User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1)

Daniel R. Reynolds', David J. Gardner?,
Alan C. Hindmarsh?, Carol S. Woodward?
and Jean M. Sexton',

I Department of Mathematics
Southern Methodist University

>Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

gials
<
S,

w

LLNL-SM-668082

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor Southern Methodist University,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or repre-
sents that its use would not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government, Lawrence Livermore National Security,
LLC, or Southern Methodist University. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States government, Lawrence Livermore National Security, LLC, or Southern Methodist
University, and shall not be used for advertising or product endorsement purposes.

Approved for public release; further dissemination unlimited

Introduction

1.1~ Changes from previous versions
1.2 Reading thisUserGuide
1.3 SUNDIALS Release License

Mathematical Considerations

2.1
22
2.3
24
2.5
2.6
2.7
2.8
29

Additive Runge-Kuttamethods
Nonlinear solvermethods
Linear solvermethods
Iteration Error Control
Preconditioning L.
Implicit predictors Lo
Time step adaptivity
Explicitstability
Mass matriX SOIVEr o v it e e e e e e
2.10 Rootfinding

Code Organization

3.1

ARKode organization

Using ARKode for C and C++ Applications

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Access to library and header files
DataTypes o o o e
HeaderFiles
A skeleton of the user’s main program
User-callable functions
User-supplied functions oo
Preconditioner modules L oL

FARKODE, an Interface Module for FORTRAN Applications

5.1
5.2

Important note on portability oL
Fortran Data Types

Vector Data Structures

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Description of the NVECTOR Modules
Description of the NVECTOR operations
The NVECTOR_SERIAL Module
The NVECTOR_PARALLEL Module
The NVECTOR_OPENMP Module
The NVECTOR_PTHREADS Module
The NVECTOR_PARHYPModule

CONTENTS

3
.............. 4
6
7

.............. 115

9

6.8 The NVECTOR_PETSCModule e
6.9 The NVECTOR_CUDA Module it
6.10 The NVECTOR_RAJAModule it
6.11 NVECTOR Examples et e e e
6.12 NVECTOR functions required by ARKode

Matrix Data Structures

7.1 Description of the SUNMATRIX Modules
7.2 Description of the SUNMATRIX operations
7.3 Compatibility of SUNMATRIX types v ittt e e e et e e e e e
7.4 The SUNMATRIX_DENSE Module
7.5 The SUNMATRIX_ BAND Module
7.6 The SUNMATRIX_SPARSEModule
7.7 SUNMATRIX Examples o . o o e e e e e e e e
7.8 SUNMATRIX functions required by ARKode

Linear Solver Data Structures

8.1 Description of the SUNLinearSolver Module
8.2 Description of the SUNLinearSolver operations oo v vt v v v v v v v
8.3 Description of the client-supplied SUNLinearSolver routines
8.4 Compatibility of SUNLinearSolver modules
8.5 Error Codes returned from SUNLinearSolver implementations
8.6 The SUNLINSOL_DENSEModule it
8.7 The SUNLINSOL_BAND Module it
8.8 The SUNLINSOL_LAPACKDENSE Module e
8.9 The SUNLINSOL_LAPACKBAND Module
8.10 The SUNLINSOL_KLU Module it
8.11 The SUNLINSOL_SUPERLUMT Module
8.12 The SUNLINSOL_SPGMR Module i i
8.13 The SUNLINSOL_SPFGMR Module i
8.14 The SUNLINSOL_SPBCGS Module i
8.15 The SUNLINSOL_SPTFQMR Module e
8.16 The SUNLINSOL_PCG Module ittt it et
8.17 SUNLinearSolver Examples e
8.18 SUNLinearSolver functions required by ARKode

ARKode Installation Procedure
9.1 CMake-based installation e e e e e e
9.2 Installed libraries and exported header files L. oL,

10 Appendix: ARKode Constants

10.1 ARKode input cConstants it it e e e e e e e e e e
10.2 ARKode output CONStANLS v v v v i i e e e e e e e e e e e e e e e e

11 Appendix: Butcher tables

11.1 Explicit Butchertables e
11.2 TImplicit Butchertables o e e e e e e
11.3 Additive Butchertables e

Bibliography

Index

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

This is the documentation for ARKode, an adaptive step time integration package for stiff, nonstiff and mixed
stiff/nonstiff systems of ordinary differential equations (ODEs). The ARKode solver is a component of the SUN-
DIALS suite of nonlinear and differential/algebraic equation solvers. It is designed to have a similar user experience
to the CVODE solver, including user modes to allow adaptive integration to specified output times, return after each
internal step and root-finding capabilities, and for calculations in serial and using either shared-memory parallelism
(via OpenMP or Pthreads) or distributed-memory parallelism (via MPI). The default integration and solver options
should apply to most users, though complete control over all internal parameters and time adaptivity algorithms is
enabled through optional interface routines.

ARKode is written in C, with C++ and Fortran interfaces.

Due to its similarities in both function and design with the CVODE package, this documentation is highly similar with
the corresponding CVODE user guide [HS2017].

ARKaode is developed by Southern Methodist University, with support by the US Department of Energy through the
FASTMath SciDAC Institute, under subcontract B598130 from Lawrence Livermore National Laboratory.

CONTENTS 1

https://computation.llnl.gov/casc/sundials/main.html
https://computation.llnl.gov/casc/sundials/main.html
https://computation.llnl.gov/casc/sundials/description/description.html#descr_cvode
http://www.smu.edu
http://www.doe.gov
http://www.fastmath-scidac.org/
http://www.llnl.gov

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The ARKode solver library provides an adaptive-step time integration package for stiff, nonstiff and mixed
stiff/nonstiff systems of ordinary differential equations (ODESs) given in explicit form

My = fe(t,y) + f1(t,y), y(to) = yo, (1.1

where # is the independent variable, y is the set of dependent variables (in R™), M is a user-specified, nonsingular op-
erator from RY to RY (possibly time dependent, but independent of), and the right-hand side function is partitioned
into two components:

* fE(t,y) contains the “slow” time scale components to be integrated explicitly, and
 f1(t,y) contains the “fast” time scale components to be integrated implicitly.

Either of these operators may be disabled, allowing for fully explicit, fully implicit, or combination implicit-explicit
(ImEx) time integration.

The methods used in ARKode are adaptive-step additive Runge Kutta methods. Such methods are defined through
combining two complementary Runge-Kutta methods: one explicit (ERK) and the other diagonally implicit (DIRK).
Through appropriately partitioning the ODE system into explicit and implicit components (1.1), such methods have
the potential to enable accurate and efficient time integration of mixed stiff/nonstiff systems of ordinary differential
equations. A key feature allowing for high efficiency of these methods is that only the components in f;(t, y) must be
solved implicitly, allowing for splittings tuned for use with optimal implicit solvers.

This framework allows for significant freedom over the constitutive methods used for each component, and ARKode
is packaged with a wide array of built-in methods for use. These built-in Butcher tables include adaptive explicit
methods of orders 2-8, adaptive implicit methods of orders 2-5, and adaptive ImEx methods of orders 3-5.

For problems that include nonzero implicit term f7(¢, y), the resulting implicit system (assumed nonlinear, unless spec-
ified otherwise) is solved approximately at each integration step, using a Newton method, modified Newton method, an
Inexact Newton method, or an accelerated fixed-point solver. For the Newton-based methods and the serial or threaded
NVECTOR modules in SUNDIALS, ARKode may use a variety of linear solvers provided with SUNDIALS, includ-
ing both direct (dense, band, or sparse) and preconditioned Krylov iterative (GMRES [S57986], BiCGStab [V1992],
TFQMR [F1993], FGMRES [S571993], or PCG [HS1952]) linear solvers. When used with one of the distributed
parallel NVECTOR modules, including PETSc and hypre vectors, or a user-provided vector data structure, only the
Krylov solvers are available, although a user may supply their own linear solver for any data structures if desired. For
the serial or threaded vector structures, there is a banded preconditioner module called ARKBANDPRE for use with
the Krylov solvers, while for the distributed memory parallel vector structure there is a preconditioner module called
ARKBBDPRE which provides a band-block-diagonal preconditioner. Additionally, a user may supply more optimal,
problem-specific preconditioner routines.

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

1.1 Changes from previous versions

1.1.1 Changes in v2.1.1

Fixed a potential memory leak in the SPGMR and SPFGMR linear solvers: if “Initialize” was called multiple times
then the solver memory was reallocated (without being freed).

Fixed a minor bug in the ARKRelnit routine, where a flag was incorrectly set to indicate that the problem had been
resized (instead of just re-initialized).

Fixed C++11 compiler errors/warnings about incompatible use of string literals.

Updated KLU SUNLINEARSOLVER module to use a t ypedef for the precision-specific solve function to be used
(to avoid compiler warnings).

Added missing typecasts for some (voidx) pointers (again, to avoid compiler warnings).

Bugfix in sunmatrix_sparse.c where we had used int instead of sunindextype in one location.
Added missing #include <stdio.h>in NVECTOR and SUNMATRIX header files.

Added missing prototype for ARKSpilsGetNumMTSetups.

Fixed an indexing bug in the CUDA NVECTOR implementation of N_VWrmsNormMask and revised the RAJA
NVECTOR implementation of N_VWrmsNormMask to work with mask arrays using values other than zero or one.
Replaced double with realtype in the RAJA vector test functions.

Fixed compilation issue with GCC 7.3.0 and Fortran programs that do not require a SUNMatrix or SUNLinearSolver
module (e.g. iterative linear solvers, explicit methods, fixed point solver, etc.).

1.1.2 Changes in v2.1.0

Added NVECTOR print functions that write vector data to a specified file (e.g. N_VPrintFile_Serial).

Added make test and make test_install options to the build system for testing SUNDIALS after building
with make and installing with make install respectively.

1.1.3 Changes in v2.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs have been updated.
The goal of the redesign of these interfaces was to provide more encapsulation and ease in interfacing custom linear
solvers and interoperability with linear solver libraries.

Specific changes include:

¢ Added generic SUNMATRIX module with three provided implementations: dense, banded and sparse. These
replicate previous SUNDIALS DlIs and Sls matrix structures in a single object-oriented APL

* Added example problems demonstrating use of generic SUNMATRIX modules.

¢ Added generic SUNLINEARSOLVER module with eleven provided implementations: dense, banded, LAPACK
dense, LAPACK band, KLU, SuperLU_MT, SPGMR, SPBCGS, SPTFQMR, SPFGMR, PCG. These replicate
previous SUNDIALS generic linear solvers in a single object-oriented API.

* Added example problems demonstrating use of generic SUNLINEARSOLVER modules.

» Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iterative linear
solver (Spils) interfaces to utilize generic SUNMATRIX and SUNLINEARSOLVER objects.

4 Chapter 1. Introduction

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND, IDAKLU,
ARKSPGMR) since their functionality is entirely replicated by the generic DIs/Spils interfaces and SUNLIN-
EARSOLVER/SUNMATRIX modules. The exception is CVDIAG, a diagonal approximate Jacobian solver
available to CVODE and CVODES.

* Converted all SUNDIALS example problems to utilize new generic SUNMATRIX and SUNLINEARSOLVER
objects, along with updated Dls and Spils linear solver interfaces.

* Added Spils interface routines to ARKode, CVODE, CVODES, IDA and IDAS to allow specification of a user-
provided “JTSetup” routine. This change supports users who wish to set up data structures for the user-provided
Jacobian-times-vector (“JTimes”) routine, and where the cost of one JTSetup setup per Newton iteration can be
amortized between multiple JTimes calls.

Two additional NVECTOR implementations were added — one for CUDA and one for RAJA vectors. These vectors
are supplied to provide very basic support for running on GPU architectures. Users are advised that these vectors both
move all data to the GPU device upon construction, and speedup will only be realized if the user also conducts the
right-hand-side function evaluation on the device. In addition, these vectors assume the problem fits on one GPU.
Further information about RAJA, users are referred to th web site, https://software.llnl.gov/RAJA/. These additions
are accompanied by additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to be a 32- or 64-bit
integer data index type. sunindextype is defined tobe int32_t or int 64_t when portable types are supported,
otherwise it is defined as int or long int. The Fortran interfaces continue to use long int for indices, except
for their sparse matrix interface that now uses the new sunindextype. This new flexible capability for index types
includes interfaces to PETSc, hypre, SuperLU_MT, and KLU with either 32-bit or 64-bit capabilities depending how
the user configures SUNDIALS.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE have been
changed to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It is assumed that all
necessary data for user-provided preconditioner operations will be allocated and stored in user-provided data struc-
tures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information for use in
Fortran programs.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get SUNDIALS release version in-
formation at runtime.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is a movement in scientific
software to provide a foundation for the rapid and efficient production of high-quality, sustainable extreme-scale
scientific applications. More information can be found at, https://xsdk.info.

In addition, numerous changes were made to the build system. These include the addition of separate BLAS_ENABLE
and BLAS_LIBRARIES CMake variables, additional error checking during CMake configuration, minor bug fixes,
and renaming CMake options to enable/disable examples for greater clarity and an added option to enable/disable
Fortran 77 examples. These changes included changing ENABLE_EXAMPLES to ENABLE_EXAMPLES_ C, changing
CXX_ENABLE to EXAMPLES_ENABLE_CXX, changing F90_ENABLE to EXAMPLES_ENABLE_F 90, and adding
an EXAMPLES_ENABLE_F 77 option.

Corrections and additions were made to the examples, to installation-related files, and to the user documentation.

1.1.4 Changes in v1.1.0

We have included numerous bugfixes and enhancements since the v1.0.2 release.

The bugfixes include:

1.1. Changes from previous versions 5

https://software.llnl.gov/RAJA/
https://xsdk.info

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

For each linear solver, the various solver performance counters are now initialized to O in both the solver speci-
fication function and in the solver’s 1 init function. This ensures that these solver counters are initialized upon
linear solver instantiation as well as at the beginning of the problem solution.

The choice of the method vs embedding the Billington and TRBDF2 explicit Runge-Kutta methods were
swapped, since in those the lower-order coefficients result in an A-stable method, while the higher-order co-
efficients do not. This change results in significantly improved robustness when using those methods.

A bug was fixed for the situation where a user supplies a vector of absolute tolerances, and also uses the vector
Resize() functionality.

A bug was fixed wherein a user-supplied Butcher table without an embedding is supplied, and the user is running
with either fixed time steps (or they do adaptivity manually); previously this had resulted in an error since the
embedding order was below 1.

Numerous aspects of the documentation were fixed and/or clarified.

The feature changes/enhancements include:

1.2

Two additional NVECTOR implementations were added — one for Hypre (parallel) ParVector vectors, and one
for PETSc vectors. These additions are accompanied by additions to various interface functions and to user
documentation.

Each NVECTOR module now includes a function, N_VGetVectorID, that returns the NVECTOR module
name.

A memory leak was fixed in the banded preconditioner and banded-block-diagonal preconditioner interfaces. In
addition, updates were done to return integers from linear solver and preconditioner ‘free’ routines.

The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various additions and
corrections were made to the interfaces to the sparse solvers KLU and SuperLU_MT, including support for CSR
format when using KLU.

The ARKode implicit predictor algorithms were updated: methods 2 and 3 were improved slightly, a new
predictor approach was added, and the default choice was modified.

The underlying sparse matrix structure was enhanced to allow both CSR and CSC matrices, with CSR supported
by the KLU linear solver interface. ARKode interfaces to the KLU solver from both C and Fortran were updated
to enable selection of sparse matrix type, and a Fortran-90 CSR example program was added.

The missing ARKSpilsGetNumMtimesEvals () function was added — this had been included in the previ-
ous documentation but had not been implemented.

The handling of integer codes for specifying built-in ARKode Butcher tables was enhanced. While a global
numbering system is still used, methods now have #defined names to simplify the user interface and to streamline
incorporation of new Butcher tables into ARKode.

The maximum number of Butcher table stages was increased from 8 to 15 to accommodate very high order
methods, and an 8th-order adaptive ERK method was added.

Support was added for the explicit and implicit methods in an additive Runge-Kutta method to utilize different
stage times, solution and embedding coefficients, to support new SSP-ARK methods.

The FARKODE interface was extended to include a routine to set scalar/array-valued residual tolerances, to
support Fortran applications with non-identity mass-matrices.

Reading this User Guide

This user guide is a combination of general usage instructions and specific example programs. We expect that some
readers will want to concentrate on teh general instructions, while others will refer mostly to the examples, and the

Chapter 1. Introduction

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

organization is intended to accommodate both styles.

The structure of this document is as follows:

1.3

In the next section we provide a thorough presentation of the underlying mathematics that relate these algorithms
together.

We follow this with overview of how the source code for ARKode is organized.

The largest section follows, providing a full account of the ARKode user interface, including a description of all
user-accessible functions and outlines for ARKode usage for serial and parallel applications. Since ARKode is
written in C, we first present the C and C++ interface, followed with a separate section on using ARKode within
Fortran applications.

The following sections discuss shared features between ARKode and the rest of the SUNDIALS library: vector
data structures, matrix data structures, linear solver data structures, and the installation procedure.

The final sections catalog the full set of ARKode constants, that are used for both input specifications and return
codes, and the full set of Butcher tables that are packaged with ARKode.

SUNDIALS Release License

The SUNDIALS packages are released open source, under a BSD license. The only requirements of the BSD license
are preservation of copyright and a standard disclaimer of liability. Our Copyright notice is below along with the
license.

PLEASE NOTE If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, Su-
perLU_MT, PETSc, or hypre), be sure to review the respective license of the package as that license may have more
restrictive terms than the SUNDIALS license. For example, if someone builds SUNDIALS with a statically linked
KLU, the build is subject to terms of the LGPL license (which is what KLU is released with) and not the SUNDIALS
BSD license anymore.

1.3.1 Copyright Notices

All SUNDIALS packages except ARKode are subject to the following Copyright notice.

SUNDIALS Copyright

Copyright (c) 2002-2016, Lawrence Livermore National Security. Produced at the Lawrence Livermore National
Laboratory. Written by A.C. Hindmarsh, D.R. Reynolds, R. Serban, C.S. Woodward, S.D. Cohen, A.G. Taylor, S.
Peles, L.E. Banks, and D. Shumaker.

UCRL-CODE-155951 (CVODE)
UCRL-CODE-155950 (CVODES)
UCRL-CODE-155952 (IDA)
UCRL-CODE-237203 (IDAS)
LLNL-CODE-665877 (KINSOL)

All rights reserved.

1.3. SUNDIALS Release License 7

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

ARKode Copyright

ARKode is subject to the following joint Copyright notice. Copyright (c) 2015-2017, Southern Methodist University
and Lawrence Livermore National Security Written by D.R. Reynolds, D.J. Gardner, A.C. Hindmarsh, C.S. Wood-
ward, and J.M. Sexton.

LLNL-CODE-667205 (ARKODE)
All rights reserved.

1.3.2 BSD License

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the disclaimer
below.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the dis-
claimer (as noted below) in the documentation and/or other materials provided with the distribution.

3. Neither the name of the LLNS/LLNL nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, THE U.S. DEPARTMENT OF ENERGY OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Additional BSD Notice

* This notice is required to be provided under our contract with the U.S. Department of Energy (DOE). This work
was produced at Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 with the
DOE.

* Neither the United States Government nor Lawrence Livermore National Security, LLC nor any of their em-
ployees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately-owned rights.

 Also, reference herein to any specific commercial products, process, or services by trade name, trademark, man-
ufacturer or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States Government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

8 Chapter 1. Introduction

CHAPTER
TWO

MATHEMATICAL CONSIDERATIONS

ARKode solves ODE initial value problems (IVPs) in RY . These problems should be posed in explicit form, as

My = fe(t,y)+ f1(t,y), y(to) = yo. (2.1

Here, ¢ is the independent variable (e.g. time), and the dependent variables are given by y € R, where we use the
notation g to denote %.

M is a user-specified nonsingular operator from R"Y — R” . This operator may depend on ¢ but is currently assumed to
be independent of y. For standard systems of ordinary differential equations and for problems arising from the spatial
semi-discretization of partial differential equations using finite difference or finite volume methods, M is typically the
identity matrix, /. For PDEs using a finite-element spatial semi-discretization M is typically a well-conditioned mass
matrix.

The two right-hand side functions may be described as:
* fE(t,y) contains the “slow” time scale components of the system. This will be integrated using explicit methods.
* f1(t,y) contains the “fast” time scale components of the system. This will be integrated using implicit methods.

ARKode may be used to solve stiff, nonstiff and mixed stiff/nonstiff problems. Roughly speaking, stiffness is charac-
terized by the presence of at least one rapidly damped mode, whose time constant is small compared to the time scale
of the solution itself. In the implicit/explicit (ImEX) splitting above, these stiff components should be included in the
right-hand side function f; (¢, y).

In the sub-sections that follow, we elaborate on the numerical methods that comprise the ARKode solvers. We first
discuss the general formulation of additive Runge-Kutta methods, including the resulting implicit systems that must
be solved at each stage. We then discuss the solver strategies that ARKode uses in solving these systems: nonlinear
solvers, linear solvers and preconditioners. We then describe our approaches for error control within the iterative
nonlinear and linear solvers, including discussion on our choice of norms used within ARKode for measuring errors
within various components of the solver. We then discuss specific enhancements available in ARKode, including an
array of prediction algorithms for the solution at each stage, adaptive error controllers, mass-matrix handling, and
rootfinding capabilities.

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

2.1 Additive Runge-Kutta methods

The methods used in ARKode are variable-step, embedded, additive Runge-Kutta methods (ARK), based on formulas
of the form
i—1
MZZ:Myn71+hnZAEJfE nj’ +h ZA nj’) Z.:17-"7S7

j=1

My, = Myn—1 + hy, Z (b5 fe(tn i 20) + b fr(tn i 2)) 22

i=1

M?jn Myn 1+ hn Z(bEfE n,ir %)+b1f1(nm))

Here the y,, are computed approximations to y(¢,), ¥ are [typically] lower-order embedded solutions (used in error
estimation), and h,, = t,, — t,_1 is the step size. The internal stage times are abbreviated using the notation t£ =
th—1 + cf h,, and t{l’ j=tao1+ cjl» h,. The ARK method is primarily defined through the coefficients AE ¢ Rsx*s,
Al e R*5,bF € R*, b € R*, ¢ € R* and ¢! € R¥, that correspond with the explicit and implicit Butcher tables.
Additional coefficients b¥ € R* and b’ € R* may be used to enable an embedded solution that is used to estimate
error for adaptive time-stepping. We note that ARKode currently enforces the constraint that these tables must share
the same number of stages s between the explicit and implicit methods in an ARK pair.

The user of ARKode must choose appropriately between one of three classes of methods: ImEx, explicit and implicit.
All of ARKode’s available Butcher tables encoding the coefficients ¢Z, ¢!, A, AL, bF, b, b and b are further
described in the Appendix: Butcher tables.

For mixed stiff/nonstiff problems, a user should provide both of the functions fz and f; that define the IVP system.
For such problems, ARKode currently implements the ARK methods proposed in /KC2003], allowing for methods
having order ¢ = {3, 4,5}. The tables for these methods are given in the section Addirive Butcher tables.

For nonstiff problems, a user may specify that f; = 0, i.e. the equation (2.1) reduces to the non-split IVP
My = fe(ty), y(to)=yo. (2.3)

In this scenario, the coefficients AT = 0, ¢! = 0, ¥ = 0 and bl = 0in (2.2), and the ARK methods reduce
to classical explicit Runge-Kutta methods (ERK). For these classes of methods, ARKode allows orders of accuracy
q=1{2,3,4,5,6,8}, with embeddings of orders p = {1, 2, 3,4, 5, 7}. These default to the Heun-Euler-2-1-2, Bogacki-
Shampine-4-2-3, Zonneveld-5-3-4, Cash-Karp-6-4-5, Verner-8-5-6 and Fehlberg-13-7-8 methods, respectively.

Finally, for stiff problems the user may specify that fr = 0, so the equation (2.1) reduces to the non-split IVP
My = fi(t,y), y(to) = yo. 2.4

Similarly to ERK methods, in this scenario the coefficients AE =0,cF =0,bF = 0and bE = 0in (2.2), and the
ARK methods reduce to classical diagonally-implicit Runge-Kutta methods (DIRK). For these classes of methods,
ARKode allows orders of accuracy ¢ = {2, 3, 4,5}, with embeddings of orders p = {1,2,3,4}. These default to the
SDIRK-2-1-2, ARK-4-2-3 (implicit), SDIRK-5-3-4 and ARK-8-4-5 (implicit) methods, respectively.

2.2 Nonlinear solver methods

For both the DIRK and ARK methods corresponding to (2.1) and (2.4), an implicit system

G(zi) = Mz — ho AL fi(th ;,2) —ai =0 2.5)

10 Chapter 2. Mathematical Considerations

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

must be solved for each stage z;,7 = 1, ..., s, where we have the data

i—1
a;i = My +hn Y [AP Bt ;. 25) + AL fi(t] 5, 25)]

j=1
for the ARK methods, or
i—1
a; = Myn—l + hn Z Az{jfl(tfb,ja Zj)
j=1

for the DIRK methods. Here, if f;(¢,y) depends nonlinearly on y then (2.5) corresponds to a nonlinear system of
equations; if f(¢,y) depends linearly on y then this is a linear system of equations.

For systems of either type, ARKode allows a choice of solution strategy. The default solver choice is a variant of
Newton’s method,

Z§m+1) _ Zi(m) + 5(m+1)’ (2.6)

where m is the Newton iteration index, and the Newton update § (m+1) in turn requires the solution of the linear
Newton system

A (zl(m)) s+ = _ (z§m>) : 2.7
in which
AxM—~J, J= %—J;f, and v =h,Al,. (2.8)
As an alternate to Newton’s method, ARKode may solve for each stage z;,7 = 1, ..., s using an Anderson-accelerated
fixed point iteration
zl-(mﬂ) = g(zfm)), m=0,1,... 2.9)

Unlike with Newton’s method, this method does not require the solution of a linear system at each iteration, instead
opting for solution of a low-dimensional least-squares solution to construct the nonlinear update. For details on how
this iteration is performed, we refer the reader to the reference [WN2011].

