Get the double-dual (S2 - identification) M1** of a module M1 and return the canonical map M1 -> M1**
i1 : R = QQ[x,y] o1 = R o1 : PolynomialRing |
i2 : m = ideal(x,y) o2 = ideal (x, y) o2 : Ideal of R |
i3 : M = m*R^1 o3 = image | x y | 1 o3 : R-module, submodule of R |
i4 : f = reflexifyModuleWithMap( M ) o4 = | x y | o4 : Matrix |
i5 : source f o5 = image | x y | 1 o5 : R-module, submodule of R |
i6 : target f 1 o6 = R o6 : R-module, free |