Homogeneous ideals of free algebras.

For twosided ideals and when the base ring is a field, this implementation also provides Groebner bases and ideal containment tests.

EXAMPLES:

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: F
Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: I
Twosided Ideal (x*y + y*z, x*x + x*y - y*x - y*y) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field

One can compute Groebner bases out to a finite degree, can compute normal forms and can test containment in the ideal:

sage: I.groebner_basis(degbound=3)
Twosided Ideal (y*y*y - y*y*z + y*z*y - y*z*z, y*y*x + y*y*z + y*z*x + y*z*z, x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
sage: (x*y*z*y*x).normal_form(I)
y*z*z*y*z + y*z*z*z*x + y*z*z*z*z
sage: x*y*z*y*x - (x*y*z*y*x).normal_form(I) in I
True

AUTHOR:

class sage.algebras.letterplace.letterplace_ideal.LetterplaceIdeal(ring, gens, coerce=True, side='twosided')

Bases: sage.rings.noncommutative_ideals.Ideal_nc

Graded homogeneous ideals in free algebras.

In the two-sided case over a field, one can compute Groebner bases up to a degree bound, normal forms of graded homogeneous elements of the free algebra, and ideal containment.

EXAMPLES:

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: I
Twosided Ideal (x*y + y*z, x*x + x*y - y*x - y*y) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
sage: I.groebner_basis(2)
Twosided Ideal (x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
sage: I.groebner_basis(4)
Twosided Ideal (y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z, y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z, y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z, y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z, y*y*y - y*y*z + y*z*y - y*z*z, y*y*x + y*y*z + y*z*x + y*z*z, x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field

Groebner bases are cached. If one has computed a Groebner basis out to a high degree then it will also be returned if a Groebner basis with a lower degree bound is requested:

sage: I.groebner_basis(2)
Twosided Ideal (y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z, y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z, y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z, y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z, y*y*y - y*y*z + y*z*y - y*z*z, y*y*x + y*y*z + y*z*x + y*z*z, x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field

Of course, the normal form of any element has to satisfy the following:

sage: x*y*z*y*x - (x*y*z*y*x).normal_form(I) in I
True

Left and right ideals can be constructed, but only twosided ideals provide Groebner bases:

sage: JL = F*[x*y+y*z,x^2+x*y-y*x-y^2]; JL
Left Ideal (x*y + y*z, x*x + x*y - y*x - y*y) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
sage: JR = [x*y+y*z,x^2+x*y-y*x-y^2]*F; JR
Right Ideal (x*y + y*z, x*x + x*y - y*x - y*y) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
sage: JR.groebner_basis(2)
Traceback (most recent call last):
...
TypeError: This ideal is not two-sided. We can only compute two-sided Groebner bases
sage: JL.groebner_basis(2)
Traceback (most recent call last):
...
TypeError: This ideal is not two-sided. We can only compute two-sided Groebner bases

Also, it is currently not possible to compute a Groebner basis when the base ring is not a field:

sage: FZ.<a,b,c> = FreeAlgebra(ZZ, implementation='letterplace')
sage: J = FZ*[a^3-b^3]*FZ
sage: J.groebner_basis(2)
Traceback (most recent call last):
...
TypeError: Currently, we can only compute Groebner bases if the ring of coefficients is a field

The letterplace implementation of free algebras also provides integral degree weights for the generators, and we can compute Groebner bases for twosided graded homogeneous ideals:

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace',degrees=[1,2,3])
sage: I = F*[x*y+z-y*x,x*y*z-x^6+y^3]*F
sage: I.groebner_basis(Infinity)
Twosided Ideal (x*z*z - y*x*x*z - y*x*y*y + y*x*z*x + y*y*y*x + z*x*z + z*y*y - z*z*x,
x*y - y*x + z,
x*x*x*x*z*y*y + x*x*x*z*y*y*x - x*x*x*z*y*z - x*x*z*y*x*z + x*x*z*y*y*x*x +
x*x*z*y*y*y - x*x*z*y*z*x - x*z*y*x*x*z - x*z*y*x*z*x +
x*z*y*y*x*x*x + 2*x*z*y*y*y*x - 2*x*z*y*y*z - x*z*y*z*x*x -
x*z*y*z*y + y*x*z*x*x*x*x*x - 4*y*x*z*x*x*z - 4*y*x*z*x*z*x +
4*y*x*z*y*x*x*x + 3*y*x*z*y*y*x - 4*y*x*z*y*z + y*y*x*x*x*x*z +
y*y*x*x*x*z*x - 3*y*y*x*x*z*x*x - y*y*x*x*z*y +
5*y*y*x*z*x*x*x + 4*y*y*x*z*y*x - 4*y*y*y*x*x*z +
4*y*y*y*x*z*x + 3*y*y*y*y*z + 4*y*y*y*z*x*x + 6*y*y*y*z*y +
y*y*z*x*x*x*x + y*y*z*x*z + 7*y*y*z*y*x*x + 7*y*y*z*y*y -
7*y*y*z*z*x - y*z*x*x*x*z - y*z*x*x*z*x + 3*y*z*x*z*x*x +
y*z*x*z*y + y*z*y*x*x*x*x - 3*y*z*y*x*z + 7*y*z*y*y*x*x +
3*y*z*y*y*y - 3*y*z*y*z*x - 5*y*z*z*x*x*x - 4*y*z*z*y*x +
4*y*z*z*z - z*y*x*x*x*z - z*y*x*x*z*x - z*y*x*z*x*x -
z*y*x*z*y + z*y*y*x*x*x*x - 3*z*y*y*x*z + 3*z*y*y*y*x*x +
z*y*y*y*y - 3*z*y*y*z*x - z*y*z*x*x*x - 2*z*y*z*y*x +
2*z*y*z*z - z*z*x*x*x*x*x + 4*z*z*x*x*z + 4*z*z*x*z*x -
4*z*z*y*x*x*x - 3*z*z*y*y*x + 4*z*z*y*z + 4*z*z*z*x*x +
2*z*z*z*y,
x*x*x*x*x*z + x*x*x*x*z*x + x*x*x*z*x*x + x*x*z*x*x*x + x*z*x*x*x*x +
y*x*z*y - y*y*x*z + y*z*z + z*x*x*x*x*x - z*z*y,
x*x*x*x*x*x - y*x*z - y*y*y + z*z)
of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field