Finally, if the user specifies that f;(¢,y) depends linearly on y (via a call to ARKodeSetLinear () in C/C++, or
the LINEAR argument to FARKSETIIN () in Fortran), and if the Newton-based nonlinear solver is chosen, then the
problem (2.5) will be solved using only a single Newton iteration. In this case, an additional argument to the respective
function denotes whether this Jacobian is time-dependent or not, indicating whether the Jacobian or preconditioner
needs to be recomputed at each step.

The optimal solver (Newton vs fixed-point) is highly problem-dependent. Since fixed-point solvers do not require
the solution of any linear systems, each iteration may be significantly less costly than their Newton counterparts.
However, this can come at the cost of slower convergence (or even divergence) in comparison with Newton-like
methods. However, these fixed-point solvers do allow for user specification of the Anderson-accelerated subspace
size, my. While the required amount of solver memory grows proportionately to m; N, larger values of mj may
result in faster convergence. In our experience, this improvement may be significant even for “small” values, e.g.
1 < my < 5, and that convergence may not improve (or even deteriorate) for larger values of my.

While ARKode uses a Newton-based iteration as its default solver due to its increased robustness on very stiff prob-
lems, it is highly recommended that users also consider the fixed-point solver for their when attempting a new problem.

For either the Newton or fixed-point solvers, it is well-known that both the efficiency and robustness of the algorithm
intimately depends on the choice of a good initial guess. In ARKode, the initial guess for either nonlinear solution
method is a predicted value 250) that is computed explicitly from the previously-computed data (e.g. y,—2, Yn—1, and
z; where j < 7). Additional information on the specific predictor algorithms implemented in ARKode is provided in

the following section, Implicit predictors.

2.2. Nonlinear solver methods 11

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

2.3 Linear solver methods

When a Newton-based method is chosen for solving each nonlinear system, a linear system of equations must be
solved at each nonlinear iteration. For this solve ARKode provides several choices, including the option of a user-
supplied linear solver module. The linear solver modules distributed with SUNDIALS are organized into two families:
a direct family comprising direct linear solvers for dense, banded or sparse matrices, and a spils family comprising
scaled, preconditioned, iterative (Krylov) linear solvers. The methods offered through these modules are as follows:

* dense direct solvers, using either an internal SUNDIALS implementation or a BLAS/LAPACK implementation
(serial version only),

* band direct solvers, using either an internal SUNDIALS implementation or a BLAS/LAPACK implementation
(serial version only),

* sparse direct solvers, using either the KLU sparse matrix library [KLU], or the OpenMP or PThreads-enabled
SuperLU_MT sparse matrix library [SuperLUMT] (serial or threaded vector modules only) [Note that users will
need to download and install the KLU or SuperLU_MT packages independent of ARKode],

* SPGMR, a scaled, preconditioned GMRES (Generalized Minimal Residual) solver,

* SPFGMR, a scaled, preconditioned Flexible GMRES (Generalized Minimal Residual) solver,

* SPBCGS, a scaled, preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable) solver,

* SPTFQMR, a scaled, preconditioned TFQMR (Transpose-free Quasi-Minimal Residual) solver, or
* PCQG, a preconditioned CG (Conjugate Gradient method) solver for symmetric linear systems.

For large stiff systems where direct methods are infeasible, the combination of an implicit integrator and a precondi-
tioned Krylov method can yield a powerful tool because it combines established methods for stiff integration, nonlinear
solver iteration, and Krylov (linear) iteration with a problem-specific treatment of the dominant sources of stiffness,
in the form of a user-supplied preconditioner matrix /[BH/989]. We note that the direct linear solvers provided by
SUNDIALS (dense, band and sparse), as well as the direct linear solvers accessible through LAPACK, can only be
used with the serial and threaded vector representations.

In the case that a direct linear solver is used, ARKode utilizes either a Newton or a modified Newton iteration. The dif-
ference between these is that in a modified Newton method, the matrix A is held fixed for multiple Newton iterations.
More precisely, each Newton iteration is computed from the modified equation

A2 0 =~ (o), (2.10)
in which
. L Of i
AmM=3], J=750G), ad 5 =hal, 2.11)

Here, the solution gy and step size h upon which the modified Jacobian rely, are merely values of the solution and step
size from a previous iteration. In other words, the matrix Ais only computed rarely, and reused for repeated stage
solves. The frequency at which Alis recomputed, and hence the choice between normal and modified Newton itera-
tions, is determined by the input parameter msbp to the input function ARKodeSetMaxStepsBetweenLSet () in
C/C++, or with the LSETUP_MSBP argument to FARKSETIIN () in Fortran.

When using the direct and band solvers for the linear systems (2.10), the Jacobian may be supplied by a user routine
or approximated by finite-differences. In the case of differencing, we use the standard approximation
ity +o5e5) = fralt,
JiJ(t,y):fL(y+0]ej) fl,(y)’

9j

where e; is the jth unit vector, and the increments o; are given by

oj = max{\/ﬁ|yj|, JO}.

wj

12 Chapter 2. Mathematical Considerations

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Here U is the unit roundoff, oy is a dimensionless value, and wy; is the error weight defined in (2.13). In the dense case,
this approach requires /V evaluations of f7, one for each column of J. In the band case, the columns of .J are computed
in groups, using the Curtis-Powell-Reid algorithm, with the number of f; evaluations equal to the bandwidth.

We note that with the sparse direct solvers, the Jacobian must be supplied by a user routine.

In the case that an iterative linear solver is chosen, ARKode utilizes a Newton method variant called an Inexact Newton
iteration. Here, the matrix A is not itself constructed since the algorithms only require the product of this matrix with
a given vector. Additionally, each Newton system (2.7) is not solved completely, since these linear solvers are iterative
(hence the “inexact” in the name). Resultingly. for these linear solvers A is applied in a matrix-free manner,

Av = Mv — yJwv.

The matrix-vector products Jv are obtained by either calling an optional user-supplied routine, or through directional
differencing using the formula

Ju = f[(t,y-i-a"l))—f[(t,y)’
g

where the increment o = 1/||v|| to ensure that ||ov|| = 1.

As with the modified Newton method that reused .4 between solves, ARKode’s inexact Newton iteration may also
recompute the preconditioner matrix P infrequently to balance the high costs of matrix construction and factorization
against the reduced convergence rate that may result from a stale preconditioner.

Alternately, for some preconditioning algorithms that do not rely on costly matrix construction and factorization
operations (e.g. when using an iterative multigrid method as preconditioner), a user may specify that A and/or P
should be recomputed at every Newton iteration, since the increased rate of convergence may more than account for
the additional cost of Jacobian/preconditioner construction. To indicate this, a user need only supply a negative value
for the msbp argument to ARKodeSetMaxStepsBetweenLSet () in C/C++, or the LSETUP_MSBP argument to
FARKSETIIN () in Fortran.

However, in cases where recomputation of the Newton matrix Aor preconditioner matrix P is lagged, ARKode will
force recomputation of these structures only in the following circumstances:

* when starting the problem,

* when more than 20 steps have been taken since the last update (this value may be changed via the msbp
argument to ARKodeSetMaxStepsBetweenLSet () in C/C++, or the LSETUP_MSBP argument to
FARKSETIIN () in Fortran),

» when the value 4 of v at the last update satisfies |y/5 — 1| > 0.2 (this tolerance may be changed via
the dgmax argument to ARKodeSetDeltaGammaMax () in C/C++, or the LSETUP_DGMAX argument to
FARKSETRIN () in Fortran),

* when a non-fatal convergence failure just occurred,
* when an error test failure just occurred, or
» if the problem is linearly implicit and ~y has changed by a factor larger than 100 times machine epsilon.

When an update is forced due to a convergence failure, an update of A or P may or may not involve a reevaluation of
J (in A) or of Jacobian data (in P), depending on whether errors in the Jacobian were the likely cause of the failure.
More generally, the decision is made to reevaluate J (or instruct the user to reevaluate Jacobian data in P) when:

* starting the problem,
* more than 50 steps have been taken since the last evaluation,

* a convergence failure occurred with an outdated matrix, and the value 7 of at the last update satisfies
/311> 02,

* aconvergence failure occurred that forced a step size reduction, or

2.3. Linear solver methods 13

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

« if the problem is linearly implicit and ~ has changed by a factor larger than 100 times machine epsilon.

As will be further discussed in the section Preconditioning, in the case of a Krylov method, preconditioning may be
applied on the left, right, or on both sides of A, with user-supplied routines for the preconditioner setup and solve
operations.

2.4 lteration Error Control

2.4.1 Choice of norm

In the process of controlling errors at various levels (time integration, nonlinear solution, linear solution), ARKode

uses a weighted root-mean-square norm, denoted || - ||wrms. for all error-like quantities,
N 1/2
1
lvl|wrms = (N Z (v; wi)2>) (2.12)
i=1

The power of this choice of norm arises in the specification of the weighting vector w, that combines the units of the
problem with the user-supplied measure of “acceptable” error. To this end, ARKode constructs and error weight vector
using the most-recent step solution and the relative and absolute tolerances input by the user, namely

1
~ RTOL-|y;| + ATOL;"

wj

(2.13)

Since 1/w; represents a tolerance in the component y;, a vector whose WRMS norm is 1 is regarded as “small.” For
brevity, we will typically drop the subscript WRMS on norms in the remainder of this section.

Additionally, for problems involving a non-identity mass matrix, M # I, the units of equation (2.1) may differ from
the units of the solution y. In this case, ARKode may also construct a residual weight vector,

1
" RTOL - [My;| + ATOL!’

w; (2.14)
where the user may specify a separate absolute residual tolerance value or array, ATOL!. The choice of weighting
vector used in any given norm is determined by the quantity being measured: values having solution units use (2.13),
whereas values having equation units use (2.14). Obviously, for problems with M = I, the weighting vectors are
identical.

2.4.2 Nonlinear iteration error control

The stopping test for all of ARKode’s nonlinear solvers is related to the subsequent local error test, with the goal of

keeping the nonlinear iteration errors from interfering with local error control. Denoting the final computed value of
(m)

i

each stage solution as z
(m)

i

, and the true stage solution solving (2.5) as z;, we want to ensure that the iteration error

zi — 2 is “small” (recall that a norm less than 1 is already considered within an acceptable tolerance).

To this end, we first estimate the linear convergence rate R; of the nonlinear iteration. We initialize R; = 1, and reset
it to this value whenever A or P are updated. After computing a nonlinear correction §(") = zl(m) — zl-(mfl), ifm >0
we update R; as

R; — max{0.3R;,

o)

where the factor 0.3 is user-modifiable as the crdown input to the the function ARKodeSetNonlinCRDown () in
C/C++, or the NONLIN_CRDOWN argument to FARKSETRIN () in Fortran.

14 Chapter 2. Mathematical Considerations

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Denoting the true time step solution as y(t,,), and the computed time step solution (computed using the stage solutions

(m)) as 1,,, we use the estimate

2
ly(tn) — ynll = max Hzi(mﬂ) - zi(m)H A max R; zfm) — zi(mfl)H = m?xRi 5m) H .
Therefore our convergence (stopping) test for the nonlinear iteration for each stage is
R H5<m>H <e 2.15)

where the factor e has default value 0.1, and is user-modifiable as the nlscoef input to the the function
ARKodeSetNonlinConvCoef () in C/C++, or the NLCONV_COEF input to the function FARKSETRIN () in
Fortran. We allow at most 3 nonlinear iterations (modifiable through ARKodeSetMaxNonlinIters () in C/C++,
or as the MAX_NSTEPS argument to FARKSETIIN () in Fortran). We also declare the nonlinear iteration to be di-
vergent if any of the ratios [|[6(™)|/[|6(™~V)| > 2.3 with m > 0 (the value 2.3 may be modified as the rdiv input
to ARKodeSetNonlinRDiv () in C/C++, or the NONLIN_RDIV input to FARKSETRIN () in Fortran). If con-
vergence fails in the fixed point iteration, or in the Newton iteration with J or A current, we must then reduce the
step size by a factor of 0.25 (modifiable via the efacf input to the ARKodeSetMaxCFailGrowth () function in
C/C++, or the ADAPT_ETACF input to FARKSETRIN () in Fortran). The integration is halted after 10 convergence
failures (modifiable via the ARKodeSetMaxConvFails () function in C/C++, or the MAX_CONVFAIL argument
to FARKSETIIN () in Fortran).

2.4.3 Linear iteration error control

When a Krylov method is used to solve the linear systems (2.7), its errors must also be controlled. To this end,
we approximate the linear iteration error in the solution vector (™ using the preconditioned residual vector, e.g.
r = PAS(™ 4 PG for the case of left preconditioning (the role of the preconditioner is further elaborated on in the
next section). In an attempt to ensure that the linear iteration errors do not interfere with the nonlinear solution error
and local time integration error controls, we require that the norm of the preconditioned linear residual satisfies
€€
Il < 0 (2.16)
Here € is the same value as that used above for the nonlinear error control. The factor of 10 is used to ensure that
the linear solver error does not adversely affect the nonlinear solver convergence. Smaller values for the parameter
ez, are typically useful for strongly nonlinear and stiff ODE systems, while easier ODE systems may benefit from a
value closer to 1; by default e;, = 0.05, which may be modified by the user through the ARKSpilsSetEpsLin ()
function in C/C++, or through the FARKSPILSSETEPSLIN () in Fortran. We note that for linearly implicit problems
the same tolerance (2.16) is used for the single Newton iteration.

2.5 Preconditioning

When using an inexact Newton method to solve the nonlinear system (2.5), ARKode makes repeated use of a linear
solver to solve linear systems of the form Ax = b, where z is a correction vector and b is a residual vector. If this
linear system solve is done with one of the scaled preconditioned iterative linear solvers, the efficiency of such solvers
may benefit tremendously from preconditioning. A system Az = b can be preconditioned as one of:

(P Az =P [left preconditioning],
(AP YPz =1 [right preconditioning],
(P, ' AP Praz = P b [left and right preconditioning].

The Krylov method is then applied to a system with the matrix P~* A, AP~!, or P; ' APy, instead of \A. In order to
improve the convergence of the Krylov iteration, the preconditioner matrix P, or the product Pr, Pr, in the third case,

2.5. Preconditioning 15

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

should in some sense approximate the system matrix .A. Yet at the same time, in order to be cost-effective the matrix P
(or matrices Pr, and Pr) should be reasonably efficient to evaluate and solve. Finding an optimal point in this tradeoff
between rapid convergence and low cost can be quite challenging. Good choices are often problem-dependent (for
example, see [BH1989] for an extensive study of preconditioners for reaction-transport systems).

Most of the iterative linear solvers supplied with SUNDIALS allow for preconditioning either side, or on both sides,
although for non-symmetric matrices A we know of few situations where preconditioning on both sides is superior
to preconditioning on one side only (with the product P = P, Pgr). Moreover, for a given preconditioner matrix,
the merits of left vs. right preconditioning are unclear in general, and the user should experiment with both choices.
Performance will differ between these choices because the inverse of the left preconditioner is included in the linear
system residual whose norm is being tested in the Krylov algorithm. As a rule, however, if the preconditioner is the
product of two matrices, we recommend that preconditioning be done either on the left only or the right only, rather
than using one factor on each side. An exception to this rule is the PCG solver, that itself assumes a symmetric
matrix A, sin/ce the PCG algorithm in fact applies the single preconditioner matrix P in both left/right fashion as
p-1 /2 A p-1 2'

Typical preconditioners used with ARKode are based on approximations to the system Jacobian, J = df;/dy. Since
the Newton iteration matrix involved is A = M —~.J, any approximation .J to .J yields a matrix that is of potential use
as a preconditioner, namely P = M — ~.J. Because the Krylov iteration occurs within a Newton iteration and further
also within a time integration, and since each of these iterations has its own test for convergence, the preconditioner
may use a very crude approximation, as long as it captures the dominant numerical feature(s) of the system. We
have found that the combination of a preconditioner with the Newton-Krylov iteration, using even a relatively poor
approximation to the Jacobian, can be surprisingly superior to using the same matrix without Krylov acceleration (i.e.,
a modified Newton iteration), as well as to using the Newton-Krylov method with no preconditioning.

2.6 Implicit predictors

For problems with implicit components, ARKode will employ a prediction algorithm for constructing the initial
guesses for each Runge-Kutta stage, zZ(O). As is well-known with nonlinear solvers, the selection of a good initial
guess can have dramatic effects on both the speed and robustness of the nonlinear solve, enabling the difference be-
tween rapid quadratic convergence versus divergence of the iteration. To this end, ARKode implements a variety of
prediction algorithms that may be selected by the user. In each case, the stage guesses zl(o) are constructed explicitly
using readily-available information, including the previous step solutions ¥,,—1 and y,, 2, as well as any previous stage
solutions z;, j < 4. In most cases, prediction is performed by constructing an interpolating polynomial through ex-
isting data, which is then evaluated at the subsequent stage times to provide an inexpensive but (hopefully) reasonable

prediction of the subsequent solution value. Specifically, for most Runge-Kutta methods each stage solution satisfies

2 R y(th,i%

so by constructing an interpolating polynomial p,(¢) through a set of existing data, the initial guess at stage solutions
may be approximated as

()

Denoting [a,b] as the interval containing the data used to construct p,(¢), and assuming forward integration from
a — b, it is typically the case that t,lw- > b. The dangers of using a polynomial interpolant to extrapolate values
outside the interpolation interval are well-known, with higher-order polynomials and predictions further outside the
interval resulting in the greatest potential inaccuracies.

The various prediction algorithms therefore construct different types of interpolant p, (), as described below.

16 Chapter 2. Mathematical Considerations

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

2.6.1 Trivial predictor

The so-called “trivial predictor” is given by the formula

po(T) = Yn—1.
While this piecewise-constant interpolant is clearly not a highly accurate candidate for problems with time-varying

solutions, it is often the most robust approach for either highly stiff problems, or problems with implicit constraints
whose violation may cause illegal solution values (e.g. a negative density or temperature).

2.6.2 Maximum order predictor

At the opposite end of the spectrum, ARKode can construct an interpolant p,(¢) of polynomial order up to ¢ = 3.
Here, the function p,(t) is identical to the one used for interpolation of output solution values between time steps, i.e.
for “dense output” of y(t) for t,,_1 < t < t,. The order of this polynomial, ¢, may be specified by the user with
the function ARKodeSetDenseOrder () in C/C++, or with the DENSE_ORDER argument to FARKSETIIN () in
Fortran.

The interpolants generated are either of Lagrange or Hermite form, and use the data {y,—2, fn—2, Yn—1, fn—1}, Where
we use fj to denote M =t (fg(t, yx) + f1(tk, yx)). Defining a scaled and shifted “time” variable 7 for the interval
[tn—Qa tn—l] as

T(t) = (t - tn—l)/hn—la

we may denote the predicted stage times in the subsequent time interval [t,,_1, t,] as

hy,
T =cl -
We then construct the interpolants p(t) as follows:
e ¢ = 0: constant interpolant
po(7) = Yn—2 -;- Y1

e ¢ = 1: linear Lagrange interpolant

pl(T) = —TYn—-2 + (1 + 7—) Yn—1-

* ¢ = 2: quadratic Hermite interpolant
pa(7) = 72 Yoo+ (1= 7°) Y1 + AT+ 7%) fro1.
* ¢ = 3: cubic Hermite interpolant
p3(T) = (37’2 + 27’3) Yn—2 + (1 — 3r2 — 27’3) Yn_1+ h(7'2 + 7'3) fr—a+h(T+ 272 + 73) fn_1.
These higher-order predictors may be useful when using lower-order methods in which h,, is not too large. We further

note that although interpolants of order > 3 are possible, these are not implemented due to their increased computing
and storage costs, along with their diminishing returns due to increased extrapolation error.

2.6.3 Variable order predictor

This predictor attempts to use higher-order interpolations p,(t) for predicting earlier stages in the subsequent time
interval, and lower-order interpolants for later stages. It uses the same formulas as described above, but chooses ¢
adaptively based on the stage index ¢, under the (rather tenuous) assumption that the stage times are increasing, i.e.
c§ <c£f0rj<k:

q = max{gmax — ¢, 1}.

2.6. Implicit predictors 17

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

2.6.4 Cutoff order predictor

This predictor follows a similar idea as the previous algorithm, but monitors the actual stage times to determine the
polynomial interpolant to use for prediction:

q= Imax, 1 7 < %7
1, otherwise.

2.6.5 Bootstrap predictor

This predictor does not use any information from within the preceding step, instead using information only within the
current step [t,—1,t,) (including y,—1 and f,,_1). Instead, this approach uses the right-hand side from a previously
computed stage solution in the same step, f(tn—1 + ¢; Th,z;) to construct a quadratic Hermite interpolant for the

prediction. If we define the constants h = cjl h and T = ¢! h, the predictor is given by

2 2

©) P T -
2 =Ynp1+ T— —= tne1,Yn-1) + —=f(tn_1 + h,z;).
! Y-t (2h) ftn-1,40-) 2hf(! 2

For stages in which cI- = 0 for all previous stages j = 0,...,7 — 1, and for the first stage of any time step (i = 0),

this method reduces to using the trivial predictor z() = = y,_1. For stages having multiple precdding nonzero ¢!, we

choose the stage having largest c] value, to minimize the amount of extrapolation induced through the prediction.

We note that in general, each stage solution z; has signicantly worse accuracy than the time step solutions y,,_1, due to
the difference between the stage order and the method order in typical Runge-Kutta methods. As a result, the accuracy
of this predictor will generally be rather limited, but it is provided for problems in which this increased stage error is
better than the effects of extrapolation far outside of the previous time step interval [t,, _2, t,—1].

We further note that although this method could be used with non-identity mass matrix M ## I, support for that mode
is not currently implemented, so selection of this predictor in the case that M = I will result in use of the Trivial
predictor.

2.6.6 Minimum correction predictor

This predictor is not interpolation based; instead it utilizes all existing stage information from the current step to create
a predictor containing all but the current stage solution. Specifically, as discussed in equations (2.2) and (2.5), each
stage solves a nonlinear equation

% = Yno1 + I ZA (t:2) + hn ZA (th,5:2):

=

G(Zl) =Z; — hnAI f[() —a; = 0.

n’L7

This prediction method merely computes the predictor z; as

1—1
Zl_yn 1+h ZA 7L]7 +h ZA n_77)a
Jj=1
=
Z; = Qyj.

We note that although this method could be also used with non-identity mass matrix M # I, support for that mode
is not currently implemented, so selection of this predictor in the case that M # I will result in use of the Trivial
predictor.

18 Chapter 2. Mathematical Considerations

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

2.7 Time step adaptivity

A critical component of ARKode, making it an IVP “solver” rather than just an integrator, is its adaptive control of
local truncation error. At every step, we estimate the local error, and ensure that it satisfies tolerance conditions. If
this local error test fails, then the step is recomputed with a reduced step size. To this end, every Runge-Kutta method
packaged within ARKode admit an embedded solution g,,, as shown in equation (2.2). Generally, these embedded
solutions attain a lower order of accuracy than the computed solution y,,. Denoting these orders of accuracy as p and
q, where p corresponds to the embedding and ¢ corresponds to the method, for the majority of embedded methods
p = q — 1. These values of p and ¢ correspond to the global order of accuracy for the method and embedding, hence
each admit local errors satisfying [HW1993]

Hyn - y(tn)” = Oh%Jrl + O(hgz+2)v

’ 2.17)
G — y(ta)ll = DRET! + O(RET?),

where C' and D are constants independent of h, and where we have assumed exact initial conditions for the step,
Yn—1 = Y(tn—1). Combining these estimates, we have

||yn - gn” = ”yn - y<tn) —Yn + y(tn)” < Hyn - y(tn)H + ”gn - y<tn)|| < Dhﬁ—H + O(hf{ﬂ).

We therefore use this difference norm as an estimate for the local truncation error at the step n,
S
T = 6 (yn — Gn) = BhaM Y0 [(0F = BF) fotE) + (0 = B) fo(thoz)] . @a8)
i=1

Here, 8 > 0 is an error bias to help account for the error constant D; the default value of this is 5 = 1.5, and may be
modified by the user through the function ARKodeSetErrorBias () in C/C++, or through the input ADAPT_BIAS
to FARKSETRIN () in Fortran.

With this LTE estimate, the local error test is simply |7, | < 1, where we remind that this norm includes the user-
specified relative and absolute tolerances. If this error test passes, the step is considered successful, and the esti-
mate is subsequently used to estimate the next step size, as will be described below in the section Asymptotic error
control. If the error test fails, the step is rejected and a new step size h’ is then computed using the error control
algorithms described in Asymptotic error control. A new attempt at the step is made, and the error test is repeated.
If it fails multiple times (as specified through the small_nef input to ARKodeSet SmallNumEFails () in C/C++,
or the ADAPT_SMALL_NEF argument to FARKSETIIN () in Fortran, which defaults to 2), then h’/h is limited
above to 0.3 (this is modifiable via the efamxf argument to ARKodeSetMaxEFailGrowth () in C/C++, or the
ADAPT_ETAMXF argument to FARKSETRIN () in Fortran), and limited below to 0.1 after an additional step failure.
After seven error test failures (modifiable via the function ARKodeSetMaxErrTestFails () in C/C++, or the
MAX_ERRFAIL argument to FARKSETTIIN () in Fortran), ARKode returns to the user with a give-up message.

We define the step size ratio between a prospective step k' and a completed step h as 7, i.e.
n=~"n'/h.

