REFERENCES:
[NCSF] | (1, 2, 3, 4) Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon, Noncommutative Symmetric Functions, Adv. Math. 112 (1995), no. 2, 218-348. |
[QSCHUR] | Haglund, Luoto, Mason, van Willigenburg, Quasisymmetric Schur functions, J. Comb. Theory Ser. A 118 (2011), 463-490. |
Return the number of standard composition tableaux of shape with
descent composition
.
INPUT:
OUTPUT:
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_dab
sage: coeff_dab(Composition([2,1]),Composition([2,1]))
1
sage: coeff_dab(Composition([1,1,2]),Composition([1,2,1]))
0
Returns the coefficient as defined in [NCSF].
INPUT:
OUTPUT:
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_ell
sage: coeff_ell(Composition([1,1,1]), Composition([2,1]))
2
sage: coeff_ell(Composition([2,1]), Composition([3]))
2
Returns the coefficient as defined in [NCSF].
INPUT:
OUTPUT:
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_lp
sage: coeff_lp(Composition([1,1,1]), Composition([2,1]))
1
sage: coeff_lp(Composition([2,1]), Composition([3]))
1
Returns the coefficient as defined in [NCSF].
INPUT:
OUTPUT:
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_pi
sage: coeff_pi(Composition([1,1,1]), Composition([2,1]))
2
sage: coeff_pi(Composition([2,1]), Composition([3]))
6
Returns the coefficient as defined in [NCSF].
INPUT:
OUTPUT:
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_sp
sage: coeff_sp(Composition([1,1,1]), Composition([2,1]))
2
sage: coeff_sp(Composition([2,1]), Composition([3]))
4
Return the compositions of ordered as defined in [QSCHUR].
Let return the composition
after sorting. For
compositions
and
, we order
if
INPUT:
OUTPUT:
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import compositions_order
sage: compositions_order(3)
[[3], [2, 1], [1, 2], [1, 1, 1]]
sage: compositions_order(4)
[[4], [3, 1], [1, 3], [2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]]
Returns the statistic for the expansion of the Monomial basis element indexed by two compositions, as in formula (36) of Tevlin’s “Noncommutative Analogs of Monomial Symmetric Functions, Cauchy Identity, and Hall Scalar Product”.
INPUT:
OUTPUT:
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import m_to_s_stat
sage: m_to_s_stat(QQ,Composition([2,1]), Composition([1,1,1]))
-1
sage: m_to_s_stat(QQ,Composition([3]), Composition([1,2]))
-2
Returns the number of Immaculate tableau of shape shape_comp and content content_comp.
INPUT:
OUTPUT:
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import number_of_fCT
sage: number_of_fCT(Composition([3,1]), Composition([1,3]))
0
sage: number_of_fCT(Composition([1,2,1]), Composition([1,3]))
1
sage: number_of_fCT(Composition([1,1,3,1]), Composition([2,1,3]))
2