Bases: sage.combinat.species.species.GenericCombinatorialSpecies, sage.structure.unique_representation.UniqueRepresentation
Returns the sum of two species.
EXAMPLES:
sage: S = species.PermutationSpecies()
sage: A = S+S
sage: A.generating_series().coefficients(5)
[2, 2, 2, 2, 2]
sage: P = species.PermutationSpecies()
sage: F = P + P
sage: F._check()
True
sage: F == loads(dumps(F))
True
TESTS:
sage: A = species.SingletonSpecies() + species.SingletonSpecies()
sage: B = species.SingletonSpecies() + species.SingletonSpecies()
sage: C = species.SingletonSpecies() + species.SingletonSpecies(min=2)
sage: A is B
True
sage: (A is C) or (A == C)
False
Returns the weight ring for this species. This is determined by asking Sage’s coercion model what the result is when you add elements of the weight rings for each of the operands.
EXAMPLES:
sage: S = species.SetSpecies()
sage: C = S+S
sage: C.weight_ring()
Rational Field
sage: S = species.SetSpecies(weight=QQ['t'].gen())
sage: C = S + S
sage: C.weight_ring()
Univariate Polynomial Ring in t over Rational Field
Bases: sage.combinat.species.structure.SpeciesStructureWrapper
EXAMPLES:
sage: E = species.SetSpecies(); B = E+E
sage: s = B.structures([1,2,3]).random_element()
sage: s.parent()
Sum of (Set species) and (Set species)
sage: s == loads(dumps(s))
True
alias of SumSpecies