlgebrasWithBasis.ParentMethods.one_basis.
EXAMPLES:
sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: QS3.one_basis()
[1, 2, 3]
Return the product of the basis elements indexed by left and right.
EXAMPLES:
sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: p1 = Permutation([1,2,3])
sage: p2 = Permutation([2,1,3])
sage: QS3.product_on_basis(p1,p2)
[2, 1, 3]
Return a list of the seminormal basis elements of self.
EXAMPLES:
sage: QS3 = SymmetricGroupAlgebra(QQ,3)
sage: QS3.seminormal_basis()
[1/6*[1, 2, 3] + 1/6*[1, 3, 2] + 1/6*[2, 1, 3] + 1/6*[2, 3, 1] + 1/6*[3, 1, 2] + 1/6*[3, 2, 1],
1/3*[1, 2, 3] + 1/6*[1, 3, 2] - 1/3*[2, 1, 3] - 1/6*[2, 3, 1] - 1/6*[3, 1, 2] + 1/6*[3, 2, 1],
1/3*[1, 3, 2] + 1/3*[2, 3, 1] - 1/3*[3, 1, 2] - 1/3*[3, 2, 1],
1/4*[1, 3, 2] - 1/4*[2, 3, 1] + 1/4*[3, 1, 2] - 1/4*[3, 2, 1],
1/3*[1, 2, 3] - 1/6*[1, 3, 2] + 1/3*[2, 1, 3] - 1/6*[2, 3, 1] - 1/6*[3, 1, 2] - 1/6*[3, 2, 1],
1/6*[1, 2, 3] - 1/6*[1, 3, 2] - 1/6*[2, 1, 3] + 1/6*[2, 3, 1] + 1/6*[3, 1, 2] - 1/6*[3, 2, 1]]
The row projection operator corresponding to the Young tableau
tableau (which is supposed to contain every integer from
to its size precisely once, but may and may not be standard).
This is the sum (in the group algebra of the relevant symmetric
group over ) of all the permutations which preserve
the rows of tableau. It is called
in
[EtRT], Section 4.2.
REFERENCES:
[EtRT] | (1, 2) Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, Elena Yudovina, “Introduction to representation theory”, Arxiv 0901.0827v5. |
EXAMPLES:
sage: from sage.combinat.symmetric_group_algebra import a
sage: a([[1,2]])
[1, 2] + [2, 1]
sage: a([[1],[2]])
[1, 2]
sage: a([])
[]
sage: a([[1, 5], [2, 3], [4]])
[1, 2, 3, 4, 5] + [1, 3, 2, 4, 5] + [5, 2, 3, 4, 1] + [5, 3, 2, 4, 1]
The column projection operator corresponding to the Young tableau
tableau (which is supposed to contain every integer from
to its size precisely once, but may and may not be standard).
This is the signed sum (in the group algebra of the relevant
symmetric group over ) of all the permutations which
preserve the column of tableau (where the signs are the usual
signs of the permutations). It is called
in
[EtRT], Section 4.2.
EXAMPLES:
sage: from sage.combinat.symmetric_group_algebra import b
sage: b([[1,2]])
[1, 2]
sage: b([[1],[2]])
[1, 2] - [2, 1]
sage: b([])
[]
sage: b([[1, 2, 4], [5, 3]])
[1, 2, 3, 4, 5] - [1, 3, 2, 4, 5] - [5, 2, 3, 4, 1] + [5, 3, 2, 4, 1]
With the setting for multiplication, the unnormalized
Young symmetrizer e(tableau) should be the product
b(tableau) * a(tableau) for every tableau. Let us check
this on the standard tableaux of size 5:
sage: from sage.combinat.symmetric_group_algebra import a, b, e
sage: all( e(t) == b(t) * a(t) for t in StandardTableaux(5) )
True
The unnormalized Young projection operator corresponding to
the Young tableau tableau (which is supposed to contain
every integer from to its size precisely once, but may
and may not be standard).
EXAMPLES:
sage: from sage.combinat.symmetric_group_algebra import e
sage: e([[1,2]])
[1, 2] + [2, 1]
sage: e([[1],[2]])
[1, 2] - [2, 1]
sage: e([])
[]
There are differing conventions for the order of the symmetrizers and antisymmetrizers. This example illustrates our conventions:
sage: e([[1,2],[3]])
[1, 2, 3] + [2, 1, 3] - [3, 1, 2] - [3, 2, 1]
The Young projection operator corresponding to the Young tableau
tab (which is supposed to contain every integer from to
its size precisely once, but may and may not be standard). This
is an idempotent in the rational group algebra.
EXAMPLES:
sage: from sage.combinat.symmetric_group_algebra import e_hat
sage: e_hat([[1,2,3]])
1/6*[1, 2, 3] + 1/6*[1, 3, 2] + 1/6*[2, 1, 3] + 1/6*[2, 3, 1] + 1/6*[3, 1, 2] + 1/6*[3, 2, 1]
sage: e_hat([[1],[2]])
1/2*[1, 2] - 1/2*[2, 1]
There are differing conventions for the order of the symmetrizers and antisymmetrizers. This example illustrates our conventions:
sage: e_hat([[1,2],[3]])
1/3*[1, 2, 3] + 1/3*[2, 1, 3] - 1/3*[3, 1, 2] - 1/3*[3, 2, 1]
EXAMPLES:
sage: from sage.combinat.symmetric_group_algebra import e_ik
sage: e_ik([[1,2,3]], [[1,2,3]])
[1, 2, 3] + [1, 3, 2] + [2, 1, 3] + [2, 3, 1] + [3, 1, 2] + [3, 2, 1]
sage: e_ik([[1,2,3]], [[1,2,3]], star=1)
[1, 2] + [2, 1]
EXAMPLES:
sage: from sage.combinat.symmetric_group_algebra import epsilon
sage: epsilon([[1,2]])
1/2*[1, 2] + 1/2*[2, 1]
sage: epsilon([[1],[2]])
1/2*[1, 2] - 1/2*[2, 1]
EXAMPLES:
sage: from sage.combinat.symmetric_group_algebra import epsilon_ik
sage: epsilon_ik([[1,2],[3]], [[1,3],[2]])
1/4*[1, 3, 2] - 1/4*[2, 3, 1] + 1/4*[3, 1, 2] - 1/4*[3, 2, 1]
sage: epsilon_ik([[1,2],[3]], [[1,3],[2]], star=1)
Traceback (most recent call last):
...
ValueError: the two tableaux must be of the same shape
Return , which is
divided by the number
of standard tableaux of shape
.
EXAMPLES:
sage: from sage.combinat.symmetric_group_algebra import kappa
sage: kappa(Partition([2,1]))
3
sage: kappa([2,1])
3
EXAMPLES:
sage: from sage.combinat.symmetric_group_algebra import pi_ik
sage: pi_ik([[1,3],[2]], [[1,2],[3]])
[1, 3, 2]
Runs a variety of tests to verify that the construction of the seminormal basis works as desired. The numbers appearing are Theorems in James and Kerber’s ‘Representation Theory of the Symmetric Group’.
EXAMPLES:
sage: from sage.combinat.symmetric_group_algebra import seminormal_test
sage: seminormal_test(3)
True