This is bounded above by 7y.x to ensure that step size adjustments are not overly aggressive. This value is modified
according to the step and history,

etamxl1, on the first step (default is 10000),
Tmax = { growth, on general steps (default is 20),
1, if the previous step had an error test failure.

Here, the values of efamxI and growth may be modified by the wuser in the functions
ARKodeSetMaxFirstGrowth () and ARKodeSetMaxGrowth () in C/C++, respectively, or through the
inputs ADAPT_ETAMXI and ADAPT_GROWTH to the function FARKSETRIN () in Fortran.

A flowchart detailing how the time steps are modified at each iteration to ensure solver convergence and successful
steps is given in the figure below. Here, all norms correspond to the WRMS norm, and the error adaptivity function
arkAdapt is supplied by one of the error control algorithms discussed in the subsections below.

2.7. Time step adaptivity 19

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

h0 supplied?

compute hO to
approximately solve
1h0"2y" ll<2

if (nst==0): h =h0

else: h=h*eta

attempt step

etamax = |

max(etacf, hmin/h)

—h * eta
estimae error: h=h*ecta

dsm = lly_errorl

etamax = 1
nef = nef + 1
i
eta = arkAdapt(h, h1, h2, dsm, el €2)

if (nef >= small_nef): eta = max(eta, etamxf)
h=h*eta

~hmin or nef==maxnef): halt

nst=nst + 1
if (etamax==1): eta=1
eta = arkAdapt(h, h1, h2, dsm, el, e2)

—— h2=hl

el =dsm * bias

For some problems it may be preferrable to avoid small step size adjustments. This can be especially true for problems
that construct and factor the Newton Jacobian matrix A from equation (2.8) for either a direct solve, or as a precon-
ditioner for an iterative solve, where this construction is computationally expensive, and where Newton convergence
can be seriously hindered through use of a somewhat incorrect 4. In these scenarios, the step is not changed when
1 € [nL,nu]- The default values for these parameters are 77, = 1 and ny = 1.5, though these are modifiable through
the function ARKodeSetFixedStepBounds () in C/C++, or through the input ADAPT_BOUNDS to the function
FARKSETRIN () in Fortran.

The user may supply external bounds on the step sizes within ARKode, through defining the values A, and A,y with
the functions ARKodeSetMinStep () and ARKodeSetMaxStep () in C/C++, or through the inputs MIN_STEP
and MAX_STEP to the function FARKSETRIN () in Fortran, respectively. These default to hpi, = 0 and Ay = o0.

Normally, ARKode takes steps until a user-defined output value ¢ = ¢, is overtaken, and then it computes y(tou)
by interpolation (using the same dense output routines described in the section Maximum order predictor). How-
ever, a “one step” mode option is available, where control returns to the calling program after each step. There
are also options to force ARKode not to integrate past a given stopping point ¢ = #p, through the function
ARKodeSetStopTime () in C/C++, or through the input STOP_TIME to FARKSETRIN () in Fortran.

2.7.1 Asymptotic error control

As mentioned above, ARKode adapts the step size in order to attain local errors within desired tolerances of the
true solution. These adaptivity algorithms estimate the prospective step size h’ based on the asymptotic local error
estimates (2.17). We define the values ¢,,, €,,_1 and £,,_o as

er = [Tkl = Bllyr — Gill,

corresponding to the local error estimates for three consecutive steps, t,—3 — t,—o — t,—1 — t,. These local
error history values are all initialized to 1.0 upon program initialization, to accomodate the few initial time steps of a
calculation where some of these error estimates are undefined. With these estimates, ARKode implements a variety of
error control algorithms, as specified in the subsections below.

20 Chapter 2. Mathematical Considerations

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

PID controller

This is the default time adaptivity controller used by ARKode. It derives from those found in [KC2003], [S1998],
[S2003] and [S2006]. 1t uses all three of the local error estimates €,,, €,,—1 and £, _» in determination of a prospective
step size,

’ —ki/p k2/p _—ks/p
h = h’ﬂ €n €n-1 €n—2 >

where the constants k1, ko and k3 default to 0.58, 0.21 and 0.1, respectively, though each may be changed
via a call to the C/C++ function ARKodeSetAdaptivityMethod () in C/C++, or to the Fortran function
FARKSETADAPTIVITYMETHOD () in Fortran. In this estimate, a floor of ¢ > 10719 is enforced to avoid division-
by-zero errors.

Pl controller

Like with the previous method, the PI controller derives from those found in /KC2003], [S1998], [S2003] and [S2006],
but it differs in that it only uses the two most recent step sizes in its adaptivity algorithm,
—ki/p K
W o= hy e, k/pek/r

Here, the default values of &y and ko default to 0.8 and 0.31, respectively, though they may be changed via a call to
ARKodeSetAdaptivityMethod () in C/C++, or FARKSETADAPTIVITYMETHOD () in Fortran. As with the
previous controller, at initialization k1 = k3 = 1.0 and the floor of 1010 is enforced on the local error estimates.

| controller

The so-called I controller is the standard time adaptivity control algorithm in use by most available ODE solvers. It
bases the prospective time step estimate entirely off of the current local error estimate,

W o= hyet/P.

By default, k1 = 1, but that may be overridden by the user with the function ARKodeSetAdaptivityMethod ()
in C/C++, or the function FARKSETADAPTIVITYMETHOD () in Fortran.

Explicit Gustafsson controller

This step adaptivity algorithm was proposed in /G/991], and is primarily useful in combination with explicit Runge-
Kutta methods. Using the notation of our earlier controllers, it has the form

W {h1 eT /P, on the first step, 2.19)

hn, &fkl/p (5n/sn_1)k2/p , on subsequent steps.

The default values of k; and ko are 0.367 and 0.268, respectively, which may be changed by calling either
ARKodeSetAdaptivityMethod () in C/C++, or FARKSETADAPTIVITYMETHOD () in Fortran.

Implicit Gustafsson controller

A version of the above controller suitable for implicit Runge-Kutta methods was introduced in /G/994], and has the
form

;L hlsfl/p, on the first step, (2.20)
hy (R /hp—1) &:;kl/p (5n/€n,1)7k2/p , on subsequent steps. '
The algorithm parameters default to k&; = 0.98 and ke = 0.95, but may be modified by the user with

ARKodeSetAdaptivityMethod () in C/C++, or FARKSETADAPTIVITYMETHOD () in Fortran.

2.7. Time step adaptivity 21

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

ImEx Gustafsson controller

An ImEx version of these two preceding controllers is available in ARKode. This approach computes the estimates b
arising from equation (2.19) and the estimate h}, arising from equation (2.20), and selects

h
h' = ——min {|h3], |R5|}.
A
Here, equation (2.19) uses ky and ko with default values of 0.367 and 0.268, while equation (2.20) sets both param-
eters to the input k3 that defaults to 0.95. All three of these parameters may be modified with the C/C++ function
ARKodeSetAdaptivityMethod () in C/C++, or the Fortran function FARKSETADAPTIVITYMETHOD () in
Fortran.

User-supplied controller

Finally, ARKode allows the user to define their own time step adaptivity function,
hl = H(y; t7 hna hnfla hn72, EnyEn—1,En—2, q;p)v

via a call to the C/C++ routine ARKodeSetAdaptivityFn () or the Fortran routine FARKADAPTSET ().

2.8 Explicit stability

For problems that involve a nonzero explicit component, fg(t,y) # 0, explicit and ImEx Runge-Kutta methods
may benefit from addition user-supplied information regarding the explicit stability region. All ARKode adaptivity
methods utilize estimates of the local error. It is often the case that such local error control will be sufficient for method
stability, since unstable steps will typically exceed the error control tolerances. However, for problems in which
fE(t,y) includes even moderately stiff components, and especially for higher-order integration methods, it may occur
that a significant number of attempted steps will exceed the error tolerances. While these steps will automatically be
recomputed, such trial-and-error may be costlier than desired. In these scenarios, a stability-based time step controller
may also be useful.

Since the explicit stability region for any method depends on the problem under consideration, as it results from the
eigenvalues of the linearized operator %, information on the maximum stable step size is not computed internally
within ARKode. However, for many problems such information is readily available. For example, in an advection-
diffusion calculation, f; may contain the stiff diffusive components and fr may contain the comparably nonstiff
advection terms. In this scenario, an explicitly stable step hex, would be predicted as one satisfying the Courant-
Friedrichs-Lewy (CFL) stability condition,

Ax
hexp| < —

where Az is the spatial mesh size and A is the fastest advective wave speed.

In these scenarios, a user may supply a routine to predict this maximum explicitly stable step size, |hexp|, by calling
the C/C++ function ARKodeSet StabilityFn () or the Fortran function FARKEXPSTABSET (). If a value for
|hexp| is supplied, it is compared against the value resulting from the local error controller, |hac|, and the step used by
ARKode will satisfy

h
h' = — min{c |hexp|, |Pace|}-
1]
Here the explicit stability step factor (often called the “CFL factor”) ¢ > 0 may be modified through the function
ARKodeSetCFLFraction () in C/C++, or through the input ADAPT_CFL to the function FARKSETRIN () in
Fortran, and has a default value of 1/2.

22 Chapter 2. Mathematical Considerations

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

2.8.1 Fixed time stepping

While ARKode is designed for time step adaptivity, it may additionally be called in “fixed-step” mode, typically
used for debugging purposes or for verification against hand-coded Runge-Kutta methods. In this mode, all time step
adaptivity is disabled:

* temporal error control is disabled,
* nonlinear or linear solver non-convergence results in an error (instead of a step size adjustment),
* no check against an explicit stability condition is performed.

Additional information on this mode is provided in the section Optional input functions.

2.9 Mass matrix solver

Within the algorithms described above, there are three locations where a linear solve of the form
Mx =15

is required: (a) in constructing the time-evolved solution y,,, (b) in estimating the local temporal truncation error, and
(c) in constructing predictors for the implicit solver iteration (see section Maximum order predictor). Specifically, to
construct the time-evolved solution y,, from equation (2.2) we must solve

My, = My + hy, Z (bF fu(th,,) + bl fr(th ;. 2))
- i=1

Mg~ ynr) = hnij VE Fplt? 2+ bLA (L 22))
-~

S

hnz bEfE nm)erlff(nm))7
=1

for the update v = y,, — y,,—1. Similarly, in computing the local temporal error estimate 7}, from equation (2.18) we
must solve systems of the form

MT, —hZKbE—bE>fE(m, 0+ (b = 01) fr(th 2] -

Lastly, in constructing dense output and implicit predictors of order 2 or higher (as in the section Maximum order
predictor above), we must compute the derivative information fj, from the equation

M fr. = fe(tr, yx) + fr(te, yi)-

Of course, for problems in which M = [these solves are not required; however for problems with non-identity M,
ARKode may use either an iterative linear solver or a direct linear solver, in the same manner as described in the
section Linear solver methods for solving the linear Newton systems. We note that at present, the matrix M may
depend on time ¢ but must be independent of the solution y, since we assume that each of the above systems are linear.

At present, for DIRK and ARK problems using a direct solver for the Newton nonlinear iterations, the type of matrix
(dense, band or sparse) for the Newton systems .4d = —G must match the type of linear solver used for these mass-
matrix systems, since M is included inside .4. When direct methods are employed, the user must supply a routine
to compute M in either dense, band or sparse form to match the structure of A, with a user-supplied routine of type
ARKDl1sMassFn ().

2.9. Mass matrix solver 23

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

When iterative methods are used, a routine must be supplied to perform the mass-matrix-vector product, M v, through
a call to the routine ARKSpilsMassTimesVecFn (). As with iterative solvers for the Newton systems, precondi-
tioning may be applied to aid in solution of the mass matrix systems Mx = b. When using an iterative mass matrix
linear solver, we require that the norm of the preconditioned linear residual satisfies

7|l < ere, (2.21)

where again, € is the nonlinear solver tolerance parameter from (2.15). When using iterative system and mass matrix
linear solvers, €7, may be specified separately for both tolerances (2.16) and (2.21); the mass matrix linear solver value
of €7, may be modified using ARKSpilsSetMassEpsLin () in C/C++, or FARKSPTILSSETMASSEPSLIN () in
Fortran.

2.10 Rootfinding

The ARKode solver has been augmented to include a rootfinding feature. This means that, while integrating the IVP
(2.1), ARKode can also find the roots of a set of user-defined functions g; (¢, y) that depend on ¢ and the solution vector
y = y(t). The number of these root functions is arbitrary, and if more than one g; is found to have a root in any given
interval, the various root locations are found and reported in the order that they occur on the ¢ axis, in the direction of
Integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in sign of g;(¢, y(¢)),
denoted g;(t) for short. If a user root function has a root of even multiplicity (no sign change), it will probably be
missed by ARKode. If such a root is desired, the user should reformulate the root function so that it changes sign at
the desired root.

The basic scheme used is to check for sign changes of any g;(¢) over each time step taken, and then (when a sign
change is found) to home in on the root (or roots) with a modified secant method /HS7980]. In addition, each time g
is computed, ARKode checks to see if g;(t) = 0 exactly, and if so it reports this as a root. However, if an exact zero
of any g; is found at a point ¢, ARKode computes g(¢ +) for a small increment 4, slightly further in the direction of
integration, and if any g;(¢ + 6) = 0 also, ARKode stops and reports an error. This way, each time ARKode takes a
time step, it is guaranteed that the values of all g; are nonzero at some past value of ¢, beyond which a search for roots
is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has been done, ARKode
has an interval (¢, t,;] in which roots of the g;(¢) are to be sought, such that ¢p; is further ahead in the direction of
integration, and all g;(t;,) # 0. The endpoint ty; is either ¢,, the end of the time step last taken, or the next requested
output time ¢,y if this comes sooner. The endpoint #), is either ¢,,_1, or the last output time ¢y, (if this occurred within
the last step), or the last root location (if a root was just located within this step), possibly adjusted slightly toward
t, if an exact zero was found. The algorithm checks g(¢y;) for zeros, and it checks for sign changes in (¢, tni). If
no sign changes are found, then either a root is reported (if some g;(ty;) = 0) or we proceed to the next time interval
(starting at ty;). If one or more sign changes were found, then a loop is entered to locate the root to within a rather
tight tolerance, given by

7 =100U (|tn| + |h|) (where U = unit roundoff).

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have its root occur
first is the one with the largest value of |g;(¢ni)|/ |g:(tni) — gi(t10)|, corresponding to the closest to ¢, of the secant
method values. At each pass through the loop, a new value ¢4 is set, strictly within the search interval, and the
values of g;(tmiq) are checked. Then either t;, or ty; is reset to tiq according to which subinterval is found to have the
sign change. If there is none in (¢, tmia) but some g;(tmia) = O, then that root is reported. The loop continues until
|thi — t1o] < 7, and then the reported root location is ¢y;. In the loop to locate the root of g;(t), the formula for ¢4 is

i (tni) (tni — to)

tmia = thi —)
" Y gi(thi) — agi(to)

24 Chapter 2. Mathematical Considerations

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

where « is a weight parameter. On the first two passes through the loop, « is set to 1, making ¢4 the secant method
value. Thereafter, « is reset according to the side of the subinterval (low vs high, i.e. toward ¢, vs toward ¢y;) in which
the sign change was found in the previous two passes. If the two sides were opposite, « is set to 1. If the two sides
were the same, « is halved (if on the low side) or doubled (if on the high side). The value of t,q4 is closer to t;, when
a < 1 and closer to t,; when « > 1. If the above value of ¢4 is within 7/2 of ¢, or ¢y;, it is adjusted inward, such
that its fractional distance from the endpoint (relative to the interval size) is between 0.1 and 0.5 (with 0.5 being the
midpoint), and the actual distance from the endpoint is at least 7/2.

Finally, we note that when running in parallel, the ARKode rootfinding module assumes that the entire set of root
defining functions g; (¢, y) is replicated on every MPI task. Since in these cases the vector y is distributed across tasks,
it is the user’s responsibility to perform any necessary inter-task communication to ensure that g;(¢, y) is identical on
each task.

2.10. Rootfinding 25

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

26 Chapter 2. Mathematical Considerations

CHAPTER
THREE

CODE ORGANIZATION

The family of solvers referred to as SUNDIALS consists of the solvers CVODE and ARKode (for ODE systems),
KINSOL (for nonlinear algebraic systems), and IDA (for differential-algebraic systems). In addition, SUNDIALS also
includes variants of CVODE and IDA with sensitivity analysis capabilities (using either forward or adjoint methods),
called CVODES and IDAS, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized as a family, with a
directory structure that exploits that sharing (see the following Figures SUNDIALS organization, SUNDIALS tree, and
SUNDIALS examples). The following is a list of the solver packages presently available, and the basic functionality of

each:

CVODE, a linear multistep solver for stiff and nonstiff ODE systems ¢ = f(¢,y) based on Adams and BDF

methods;

CVODES, a linear multistep solver for stiff and nonstiff ODEs with sensitivity analysis capabilities;

ARKaode, a solver for ODE systems My = fgr(t,y) + f1(t,y) based on additive Runge-Kutta methods;

IDA, a linear multistep solver for differential-algebraic systems F'(¢,y,y) = 0 based on BDF methods;

IDAS, a linear multistep solver for differential-algebraic systems with sensitivity analysis capabilities;

KINSOL, a solver for nonlinear algebraic systems F'(u) = 0.

SUNDIALS

|]

l l

l l

CVODE] [CVODES

(oo] [on

o] (Cosor)

I [

[
VECTOR MODULES MATRIX MODULES LINEAR SOLVER MODULES
SERIAL] [N (Cense] DIRECT
[oense [BanD |
PTHREADS LAPACK LAPACK
DENSE BAND

(HYPRE) PETSC

[

[OPENMP] [
[PARHYP] [
[J

CUDA RAJA

)
]
)
)

Fig. 3.1: SUNDIALS organization: High-level diagram of the SUNDIALS structure

[

KLU J(superLU_wmT |

ITERATIVE

(

sPBCG J[sPGMR |

(

SPFGMR _ |[sPTFamMR |

27

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

sundials-x.x.x

include src | | | config | | doc] | test |

—{_cvode |
[EtemixT]
> _cvodes]
"m

[ida |

{femix]

Lo aas]
—»
[fomix |
—_

[vec]

—>[_sunmat_* |

Fig. 3.2: SUNDIALS tree: Directory structure of the source tree.

(s
—'T
serial || parallel || C_« |[fcmix_serial | serial || parallel || |

I fcmix_parallel || parhyp || cuda || raja | [pthread || parhyp || petsc |

;i

serial || parallel || C_¢ |

arkode [sunmatrix_|
_serial] [C_parallel][C_] [Cc_parhyp |

I CXX_serial || CXX_parallel || F77_serial |
[F77_parallel |[Foo_serial |[F90_parallel |

i

—-T
serial | [parallel | [C_ | [petse] {_dense |
I fcmix_serial || femix_parallel || fcmix_opemp |
[|
I|| IIIH G | |spgmr||sp'gmr|| sptfqmrl
serial arallel
) .

i

erial | [parallel || C_ |

I femix_serial ” femix_parallel |

Fig. 3.3: SUNDIALS examples: Directory structure of the examples.

28 Chapter 3. Code Organization

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

3.1 ARKode organization

The ARKode package is written in the ANSI C language. The following summarizes the basic structure of the package,
although knowledge of this structure is not necessary for its use.

The overall organization of the ARKode package is shown in Figure ARKode organization. The central integration
module, implemented in the files arkode . h, arkode_impl.h and arkode. c, deals with the evaluation of inte-
gration stages, the nonlinear solver (if f(¢,y) # 0), estimation of the local truncation error, selection of step size, and
interpolation to user output points, among other issues. ARKode currently supports modified Newton, inexact Newton,
and accelerated fixed-point solvers for these implicit problems. However, when using the Newton-based iterations,
or when using a non-identity mass matrix M # I, ARKode has flexibility in the choice of method used to solve the
linear sub-systems that arise. Therefore, for any user problem invoking the Newton solvers, or any user problem with
M = I, one (or more) of the linear system solver modules should be specified by the user, which is then invoked as
needed during the integration process.

[SUNDIALS]—b[ARKODE]

| '

| ARKDLS - DIRECT LINEAR SOLVER | ARKSPILS - ITERATIVE LINEAR SOLVER
INTERFACE INTERFACE
PARALLEL
[SERIAL] [(MPY J
MATRIX MODULES ITERATIVE LINEAR SOLVER MODULES
[OPENMP } [PTHREADS] (peEnse |(BAND [sPARSE | (seecc)[speMr |
PARHYP PETSC (spreMrR][sPTFaMR
(AYPRE) ?
[CUDA] [RAJA]
DIRECT LINEAR SOLVER MODULES PRECONDITIONER MODULES
(_pense J[__Bano | (ARKBBDPRE | [ARKBANDPRE |

[LAPACK] [LAPACK]
DENSE BAND

(KLU) (suPERLU_MT]

Fig. 3.4: ARKode organization: Overall structure of the ARKode package. Modules specific to ARKode begin with
“ARK” (ARKDLS, ARKSPILS, ARKBBDPRE), all other items correspond to generic solver and auxiliary modules.
Note also that the LAPACK, KLU and SuperLU_MT support is through interfaces to external packages. Users will
need to download and compile those packages independently.

For solving these linear systems, ARKode presently includes two linear solver interfaces. The direct linear solver
interface, ARKDLS, supports SUNLINSOL implementations with type SUNLINSOL_DIRECT (see Linear Solver
Data Structures). These linear solvers utilize direct methods for the solution of linear systems stored using one of
the SUNDIALS generic SUNMATRIX implementations (dense, banded or sparse; see Matrix Data Structures). It is
assumed that the dominant cost for such solvers occurs in factorization of the linear system matrix A, so ARKode
utilizes these solvers within its modified Newton nonlinear solve. The iterative linear solver interface, ARKSPILS,
supports SUNLINSOL implementations with type SUNLINSOL_ITERATIVE (see Linear Solver Data Structures).

3.1. ARKode organization 29

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

These linear solvers utilize scaled preconditioned iterative methods. It is assumed that these methods are implemented
in a “matrix-free” manner, wherein only the action of the matrix-vector product Awv is required. Since ARKode can
operate on any valid SUNLINSOL implementation of SUNLINSOL_DIRECT or SUNLINSOL_ITERATIVE types,
the set of linear solver modules available to ARKode will expand as new SUNLINSOL modules are developed.

Within the ARKDLS interface, the package includes algorithms for the approximation of dense or banded Jacobians
through difference quotients, but the user also has the option of supplying the Jacobian (or an approximation to
it) directly. This user-supplied routine is required when using sparse Jacobian matrices, since standard difference
quotient approximations do not leverage the inherent sparsity of the problem. Additionally, when solving problems
with non-identity mass matrices using the ARKDLS interface, a user-supplied routine is required for providing the
mass matrix.

Within the ARKSPILS interface, the package includes an algorithm for the approximation by difference quotients
of the product Av. Again, the user has the option of providing routines for this operation, in two phases: setup
(preprocessing of Jacobian data) and multiplication. When using ARKSPILS to solve problems with non-identity
mass matrices, corresponding user-supplied routines for computing the product Mwv are required. For preconditioned
iterative methods for either the system or mass matrix solves, the preconditioning must be supplied by the user, again
in two phases: setup and solve. While there is no default choice of preconditioner analogous to the difference-quotient
approximation in the direct case, the references [BH1989] and [B1992], together with the example and demonstration
programs included with ARKode and CVODE, offer considerable assistance in building simple preconditioners.

Each ARKode linear solver interface consists of four primary phases, devoted to
1. memory allocation and initialization,
2. setup of the matrix/preconditioner data involved,
3. solution of the system, and
4. freeing of memory.

The setup and solution phases are separate because the evaluation of Jacobians and preconditioners is done only
periodically during the integration process, and only as required to achieve convergence.

ARKode also provides two rudimentary preconditioner modules, for use with any of the Krylov iterative linear
solvers. The first, ARKBANDPRE is intended to be used with the serial or threaded vector data structures (NVEC-
TOR_SERIAL, NVECTOR_OPENMP and NVECTOR_PTHREADS), and provides a banded difference-quotient ap-
proximation to the Jacobian as the preconditioner, with corresponding setup and solve routines. The second precondi-
tioner module, ARKBBDPRE, is intended to work with the parallel vector data structure, NVECTOR_PARALLEL,
and generates a preconditioner that is a block-diagonal matrix with each block being a band matrix owned by a single
processor.

All state information used by ARKode to solve a given problem is saved in a single opaque memory structure, and
a pointer to that structure is returned to the user. For C and C++ applications there is no global data in the ARKode
package, and so in this respect it is reentrant. State information specific to the linear solver is saved in a separate data
structure, a pointer to which resides in the ARKode memory structure. We note that the ARKode Fortran interface,
however, currently uses global variables.

30 Chapter 3. Code Organization

CHAPTER
FOUR

USING ARKODE FOR C AND C++ APPLICATIONS

This chapter is concerned with the use of ARKode for the solution of initial value problems (IVPs) in a C or C++
language setting. The following sections treat the header files and the layout of the user’s main program, and provide
descriptions of the ARKode user-callable functions and user-supplied functions.

The example programs described in the companion document /R2073] may be helpful. Those codes may be used as
templates for new codes and are included in the ARKode package examples subdirectory.

Users with applications written in Fortran should see the chapter FARKODE, an Interface Module for FORTRAN
Applications, which describes the Fortran/C interface module, and may look to the Fortran example programs also
described in the companion document /R20/3]. These codes are also located in the ARKode package examples
directory.

