VectorFields : Index
- applyVectorField -- apply a vector field to a function or functions
- applyVectorField(Matrix,List) -- apply a vector field to a function or functions
- applyVectorField(Matrix,RingElement) -- apply a vector field to a function or functions
- applyVectorField(Module,Ideal) -- apply a vector field to a function or functions
- applyVectorField(Module,RingElement) -- apply a vector field to a function or functions
- applyVectorField(Vector,List) -- apply a vector field to a function or functions
- applyVectorField(Vector,RingElement) -- apply a vector field to a function or functions
- bracket -- compute the Lie bracket of vector fields
- bracket(Matrix,Matrix) -- compute the Lie bracket of vector fields
- bracket(Matrix,Matrix,List) -- compute the Lie bracket of vector fields
- bracket(Module,Module) -- compute the Lie bracket of vector fields
- bracket(Vector,Vector) -- compute the Lie bracket of vector fields
- commutator -- the commutator of a collection of vector fields
- commutator(Matrix) -- the commutator of a collection of vector fields
- commutator(Module) -- the commutator of a collection of vector fields
- der -- compute the module of vector fields which send one set to another
- der(Ideal,Ideal) -- compute the module of vector fields which send one set to another
- der(VisibleList,Ideal) -- compute the module of vector fields which send one set to another
- derivedSeries -- compute the derived series of a set of vector fields
- derivedSeries(ZZ,Matrix) -- compute the derived series of a set of vector fields
- derivedSeries(ZZ,Module) -- compute the derived series of a set of vector fields
- derlog -- compute the logarithmic (tangent) vector fields to an ideal
- derlog(Ideal) -- compute the logarithmic (tangent) vector fields to an ideal
- derlog(RingElement) -- compute the logarithmic (tangent) vector fields to an ideal
- derlogH -- compute the logarithmic (tangent) vector fields to an ideal
- derlogH(List) -- compute the logarithmic (tangent) vector fields to an ideal
- derlogH(RingElement) -- compute the logarithmic (tangent) vector fields to an ideal
- differences between certain bracketing functions -- The difference between certain bracketing functions
- homogeneousVectorFieldDegree -- check if vector fields are homogeneous, and of what degree
- homogeneousVectorFieldDegree(Matrix) -- check if vector fields are homogeneous, and of what degree
- homogeneousVectorFieldDegree(Module) -- check if vector fields are homogeneous, and of what degree
- isFiniteStratification -- checks if a stratification by integral submanifolds is finite
- isFiniteStratification(StratificationByRank) -- checks if a stratification by integral submanifolds is finite
- isFreeDivisor -- check if the provided information is associated with a free divisor
- isFreeDivisor(Matrix) -- check if the provided information is associated with a free divisor
- isFreeDivisor(Module) -- check if the provided information is associated with a free divisor
- isFreeDivisor(RingElement) -- check if the provided information is associated with a free divisor
- isHHolonomic -- test whether a hypersurface is H-holonomic
- isHHolonomic(RingElement) -- test whether a hypersurface is H-holonomic
- isHolonomic -- test whether an algebraic set is holonomic
- isHolonomic(Ideal) -- test whether an algebraic set is holonomic
- isHolonomic(RingElement) -- test whether an algebraic set is holonomic
- isHomogeneousVectorField -- determine whether a matrix or module is generated by homogeneous vector fields
- isHomogeneousVectorField(Matrix) -- determine whether a matrix or module is generated by homogeneous vector fields
- isHomogeneousVectorField(Matrix,List) -- determine whether a matrix or module is generated by homogeneous vector fields
- isHomogeneousVectorField(Matrix,Set) -- determine whether a matrix or module is generated by homogeneous vector fields
- isHomogeneousVectorField(Module) -- determine whether a matrix or module is generated by homogeneous vector fields
- isHomogeneousVectorField(Module,List) -- determine whether a matrix or module is generated by homogeneous vector fields
- isHomogeneousVectorField(Module,Set) -- determine whether a matrix or module is generated by homogeneous vector fields
- isLieAlgebra -- check that a module of vector fields is closed under the Lie bracket
- isLieAlgebra(Module) -- check that a module of vector fields is closed under the Lie bracket
- isLogarithmic -- check if the given vector fields are logarithmic
- isLogarithmic(Matrix,Ideal) -- check if the given vector fields are logarithmic
- isLogarithmic(Module,Ideal) -- check if the given vector fields are logarithmic
- isLogarithmic(Vector,Ideal) -- check if the given vector fields are logarithmic
- isVectorField -- test whether a module or matrix can be interpreted as a collection of vector fields
- isVectorField(Matrix) -- test whether a module or matrix can be interpreted as a collection of vector fields
- isVectorField(Module) -- test whether a module or matrix can be interpreted as a collection of vector fields
- lowerCentralSeries -- compute the lower central series of a set of vector fields
- lowerCentralSeries(ZZ,Matrix) -- compute the lower central series of a set of vector fields
- lowerCentralSeries(ZZ,Module) -- compute the lower central series of a set of vector fields
- StratificationByRank -- a type to hold a rank computation
- stratifyByRank -- compute ideals describing where the vector fields have a particular rank
- stratifyByRank(Matrix) -- compute ideals describing where the vector fields have a particular rank
- stratifyByRank(Module) -- compute ideals describing where the vector fields have a particular rank
- VectorFields -- a package for manipulating polynomial vector fields