Again, we can compute normal forms:

sage: (z*I.0-I.1).normal_form(I)
0
sage: (z*I.0-x*y*z).normal_form(I)
-y*x*z + z*z
groebner_basis(degbound=None)

Twosided Groebner basis with degree bound.

INPUT:

  • degbound (optional integer, or Infinity): If it is provided, a Groebner basis at least out to that degree is returned. By default, the current degree bound of the underlying ring is used.

ASSUMPTIONS:

Currently, we can only compute Groebner bases for twosided ideals, and the ring of coefficients must be a field. A \(TypeError\) is raised if one of these conditions is violated.

NOTES:

  • The result is cached. The same Groebner basis is returned if a smaller degree bound than the known one is requested.
  • If the degree bound Infinity is requested, it is attempted to compute a complete Groebner basis. But we can not guarantee that the computation will terminate, since not all twosided homogeneous ideals of a free algebra have a finite Groebner basis.

EXAMPLES:

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F

Since \(F\) was cached and since its degree bound can not be decreased, it may happen that, as a side effect of other tests, it already has a degree bound bigger than 3. So, we can not test against the output of I.groebner_basis():

sage: F.set_degbound(3)
sage: I.groebner_basis()   # not tested
Twosided Ideal (y*y*y - y*y*z + y*z*y - y*z*z, y*y*x + y*y*z + y*z*x + y*z*z, x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
sage: I.groebner_basis(4)
Twosided Ideal (y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z, y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z, y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z, y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z, y*y*y - y*y*z + y*z*y - y*z*z, y*y*x + y*y*z + y*z*x + y*z*z, x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
sage: I.groebner_basis(2) is I.groebner_basis(4)
True
sage: G = I.groebner_basis(4)
sage: G.groebner_basis(3) is G
True

If a finite complete Groebner basis exists, we can compute it as follows:

sage: I = F*[x*y-y*x,x*z-z*x,y*z-z*y,x^2*y-z^3,x*y^2+z*x^2]*F
sage: I.groebner_basis(Infinity)
Twosided Ideal (z*z*z*y*y + z*z*z*z*x, z*x*x*x + z*z*z*y, y*z - z*y, y*y*x + z*x*x, y*x*x - z*z*z, x*z - z*x, x*y - y*x) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field

Since the commutators of the generators are contained in the ideal, we can verify the above result by a computation in a polynomial ring in negative lexicographic order:

sage: P.<c,b,a> = PolynomialRing(QQ,order='neglex')
sage: J = P*[a^2*b-c^3,a*b^2+c*a^2]
sage: J.groebner_basis()
[b*a^2 - c^3, b^2*a + c*a^2, c*a^3 + c^3*b, c^3*b^2 + c^4*a]

Aparently, the results are compatible, by sending \(a\) to \(x\), \(b\) to \(y\) and \(c\) to \(z\).

reduce(G)

Reduction of this ideal by another ideal, or normal form of an algebra element with respect to this ideal.

INPUT:

  • G: A list or tuple of elements, an ideal, the ambient algebra, or a single element.

OUTPUT:

  • The normal form of G with respect to this ideal, if G is an element of the algebra.
  • The reduction of this ideal by the elements resp. generators of G, if G is a list, tuple or ideal.
  • The zero ideal, if G is the algebra containing this ideal.

EXAMPLES:

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: I.reduce(F)
Twosided Ideal (0) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
sage: I.reduce(x^3)
-y*z*x - y*z*y - y*z*z
sage: I.reduce([x*y])
Twosided Ideal (y*z, x*x - y*x - y*y) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
sage: I.reduce(F*[x^2+x*y,y^2+y*z]*F)
Twosided Ideal (x*y + y*z, -y*x + y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
sage.algebras.letterplace.letterplace_ideal.poly_reduce(ring=None, interruptible=True, attributes=None, *args)

Construct a new Singular kernel function.

EXAMPLES:

sage: from sage.libs.singular.function import SingularKernelFunction
sage: R.<x,y> = PolynomialRing(QQ, order='lex')
sage: I = R.ideal(x + 1, x*y + 1)
sage: f = SingularKernelFunction("std")
sage: f(I)
[y - 1, x + 1]
sage: SingularKernelFunction("no_such_function")
Traceback (most recent call last):
...
NameError: Singular kernel function 'no_such_function' is not defined
sage.algebras.letterplace.letterplace_ideal.singular_system(ring=None, interruptible=True, attributes=None, *args)

Construct a new Singular kernel function.

EXAMPLES:

sage: from sage.libs.singular.function import SingularKernelFunction
sage: R.<x,y> = PolynomialRing(QQ, order='lex')
sage: I = R.ideal(x + 1, x*y + 1)
sage: f = SingularKernelFunction("std")
sage: f(I)
[y - 1, x + 1]
sage: SingularKernelFunction("no_such_function")
Traceback (most recent call last):
...
NameError: Singular kernel function 'no_such_function' is not defined