The user should be aware that not all SUNLINSOL, SUNMATRIX preconditioning modules are compatible with all
NVECTOR implementations. Details on compatability are given in the documentation for each SUNMATRIX (see
Matrix Data Structures) and each SUNLINSOL module (see Linear Solver Data Structures). For example, NVEC-
TOR_PARALLEL is not compatible with the dense, banded, or sparse SUNMATRIX types, or with the corresponding
dense, banded, or sparse SUNLINSOL modules. Please check the sections Matrix Data Structures and Linear Solver
Data Structures to verify compatability between these modules. In addition to that documentation, we note that the
ARKBANDPRE preconditioning module is only compatible with the NVECTOR_SERIAL, NVECTOR_OPENMP
or NVECTOR_PTHREADS vector implementations, and the preconditioner module ARKBBDPRE can only be used
with NVECTOR_PARALLEL.

ARKode uses various constants for both input and output. These are defined as needed in this chapter, but for conve-
nience the full list is provided separately in the section Appendix: ARKode Constants.

The relevant information on using ARKode’s C and C++ interfaces is detailed in the following sub-sections:

4.1 Access to library and header files

At this point, it is assumed that the installation of ARKode, following the procedure described in the section ARKode
Installation Procedure, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load commands must make
reference to the appropriate locations for the library and header files required by ARKode. The relevant library files
are

e libdir/libsundials_arkode.lib,
e libdir/libsundials_nvecx+.1ib (one or two files),

where the file extension . 1ib is typically . so for shared libraries and . a for static libraries. The relevant header files
are located in the subdirectories

e incdir/include/arkode

31

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* incdir/include/sundials
* incdir/include/nvector

* incdir/include/sunmatrix
* incdir/include/sunlinsol

The directories 1ibdir and incdir are the installation library and include directories, respectively. For a default in-
stallation, these are instdir/lib and instdir/include, respectively, where instdir is the directory where
SUNDIALS was installed (see the section ARKode Installation Procedure for further details).

4.2 Data Types

The sundials_types.h file contains the definition of the variable type realtype, which is used by the SUN-
DIALS solvers for all floating-point data, the definition of the integer type sunindextype, which is used for vector
and matrix indices, and booleantype, which is used for certain logic operations within SUNDIALS.

4.2.1 Floating point types

The type “realtype” can be set to float, double, or long double, depending on how SUNDIALS was in-
stalled (with the default being double). The user can change the precision of the SUNDIALS solvers’ floating-point
arithmetic at the configuration stage (see the section Configuration options (Unix/Linux)).

Additionally, based on the current precision, sundials_types.h defines the values BIG_REAL to be the largest
value representable as a realtype, SMALL_REAL to be the smallest positive value representable as a realtype,
and UNIT_ROUNDOFF to be the smallest realtype number, ¢, such that 1.0 + ¢ # 1.0.

Within SUNDIALS, real constants may be set to have the appropriate precision by way of a macro called RCONST.
It is this macro that needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant
with no suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a f1oat,
whereas using the suffix “L”” makes ita 1long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a f1oat constant equal to 1.0, and Ctobe a long double
constant equal to 1.0. The macro call RCONST (1.0) automatically expands to 1.0 if realtype is double, to
1.0F if realtypeis float,orto 1.0Lif realtypeis long double. SUNDIALS uses the RCONST macro
internally to declare all of its floating-point constants.

A user program which uses the type realtype and the RCONST macro to handle floating-point constants is precision-
independent, except for any calls to precision-specific standard math library functions. Users can, however, use the
types double, float, or long double in their code (assuming that this usage is consistent with the size of
realtype values that are passed to and from SUNDIALS). Thus, a previously existing piece of ANSI C code
can use SUNDIALS without modifying the code to use realtype, so long as the SUNDIALS libraries have been
compiled using the same precision (for details see the section ARKode Installation Procedure).

4.2.2 Integer types used for vector and matrix indices

The type sunindextype can be either a 32- or 64-bit signed integer. The default is the portable int 64_t type,
and the user can change it to int 32_t at the configuration stage. The configuration system will detect if the compiler
does not support portable types, and will replace int32_t and int 64_t with int and long int, respectively, to
ensure use of the desired sizes on Linux, Mac OS X, and Windows platforms. SUNDIALS currently does not support

32 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

unsigned integer types for vector and matrix indices, although these could be added in the future if there is sufficient
demand.

A user program which uses sunindextype to handle vector and matrix indices will work with both index stor-
age types except for any calls to index storage-specific external libraries. (Our C and C++ example programs use
sunindextype.) Users can, however, use any one of int, long int, int32_t, int64_t or long long
int in their code, assuming that this usage is consistent with the typedef for sunindextype on their architec-
ture). Thus, a previously existing piece of ANSI C code can use SUNDIALS without modifying the code to use
sunindextype, so long as the SUNDIALS libraries use the appropriate index storage type (for details see the
section ARKode Installation Procedure).

4.3 Header Files

The calling program must include several header files so that various macros and data types can be used. The header
file that is always required is:

* arkode/arkode.h, the main header file for ARKode, which defines the several types and various constants,
and includes function prototypes.

Note that arkode.h includes sundials_types.h directly, which defines the types realtype,
sunindextype and booleantype and the constants SUNFALSE and SUNTRUE, so a user program does not
need to include sundials_types.h directly.

The calling program must also include an NVECTOR implementation header file, of the form
nvector/nvector_x*=*.h. See the section Vector Data Structures for details for the appropriate name.
This file in turn includes the header file sundials_nvector.h which defines the abstract N_Vector data type.

If the user includes a non-trivial implicit component to their ODE system, then each time step will require a nonlinear
solver for the resulting systems of equations. ARKode allows an accelerated fixed point iteration and Newton-based
iterations for this solver; if a Newton method is used then a linear solver module header file may also be required.
Similarly, if the ODE system

My' = fi(t,y) + fe(t,y)

involves a non-identity mass matrix M # I, then each time step will require a linear solver for systems of the form
Max = b. The header files corresponding to the various linear solver interfaces and linear solver modules available for
use with ARKode for either the Newton solver or for mass-matrix solves, are:

e arkode/arkode_direct.h, which is used with the ARKDLS direct linear solver interface to access direct
solvers with the following header files:

— sunlinsol/sunlinsol_dense.h, which is used with the dense linear solver module, SUNLIN-
SOL_DENSE;

— sunlinsol/sunlinsol_band.h, which is used with the banded linear solver module, SUNLIN-
SOL_BAND;

— sunlinsol/sunlinsol_lapackdense.h, which is used with the LAPACK dense linear solver
interface module, SUNLINSOL_LAPACKDENSE;

— sunlinsol/sunlinsol_lapackband.h, which is used with the LAPACK banded linear solver
interface module, SUNLINSOL_L APACKBAND;

— sunlinsol/sunlinsol_klu.h, which is used with the {klu} sparse linear solver interface module,
SUNLINSOL_KLU;

— sunlinsol/sunlinsol_superlumnmt.h, which is used with the SuperLU_MT sparse linear solver
interface module, SUNLINSOL_SUPERLUMT;

4.3. Header Files 33

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

e arkode/arkode_spils.h, which is used with the ARKSPILS iterative linear solver interface to access
iterative solvers with the following header files:

— sunlinsol/sunlinsol_spgmr.h, which is used with the scaled, preconditioned GMRES Krylov
linear solver module, SUNLINSOL_SPGMR;

— sunlinsol/sunlinsol_spfgmr.h, which is used with the scaled, preconditioned FGMRES
Krylov linear solver module, SUNLINSOL_SPFGMR;

— sunlinsol/sunlinsol_spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab
Krylov linear solver module, SUNLINSOL_SPBCGS;

— sunlinsol/sunlinsol_sptfgmr.h, which is used with the scaled, preconditioned TFQMR
Krylov linear solver module, SUNLINSOL_SPTFQMR;

— sunlinsol/sunlinsol_pcg.h, which is used with the scaled, preconditioned CG Krylov linear
solver module, SUNLINSOL_PCG;

The header files for the SUNLINSOL_DENSE and SUNLINSOL_LAPACKDENSE linear solver modules include
the file sunmatrix/sunmatrix_dense.h, which defines the SUNMATRIX_ DENSE matrix module, as well as
various functions and macros for acting on such matrices.

The header files for the SUNLINSOL_BAND and SUNLINSOL_LAPACKBAND linear solver modules include the
file sunmatrix/sunmatrix_band.h, which defines the SUNMATRIX_BAND matrix module, as well as vari-
ous functions and macros for acting on such matrices.

The header files for the SUNLINSOL_KLU and SUNLINSOL_SUPERLUMT linear solver modules include the file
sunmatrix/sunmatrix_sparse.h, which defines the SUNMATRIX_SPARSE matrix module, as well as vari-
ous functions and macros for acting on such matrices.

The header files for the Krylov iterative solvers include the file sundials/sundials_iterative.h, which
enumerates the preconditioning type and (for the SPGMR and SPFGMR solvers) the choices for the Gram-Schmidt
orthogonalization process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, if preconditioning for an
iterative linear solver were performed using a block-diagonal matrix, the header sundials/sundials_dense.h
may need to be included for access to the underlying generic dense matrix arithmetic routines used in the precondi-
tioner solve.

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP. Most
of the steps are independent of the NVECTOR, SUNMATRIX, and SUNLINSOL implementations used. For the steps
that are not, refer to the sections Vector Data Structures, Matrix Data Structures and Linear Solver Data Structures
for the specific name of the function to be called or macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate.

For example, call MPI_TInit to initialize MPI if used, or set num_threads, the number of threads to use
within the threaded vector functions, if used.

2. Set problem dimensions, etc.

This generally includes the problem size, N, and may include the local vector length Nlocal.

Note: The variables N and N1ocal should be of type sunindextype.

3. Set vector of initial values

34 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

To set the vector y0 of initial values, use the appropriate functions defined by the particular NVECTOR imple-
mentation.

For native SUNDIALS vector implementations (except the CUDA and RAJA based ones), use a call of the form

y0 = N_VMake_x*x (..., ydata); ‘

if the realtype array ydata containing the initial values of y already exists. Otherwise, create a new vector
by making a call of the form

y0 = N_VNew_xx*(...); ‘

and then set its elements by accessing the underlying data where it is located with a call of the form

ydata = N_VGetArrayPointer_ x#+ (y0); ‘

See the sections The NVECTOR_SERIAL Module through The NVECTOR_PTHREADS Module for details.

For the HYPRE and PETSc vector wrappers, first create and initialize the underlying vector, and then create the
NVECTOR wrapper with a call of the form

y0 = N_VMake_xxx (yvec);

where yvec is a HYPRE or PETSc vector. Note that calls like N_VNew_*xx (...) and
N_VGetArrayPointer_xx=* (...) are not available for these vector wrappers. See the sections The
NVECTOR_PARHYP Module and The NVECTOR_PETSC Module for details.

If using either the CUDA- or RAJA-based vector implementations use a call of the form

y0 = N_VMake_x** (..., C); ‘

where c is a pointer to a suncudavec or sunrajavec vector class if this class already exists. Otherwise,
create a new vector by making a call of the form

N_VGetDeviceArrayPointer_x#*x* ‘

or

N_VGetHostArrayPointer_ x*x* ‘

Note that the vector class will allocate memory on both the host and device when instantiated. See the sections
The NVECTOR_CUDA Module and The NVECTOR_RAJA Module for details.

4. Create ARKode object

Call arkode_mem = ARKodeCreate () to create the ARKode memory block. ARKodeCreate () re-
turns a pointer to the ARKode memory structure. See the section ARKode initialization and deallocation func-
tions for details.

5. Initialize ARKode solver

Call ARKodeInit () to provide required problem specifications, allocate internal memory for ARKode, and
initialize ARKode. ARKodeInit () returns a flag, the value of which indicates either success or an illegal
argument value. See the section ARKode initialization and deallocation functions for details.

6. Specify integration tolerances

Call ARKodeSStolerances () or ARKodeSVtolerances () to specify either a scalar relative tolerance
and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute tolerances, respectively.
Alternatively, call ARKodeWFtolerances () to specify a function which sets directly the weights used in
evaluating WRMS vector norms. See the section ARKode tolerance specification functions for details.

4.4. A skeleton of the user’s main program 35

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

10.

11.

If a problem with non-identity mass matrix is used, and the solution units differ considerably from the equation
units, absolute tolerances for the equation residuals (nonlinear and linear) may be specified separately through
calls to ARKodeResStolerance (), ARKodeResVtolerance () or ARKodeResFtolerance ().

Set optional inputs

Call ARKodeSet « functions to change any optional inputs that control the behavior of ARKode from their
default values. See the section Optional input functions for details.

. Create matrix object

If a direct linear solver is to be used within a Newton iteration or for solving non-identity mass matrix systems,
then a template Jacobian and/or mass matrix must be created by using the appropriate functions defined by the
particular SUNMATRIX implementation.

NOTE: The dense, banded, and sparse matrix objects are usable only in a serial or threaded environment.
Create linear solver object

If a Newton iteration is chosen, or if the problem involves a non-identity mass matrix, then the desired linear
solver object(s) must be created by using the appropriate functions defined by the particular SUNLINSOL
implementation.

Set linear solver optional inputs

Call «Set « functions from the selected linear solver module to change optional inputs specific to that linear
solver. See the documentation for each SUNLINSOL module in the section Linear Solver Data Structures for
details.

Attach linear solver module

If a Newton iteration is chosen for implicit or ImEx methods, initialize the ARKDLS or ARKSPILS linear
solver interface by attaching the linear solver object (and Jacobian matrix object, if applicable) with one of the
following calls (for details see the section Linear solver interface functions):

ier = ARKDlsSetLinearSolver(...);

ier ARKSpilsSetLinearSolver(...);

Similarly, if the problem involves a non-identity mass matrix, initialize the ARKDLS or ARKSPILS mass matrix
linear solver interface by attaching the mass linear solver object (and mass matrix object, if applicable) with one
of the following calls (for details see the section Linear solver interface functions):

ier = ARKDlsSetMassLinearSolver(...);

ier ARKSpilsSetMassLinearSolver(...);

12.

13.

14.

Set linear solver interface optional inputs

Call ARKD1sSet« or ARKSpilsSet * functions to change optional inputs specific to that linear solver inter-
face. See the section Optional input functions for details.

Specify rootfinding problem

Optionally, call ARKodeRoot Init () to initialize a rootfinding problem to be solved during the integration of
the ODE system. See the section Rootfinding initialization function for general details, and the section Optional
input functions for relevant optional input calls.

Advance solution in time

For each point at which output is desired, call

ier = ARKode (arkode_mem, tout, yout, &tret, itask);

36

Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Here, itask specifies the return mode. The vector yout (which can be the same as the vector y0 above) will

contain y(tey). See the section ARKode solver function for details.

15. Get optional outputs

Call ARK+Get * functions to obtain optional output. See the section Optional output functions for details.

16. Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y (or yout) by calling the destructor

function defined by the NVECTOR implementation:

N_VDestroy_**+ (y);

17. Free solver memory

Call ARKodeFree (&arkode_mem) to free the memory allocated for ARKode.

18. Free linear solver and matrix memory

Call SUNLinSolFree () and (possibly) SUNMatDestroy () to free any memory allocated for the linear
solver and matrix objects created above.

19. Finalize MPI, if used

CallMPI_Finalize to terminate MPI.

SUNDIALS provides some linear solvers only as a means for users to get problems running and not as highly efficient
solvers. For example, if solving a dense system, we suggest using the LAPACK solvers if the size of the linear
system is > 50,000 (thanks to A. Nicolai for his testing and recommendation). The table below shows the linear
solver interfaces available as SUNLinearSolver modules and the vector implementations required for use. As an
example, one cannot use the dense direct solver interfaces with the MPI-based vector implementation. However, as
discussed in section Linear Solver Data Structures the SUNDIALS packages operate on generic SUNLinearSolver

objects, allowing a user to develop their own solvers should they so desire.

4.4.1 SUNDIALS linear solver interfaces and vector implementations that can be

used for each

Linear Solver
Interface

Parallel
(MP1)

OpenMP pThread

s hypre
Vec.

PETSc
Vec.

CUDA

RAJA

User
Suppl.

Dense

Band

LapackDense

LapackBand

KLU

SuperLU_MT

SPGMR

SPFGMR

SPBCGS

SPTFQMR

PCG

User supplied

NXNXXMXXXNXMS-%’

[<] | K| | 4

D[P R DR PR DAL P A K| R K| R

D DR DL PR P PR | | | R K R

[< || | 4

[PR || R 4

[PR]| | | >4

elieikelRaikails

D DR DR PR P PR | | | R R <

4.4. A skeleton of the user’s main program

37

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

4.5 User-callable functions

This section describes the ARKode functions that are called by the user to setup and then solve an IVP. Some of
these are required. However, starting with the section Optional input functions, the functions listed involve optional
inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of ARKode. In any case, refer to
the preceding section, A skeleton of the user’s main program, for the correct order of these calls.

On an error, each user-callable function returns a negative value and sends an error message to the error handler routine,
which prints the message on stderr by default. However, the user can set a file as error output or can provide her
own error handler function (see the section Optional input functions for details).

4.5.1 ARKode initialization and deallocation functions

void* ARKodeCreate ()
This function creates an internal memory block for a problem to be solved by ARKode.
Arguments: None

Return value: If successful, a pointer to initialized problem memory of type voidx, to be passed to
ARKodeInit (). If unsuccessful, a NULL pointer will be returned, and an error message will be printed
to stderr.

int ARKodeInit (void* arkode_mem, ARKRhsFn fe, ARKRhsFn fi, realtype t0, N_Vector y0)
This function allocates and initializes memory for a problem to be solved by ARKode.

Arguments:
* arkode_mem — pointer to the ARKode memory block (that was returned by ARKodeCreate ())

* fe — the name of the C function (of type ARKRhsFn ()) defining the explicit portion of the right-hand
side function in y = fg(t,y) + f1(t,y)

¢ fi —the name of the C function (of type ARKRhsFn ()) defining the implicit portion of the right-hand
side function in gy = fg(t,y) + f1(t,y)

* 10 — the initial value of ¢
* y0 — the initial condition vector y(¢o)
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory was NULL
* ARK_MEM_FAIL if a memory allocation failed
* ARK_ILL_INPUT if an argument has an illegal value.

void ARKodeFree (void* arkode_mem)
This function frees the problem memory arkode_mem created by ARKodeCreate () and allocated by
ARKodeInit ().

Arguments:
* arkode_mem — pointer to the ARKode memory block.

Return value: None

38 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

4.5.2 ARKode tolerance specification functions

These functions specify the integration tolerances. One of them should be called before the first call to ARKode ();
otherwise default values of reltol = le-4 and abstol = le-9 will be used, which may be entirely incorrect
for a specific problem.

The integration tolerances reltol and abstol define a vector of error weights, ewt. In the case of
ARKodeSStolerances (), this vector has components

‘ewt[i] = 1.0/ (reltolxabs(y[i]) + abstol);

whereas in the case of ARKodeSVtolerances () the vector components are given by

‘ewt[i] = 1.0/ (reltolxabs(y[i]) + abstol[i]);

This vector is used in all error and convergence tests, which use a weighted RMS norm on all error-like vectors v:

. 1/2
— . . 2
lollwrms = <N Z}(w ewt;)) ,

where N is the problem dimension.

Alternatively, the user may supply a custom function to supply the ewt vector, through a call to
ARKodeWFtolerances ().

int ARKodeSStolerances (void* arkode_mem, realtype reltol, realtype abstol)
This function specifies scalar relative and absolute tolerances.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* reltol — scalar relative tolerance
* abstol — scalar absolute tolerance
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory was NULL
* ARK_NO_MALLOC if the ARKode memory was not allocated by ARKodeInit ()
* ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKodeSVtolerances (void* arkode_mem, realtype reltol, N_Vector abstol)
This function specifies a scalar relative tolerance and a vector absolute tolerance (a potentially different absolute
tolerance for each vector component).

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* reltol — scalar relative tolerance

* abstol — vector containing the absolute tolerances for each solution component
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory was NULL

* ARK_NO_MALLOC if the ARKode memory was not allocated by ARKodeInit ()

4.5. User-callable functions 39

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* ARK ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKodeWFtolerances (void* arkode_mem, ARKEwWtFn efun)
This function specifies a user-supplied function efun to compute the error weight vector ewt.

Arguments:
e arkode_mem — pointer to the ARKode memory block.

* efun — the name of the function (of type ARKEwtFn ()) that implements the error weight vector
computation.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory was NULL
* ARK_NO_MALLOC if the ARKode memory was not allocated by ARKodeInit ()

Moreover, for problems involving a non-identity mass matrix M # I, the units of the solution vector y may differ from
the units of the IVP, posed for the vector My. When this occurs, iterative solvers for the Newton linear systems and
the mass matrix linear systems may require a different set of tolerances. Since the relative tolerance is dimensionless,
but the absolute tolerance encodes a measure of what is “small” in the units of the respective quantity, a user may
optionally define absolute tolerances in the equation units. In this case, ARKode defines a vector of residual weights,
rwt for measuring convergence of these iterative solvers. In the case of ARKodeResStolerance (), this vector
has components

]rwt[i] = 1.0/ (reltol#abs(My[i]) + rabstol);

whereas in the case of ARKodeResVtolerance () the vector components are given by

]rwt[i] = 1.0/ (reltol+abs(My[i]) + rabstol[il);

This residual weight vector is used in all iterative solver convergence tests, which similarly use a weighted RMS norm
on all residual-like vectors v:

L X 1/2
lvllwrms = (N Z;(w TWti)2> ;

where NN is the problem dimension.

As with the error weight vector, the user may supply a custom function to supply the rwt vector, through a call to
ARKodeResFtolerance (). Further information on all three of these functions is provided below.

int ARKodeResStolerance (void* arkode_mem, realtype abstol)
This function specifies a scalar absolute residual tolerance.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* rabstol — scalar absolute residual tolerance
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory was NULL
* ARK_NO_MALLOC if the ARKode memory was not allocated by ARKodeInit ()
e ARK_ILL INPUT if an argument has an illegal value (e.g. a negative tolerance).

40 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

int ARKodeResVtolerance (void* arkode_mem, N_Vector rabstol)

This function specifies a vector of absolute residual tolerances.
Arguments:

* arkode_mem — pointer to the ARKode memory block.

* rabstol — vector containing the absolute residual tolerances for each solution component
Return value:

* ARK_SUCCESS if successful

e ARK_MEM_NULL if the ARKode memory was NULL

* ARK_NO_MALLOC if the ARKode memory was not allocated by ARKodeInit ()

* ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKodeResFtolerance (void* arkode_mem, ARKRwtFn rfun)

This function specifies a user-supplied function rfun to compute the residual weight vector rwt.
Arguments:
* arkode_mem — pointer to the ARKode memory block.

* rfun — the name of the function (of type ARKRwtFn ()) that implements the residual weight vector
computation.

Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory was NULL
* ARK_NO_MALLOC if the ARKode memory was not allocated by ARKodeInit ()

General advice on the choice of tolerances

For many users, the appropriate choices for tolerance values in reltol, abstol and rabstol are a concern. The
following pieces of advice are relevant.

1. The scalar relative tolerance reltol is to be set to control relative errors. So a value of 10~% means that errors

are controlled to .01%. We do not recommend using reltol larger than 1073, On the other hand, reltol
should not be so small that it is comparable to the unit roundoff of the machine arithmetic (generally around
1071 for double-precision).

. The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute errors when any
components of the solution vector y may be so small that pure relative error control is meaningless. For example,
if y; starts at some nonzero value, but in time decays to zero, then pure relative error control on y; makes no
sense (and is overly costly) after y; is below some noise level. Then abstol (if scalar) or abstol [i] (if a
vector) needs to be set to that noise level. If the different components have different noise levels, then abstol
should be a vector. For example, see the example problem ark_robertson.c, and the discussion of it in
the ARKode Examples Documentation [R2013]. In that problem, the three components vary betwen 0 and 1,
and have different noise levels; hence the at o1s vector therein. It is impossible to give any general advice on
abstol values, because the appropriate noise levels are completely problem-dependent. The user or modeler
hopefully has some idea as to what those noise levels are.

. The residual absolute tolerances rabstol (whether scalar or vector) follow a similar explanation as for
abstol, except that these should be set to the noise level of the equation components, i.e. the noise level
of My. For problems in which M = I, it is recommended that rabstol be left unset, which will default to
the already-supplied abstol values.

4.5. User-callable functions 41

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

4. Finally, it is important to pick all the tolerance values conservatively, because they control the error committed
on each individual step. The final (global) errors are an accumulation of those per-step errors, where that
accumulation factor is problem-dependent. A general rule of thumb is to reduce the tolerances by a factor of 10
from the actual desired limits on errors. Le. if you want .01% relative accuracy (globally), a good choice for
reltol is 1075, Butin any case, it is a good idea to do a few experiments with the tolerances to see how the
computed solution values vary as tolerances are reduced.

Advice on controlling unphysical negative values

In many applications, some components in the true solution are always positive or non-negative, though at times very
small. In the numerical solution, however, small negative (unphysical) values can then occur. In most cases, these
values are harmless, and simply need to be controlled, not eliminated, but in other cases any value that violates a
constraint may cause a simulation to halt. For both of these scenarios the following pieces of advice are relevant.

1. The best way to control the size of unwanted negative computed values is with tighter absolute tolerances. Again
this requires some knowledge of the noise level of these components, which may or may not be different for
different components. Some experimentation may be needed.

2. If output plots or tables are being generated, and it is important to avoid having negative numbers appear there
(for the sake of avoiding a long explanation of them, if nothing else), then eliminate them, but only in the context
of the output medium. Then the internal values carried by the solver are unaffected. Remember that a small
negative value in y returned by ARKode, with magnitude comparable to abstol or less, is equivalent to zero
as far as the computation is concerned.

