Check if a rational/real divisor is a Weil divisor
i1 : R = QQ[x, y, z] o1 = R o1 : PolynomialRing |
i2 : D1 = divisor({1/1, 2/2, -6/3}, {ideal(x), ideal(y), ideal(z)}, CoeffType=>QQ) o2 = -2*Div(z) + 1*Div(y) + 1*Div(x) of R o2 : QDiv |
i3 : D2 = divisor({1/2, 3/4, 5/6}, {ideal(y), ideal(z), ideal(x)}, CoeffType=>QQ) o3 = 3/4*Div(z) + 1/2*Div(y) + 5/6*Div(x) of R o3 : QDiv |
i4 : isWDiv( D1 ) o4 = true |
i5 : isWDiv( D2 ) o5 = false |