3. The user’s right-hand side routines fr and f; should never change a negative value in the solution vector y to a
non-negative value in attempt to “fix” this problem, since this can lead to numerical instability. If the fg or f;
routines cannot tolerate a zero or negative value (e.g. because there is a square root or log), then the offending
value should be changed to zero or a tiny positive number in a temporary variable (not in the input y vector) for
the purposes of computing fg(t,y) or f1(t,y).

4. Positivity and non-negativity constraints on components can be enforced by use of the recoverable error return
feature in the user-supplied right-hand side functions, fr and f;. When a recoverable error is encountered,
ARKode will retry the step with a smaller step size, which typically alleviates the problem. However, because
this option involves some additional overhead cost, it should only be exercised if the use of absolute tolerances
to control the computed values is unsuccessful.

4.5.3 Linear solver interface functions

As previously explained, the Newton iterations used in solving implicit systems within ARKode requires the solution
of linear systems of the form

A(2m) 5D =~ ()

where

o
oy’

There are two ARKode linear solver interfaces currently available for this task: ARKDLS and ARKSPILS.

A~ M —~J, J

The first corresponds to the use of Direct Linear Solvers, and utilizes SUNMat rix objects to store the approximate
Jacobian J, the Newton matrix .4, the mass matrix M, and factorizations used throughout the solution process.

The second corresponds to the use of Scaled, Preconditioned, Iterative Linear Solvers, utilizing matrix-free Krylov
methods to solve the Newton systems of equations. With most of these methods, preconditioning can be done on
the left only, on the right only, on both the left and the right, or not at all. The exceptions to this rule are SPFGMR

42 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

that supports right preconditioning only and PCG that performs symmetric preconditioning. For the specification of
a preconditioner, see the iterative linear solver portions of the sections Optional input functions and User-supplied
functions.

If preconditioning is done, user-supplied functions should be used to define left and right preconditioner matrices P;
and P, (either of which could be the identity matrix), such that the product P; P, approximates the Newton matrix
A=M —~J.

To specify a generic linear solver for ARKode to use for the Newton systems, after the call to ARKodeCreate ()
but before any calls to ARKode (), the user’s program must create the appropriate SUNLinearSolver object and
call either of the functions ARKD1sSetLinearSolver () or ARKSpilsSetLinearSolver (),asdocumented
below. The first argument passed to these functions is the ARKode memory pointer returned by ARKodeCreate ();
the second argument passed to these functions is the desired SUNLinearSolver object to use for solving Newton
systems. A call to one of these functions initializes the appropriate ARKode linear solver interface, linking this to the
main ARKode integrator, and allows the user to specify parameters which are specific to a particular solver interface.

The use of each of the generic linear solvers involves certain constants and possibly some macros, that are likely to be
needed in the user code. These are available in the corresponding header file associated with the specific SUNMat rix
or SUNLinearSolver module in question, as described in the sections Matrix Data Structures and Linear Solver
Data Structures.

int ARKDlsSetLinearSolver (void* arkode_mem, SUNLinearSolver LS, SUNMatrix J)
This function specifies the direct SUNLinearSolver object that ARKode should use, as well as a template
Jacobian SUNMat rix object. Its use requires inclusion of the header file arkode/arkode_direct.h.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
e LS —the SUNLinearSolver object to use.
¢ J —the template Jacobian SUNMat rix object to use.
Return value:
* ARKDLS_SUCCESS if successful
* ARKDLS_MEM_NULL if the ARKode memory was NULL
* ARKDLS_MEM_FAIL if there was a memory allocation failure

* ARKDLS_ILL_INPUT if ARKDLS is incompatible with the provided LS or J input objects, or the
current N_Vector module.

Notes: The template Jacobian matrix J will be used in the solve process, so if additional storage is required
within the SUNMat rix object (e.g. for factorization of a banded matrix), ensure that the input object is allocated
with sufficient size.

The ARKDLS linear solver interface is not compatible with all implementations of the SUNLinearSolver
and N_Vector modules. Specifically, ARKDLS requires use of a direct SUNLinearSolver object and
a serial or threaded N_Vector module. Additional compatibility limitations for each SUNLinearSolver
object (i.e. SUNMatrix and N_Vector object compatibility) are described in the section Linear Solver Data
Structures.

int ARKSpilsSetLinearSolver (void* arkode_mem, SUNLinearSolver LS)
This function specifies the iterative SUNLinearSolver object that ARKode should use, initializing the ARK-
SPILS scaled, preconditioned, iterative linear solver interface. Its use requires inclusion of the header file
arkode/arkode_spils.h.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

4.5. User-callable functions 43

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* LS —the SUNLinearSolver object to use.
Return value:
* ARKSPILS_SUCCESS if successful
* ARKSPILS_MEM_NULL if the ARKode memory was NULL
* ARKSPILS_MEM_FAIL if there was a memory allocation failure

* ARKSPILS_ILL_INPUT if ARKSPILS is incompatible with the provided LS input objects, or the
current N_Vector module.

Notes: The ARKSPILS linear solver interface is not compatible with all implementations of the
SUNLinearSolver and N_Vector modules. Specificallyy, ARKSPILS requires use of an iferative
SUNLinearSolver object, and a minimum required set of vector operations must be provided by the current
N_Vector module. Additional compatibility limitations for each SUNLinearSolver object (i.e. required
N_Vector routines) are described in the section Linear Solver Data Structures.

4.5.4 Mass matrix solver specification functions

As discussed in section Mass matrix solver, if the ODE system involves a non-identity mass matrix M = I, then
ARKode must solve linear systems of the form

Max =b.

The same solver interfaces listed above in the section Linear solver interface functions may be used for this purpose:
ARKDLS and ARKSPILS. With the ARKSPILS interface preconditioning can be applied. For the specification of
a preconditioner, see the iterative linear solver portions of the sections Optional input functions and User-supplied
Sfunctions. If preconditioning is to be performed, user-supplied functions should be used to define left and right pre-
conditioner matrices P; and P (either of which could be the identity matrix), such that the product P; P» approximates
the mass matrix M.

To specify a generic linear solver for ARKode to use for mass matrix systems, after the call to ARKodeCreate ()
but before any calls to ARKode (), the user’s program must create the appropriate SUNLinearSolver object and
call either of the functions ARKDIsSetMassLinearSolver () or ARKSpilsSetMassLinearSolver (),
as documented below. The first argument passed to these functions is the ARKode memory pointer returned by
ARKodeCreate (); the second argument passed to these functions is the desired SUNLinearSolver object to
use for solving mass matrix systems. A call to one of these functions initializes the appropriate ARKode mass matrix
linear solver interface, linking this to the main ARKode integrator, and allows the user to specify parameters which
are specific to a particular solver interface.

The use of each of the generic linear solvers involves certain constants and possibly some macros, that are likely to be
needed in the user code. These are available in the corresponding header file associated with the specific SUNMat rix
or SUNLinearSolver module in question, as described in the sections Matrix Data Structures and Linear Solver
Data Structures.

Note: if the user program includes linear solvers for both the Newton and mass matrix systems, these must have the
same type:

* If both are direct, then they must utilize the same SUNMatrix type. In this case, both the Newton and mass
matrix linear solver interfaces can use the same SUNLinearSolver object, although different objects (e.g.
with different solver parameters) are also allowed.

* If both are iterative, then the Newton and mass matrix SUNLinearSolver objects must be different. These
may even use different solver algorithms (SPGMR, SPBCGS, etc.), if desired. For example, if the mass matrix
is symmetric but the Jacobian is not, then PCG may be used for the mass matrix systems and SPGMR for the
Newton systems.

44 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

As with the Newton system solvers, the mass matrix linear system solvers listed below are all built on top of generic
SUNDIALS solver modules.

int ARKD1sSetMassLinearSolver (void* arkode_mem, SUNLinearSolver LS, SUNMatrix M, boolean-

type time_dep)
This function specifies the direct SUNLinearSolver object that ARKode should use for mass ma-

trix systems, as well as a template SUNMatrix object. Its use requires inclusion of the header file
arkode/arkode_direct.h.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
e LS —the SUNLinearSolver object to use.
* M — the template mass SUNMat rix object to use.

* time_dep — flag denoting whether the mass matrix depends on the independent variable (M = M (t))
or not (M # M (t)). Use SUNTRUE to indicate time-dependence of the mass matrix.

Return value:
e ARKDLS_SUCCESS if successful
* ARKDLS_MEM_NULL if the ARKode memory was NULL
* ARKDLS_MEM_FAIL if there was a memory allocation failure

* ARKDLS ILL INPUT if ARKDLS is incompatible with the provided LS or M input objects, or the
current N_Vector module.

Notes: The template mass matrix M will be used in the solve process, so if additional storage is required within
the SUNMat rix object (e.g. for factorization of a banded matrix), ensure that the input object is allocated with
sufficient size.

If called with time_dep set to SUNFALSE, then the mass matrix is only computed and factored once, with the
results reused throughout the entire ARKode simulation.

Unlike the system Jacobian, the system mass matrix cannot be approximated using finite-differences of any
functions provided to ARKode. Hence, use of the ARKDLS mass matrix solver interface requires the user to
provide a mass-matrix constructor routine (see ARKD1sMassFnand ARKDI1sSetMassFn ()).

The ARKDLS linear solver interface is not compatible with all implementations of the SUNLinearSolver
and N_Vector modules. Specifically, ARKDLS requires use of a direct SUNLinearSolver object and
a serial or threaded N_Vector module. Additional compatibility limitations for each SUNLinearSolver
object (i.e. SUNMatrix and N_Vector object compatibility) are described in the section Linear Solver Data
Structures.

int ARKSpilsSetMassLinearSolver (void* arkode_mem, SUNLinearSolver LS, booleantype time_dep)
This function specifies the iterative SUNLinearSolver object that ARKode should use for mass matrix sys-
tems, initializing the ARKSPILS scaled, preconditioned, iterative mass matrix linear solver interface. Its use
requires inclusion of the header file arkode/arkode_spils.h.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
e LS —the SUNLinearSolver object to use.

* time_dep — flag denoting whether the mass matrix depends on the independent variable (M = M (t))
or not (M # M(t)). Use SUNTRUE to indicate time-dependence of the mass matrix.

Return value:

e ARKSPILS SUCCESS if successful

4.5. User-callable functions 45

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* ARKSPILS MEM_NULL if the ARKode memory was NULL
* ARKSPILS_MEM_FAIL if there was a memory allocation failure

* ARKSPILS_ILL_INPUT if ARKSPILS is incompatible with the provided LS input objects, or the
current N_Vector module.

Notes: If called with time_dep set to SUNFALSE, then the mass matrix-vector-product (if supplied) is only set
up once, and the mass matrix preconditioner (if supplied) is only set up once, with the results reused throughout
the entire ARKode simulation.

Unlike the system Jacobian, the system mass matrix-vector-product cannot be approximated using finite-
differences of any functions provided to ARKode. Hence, use of the ARKSPILS mass matrix solver interface
requires the user to provide a mass-matrix-times-vector product routine (see ARKSpilsMassTimesVecFn
and ARKSpilsSetMassTimes ()).

The ARKSPILS linear solver interface is not compatible with all implementations of the SUNLinearSolver
and N_Vector modules. Specifically, ARKSPILS requires use of an iterative SUNLinearSolver object,
and a minimum required set of vector operations must be provided by the current N_Vector module. Addi-
tional compatibility limitations for each SUNLinearSolver object (i.e. required N_Vector routines) are
described in the section Linear Solver Data Structures.

4.5.5 Rootfinding initialization function

As described in the section Rootfinding, while solving the IVP ARKode has the capability to find the roots of a set
of user-defined functions. To activate the root-finding algorithm, call the following function. This is normally called
only once, prior to the first call to ARKode (), but if the rootfinding problem is to be changed during the solution,
ARKodeRoot Init () can also be called prior to a continuation call to ARKode ().

int ARKodeRootInit (void* arkode_mem, int nrtfn, ARKRootFn g)

Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
ARKodeCreate (), and before ARKode ().

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* nrifn — number of functions g;, an integer > 0.

¢ g —name of user-supplied function, of type ARKRootFn (), defining the functions g; whose roots
are sought.

Return value:
e ARK SUCCESS if successful
e ARK_MEM_NULL if the ARKode memory was NULL
* ARK_MEM_FAIL if there was a memory allocation failure
* ARK_ILL_INPUT if nrtfn is greater than zero but g = NULL.

Notes: To disable the rootfinding feature after it has already been initialized, or to free memory associated with
ARKode’s rootfinding module, call ARKodeRootInit with nrtfn = 0.

Similarly, if a new IVP is to be solved with a call to ARKodeReInit (), where the new IVP has no rootfinding
problem but the prior one did, then call ARKodeRootInit with nrtfn = 0.

46

Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

4.5.6 ARKode solver function

This is the central step in the solution process — the call to perform the integration of the IVP. One of the input
arguments (itask) specifies one of two modes as to where ARKode is to return a solution. These modes are modified
if the user has set a stop time (with a call to the optional input function ARKodeSet StopTime ()) or has requested

rootfinding.

int ARKode (void* arkode_mem, realtype tout, N_Vector yout, realtype *tret, int itask)
Integrates the ODE over an interval in t.

Arguments:

arkode_mem — pointer to the ARKode memory block.

tout — the next time at which a computed solution is desired

yout — the computed solution vector

tret — the time corresponding to yout (output)

itask — a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has reached or just passed
the user-specified tout parameter. The solver then interpolates in order to return an approximate value
of y(tout). This interpolation may be slightly less accurate than the full time step solutions produced
by the solver, since the interpolation uses a cubic Hermite polynomial even when the RK method is
of higher order.

To ensure that this returned value has full method accuracy, issue a call to ARKodeSet StopTime ()
before the call to ARKode to specify a fixed stop time to end the time step and return to the user. Once
the integrator returns at a tstop time, any future testing for zstop is disabled (and can be reenabled only
though a new call to ARKodeSetStopTime ()).

The ARK_ONE_STEP option tells the solver to take just one internal step and then return the solution
at the point reached by that step.

Return value:

ARK _SUCCESS if successful

ARK_ROOT_RETURN if ARKode succeeded, and found one or more roots. If nrtfn is greater than 1,
call ARKodeGetRootInfo () to see which g; were found to have a root at (*tret).

ARK_TSTOP_RETURN if ARKode succeeded and returned at zstop.
ARK_MEM_NULL if the arkode_mem argument was NULL.
ARK_NO_MALLOC if arkode_mem was not allocated.

ARK_ILL_INPUT if one of the inputs to ARKode is illegal, or some other input to the solver was
either illegal or missing. Details will be provided in the error message. Typical causes of this failure:

1. The tolerances have not been set.
2. A component of the error weight vector became zero during internal time-stepping.

3. The linear solver initialization function (called by the user after calling ARKodeCreate ())
failed to set the linear solver-specific Isolve field in arkode_mem.

4. A root of one of the root functions was found both at a point ¢ and also very near ¢.

ARK_TOO_MUCH_WORK if the solver took mxstep internal steps but could not reach rout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

4.5. User-callable functions 47

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* ARK_TOO_MUCH_ACC if the solver could not satisfy the accuracy demanded by the user for some
internal step.

* ARK_ERR_FAILURE if error test failures occurred either too many times (ark_maxnef) during one
internal time step or occurred with |h| = hypin.

* ARK_CONV_FAILURE if either convergence test failures occurred too many times (ark_maxncf)
during one internal time step or occurred with |h| = hypip-

e ARK_LINIT_FAIL if the linear solver’s initialization function failed.

* ARK_LSETUP_FAIL if the linear solver’s setup routine failed in an unrecoverable manner.
e ARK _LSOLVE_FAIL if the linear solver’s solve routine failed in an unrecoverable manner.
e ARK _MASSINIT FAIL if the mass matrix solver’s initialization function failed.

* ARK_MASSSETUP_FAIL if the mass matrix solver’s setup routine failed.

e ARK MASSSOLVE_FAIL if the mass matrix solver’s solve routine failed.

Notes: The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
ARKodeInit ().

In ARK_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough scale of
the independent variable. All failure return values are negative and so testing the return argument for negative
values will trap all ARKode failures.

On any error return in which one or more internal steps were taken by ARKode, the returned values of tret and
yout correspond to the farthest point reached in the integration. On all other error returns, tret and yout are left
unchanged from those provided to the routine.

4.5.7 Optional input functions

There are numerous optional input parameters that control the behavior of the ARKode solver, each of which may be
modified from its default value through calling an appropriate input function. The following tables list all optional
input functions, grouped by which aspect of ARKode they control. Detailed information on the calling syntax and
arguments for each function are then provided following each table.

The optional inputs are grouped into the following categories:
» General solver options (Optional inputs for ARKode),
* IVP method solver options (Optional inputs for IVP method selection),
* Step adaptivity solver options (Optional inputs for time step adaptivity),
 Implicit stage solver options (Optional inputs for implicit stage solves),
* Direct linear solver interface options (Direct linear solver interface optional input functions),
* Iterative linear solver interface options (I/terative linear solvers optional input functions).

For the most casual use of ARKode, relying on the default set of solver parameters, the reader can skip to the following
section, User-supplied functions.

We note that, on an error return, all of the optional input functions send an error message to the error handler function.
We also note that all error return values are negative, so a test on the return arguments for negative values will catch
all errors.

48 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Optional inputs for ARKode

Optional input Function name Default
Return all solver parameters to their defaults ARKodeSetDefaults () internal
Set dense output order ARKodeSetDenseOrder () 3

Supply a pointer to a diagnostics output file ARKodeSetDiagnostics () NULL
Supply a pointer to an error output file ARKodeSetErrFile () stderr
Supply a custom error handler function ARKodeSetErrHandlerFn () internal fn
Supply an initial step size to attempt ARKodeSetInitStep () estimated
Disable time step adaptivity (fixed-step mode) | ARKodeSetFixedStep () disabled
Maximum no. of warnings for t,, + h = t,, ARKodeSetMaxHnilWarns () 10
Maximum no. of internal steps before fout ARKodeSetMaxNumSteps () 500
Maximum no. of error test failures ARKodeSetMaxErrTestFails () | 7
Maximum absolute step size ARKodeSetMaxStep () o0
Minimum absolute step size ARKodeSetMinStep () 0.0

Set ‘optimal’ adaptivity params for a method ARKodeSetOptimalParams () internal
Set a value for t¢0p ARKodeSet StopTime () 00
Supply a pointer for user data ARKodeSetUserData () NULL

int ARKodeSetDefaults (void* arkode_mem)

Resets all optional input parameters to ARKode’s original default values.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes: Does not change problem-defining function pointers fe and fi or the user_data pointer.

Also leaves alone any data structures or options related to root-finding (those can be

ARKodeRootInit ()).

int ARKodeSetDenseOrder (void* arkode_mem, int dord)
Specifies the order of accuracy for the polynomial interpolant used for dense output (i.e. interpolation of solution
output values and implicit method predictors).

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* dord - requested polynomial order of accuracy

Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

reset using

Notes: Allowed values are between 0 and min (g, 3), where g is the order of the overall integration method.

int ARKodeSetDiagnostics (void* arkode_mem, FILE* diagfp)
Specifies the file pointer for a diagnostics file where all ARKode step adaptivity and solver information is

written.

4.5. User-callable functions

49

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* diagfp — pointer to the diagnostics output file

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes: This parameter can be stdout or stderr, although the suggested approach is to specify a pointer to
a unique file opened by the user and returned by fopen. If not called, or if called with a NULL file pointer, all
diagnostics output is disabled.

When run in parallel, only one process should set a non-NULL value for this pointer, since statistics from all
processes would be identical.

int ARKodeSetErrFile (void* arkode_mem, FILE* errfp)
Specifies a pointer to the file where all ARKode warning and error messages will be written if the default internal
error handling function is used.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* errfp — pointer to the output file.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: The default value for errfp is stderr.

Passing a NULL value disables all future error message output (except for the case wherein the ARKode memory
pointer is NULL. This use of the function is strongly discouraged.

If used, this routine should be called before any other optional input functions, in order to take effect for subse-
quent error messages.

int ARKodeSetErrHandlerFn (void* arkode_mem, ARKErrHandlerFn ehfun, void* eh_data)
Specifies the optional user-defined function to be used in handling error messages.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* ehfun — name of user-supplied error handler function.

* eh_data — pointer to user data passed to ehfun every time it is called
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes: Error messages indicating that the ARKode solver memory is NULL will always be directed to stderr.

50 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

int ARKodeSet InitStep (void* arkode_mem, realtype hin)
Specifies the initial time step size ARKode should use after initialization or reinitialization.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* hin — value of the initial step to be attempted (> 0)
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: Pass 0.0 to use the default value.
h2j

By default, ARKode estimates the initial step size to be the solution & of the equation H =Z|| =1, where jj is an

2

estimated value of the second derivative of the solution at ¢0.

int ARKodeSetFixedStep (void* arkode_mem, realtype hfixed)
Disabled time step adaptivity within ARKode, and specifies the fixed time step size to use for all internal steps.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* hfixed — value of the fixed step size to use
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: Pass 0.0 to return ARKode to the default (adaptive-step) mode.

Use of this function is not recommended, since we may give no assurance of the validity of the computed
solutions. It is primarily provided for code-to-code verification testing purposes.

When using ARKodeSetFixedStep (), any values provided to the functions
ARKodeSetInitStep (), ARKodeSetAdaptivityFn(), ARKodeSetMaxErrTestFails(),
ARKodeSetAdaptivityMethod (), ARKodeSetCFLFraction(), ARKodeSetErrorBias/(),
ARKodeSetFixedStepBounds (), ARKodeSetMaxCFailGrowth (),
ARKodeSetMaxEFailGrowth (), ARKodeSetMaxFirstGrowth (), ARKodeSetMaxGrowth (),
ARKodeSetSafetyFactor (), ARKodeSetSmallNumEFails () and ARKodeSetStabilityFn ()
will be ignored, since temporal adaptivity is disabled.

If both ARKodeSetFixedStep () and ARKodeSetStopTime () are used, then the fixed step size will
be used for all steps until the final step preceding the provided stop time (which may be shorter). To resume
use of the previous fixed step size, another call to ARKodeSetFixedStep () must be made prior to calling
ARKode () to resume integration.

It is not recommended that ARKodeSetFixedStep () be used in concert with ARKodeSetMaxStep () or
ARKodeSetMinStep (), since at best those routines will provide no useful information to the solver, and at
worst they may interfere with the desired fixed step size.

int ARKodeSetMaxHnilWarns (void* arkode_mem, int mxhnil)
Specifies the maximum number of messages issued by the solver to warn that ¢ + A = t on the next internal
step, before ARKode will instead return with an error.

Arguments:

4.5. User-callable functions 51

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* arkode_mem — pointer to the ARKode memory block.

* mxhnil — maximum allowed number of warning messages (>0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: The default value is 10; set mxhnil to zero to specify this default.
A negative value indicates that no warning messages should be issued.

int ARKodeSetMaxNumSteps (void* arkode_mem, long int mxsteps)
Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before ARKode will return with an error.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* mxsteps — maximum allowed number of internal steps.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: Passing mxsteps = 0 results in ARKode using the default value (500).
Passing mxsteps < 0 disables the test (not recommended).

int ARKodeSetMaxErrTestFails (void* arkode_mem, int maxnef’)
Specifies the maximum number of error test failures permitted in attempting one step, before ARKode will
return with an error.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* maxnef — maximum allowed number of error test failures (> 0)
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value
Notes: The default value is 7; set maxnef < 0 to specify this default.

int ARKodeSetMaxStep (void* arkode_mem, realtype hmax)
Specifies the upper bound on the magnitude of the time step size.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* hmax — maximum absolute value of the time step size (> 0)
Return value:

e ARK SUCCESS if successful

52 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* ARK_MEM_NULL if the ARKode memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: Pass imax < 0.0 to set the default value of cc.

int ARKodeSetMinStep (void* arkode_mem, realtype hmin)
Specifies the lower bound on the magnitude of the time step size.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* hmin — minimum absolute value of the time step size (> 0)
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: Pass himin < 0.0 to set the default value of 0.

int ARKodeSetOptimalParams (void* arkode_mem)
Sets all adaptivity and solver parameters to our ‘best guess’ values, for a given integration method (ERK, DIRK,
ARK) and a given method order.

Arguments:

* arkode_mem — pointer to the ARKode memory block.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes: Should only be called after the method order and integration method have been set. These values
resulted from repeated testing of ARKode’s solvers on a variety of training problems. However, all problems
are different, so these values may not be optimal for all users.

int ARKodeSetStopTime (void* arkode_mem, realtype tstop)
Specifies the value of the independent variable ¢ past which the solution is not to proceed.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* tstop — stopping time for the integrator.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: The default is that no stop time is imposed.

int ARKodeSetUserData (void* arkode_mem, void* user_data)
Specifies the user data block user_data and attaches it to the main ARKode memory block.

Arguments:

4.5. User-callable functions 53

User Documentation for ARKode v2.1.1

(SUNDIALS v3.1.1),

* arkode_mem — pointer to the ARKode memory block.

* user_data — pointer to the user data.

Return value:

e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes: If specified, the pointer to user_data is passed to all user-supplied functions for which it is an argument;

otherwise NULL is passed.

If user_data is needed in user linear solver or preconditioner functions, the call to this function must be made

before the call to specify the linear solver.

Optional inputs for IVP method selection

Optional input Function name Default

Set integrator method order ARKodeSetOrder () 4

Specify implicit/explicit problem ARKodeSetImEx () SUNTRUE
Specify explicit problem ARKodeSetExplicit () SUNFALSE
Specify implicit problem ARKodeSetImplicit () SUNFALSE
Set additive RK tables ARKodeSetARKTables () internal

Set explicit RK table ARKodeSetERKTable () internal

Set implicit RK table ARKodeSetIRKTable () internal
Specify additive RK table numbers | ARKodeSetARKTableNum () | internal
Specify explicit RK table number ARKodeSetERKTableNum () | internal
Specify implicit RK table number ARKodeSet IRKTableNum () | internal

int ARKodeSetOrder (void* arkode_mem, int ord)
Specifies the order of accuracy for the integration method.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* ord — requested order of accuracy.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes: For explicit methods, the allowed values are 2 < ord < 8. For implicit methods, the allowed values are
2 < ord < 5, and for ImEx methods the allowed values are 3 < ord < 5. Any illegal input will result in the
default value of 4.

Since ord affects the memory requirements for the internal ARKode memory block, it cannot be increased
between calls to ARKode () unless ARKodeReInit () is called.

int ARKodeSet ImEx (void* arkode_mem)
Specifies that both the implicit and explicit portions of problem are enabled, and to use an additive Runge Kutta
method.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

54 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes: This is automatically deduced when neither of the function pointers fe or fi passed to ARKodeInit ()
are NULL, but may be set directly by the user if desired.

int ARKodeSetExplicit (void* arkode_mem)
Specifies that the implicit portion of problem is disabled, and to use an explicit RK method.

Arguments:

* arkode_mem — pointer to the ARKode memory block.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes: This is automatically deduced when the function pointer fi passed to ARKodeInit () is NULL, but may
be set directly by the user if desired.

int ARKodeSetImplicit (void* arkode_mem)
Specifies that the explicit portion of problem is disabled, and to use a diagonally implicit RK method.

Arguments:

* arkode_mem — pointer to the ARKode memory block.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes: This is automatically deduced when the function pointer fe passed to ARKodeInit () is NULL, but
may be set directly by the user if desired.

int ARKodeSetARKTables (void* arkode_mem, int s, int g, int p, realtype* ci, realtype* ce, realtype* Ai,

realtype™* Ae, realtype* bi, realtype* be, realtype* b2i, realtype* b2e)
Specifies a customized Butcher table pair for the additive RK method.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* s —number of stages in the RK method.
* g — global order of accuracy for the RK method.
* p — global order of accuracy for the embedded RK method.
e ci—array (of length s) of stage times for the implicit RK method.
* ce — array (of length s) of stage times for the explicit RK method.

* Ai — array of coefficients defining the implicit RK stages. This should be stored as a 1D array of size
s*s, in row-major order.

4.5. User-callable functions 55

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* Ae — array of coefficients defining the explicit RK stages. This should be stored as a 1D array of size
s*s, in row-major order.

* bi — array of implicit coefficients (of length s) defining the time step solution.
* be — array of explicit coefficients (of length s) defining the time step solution.
e b2i — array of implicit coefficients (of length s) defining the embedded solution.
* b2e — array of explicit coefficients (of length s) defining the embedded solution.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value
Notes: This automatically calls ARKodeSet ImEx ().
No error checking is performed to ensure that either p or g correctly describe the coefficients that were input.
Error checking is performed on both Ai and Ae to ensure that they specify DIRK and ERK methods, respectively.

If either the inputs b2i or b2e are set to NULL, ARKode will run in fixed-step mode (see
ARKodeSetFixedStep ()); if called in this manner the user must call either ARKodeSetFixedStep ()
or ARKodeSetInitStep () to set the desired time step size.

int ARKodeSetERKTable (void* arkode_mem, int s, int g, int p, realtype* c, realtype* A, realtype* b, real-

type* bembed)
Specifies a customized Butcher table for the explicit portion of the system.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
¢ s —number of stages in the RK method.
* g — global order of accuracy for the RK method.
* p — global order of accuracy for the embedded RK method.
e ¢ —array (of length s) of stage times for the RK method.

* A — array of coefficients defining the RK stages. This should be stored as a 1D array of size s*s, in
row-major order.

* b — array of coefficients (of length s) defining the time step solution.
* bembed — array of coefficients (of length s) defining the embedded solution.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: This automatically calls ARKodeSetExplicit ().
No error checking is performed to ensure that either p or g correctly describe the coefficients that were input.
Error checking is performed to ensure that A is strictly lower-triangular (i.e. that it specifies an ERK method).

An input bembed of NULL will signal that ARKode will run in fixed-step mode (see
ARKodeSetFixedStep ()); if called in this manner the user must call either ARKodeSetFixedStep ()
or ARKodeSetInitStep () to set the desired time step size.

56

Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

int ARKodeSet IRKTable (void* arkode_mem, int s, int g, int p, realtype* c, realtype* A, realtype* b, real-

type* bembed)
Specifies a customized Butcher table for the implicit portion of the system.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* s —number of stages in the RK method.
* g — global order of accuracy for the RK method.
* p — global order of accuracy for the embedded RK method.
e ¢ —array (of length s) of stage times for the RK method.

¢ A — array of coefficients defining the RK stages. This should be stored as a 1D array of size s*s, in
row-major order.

* b — array of coefficients (of length s) defining the time step solution.
* bembed — array of coefficients (of length s) defining the embedded solution.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value
Notes: This automatically calls ARKodeSet Implicit ().
No error checking is performed to ensure that either p or g correctly describe the coefficients that were input.

Error checking is performed to ensure that A is lower-triangular with a nonzero value on at least one of the
diagonal entries (i.e. that it specifies a DIRK method).

An input bembed of NULL will signal that ARKode will run in fixed-step mode (see
ARKodeSetFixedStep ()); if called in this manner the user must call either ARKodeSetFixedStep ()
or ARKodeSetInitStep () to set the desired time step size.

int ARKodeSetARKTableNum (void* arkode_mem, int itable, int etable)
Indicates to use specific built-in Butcher tables for the ImEx system.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* itable — index of the DIRK Butcher table.
* etable — index of the ERK Butcher table.
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes: Both itable and etable should match an existing implicit/explicit pair, listed in the section Additive
Butcher tables. Error-checking is performed to ensure that the tables exist. Subsequent error-checking is auto-
matically performed to ensure that the tables’ stage times and solution coefficients match.

This automatically calls ARKodeSet ImEx ().

int ARKodeSetERKTableNum (void* arkode_mem, int etable)
Indicates to use a specific built-in Butcher table for explicit integration of the problem.

4.5. User-callable functions 57

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Arguments:

* arkode_mem — pointer to the ARKode memory block.

¢ etable — index of the Butcher table.

Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes: etable should match an existing explicit method from the section Explicit Butcher tables. Error-checking

is performed to ensure that the table exists, and is not implicit.

This automatically calls ARKodeSetExplicit ().

int ARKodeSet IRKTableNum (void* arkode_mem, int itable)
Indicates to use a specific built-in Butcher table for implicit integration of the problem.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

¢ jtable — index of the Butcher table.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes: itable should match an existing implicit method from the section /mplicit Butcher tables. Error-checking

is performed to ensure that the table exists, and is not explicit.

This automatically calls ARKodeSet Implicit ().

Optional inputs for time step adaptivity

The mathematical explanation of ARKode’s time step adaptivity algorithm, including how each of the parameters

below is used within the code, is provided in the section Time step adaptivity.

Optional input Function name Default
Set a custom time step adaptivity function ARKodeSetAdaptivityFn () internal
Choose an existing time step adaptivity method ARKodeSetAdaptivityMethod() | 0
Explicit stability safety factor ARKodeSetCFLFraction () 0.5
Time step error bias factor ARKodeSetErrorBias () 1.5
Bounds determining no change in step size ARKodeSetFixedStepBounds () 1.01.5
Maximum step growth factor on convergence fail | ARKodeSetMaxCFailGrowth () 0.25
Maximum step growth factor on error test fail ARKodeSetMaxEFailGrowth () 0.3
Maximum first step growth factor ARKodeSetMaxFirstGrowth () 10000.0
Maximum general step growth factor ARKodeSetMaxGrowth () 20.0
Time step safety factor ARKodeSetSafetyFactor () 0.96
Error fails before MaxEFailGrowth takes effect ARKodeSetSmallNumEFails () 2
Explicit stability function ARKodeSetStabilityFn() internal

int ARKodeSetAdaptivityFn (void* arkode_mem, ARKAdaptFn hfun, void* h_data)
Sets a user-supplied time-step adaptivity function.

58

Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* hfun — name of user-supplied adaptivity function.

* h_data — pointer to user data passed to hfun every time it is called.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes: This function should focus on accuracy-based time step estimation; for stability based time steps the
function ARKodeSetStabilityFn () should be used instead.

int ARKodeSetAdaptivityMethod (void* arkode_mem, int imethod, int idefault, int pgq, real-
type* adapt_params)
Specifies the method (and associated parameters) used for time step adaptivity.

Arguments:
* arkode_mem — pointer to the ARKode memory block.

* imethod — accuracy-based adaptivity method choice (0 < imethod < 5): 0is PID, 1is PI, 2is I, 3 is
explicit Gustafsson, 4 is implicit Gustafsson, and 5 is the ImEx Gustafsson.

* idefault — flag denoting whether to use default adaptivity parameters (1), or that they will be supplied
in the adapt_params argument (0).

* pg — flag denoting whether to use the embedding order of accuracy p (0) or the method order of
accuracy ¢ (1) within the adaptivity algorithm. p is the ARKode default.

* adapt_params[0] — k, parameter within accuracy-based adaptivity algorithms.

* adapt_params[1] — ko parameter within accuracy-based adaptivity algorithms.

* adapt_params([2] — k3 parameter within accuracy-based adaptivity algorithms.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes: If custom parameters are supplied, they will be checked for validity against published stability intervals.
If other parameter values are desired, it is recommended to instead provide a custom function through a call to
ARKodeSetAdaptivityFn ().

int ARKodeSetCFLFraction (void* arkode_mem, realtype cfl_frac)
Specifies the fraction of the estimated explicitly stable step to use.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* ¢fl_frac — maximum allowed fraction of explicitly stable step (default is 0.5).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

4.5. User-callable functions 59

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

e ARK_ILL_INPUT if an argument has an illegal value
Notes: Any non-positive parameter will imply a reset to the default value.

int ARKodeSetErrorBias (void* arkode_mem, realtype bias)
Specifies the bias to be applied to the error estimates within accuracy-based adaptivity strategies.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* bias — bias applied to error in accuracy-based time step estimation (default is 1.5).
Return value:

e ARK SUCCESS if successful

e ARK_MEM_NULL if the ARKode memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value
Notes: Any value below 1.0 will imply a reset to the default value.

int ARKodeSetFixedStepBounds (void* arkode_mem, realtype Ib, realtype ub)
Specifies the step growth interval in which the step size will remain unchanged.

Arguments:
¢ arkode_mem — pointer to the ARKode memory block.
* [b —lower bound on window to leave step size fixed (default is 1.0).
* ub — upper bound on window to leave step size fixed (default is 1.5).
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value
Notes: Any interval not containing 1.0 will imply a reset to the default values.

int ARKodeSetMaxCFailGrowth (void* arkode_mem, realtype etacf)
Specifies the maximum step size growth factor upon a convergence failure on a stage solve within a step.

Arguments:

¢ arkode_mem — pointer to the ARKode memory block.

* etacf — time step reduction factor on a nonlinear solver convergence failure (default is 0.25).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: Any value outside the interval (0, 1] will imply a reset to the default value.

int ARKodeSetMaxEFailGrowth (void* arkode_mem, realtype etamxf’)
Specifies the maximum step size growth factor upon multiple successive accuracy-based error failures in the
solver.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

60 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* etamxf — time step reduction factor on multiple error fails (default is 0.3).
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: Any value outside the interval (0, 1] will imply a reset to the default value.

int ARKodeSetMaxFirstGrowth (void* arkode_mem, realtype etamxl)
Specifies the maximum allowed step size change following the very first integration step.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* etamx] — maximum allowed growth factor after the first time step (default is 10000.0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value
Notes: Any value < 1.0 will imply a reset to the default value.

int ARKodeSetMaxGrowth (void* arkode_mem, realtype mx_growth)
Specifies the maximum growth of the step size between consecutive steps in the integration process.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* growth — maximum allowed growth factor between consecutive time steps (default is 20.0).

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value
Notes: Any value < 1.0 will imply a reset to the default value.

int ARKodeSetSafetyFactor (void* arkode_mem, realtype safety)
Specifies the safety factor to be applied to the accuracy-based estimated step.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* safety — safety factor applied to accuracy-based time step (default is 0.96).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

4.5. User-callable functions

61

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

int ARKodeSetSmallNumEFails (void* arkode_mem, int small_nef)
Specifies the threshold for “multiple” successive error failures before the eramxf parameter from
ARKodeSetMaxEFailGrowth () is applied.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* small_nef —bound to determine ‘multiple’ for eramxf (default is 2).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: Any non-positive parameter will imply a reset to the default value.

int ARKodeSetStabilityFn (void* arkode_mem, ARKExpStabFn EStab, void* estab_data)
Sets the problem-dependent function to estimate a stable time step size for the explicit portion of the ODE
system.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* EStab — name of user-supplied stability function.

* estab_data — pointer to user data passed to EStab every time it is called.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes: This function should return an estimate of the absolute value of the maximum stable time step for the
explicit portion of the ODE system. It is not required, since accuracy-based adaptivity may be sufficient for
retaining stability, but this can be quite useful for problems where the explicit right-hand side function fg(t,y)
may contain stiff terms.

Optional inputs for implicit stage solves

The mathematical explanation for ARKode’s nonlinear solver strategies, including how each of the parameters below
is used within the code, is provided in the section Nonlinear solver methods.

62 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Optional input Function name Default
Specify use of the fixed-point stage solver ARKodeSetFixedPoint () SUNFALSE
Specify use of the Newton stage solver ARKodeSetNewton () SUNTRUE
Specify linearly implicit f; ARKodeSetLinear () SUNFALSE
Specify nonlinearly implicit f; ARKodeSetNonlinear () SUNTRUE
Implicit predictor method ARKodeSetPredictorMethod () 0
Maximum number of nonlinear iterations ARKodeSetMaxNonlinIters () 3
Coefficient in the nonlinear convergence test | ARKodeSetNonlinConvCoef () 0.1
Nonlinear convergence rate constant ARKodeSetNonlinCRDown () 0.3
Nonlinear residual divergence ratio ARKodeSetNonlinRDiv () 2.3

Max change in step signaling new J ARKodeSetDeltaGammaMax () 0.2

Max steps between calls to new J ARKodeSetMaxStepsBetweenLSet () | 20
Maximum number of convergence failures ARKodeSetMaxConvFails () 10

int ARKodeSetFixedPoint (void* arkode_mem, long int fp_m)
Specifies that the implicit portion of the problem should be solved using the accelerated fixed-point solver
instead of the modified Newton iteration, and provides the maximum dimension of the acceleration subspace.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* fp_m — number of vectors to store within the Anderson acceleration subspace.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes: Since the accelerated fixed-point solver has a slower rate of convergence than the Newton iteration
(but each iteration is typically much more efficient), it is recommended that the maximum nonlinear correction
iterations be increased through a call to ARKodeSetMaxNonlinIters ().

int ARKodeSetNewton (void* arkode_mem)
Specifies that the implicit portion of the problem should be solved using the modified Newton solver.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes: This is the default behavior of ARKode, so the function is primarily useful to undo a previous call to
ARKodeSetFixedPoint ().

int ARKodeSetLinear (void* arkode_mem, int timedepend)
Specifies that the implicit portion of the problem is linear.

Arguments:
* arkode_mem — pointer to the ARKode memory block.

* timedepend — flag denoting whether the Jacobian of f;(t,y) is time-dependent (1) or not (0). Alter-
nately, when using an iterative linear solver this flag denotes time dependence of the preconditioner.

Return value:

4.5. User-callable functions 63

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes: Tightens the linear solver tolerances and takes only a single Newton iteration. Calls
ARKodeSetDeltaGammaMax () to enforce Jacobian recomputation when the step size ratio changes by
more than 100 times the unit roundoff (since nonlinear convergence is not tested). Only applicable when used
in combination with the modified Newton iteration (not the fixed-point solver).

int ARKodeSetNonlinear (void* arkode_mem)
Specifies that the implicit portion of the problem is nonlinear.

Arguments:

* arkode_mem — pointer to the ARKode memory block.
Return value:

e ARK _SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes: This is the default behavior of ARKode, so the function is primarily useful to undo a previous call to
ARKodeSetLinear (). Calls ARKodeSetDeltaGammalMax () to reset the step size ratio threshold to the
default value.

int ARKodeSetPredictorMethod (void* arkode_mem, int method)
Specifies the method to use for predicting implicit solutions.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
¢ method — method choice (0 < method < 4):

— 0 is the trivial predictor,

1 is the maximum order (dense output) predictor,

2 is the variable order predictor, that decreases the polynomial degree for more distant RK stages,

3 is the cutoff order predictor, that uses the maximum order for early RK stages, and a first-order
predictor for distant RK stages,

4 is the bootstrap predictor, that uses a second-order predictor based on only information within
the current step.

5 is the minimum correction predictor, that uses all preceding stage information within the current
step for prediction.

Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: The default value is 0. If method is set to an undefined value, this default predictor will be used.

int ARKodeSetMaxNonlinIters (void* arkode_mem, int maxcor)
Specifies the maximum number of nonlinear solver iterations permitted per RK stage within each time step.

Arguments:

64 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* arkode_mem — pointer to the ARKode memory block.

* maxcor — maximum allowed solver iterations per stage (> 0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: The default value is 3; set maxcor < 0 to specify this default.

int ARKodeSetNonlinConvCoef (void* arkode_mem, realtype nlscoef’)
Specifies the safety factor used within the nonlinear solver convergence test.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* niscoef — coefficient in nonlinear solver convergence test (> 0.0).
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: The default value is 0.1; set nlscoef < 0 to specify this default.

int ARKodeSetNonlinCRDown (void* arkode_mem, realtype crdown)
Specifies the constant used in estimating the nonlinear solver convergence rate.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* crdown — nonlinear convergence rate estimation constant (default is 0.3).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value
Notes: Any non-positive parameter will imply a reset to the default value.

int ARKodeSetNonlinRDiv (void* arkode_mem, realtype rdiv)

Specifies the nonlinear correction threshold beyond which the iteration will be declared divergent.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* rdiv — tolerance on nonlinear correction size ratio to declare divergence (default is 2.3).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

4.5. User-callable functions

65

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

int ARKodeSetDeltaGammaMax (void* arkode_mem, realtype dgmax)
Specifies a scaled step size ratio tolerance, beyond which the linear solver setup routine will be signaled.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* dgmax — tolerance on step size ratio change before calling linear solver setup routine (default is 0.2).
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: Any non-positive parameter will imply a reset to the default value.

int ARKodeSetMaxStepsBetweenLSet (void* arkode_mem, int msbp)
Specifies the frequency of calls to the linear solver setup routine. Positive values specify the number of time
steps between setup calls; negative values force recomputation at each Newton step; zero values reset to the
default.

Arguments:
* arkode_mem — pointer to the ARKode memory block.

* msbp — maximum number of time steps between linear solver setup calls, or flag to force recomputa-
tion at each Newton iteration (default is 20).

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory is NULL

int ARKodeSetMaxConvFails (void* arkode_mem, int maxncf’)
Specifies the maximum number of nonlinear solver convergence failures permitted during one step, before
ARKode will return with an error.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

 maxncf — maximum allowed nonlinear solver convergence failures per step (> 0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value
Notes: The default value is 10; set maxncf < 0 to specify this default.

Upon each convergence failure, ARKode will first call the Jacobian setup routine and try again (if a Newton
method is used). If a convergence failure still occurs, the time step size is reduced by the factor etacf (set within
ARKodeSetMaxCFailGrowth ()).

Direct linear solver interface optional input functions

The mathematical explanation of ARKode’s direct linear solver methods is provided in the section Linear solver
methods.

66 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Table: Optional inputs for ARKDLS

Optional input Function name Default
Jacobian function ARKDlsSetJacFn () DQ
Mass matrix function | ARKDIsSetMassFn () | none

The ARKDLS solver interface needs a function to compute an approximation to the Jacobian matrix J(t,y). This
function must be of type ARKD1sJacFn (). The user can supply a custom Jacobian function, or if using a dense or
banded J can use the default internal difference quotient approximation that comes with the ARKDLS interface. To
specify a user-supplied Jacobian function jac, ARKDLS provides the function ARKD1sSetJacFn (). The ARKDLS
interface passes the user data pointer to the Jacobian function. This allows the user to create an arbitrary structure with
relevant problem data and access it during the execution of the user-supplied Jacobian function, without using global
data in the program. The user data pointer may be specified through ARKodeSetUserData ().

Similarly, if the ODE system involves a non-identity mass matrix, M # I, the ARKDLS interface needs a function
to compute an approximation to the mass matrix M (¢). There is no default difference quotient approximation, so this
routine must be supplied by the user. This function must be of type ARKDI1sMassFn (), and should be set using
the function ARKD1sSetMassFn (). We note that the ARKDLS solver passes the user data pointer to the mass
matrix function. This allows the user to create an arbitrary structure with relevant problem data and access it during
the execution of the user-supplied mass matrix function, without using global data in the program. The pointer user
data may be specified through ARKodeSetUserData ().

int ARKD1sSetJacFn (void* arkode_mem, ARKDIsJacFn jac)
Specifies the Jacobian approximation routine to be used for the ARKDLS interface.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* jac —name of user-supplied Jacobian approximation function.
Return value:

e ARKDLS_SUCCESS if successful

* ARKDLS_MEM_NULL if the ARKode memory was NULL

* ARKDLS_LMEM_NULL if the linear solver memory was NULL

Notes: This routine must be called after the ARKDLS linear solver interface has been initialized through a call
to ARKDl1sSetLinearSolver ().

By default, ARKDLS uses an internal difference quotient function for dense and band matrices. If NULL is
passed in for jac, this default is used. An error will occur if no jac is supplied when using a sparse matrix.

The function type ARKDI1sJacFn () is described in the section User-supplied functions.

int ARKDl1sSetMassFn (void* arkode_mem, ARKDIsMassFn mass)
Specifies the mass matrix approximation routine to be used for the ARKDLS interface.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* mass — name of user-supplied mass matrix approximation function.
Return value:

* ARKDLS_SUCCESS if successful

* ARKDLS_MEM_NULL if the ARKode memory was NULL

* ARKDLS_MASSMEM_NULL if the mass matrix solver memory was NULL

4.5. User-callable functions 67

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Notes: This routine must be called after the ARKDLS mass matrix solver interface has been initialized through
acall to ARKDIsSetMassLinearSolver ().

Since there is no default difference quotient function for mass matrices, mass must be non-NULL.

The function type ARKD1sMassFn () is described in the section User-supplied functions.

Iterative linear solvers optional input functions

As described in the section Linear solver methods, when using the ARKSPILS iterative linear solver in-
terface, a user may supply a preconditioning operator to aid in solution of the system. This opera-
tor consists of two user-supplied functions, psefup and psolve, that are supplied to ARKode using either
the function ARKSpilsSetPreconditioner () (for preconditioning the Newton system), or the function
ARKSpilsSetMassPreconditioner () (for preconditioning the mass matrix system). The psetup function
should handle evaluation and preprocessing of any Jacobian or mass-matrix data needed by the user’s preconditioner
solve function, psolve. The user data pointer received through ARKodeSetUserData () (or a pointer to NULL if
user data was not specified) is passed to the psetup and psolve functions. This allows the user to create an arbitrary
structure with relevant problem data and access it during the execution of the user-supplied preconditioner functions
without using global data in the program. If preconditioning is supplied for both the Newton and mass matrix linear
systems, it is expected that the user will supply different psetup and psolve function for each.

Additionally, when solving the Newton linear systems, the ARKSPILS interface requires a jtimes function to compute
an approximation to the product between the Jacobian matrix J(¢,y) and a vector v. The user can supply a custom
Jacobian-times-vector approximation function, or use the default internal difference quotient function that comes with
the ARKSPILS interface. A user-defined Jacobian-vector function must be of type ARKSpilsJacTimesVecFn
and can be specified through a call to ARKSpilsSetJacTimes () (see the section User-supplied functions for
specification details). As with the user-supplied preconditioner functions, the evaluation and processing of any
Jacobian-related data needed by the user’s Jacobian-times-vector function is done in the optional user-supplied func-
tion of type ARKSpilsJacTimesSetupFn (see the section User-supplied functions for specification details).
As with the preconditioner functions, a pointer to the user-defined data structure, user_data, specified through
ARKodeSetUserData () (or a NULL pointer otherwise) is passed to the Jacobian-times-vector setup and prod-
uct functions each time they are called.

Similarly, if a problem involves a non-identity mass matrix, M # I, then the ARKSPILS solvers require a mtimes
function to compute an approximation to the product between the mass matrix M (t) and a vector v. This function must
be user-supplied, since there is no default value. mtimes must be of type ARKSpilsMassTimesVecFn (), and can
be specified through a call to the ARKSpilsSetMassTimes () routine. As with the user-supplied preconditioner
functions, the evaluation and processing of any Jacobian-related data needed by the user’s mass-matrix-times-vector
function is done in the optional user-supplied function of type ARKSpilsMassTimesSetupFn (see the section
User-supplied functions for specification details).

Finally, as described in the section Linear iteration error control, the ARKSPILS interface requires that iterative linear
solvers stop when the norm of the preconditioned residual satisfies

€L €

Il <
10

where the default e;, = 0.05, which may be modified by the user through the ARKSpilsSetEpsLin () function.

68 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Table: Optional inputs for ARKSPILS

Optional input Function name Default

Jv functions (jtimes and jtsetup) ARKSpilsSetJacTimes () DQ, none
Newton linear and nonlinear tolerance ratio ARKSpilsSetEpsLin () 0.05

Newton preconditioning functions ARKSpilsSetPreconditioner () NULL, NULL
Mw functions (mtimes and mtsetup) ARKSpilsSetMassTimes () none, none
Mass matrix linear and nonlinear tolerance ratio | ARKSpilsSetMassEpsLin () 0.05

Mass matrix preconditioning functions ARKSpilsSetMassPreconditioner () | NULL, NULL

int ARKSpilsSetJacTimes (void* arkode_mem, ARKSpilsJacTimesSetupFn jtsetup, ARKSpilsJac-

TimesVecFn jtimes)
Specifies the Jacobian-times-vector setup and product functions.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* jtsetup — user-defined Jacobian-vector setup function. Pass NULL if no setup is necessary.
* jtimes — user-defined Jacobian-vector product function.
Return value:
* ARKSPILS _SUCCESS if successful.
* ARKSPILS_MEM_NULL if the ARKode memory was NULL.
* ARKSPILS_LMEM_NULL if the linear solver memory was NULL.

ARKSPILS_ILL_INPUT if an input has an illegal value.

SUNLinearSolver object used by the ARKSPILS interface.

ARKSPILS_SUNLS_FAIL if an error occurred when setting up the Jacobian-vector product in the

Notes: The default is to use an internal finite difference quotient for jtimes and to leave out jtsetup. If NULL is

passed to jtimes, these defaults are used. A user may specify non-NULL jtimes and NULL jtsetup.

This function must be called after the ARKSPILS system solver interface has been initialized through a call to

ARKSpilsSetLinearSolver().

The function types ARKSpilsJacTimesSetupFn and ARKSpilsJacTimesVecFn is described in the

section User-supplied functions.

int ARKSpilsSetEpsLin (void* arkode_mem, realtype eplifac)

Specifies the factor by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the linear

iteration.
Arguments:
* arkode_mem — pointer to the ARKode memory block.
* eplifac — linear convergence safety factor (> 0.0).
Return value:
e ARKSPILS _SUCCESS if successful.
* ARKSPILS_MEM_NULL if the ARKode memory was NULL.
* ARKSPILS LMEM_NULL if the linear solver memory was NULL.
* ARKSPILS_ILL_INPUT if an input has an illegal value.

4.5. User-callable functions

69

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Notes: Passing a value eplifac of 0.0 indicates to use the default value of 0.05.

This function must be called after the ARKSPILS system solver interface has been initialized through a call to
ARKSpilsSetLinearSolver ().

int ARKSpilsSetPreconditioner (void* arkode_mem, ARKSpilsPrecSetupFn psetup, ARKSpilsPrec-

SolveFn psolve)
Specifies the user-supplied preconditioner setup and solve functions.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* psetup — user defined preconditioner setup function. Pass NULL if no setup is needed.
* psolve — user-defined preconditioner solve function.
Return value:
e ARKSPILS _SUCCESS if successful.
ARKSPILS_MEM_NULL if the ARKode memory was NULL.
ARKSPILS_LMEM_NULL if the linear solver memory was NULL.

ARKSPILS_ILL_INPUT if an input has an illegal value.

ARKSPILS_SUNLS _FAIL if an error occurred when setting up preconditioning in the
SUNLinearSolver object used by the ARKSPILS interface.

Notes: The default is NULL for both arguments (i.e. no preconditioning).

This function must be called after the ARKSPILS system solver interface has been initialized through a call to
ARKSpilsSetLinearSolver ().

Both of the function types ARKSpilsPrecSetupFn () and ARKSpilsPrecSolveFn () are described in
the section User-supplied functions.

int ARKSpilsSetMassTimes (void* arkode_mem, ARKSpilsMassTimesSetupFn mtsetup, ARKSpils-

] __ MassTimesVecFn mtimes, void* mgimes_data)
Specifies the mass matrix-times-vector setup and product functions.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

» mtsetup — user-defined mass matrix-vector setup function. Pass NULL if no setup is necessary.

» mtimes — user-defined mass matrix-vector product function.

* mtimes_data — a pointer to user data, that will be supplied to both the mtsetup and mtimes functions.
Return value:

e ARKSPILS _SUCCESS if successful.

ARKSPILS_MEM_NULL if the ARKode memory was NULL.

ARKSPILS_MASSMEM_NULL if the mass matrix solver memory was NULL.
ARKSPILS_ILL_INPUT if an input has an illegal value.

ARKSPILS_SUNLS_FAIL if an error occurred when setting up the mass-matrix-vector product in the
SUNLinearSolver object used by the ARKSPILS interface.

Notes: There is no default finite difference quotient for mtimes, so if using the ARKSPILS mass matrix solver
interface and this routine is not called with non-NULL mtimes, and error will occur. A user may specify NULL
for mtsetup.

70 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

This function must be called after the ARKSPILS mass matrix solver interface has been initialized through a
call to ARKSpilsSetMassLinearSolver ().

The function types ARKSpilsMassTimesSetupFn and ARKSpilsMassTimesVecFn are described in
the section User-supplied functions.

int ARKSpilsSetMassEpsLin (void* arkode_mem, realtype eplifac)
Specifies the factor by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the mass
matrix linear iteration.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* eplifac — linear convergence safety factor (> 0.0).
Return value:
e ARKSPILS _SUCCESS if successful.
* ARKSPILS MEM_NULL if the ARKode memory was NULL.
* ARKSPILS_MASSMEM_NULL if the mass matrix solver memory was NULL.
* ARKSPILS_ILL_INPUT if an input has an illegal value.

Notes: This function must be called after the ARKSPILS mass matrix solver interface has been initialized
through a call to ARKSpilsSetMassLinearSolver ().

Passing a value eplifac of 0.0 indicates to use the default value of 0.05.

int ARKSpilsSetMassPreconditioner (void* arkode_mem, ARKSpilsMassPrecSetupFn psetup, ARK-

SpilsMassPrecSolveFn psolve)
Specifies the mass matrix preconditioner setup and solve functions.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* psetup — user defined preconditioner setup function. Pass NULL if no setup is to be done.
* psolve — user-defined preconditioner solve function.
Return value:
* ARKSPILS _SUCCESS if successful.
* ARKSPILS _MEM_NULL if the ARKode memory was NULL.
* ARKSPILS_LMEM_NULL if the linear solver memory was NULL.

ARKSPILS_ILL_INPUT if an input has an illegal value.

ARKSPILS SUNLS_FAIL if an error occurred when setting up preconditioning in the
SUNLinearSolver object used by the ARKSPILS interface.

Notes: This function must be called after the ARKSPILS mass matrix solver interface has been initialized
through a call to ARKSpilsSetMassLinearSolver ().

The default is NULL for both arguments (i.e. no preconditioning).

Both of the function types ARKSpilsMassPrecSetupFn () and ARKSpilsMassPrecSolveFn () are
described in the section User-supplied functions.

4.5. User-callable functions 71

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm, the mathematics of
which are described in the section Rootfinding.

Optional input Function name Default
Direction of zero-crossings to monitor | ARKodeSetRootDirection () both
Disable inactive root warnings ARKodeSetNoInactiveRootWarn () | enabled

int ARKodeSetRootDirection (void* arkode_mem, int* rootdir)
Specifies the direction of zero-crossings to be located and returned.

Arguments:
* arkode_mem — pointer to the ARKode memory block.

* rootdir — state array of length nrifn, the number of root functions g;, as specified in the call to the
function ARKodeRootInit (). If rootdir[i] == O then crossing in either direction for g;
should be reported. A value of +1 or -1 indicates that the solver should report only zero-crossings
where g; is increasing or decreasing, respectively.

Return value:
e ARK _SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value
Notes: The default behavior is to monitor for both zero-crossing directions.

int ARKodeSetNoInactiveRootWarn (void* arkode_mem)
Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.

Arguments:

* arkode_mem — pointer to the ARKode memory block.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory is NULL

Notes: ARKode will not report the initial conditions as a possible zero-crossing (assuming that one or more
components g; are zero at the initial time). However, if it appears that some g; is identically zero at the initial
time (i.e., g; is zero at the initial time and after the first step), ARKode will issue a warning which can be
disabled with this optional input function.

4.5.8 Interpolated output function

An optional function ARKodeGetDky () is available to obtain additional output values. This function should only
be called after a successful return from ARKode (), as it provides interpolated values either of y or of its derivatives
(up to the 3rd derivative) interpolated to any value of ¢ in the last internal step taken by ARKode (). Internally, this
dense output algorithm is identical to the algorithm used for the maximum order implicit predictors, described in the
section Maximum order predictor, except that derivatives of the polynomial model may be evaluated upon request.

int ARKodeGetDky (void* arkode_mem, realtype t, int k, N_Vector dky)
Computes the k-th derivative of the function y at the time ¢, i.e. %y(t), for values of the independent variable
satisfying ¢, — h,, < t < t,, with ¢,, as current internal time reached, and h,, is the last internal step size
successfully used by the solver. The user may request k in the range {0,1,2,3}. This routine uses an interpolating
polynomial of degree max(dord, k), where dord is the argument provided to ARKodeSetDenseOrder ().

72 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* ¢t —the value of the independent variable at which the derivative is to be evaluated.
* k — the derivative order requested.
* dky — output vector (must be allocated by the user).
Return value:
* ARK_SUCCESS if successful
* ARK_BAD_K if k is not in the range {0,1,2,3}.
* ARK_BAD_T if t is not in the interval [t,, — hy,, t5]
* ARK_BAD_DKY if the dky vector was NULL
* ARK_MEM_NULL if the ARKode memory is NULL
Notes: It is only legal to call this function after a successful return from ARKode ().

A user may access the values t, and h, via the functions ARKodeGetCurrentTime () and
ARKodeGetLastStep (), respectively.

4.5.9 Optional output functions
ARKode provides an extensive set of functions that can be used to obtain solver performance information. We organize
these into groups:

1. General ARKode output routines are in the subsection Main solver optional output functions,

2. ARKode implicit solver output routines are in the subsection Implicit solver optional output functions,

3. Output routines regarding root-finding results are in the subsection Rootfinding optional output functions,

4. Dense linear solver output routines are in the subsection Direct linear solver interface optional output functions
and

5. Iterative linear solver output routines are in the subsection [lterative linear solver interface optional output
functions.

6. General usability routines (e.g. to print the current ARKode parameters, or output the current Butcher table(s))
are in the subsection General usability functions.

Following each table, we elaborate on each function.

Some of the optional outputs, especially the various counters, can be very useful in determining the efficiency of
various methods inside the ARKode () solver. For example:

» The counters nsteps, nfe_evals and nfi_evals provide a rough measure of the overall cost of a given run, and can
be compared between runs with different solver options to suggest which set of options is the most efficient.

* The ratio nniters/nsteps measures the performance of the nonlinear iteration in solving the nonlinear systems at
each stage, providing a measure of the degree of nonlinearity in the problem. Typical values of this for a Newton
solver on a general problem range from 1.1 to 1.8.

* When using a Newton nonlinear solver, the ratio njevals/nniters (in the case of a direct linear solver), and the
ratio npevals/nniters (in the case of an iterative linear solver) can measure the overall degree of nonlinearity in
the problem, since these are updated infrequently, unless the Newton method convergence slows.

4.5. User-callable functions 73

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* When using a Newton nonlinear solver, the ratio njevals/nniters (when using a direct linear solver), and the
ratio nliters/nniters (when using an iterative linear solver) can indicate the quality of the approximate Jacobian
or preconditioner being used. For example, if this ratio is larger for a user-supplied Jacobian or Jacobian-
vector product routine than for the difference-quotient routine, it can indicate that the user-supplied Jacobian is
inaccurate.

* The ratio expsteps/accsteps can measure the quality of the ImEx splitting used, since a higher-quality splitting
will be dominated by accuracy-limited steps.

 The ratio nsteps/step_attempts can measure the quality of the time step adaptivity algorithm, since a poor algo-
rithm will result in more failed steps, and hence a lower ratio.

It is therefore recommended that users retrieve and output these statistics following each run, and take some time to
investigate alternate solver options that will be more optimal for their particular problem of interest.

SUNDIALS version information

The following functions provide a way to get SUNDIALS version information at runtime.

int SUNDIALSGetVersion (char *version, int len)
This routine fills a string with SUNDIALS version information.

Arguments:
* version — character array to hold the SUNDIALS version information.
* len — allocated length of the version character array.
Return value:
* 0 if successful
* -1 if the input string is too short to store the SUNDIALS version
Notes: An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber (int *major, int *minor, int *patch, char *label, int len)
This routine The function sets integers for the SUNDIALS major, minor, and patch release numbers and fills a
string with the release label if applicable.

Arguments:
* major — SUNDIALS release major version number.
* minor — SUNDIALS release minor version number.
 patch — SUNDIALS release patch version number.
* label — string to hold the SUNDIALS release label.
¢ Jen — allocated length of the label character array.
Return value:
* 0 if successful
* -1 if the input string is too short to store the SUNDIALS label

Notes: An array of 10 characters should be sufficient to hold the label information. If a label is not used in the
release version, no information is copied to label.

74 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Main solver optional output functions

Optional output

Function name

Size of ARKode real and integer workspaces

ARKodeGetWorkSpace ()

Cumulative number of internal steps

ARKodeGetNumSteps ()

No. of explicit stability-limited steps

ARKodeGetNumExpSteps ()

No. of accuracy-limited steps

ARKodeGetNumAccSteps ()

No. of attempted steps

ARKodeGetNumStepAttempts ()

No. of calls to fe and fi functions

ARKodeGetNumRhsEvals ()

No. of local error test failures that have occurred

ARKodeGetNumErrTestFails ()

Actual initial time step size used

ARKodeGetActualInitStep ()

Step size used for the last successful step

ARKodeGetLastStep ()

Step size to be attempted on the next step

ARKodeGetCurrentStep ()

Current internal time reached by the solver

ARKodeGetCurrentTime ()

Current ERK and DIRK Butcher tables

ARKodeGetCurrentButcherTables ()

Suggested factor for tolerance scaling

ARKodeGetTolScaleFactor ()

Error weight vector for state variables

ARKodeGetErrWeights ()

Estimated local truncation error vector

ARKodeGetEstLocalErrors ()

Single accessor to many statistics at once

ARKodeGetIntegratorStats ()

Name of constant associated with a return flag

ARKodeGetReturnFlagName ()

int ARKodeGetWorkSpace (void* arkode_mem, long int* lenrw, long int* leniw)
Returns the ARKode real and integer workspace sizes.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

e lenrw — the number of realtype values in the ARKode workspace.

¢ leniw — the number of integer values in the ARKode workspace.

Return value:

e ARK SUCCESS if successful

e ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetNumSteps (void* arkode_mem, long int* nsteps)
Returns the cumulative number of internal steps taken by the solver (so far).

Arguments:

e arkode_mem — pointer to the ARKode memory block.

* nsteps — number of steps taken in the solver.

Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetNumExpSteps (void* arkode_mem, long int* expsteps)
Returns the cumulative number of stability-limited steps taken by the solver (so far).

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* expsteps — number of stability-limited steps taken in the solver.

Return value:

4.5. User-callable functions

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetNumAccSteps (void* arkode_mem, long int* accsteps)
Returns the cumulative number of accuracy-limited steps taken by the solver (so far).

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* accsteps — number of accuracy-limited steps taken in the solver.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetNumStepAttempts (void* arkode_mem, long int* step_attempts)
Returns the cumulative number of steps attempted by the solver (so far).

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* step_attempts — number of steps attempted by solver.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetNumRhsEvals (void* arkode_mem, long int* nfe_evals, long int* nfi_evals)
Returns the number of calls to the user’s right-hand side functions, fg and f; (so far).

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* nfe_evals — number of calls to the user’s fg(t,y) function.
* nfi_evals — number of calls to the user’s f;(¢,y) function.
Return value:
e ARK SUCCESS if successful
e ARK_MEM_NULL if the ARKode memory was NULL
Notes: The nfi_evals value does not account for calls made to f; by a linear solver or preconditioner module.

int ARKodeGetNumErrTestFails (void* arkode_mem, long int* netfails)
Returns the number of local error test failures that have occured (so far).

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* netfails — number of error test failures.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetActualInitStep (void* arkode_mem, realtype* hinused)
Returns the value of the integration step size used on the first step.

76 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* hinused — actual value of initial step size.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory was NULL

Notes: Even if the value of the initial integration step was specified by the user through a call to
ARKodeSetInitStep (), this value may have been changed by ARKode to ensure that the step size fell
within the prescribed bounds (A < ho < hmaz), or to satisfy the local error test condition, or to ensure
convergence of the nonlinear solver.

int ARKodeGetLastStep (void* arkode_mem, realtype* hlast)

Returns the integration step size taken on the last successful internal step.
Arguments:

* arkode_mem — pointer to the ARKode memory block.

* hlast — step size taken on the last internal step.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetCurrentStep (void* arkode_mem, realtype* hcur)

Returns the integration step size to be attempted on the next internal step.
Arguments:

* arkode_mem — pointer to the ARKode memory block.

* hcur — step size to be attempted on the next internal step.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetCurrentTime (void* arkode_mem, realtype* tcur)

Returns the current internal time reached by the solver.
Arguments:
* arkode_mem — pointer to the ARKode memory block.
* tcur — current internal time reached.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetCurrentButcherTables (void* arkode_mem, int* s, int* g, int* p, realtype* Ai, real-

type* Ae, realtype* ci, realtype* ce, realtype* bi, realtype* be,
realtype* b2i, realtype* b2e)
Returns the explicit and implicit Butcher tables currently in use by the solver.

Arguments:

4.5. User-callable functions 77

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* arkode_mem — pointer to the ARKode memory block.

e s —number of stages in the method.

* g — global order of accuracy of the method.

* p — global order of accuracy of the embedding.

* Ai — coefficients of DIRK method.

* Ae — coefficients of ERK method.

* ci — array of implicit stage times.

* ce — array of explicit stage times.

* bi — array of implicit solution coefficients.

* be — array of explicit solution coefficients.

* b2i — array of implicit embedding coefficients.

* b2e — array of explicit embedding coefficients.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory was NULL

Notes: The user must allocate space for Ae and Ai of size ARK_S_MAX«ARK_S_MAX, and for ci, ce, bi, be,
b2i, and b2e of size ARK__S_MAX prior to calling this function.

int ARKodeGetTolScaleFactor (void* arkode_mem, realtype* tolsfac)
Returns a suggested factor by which the user’s tolerances should be scaled when too much accuracy has been
requested for some internal step.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* tolsfac — suggested scaling factor for user-supplied tolerances.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetErrWeights (void* arkode_mem, N_Vector eweight)
Returns the current error weight vector.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* eweight — solution error weights at the current time.
Return value:
* ARK_SUCCESS if successful
e ARK_MEM_NULL if the ARKode memory was NULL
Notes: The user must allocate space for eweight, that will be filled in by this function.

int ARKodeGetEstLocalErrors (void* arkode_mem, N_Vector ele)
Returns the vector of estimated local truncation errors for the current step.

Arguments:

78 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

arkode_mem — pointer to the ARKode memory block.

ele — vector of estimated local truncation errors.

Return value:
e ARK SUCCESS if successful
e ARK_MEM_NULL if the ARKode memory was NULL

Notes: The user must allocate space for ele, that will be filled in by this function.

The values returned in ele are valid only if ARKode () returned a non-negative value.

The ele vector, together with the eweight vector from ARKodeGetErrieights (), can be used to determine
how the various components of the system contributed to the estimated local error test. Specifically, that error
test uses the RMS norm of a vector whose components are the products of the components of these two vectors.
Thus, for example, if there were recent error test failures, the components causing the failures are those with
largest values for the products, denoted loosely as eweight [i] xele[1].

int ARKodeGet IntegratorStats (void* arkode_mem, long int* nsteps, long int* expsteps, long int* acc-

steps, long int* step_attempts, long int* nfe_evals, long int* nfi_evals,
long int* nlinsetups, long int* netfails, realtype* hinused, real-

type* hlast, realtype* hcur, realtype* tcur)
Returns many of the most useful integrator statistics in a single call.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* nsteps — number of steps taken in the solver.
* expsteps — number of stability-limited steps taken in the solver.
* accsteps — number of accuracy-limited steps taken in the solver.
* step_attempts — number of steps attempted by the solver.
* nfe_evals — number of calls to the user’s fg(¢,y) function.
* nfi_evals — number of calls to the user’s f;(¢,y) function.
* nlinsetups — number of linear solver setup calls made.
* netfails — number of error test failures.
* hinused — actual value of initial step size.
* hlast — step size taken on the last internal step.
* hcur — step size to be attempted on the next internal step.
* fcur — current internal time reached.
Return value:
e ARK SUCCESS if successful
e ARK_MEM_NULL if the ARKode memory was NULL

char *ARKodeGetReturnFlagName (long int flag)

Returns the name of the ARKode constant corresponding to flag.
Arguments:
* flag — a return flag from an ARKode function.

Return value: The return value is a string containing the name of the corresponding constant.

4.5. User-callable functions

79

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Implicit solver optional output functions

Optional output Function name

No. of calls to linear solver setup function ARKodeGetNumLinSolvSetups ()

No. of nonlinear solver iterations ARKodeGetNumNonlinSolvIters ()

No. of nonlinear solver convergence failures ARKodeGetNumNonlinSolvConvFails ()
Single accessor to all nonlinear solver statistics | ARKodeGetNonlinSolvStats ()

int ARKodeGetNumLinSolvSetups (void* arkode_mem, long int* nlinsetups)
Returns the number of calls made to the linear solver’s setup routine (so far).

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* nlinsetups — number of linear solver setup calls made.
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetNumNonlinSolvIters (void* arkode_mem, long int* nniters)
Returns the number of nonlinear solver iterations performed (so far).

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* nniters — number of nonlinear iterations performed.
Return value:
e ARK SUCCESS if successful
e ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetNumNonlinSolvConvFails (void* arkode_mem, long int* nncfails)
Returns the number of nonlinear solver convergence failures that have occurred (so far).

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* nncfails — number of nonlinear convergence failures.
Return value:
e ARK SUCCESS if successful
e ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetNonlinSolvStats (void* arkode_mem, long int* nniters, long int* nncfails)
Returns all of the nonlinear solver statistics in a single call.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* nniters — number of nonlinear iterations performed.
* nncfails — number of nonlinear convergence failures.
Return value:

e ARK SUCCESS if successful

80 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

e ARK_MEM_NULL if the ARKode memory was NULL

Rootfinding optional output functions

Optional output Function name
Array showing roots found ARKodeGetRootInfo ()
No. of calls to user root function | ARKodeGet NumGEvals ()

int ARKodeGetRootInfo (void* arkode_mem, int* rootsfound)
Returns an array showing which functions were found to have a root.

Arguments:
* arkode_mem — pointer to the ARKode memory block.

* rootsfound — array of length nrtfn with the indices of the user functions g; found to have a root. For
1 =0...nrtfn-1, rootsfound[i] is nonzero if g; has a root, and 0O if not.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory was NULL
Notes: The user must allocate space for rootsfound prior to calling this function.

For the components of g; for which a root was found, the sign of root sfound[1i] indicates the direction of
zero-crossing. A value of +1 indicates that g; is increasing, while a value of -1 indicates a decreasing g;.

int ARKodeGetNumGEvals (void* arkode_mem, long int* ngevals)
Returns the cumulative number of calls made to the user’s root function g.

Arguments:
¢ arkode_mem — pointer to the ARKode memory block.
* ngevals — number of calls made to g so far.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory was NULL

Direct linear solver interface optional output functions

The following optional outputs are available from the ARKDLS modules: workspace requirements, number of calls to
the Jacobian routine, number of calls to the mass matrix routine, number of calls to the implicit right-hand side routine
for finite-difference Jacobian approximation, and last return value from an ARKDLS function. Note that, where the
name of an output would otherwise conflict with the name of an optional output from the main solver, a suffix LS (for
Linear Solver) or MLS (for Mass Linear Solver) has been added here (e.g. lenrwLS).

4.5. User-callable functions 81

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Optional output Function name

Size of real and integer workspaces ARKD1sGetWorkSpace ()

Size of mass real and integer workspaces ARKD1sGetMassWorkSpace ()
No. of Jacobian evaluations ARKD1sGetNumJacEvals ()
No. of mass matrix setups ARKD1sGetNumMassSetups ()
No. of mass matrix solves ARKD1sGetNumMassSolves ()
No. of mass matrix multiplies ARKD1sGetNumMassMult ()
No. of fi calls for finite diff. Jacobian evals ARKD1sGetNumRhsEvals ()
Last return flag from a linear solver function ARKDlsGetLastFlag ()

Last return flag from a mass matrix solver function | ARKDIsGetLastMassFlaqg ()
Name of constant associated with a return flag ARKDlsGetReturnFlagName ()

int ARKD1sGetWorkSpace (void* arkode_mem, long int* lenrwLS, long int* leniwLS')
Returns the real and integer workspace used by the ARKDLS linear solver interface.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

¢ lenrwLS — the number of realtype values in the ARKDLS workspace.

* leniwLS — the number of integer values in the ARKDLS workspace.
Return value:

e ARKDLS_SUCCESS if successful

* ARKDLS_MEM_NULL if the ARKode memory was NULL

* ARKDLS_LMEM_NULL if the linear solver memory was NULL

Notes: The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template Jacobian
matrix allocated by the user outside of ARKDLS is not included in this report.

int ARKD1sGetMassWorkSpace (void* arkode_mem, long int* lenrwMLS, long int* leniwMLS)
Returns the real and integer workspace used by the ARKDLS mass matrix linear solver interface.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* lenrwMLS — the number of realtype values in the ARKDLS workspace.

* leniwMLS — the number of integer values in the ARKDLS workspace.
Return value:

* ARKDLS _SUCCESS if successful

* ARKDLS_MEM_NULL if the ARKode memory was NULL

* ARKDLS_LMEM_NULL if the linear solver memory was NULL

Notes: The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template mass matrix
allocated by the user outside of ARKDLS is not included in this report.

int ARKD1sGetNumJacEvals (void* arkode_mem, long int* njevals)
Returns the number of calls made to the ARKDLS Jacobian approximation routine.

Arguments:
* arkode_mem — pointer to the ARKode memory block.

* njevals — number of calls to the Jacobian function.

82 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Return value:
e ARKDLS SUCCESS if successful
* ARKDLS_MEM_NULL if the ARKode memory was NULL
* ARKDLS_LMEM_NULL if the linear solver memory was NULL

int ARKD1sGetNumMassSetups (void* arkode_mem, long int* nmsetups)
Returns the number of calls made to the ARKDLS mass matrix solver ‘setup’ routine.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* nmsetups — number of calls to the mass matrix solver setup routine.
Return value:

e ARKDLS SUCCESS if successful

* ARKDLS_MEM_NULL if the ARKode memory was NULL

* ARKDLS_LMEM_NULL if the linear solver memory was NULL

int ARKD1sGetNumMassSolves (void* arkode_mem, long int* nmsolves)
Returns the number of calls made to the ARKDLS mass matrix solver ’solve’ routine.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* nmsolves — number of calls to the mass matrix solver solve routine.
Return value:

* ARKDLS_SUCCESS if successful

* ARKDLS_MEM_NULL if the ARKode memory was NULL

* ARKDLS_LMEM_NULL if the linear solver memory was NULL

int ARKD1sGetNumMassMult (void* arkode_mem, long int* nmmults)
Returns the number of calls made to the ARKDLS mass matrix *matvec’ routine.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

e nmmults — number of calls to the mass matrix solver matrix-times-vector routine
Return value:

* ARKDLS_SUCCESS if successful

* ARKDLS_MEM_NULL if the ARKode memory was NULL

* ARKDLS_LMEM_NULL if the linear solver memory was NULL

int ARKD1sGetNumRhsEvals (void* arkode_mem, long int* nfevalsLS')
Returns the number of calls made to the user-supplied f; routine due to the finite difference Jacobian approxi-
mation.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* nfevalsLS — the number of calls made to the user-supplied f; function.

Return value:

4.5. User-callable functions 83

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

e ARKDLS_SUCCESS if successful
* ARKDLS_MEM_NULL if the ARKode memory was NULL
* ARKDLS_LMEM_NULL if the linear solver memory was NULL

Notes: The value of nfevalsLS is incremented only if one of the default internal difference quotient functions
(dense or banded) is used.

int ARKD1sGetLastFlag (void* arkode_mem, long int* Isflag)
Returns the last return value from an ARKDLS routine.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* Isflag — the value of the last return flag from an ARKDLS function.
Return value:

e ARKDLS_SUCCESS if successful

* ARKDLS_MEM_NULL if the ARKode memory was NULL

* ARKDLS_LMEM_NULL if the linear solver memory was NULL

Notes: If the SUNLINSOL_DENSE or SUNLINSOL_BAND setup function failed (ARKode returned
ARK_LSETUP_FAIL), then the value of Isflag is equal to the column index (numbered from one) at which
a zero diagonal element was encountered during the LU factorization of the (dense or banded) Jacobian matrix.
For all other failures, Isflag is negative.

int ARKD1sGetLastMassFlag (void* arkode_mem, long int* misflag)
Returns the last return value from an ARKDLS mass matrix solve routine.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

 mlsflag — the value of the last return flag from an ARKDLS mass matrix solver function.
Return value:

* ARKDLS_SUCCESS if successful

* ARKDLS_MEM_NULL if the ARKode memory was NULL

* ARKDLS_LMEM_NULL if the linear solver memory was NULL

Notes: If the SUNLINSOL_DENSE or SUNLINSOL_BAND setup function failed (ARKode returned
ARK_LSETUP_FATIL), then the value of /sflag is equal to the column index (numbered from one) at which
a zero diagonal element was encountered during the LU factorization of the (dense or banded) mass matrix. For
all other failures, Isflag is negative.

char *ARKD1sGetReturnFlagName (long int Isflag)
Returns the name of the ARKDLS constant corresponding to Isflag.

Arguments:
* Isflag — a return flag from an ARKDLS function.

Return value: The return value is a string containing the name of the corresponding constant. If 1 < Isflag < n
(LU factorization failed), this routine returns “NONE”.

84 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Iterative linear solver interface optional output functions

The following optional outputs are available from the ARKSPILS modules: workspace requirements, number of
linear iterations, number of linear convergence failures, number of calls to the preconditioner setup and solve routines,
number of calls to the Jacobian-vector setup and product routines, number of calls to the mass-matrix-vector setup and
product routines, number of calls to the implicit right-hand side routine for finite-difference Jacobian-vector product
approximation, and last return value from a linear solver function. Note that, where the name of an output would
otherwise conflict with the name of an optional output from the main solver, a suffix LS (for Linear Solver) or MLS
(for Mass Linear Solver) has been added here (e.g. lenrwLS).

Optional output

Function name

Size of real and integer workspaces

ARKSpilsGetWorkSpace ()

No. of preconditioner evaluations

ARKSpilsGetNumPrecEvals ()

No. of preconditioner solves

ARKSpilsGetNumPrecSolves ()

No. of linear iterations

ARKSpilsGetNumLinIters ()

No. of linear convergence failures

ARKSpilsGetNumConvFails ()

No. of Jacobian-vector setup evaluations

ARKSpilsGetNumJTSetupEvals ()

No. of Jacobian-vector product evaluations

ARKSpilsGetNumJtimesEvals ()

No. of fi calls for finite diff. Jacobian-vector evals.

ARKSpilsGetNumRhsEvals ()

Last return from a linear solver function

ARKSpilsGetLastFlag ()

Size of real and integer mass matrix solver workspaces

ARKSpilsGetMassWorkSpace ()

No. of mass matrix preconditioner evaluations

ARKSpilsGetNumMassPrecEvals ()

No. of mass matrix preconditioner solves

ARKSpilsGetNumMassPrecSolves ()

No. of mass matrix linear iterations

ARKSpilsGetNumMassIters ()

No. of mass matrix solver convergence failures

ARKSpilsGetNumMassConvFails ()

No. of mass-matrix-vector setup evaluations

ARKSpilsGetNumMTSetupEvals ()

No. of mass-matrix-vector product evaluations

ARKSpilsGetNumMtimesEvals ()

Last return from a mass matrix solver function

ARKSpilsGetLastMassFlaqg ()

Name of constant associated with a return flag

ARKSpilsGetReturnFlagName ()

int ARKSpilsGetWorkSpace (void* arkode_mem, long int* lenrwLS, long int* leniwLS)
Returns the global sizes of the ARKSPILS real and integer workspaces.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

e lenrwLS — the number of realtype values in the ARKSPILS workspace.

* leniwLS — the number of integer values in the ARKSPILS workspace.

Return value:

e ARKSPILS_SUCCESS if successful

* ARKSPILS_MEM_NULL if the ARKode memory was NULL

* ARKSPILS LMEM_NULL if the linear solver memory was NULL

Notes: The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it.

In a parallel setting, the above values are global (i.e. summed over all processors).

int ARKSpilsGetNumPrecEvals (void* arkode_mem, long int* npevals)
Returns the total number of preconditioner evaluations, i.e. the number of calls made to psetup with jok =

SUNFALSE.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

4.5. User-callable functions

85

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* npevals — the current number of calls to psetup.
Return value:
* ARKSPILS_SUCCESS if successful
* ARKSPILS_MEM_NULL if the ARKode memory was NULL
* ARKSPILS LMEM_NULL if the linear solver memory was NULL

int ARKSpilsGetNumPrecSolves (void* arkode_mem, long int* npsolves)
Returns the number of calls made to the preconditioner solve function, psolve.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* npsolves — the number of calls to psolve.
Return value:
e ARKSPILS SUCCESS if successful
* ARKSPILS_MEM_NULL if the ARKode memory was NULL
* ARKSPILS_LMEM_NULL if the linear solver memory was NULL

int ARKSpilsGetNumLinIters (void* arkode_mem, long int* nliters)
Returns the cumulative number of linear iterations.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
¢ nliters — the current number of linear iterations.
Return value:
e ARKSPILS SUCCESS if successful
* ARKSPILS_MEM_NULL if the ARKode memory was NULL
* ARKSPILS LMEM_NULL if the linear solver memory was NULL

int ARKSpilsGetNumConvFails (void* arkode_mem, long int* nicfails)
Returns the cumulative number of linear convergence failures.

Arguments:

¢ arkode_mem — pointer to the ARKode memory block.

* nlcfails — the current number of linear convergence failures.
Return value:

e ARKSPILS SUCCESS if successful

* ARKSPILS MEM_NULL if the ARKode memory was NULL

* ARKSPILS_LMEM_NULL if the linear solver memory was NULL

int ARKSpilsGetNumJTSetupEvals (void* arkode_mem, long int* njtsetup)
Returns the cumulative number of calls made to the Jacobian-vector setup function, jtsetup.

Arguments:
* arkode_mem — pointer to the ARKode memory block.

* njtsetup — the current number of calls to jtsetup.

86 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Return value:
e ARKSPILS SUCCESS if successful
* ARKSPILS_MEM_NULL if the ARKode memory was NULL
* ARKSPILS_LMEM_NULL if the linear solver memory was NULL

int ARKSpilsGetNumJtimesEvals (void* arkode_mem, long int* njvevals)

Returns the cumulative number of calls made to the Jacobian-vector product function, jtimes.
Arguments:

* arkode_mem — pointer to the ARKode memory block.

* njvevals — the current number of calls to jtimes.
Return value:

e ARKSPILS SUCCESS if successful

* ARKSPILS MEM_NULL if the ARKode memory was NULL

* ARKSPILS LMEM_NULL if the linear solver memory was NULL

int ARKSpilsGetNumRhsEvals (void* arkode_mem, long int* nfevalsLS)

Returns the number of calls to the user-supplied implicit right-hand side function f; for finite difference
Jacobian-vector product approximation.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* nfevalsLS — the number of calls to the user implicit right-hand side function.
Return value:

e ARKSPILS SUCCESS if successful

* ARKSPILS_MEM_NULL if the ARKode memory was NULL

e ARKSPILS LMEM_NULL if the linear solver memory was NULL

Notes: The value nfevalsLS is incremented only if the default internal difference quotient function is used.

int ARKSpilsGetLastFlag (void* arkode_mem, long int* Isflag)

Returns the last return value from an ARKSPILS routine.
Arguments:

* arkode_mem — pointer to the ARKode memory block.

* Isflag — the value of the last return flag from an ARKSPILS function.
Return value:

e ARKSPILS SUCCESS if successful

* ARKSPILS_MEM_NULL if the ARKode memory was NULL

* ARKSPILS_LMEM_NULL if the linear solver memory was NULL

Notes: If the ARKSPILS setup function failed (ARKode () returned ARK_LSETUP_FAIL), then Isflag will be
SUNLS_PSET _FAIL_UNREC, SUNLS_ASET _FAIL_UNREC or SUNLS_PACKAGE_FAIL_UNREC.

If the ARKSPILS solve function failed (ARKode () returned ARK_LSOLVE_FAIL), then Isflag contains the
error return flag from the SUNLinearSolver object, which will be one of: SUNLS_MEM_NULL, indicating

4.5. User-callable functions 87

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

that the SUNLinearSolver memory is NULL; SUNLS_ATIMES FAIL_UNREC, indicating an unrecover-
able failure in the Jov function; SUNLS_PSOLVE_FAIL_UNREC, indicating that the preconditioner solve func-
tion failed unrecoverably; SUNLS_GS_FAIL, indicating a failure in the Gram-Schmidt procedure (SPGMR and
SPFGMR only); SUNLS_QRSOL_FAIL, indicating that the matrix i was found to be singular during the QR
solve phase (SPGMR and SPFGMR only); or SUNLS_PACKAGE_FAIL_UNREC, indicating an unrecoverable
failure in an external iterative linear solver package.

char *ARKSpilsGetReturnFlagName (long int /sflag)
Returns the name of the ARKSPILS constant corresponding to Isflag.

Arguments:
* Isflag — a return flag from an ARKSPILS function.
Return value: The return value is a string containing the name of the corresponding constant.

int ARKSpilsGetMassWorkSpace (void* arkode_mem, long int* lenrwMLS, long int* leniwMLS)
Returns the global sizes of the ARKSPILS real and integer workspaces.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* lenrwMLS — the number of realtype values in the ARKSPILS workspace.

* leniwMLS — the number of integer values in the ARKSPILS workspace.
Return value:

e ARKSPILS SUCCESS if successful

* ARKSPILS_MEM_NULL if the ARKode memory was NULL

* ARKSPILS LMEM_NULL if the linear solver memory was NULL

Notes: The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it.

In a parallel setting, the above values are global (i.e. summed over all processors).

int ARKSpilsGetNumMassPrecEvals (void* arkode_mem, long int* nmpevals)
Returns the total number of mass matrix preconditioner evaluations, i.e. the number of calls made to psefup.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
e nmpevals — the current number of calls to psetup.
Return value:
* ARKSPILS_SUCCESS if successful
* ARKSPILS_MEM_NULL if the ARKode memory was NULL
* ARKSPILS LMEM_NULL if the linear solver memory was NULL

int ARKSpilsGetNumMassPrecSolves (void* arkode_mem, long int* nmpsolves)
Returns the number of calls made to the mass matrix preconditioner solve function, psolve.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* nmpsolves — the number of calls to psolve.

Return value:

88 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

e ARKSPILS SUCCESS if successful
* ARKSPILS_MEM_NULL if the ARKode memory was NULL
* ARKSPILS_LMEM_NULL if the linear solver memory was NULL

int ARKSpilsGetNumMassIters (void* arkode_mem, long int* nmiters)
Returns the cumulative number of mass matrix solver iterations.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* nmiters — the current number of mass matrix solver linear iterations.
Return value:

e ARKSPILS SUCCESS if successful

* ARKSPILS_MEM_NULL if the ARKode memory was NULL

* ARKSPILS LMEM_NULL if the linear solver memory was NULL

int ARKSpilsGetNumMassConvFails (void* arkode_mem, long int* nmcfails)
Returns the cumulative number of mass matrix solver convergence failures.

Arguments:

¢ arkode_mem — pointer to the ARKode memory block.

* nmcfails — the current number of mass matrix solver convergence failures.
Return value:

e ARKSPILS SUCCESS if successful

* ARKSPILS MEM_NULL if the ARKode memory was NULL

* ARKSPILS_LMEM_NULL if the linear solver memory was NULL

int ARKSpilsGetNumMTSetupEvals (void* arkode_mem, long int* nmtsetup)
Returns the cumulative number of calls made to the mass-matrix-vector setup function, mtsetup.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* nmtsetup — the current number of calls to mtsetup.
Return value:
e ARKSPILS SUCCESS if successful
* ARKSPILS_MEM_NULL if the ARKode memory was NULL
* ARKSPILS_LMEM_NULL if the linear solver memory was NULL

int ARKSpilsGetNumMtimesEvals (void* arkode_mem, long int* nmvevals)
Returns the cumulative number of calls made to the mass-matrix-vector product function, mtimes.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
e nmvevals — the current number of calls to mtimes.
Return value:

e ARKSPILS SUCCESS if successful

4.5. User-callable functions 89

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* ARKSPILS MEM_NULL if the ARKode memory was NULL
* ARKSPILS LMEM_NULL if the linear solver memory was NULL

int ARKSpilsGetLastMassFlag (void* arkode_mem, long int* msflag)
Returns the last return value from an ARKSPILS mass matrix solver routine.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

» msflag — the value of the last return flag from an ARKSPILS mass matrix solver function.
Return value:

* ARKSPILS_SUCCESS if successful

* ARKSPILS_MEM_NULL if the ARKode memory was NULL

* ARKSPILS_LMEM_NULL if the linear solver memory was NULL

Notes: The values of msflag for each of the various solvers will match those described above for the function
ARKSpilsGetLastFlag().

General usability functions

The following optional routines may be called by a user to inquire about existing solver parameters, to retrieve stored
Butcher tables, write the current Butcher table(s), or even to test a provided Butcher table to determine its analytical
order of accuracy. While none of these would typically be called during the course of solving an initial value problem,
these may be useful for users wishing to better understand ARKode and/or specific Runge-Kutta methods.

Optional routine Function name

Output all ARKode solver parameters ARKodeWriteParameters ()
Retrieve a given Butcher table by its unique name ARKodeLoadButcherTable ()
Output the current Butcher table(s) ARKodeWriteButcher ()

Test the analytical order of accuracy for a Butcher table | ARKodeTestButcherTable ()
Test the analytical order for a pair of Butcher tables ARKodeTestButcherTables ()

int ARKodeWriteParameters (void* arkode_mem, FILE *fp)
Outputs all solver parameters to the provided file pointer.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* fp — pointer to use for printing the solver parameters
Return value:
e ARKSPILS SUCCESS if successful
* ARKSPILS_MEM_NULL if the ARKode memory was NULL
Notes: The fp argument can be st dout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since parameters for all
processes would be identical.

int ARKodeLoadButcherTable (int imethod, int *s, int *g, int *p, realtype *A, realtype *b, realtype *c,

realtype *b2)
Retrieves a specified Butcher table. The array A must be declared of size ARK_S_MAX+ARK_S_MAX, and the

arrays ¢, b and b2 should all have length at least ARK_S_ MAX.

Arguments:

920 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* imethod — integer input specifying the given Butcher table — valid values match those for the functions
ARKodeSetERKTableNum () and ARKodeSet IRKTableNum ()

* s — integer number of stages for the method (output)

* g — integer order of the method (output)

¢ p —integer order of the embedding (output)

* A —realtype Butcher table coefficients (output)

* b —realtype root node coefficients (output)

* ¢ —realtype canopy node coefficients (output)

* b2 —realtype embedding coefficients (output)
Return value:

e ARKSPILS SUCCESS if successful

e ARKSPILS ILL_INPUT if imethod was invalid

int ARKodeWriteButcher (void* arkode_mem, FILE *fp)
Outputs the current Butcher table(s) to the provided file pointer.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* fp — pointer to use for printing the Butcher table(s)
Return value:
e ARKSPILS SUCCESS if successful
* ARKSPILS_MEM_NULL if the ARKode memory was NULL
Notes: The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

If ARKode is currently configured to run in purely explicit or purely implicit mode, this will output a single
Butcher table; if configured to run an ImEx method then both tables will be output.

When run in parallel, only one process should set a non-NULL value for this pointer, since tables for all pro-
cesses would be identical.

int ARKodeTestButcherTable (realtype *A, realtype *b, realtype *c, int s, booleantype printstats)
Checks the order conditions for a single Butcher table (ERK or DIRK or even IRK), and returns the integer
order of accuracy for the method (up to 6th order). It will optionally output detailed information on the tests that
pass/fail, depending on the printstats argument.

Arguments:

* A —realtype Butcher table of allocated size ARK_S_MAX*ARK_S_MAX, although not all of this space
need be used.

* b —realtype root node coefficients for the Butcher table

* ¢ —realtype canopy node coefficients for the Butcher table

* s —integer number of stages in this Butcher table

* printstats — booleantype flag denoting whether to output detailed test statistics to stdout
Return value:

* the integer order of accuracy for the method (0 through 6); a return value of -1 indicates that the row
sum condition is not satisfied (see below).

4.5. User-callable functions 91

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Notes: The only assumption is that the row-sum condition must be satisfied, i.e. that

s
C; = E Ai,ja ’izl,...78,
Jj=1

no other “simplifying assumptions” are made.

int ARKodeTestButcherTables (realtype *Al, realtype *bl, realtype *cli, realtype *A2, realtype *b2,

realtype *c2, int s, booleantype printstats)
Checks the order conditions for a pair of Butcher tables that comprise a 2-additive Runge-Kutta method, and

returns the integer order of accuracy for the coupled method (up to 6th order). No assumptions are made about
whether each method is explicit or implicit. It will optionally output detailed information on the tests that
pass/fail, depending on the printstats argument.

Arguments:

e Al - realtype Butcher table of allocated size ARK_S_MAX+ARK_S_MAX, although not all of this
space need be used.

* bl —realtype root node coefficients for the Butcher table
* ¢l —realtype root node coefficients for the Butcher table

e A2 - realtype Butcher table of allocated size ARK_S_MAX*ARK_S_MAX, although not all of this
space need be used.

* b2 —realtype root node coefficients for the Butcher table

* ¢2 —realtype canopy coefficients for the Butcher table

* s —integer number of stages in this Butcher table

* printstats — booleantype flag denoting whether to output detailed test statistics to stdout
Return value:

* the integer order of accuracy for the coupled method (0 through 6); a return value of -1 indicates that
one or both of the row sum conditions is not satisfied (see below).

Notes: The only assumptions are that the row-sum condition for each component method must be satisfied, i.e.
that

S

1_ 1 -

¢, = E Aije i=1,..08
Jj=1

and
S
2 2 C_
;= E A7 i=1,..s,
Jj=1

where ¢’ and A?, i = {1,2} denote the coefficients for the respective table; no other “simplifying assumptions”
are made.

4.5.10 ARKode reinitialization function

The function ARKodeReInit () reinitializes the main ARKode solver for the solution of a new problem, where
a prior call to ARKodeInit () has been made. The new problem must have the same size as the previous one.
ARKodeReInit () performs the same input checking and initializations that ARKodeTInit () does, but does no
memory allocation as it assumes that the existing internal memory is sufficient for the new problem. A call to
ARKodeReInit () deletes the solution history that was stored internally during the previous integration. Following
a successful call to ARKodeReInit (), call ARKode () again for the solution of the new problem.

92 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

The use of ARKodeReInit () requires that the number of Runge Kutta stages, denoted by s, be no larger for the new
problem than for the previous problem. This condition is automatically fulfilled if the method order ¢ and the problem
type (explicit, implicit, ImEx) are left unchanged. If there are changes to the linear solver specifications, the user should
make the appropriate calls to either the linear solver objects themselves, or to the ARKDLS or ARKSPILS interface
routines, as described in the section Linear solver interface functions. Otherwise, all solver inputs set previously
remain in effect.

One important use of the ARKodeReTnit () function is in the treating of jump discontinuities in the RHS function.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart
the integrator with a readjusted ODE model, using a call to ARKodeReInit (). To stop when the location of the
discontinuity is known, simply make that location a value of tout. To stop when the location of the discontinuity
is determined by the solution, use the rootfinding feature. In either case, it is critical that the RHS function not
incorporate the discontinuity, but rather have a smooth extention over the discontinuity, so that the step across it (and
subsequent rootfinding, if used) can be done efficiently. Then use a switch within the RHS function (communicated
through user_data) that can be flipped between the stopping of the integration and the restart, so that the restarted
problem uses the new values (which have jumped). Similar comments apply if there is to be a jump in the dependent
variable vector.

int ARKodeReInit (void* arkode_mem, ARKRhsFn fe, ARKRhsFn fi, realtype 10, N_Vector y0)
Provides required problem specifications and reinitializes ARKode.

Arguments:
* arkode_mem — pointer to the ARKode memory block.

¢ fe — the name of the C function (of type ARKRhsFn ()) defining the explicit portion of the right-hand
side function in y = fr(t,y) + f1(t,v).

* fi—the name of the C function (of type ARKRhsFn ()) defining the implicit portion of the right-hand
side function iny = fg(t,y) + f1(t,y).

* 10 — the initial value of ¢.
* y0 - the initial condition vector y(¢).
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory was NULL
* ARK_MEM_FAIL if a memory allocation failed
e ARK_ILL_INPUT if an argument has an illegal value.

Notes: If an error occurred, ARKodeReTInit () also sends an error message to the error handler function.

4.5.11 ARKode system resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatially-adaptive PDE simulations under a method-of-lines approach), the ARKode integrator may be “resized” be-
tween integration steps, through calls to the ARKodeResize () function. This function modifies ARKode’s internal
memory structures to use the new problem size, without destruction of the temporal adaptivity heuristics. It is assumed
that the dynamical time scales before and after the vector resize will be comparable, so that all time-stepping heuristics
prior to calling ARKodeResize () remain valid after the call. If instead the dynamics should be recomputed from
scratch, the ARKode memory structure should be deleted with a call to ARKodeFree (), and recreated with calls to
ARKodeCreate () and ARKodeInit ().

To aid in the vector resize operation, the user can supply a vector resize function that will take as input a vector with
the previous size, and transform it in-place to return a corresponding vector of the new size. If this function (of type

4.5. User-callable functions 93

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

ARKVecResizeFn ()) is not supplied (i.e. is set to NULL), then all existing vectors internal to ARKode will be
destroyed and re-cloned from the new input vector.

In the case that the dynamical time scale should be modified slightly from the previous time scale, an input Ascale is
allowed, that will rescale the upcoming time step by the specified factor. If a value hscale < 0 is specified, the default
of 1.0 will be used.

int ARKodeResize (void* arkode_mem, N_Vector ynew, realtype hscale, realtype 10, ARKVecResizeFn resize,

void* resize_data)
Re-initializes ARKode with a different state vector but with comparable dynamical time scale.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* ynew — the newly-sized solution vector, holding the current dependent variable values y(¢o).

* hscale — the desired scaling factor for the dynamical time scale (i.e. the next step will be of size
h*hscale).

* 10 — the current value of the independent variable ¢, (this must be consistent with ynew.
* resize — the user-supplied vector resize function (of type ARKVecResizeFn ().

* resize_data — the user-supplied data structure to be passed to resize when modifying internal ARKode
vectors.

Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKode memory was NULL
e ARK NO_MALLOC if arkode_mem was not allocated.
* ARK_ILL_INPUT if an argument has an illegal value.

Notes: If an error occurred, ARKodeResize () also sends an error message to the error handler function.

Resizing the linear solver

When using any of the SUNDIALS-provided linear solver modules, the linear solver memory structures must also
be resized. At present, none of these include a solver-specific ‘resize’ function, so the linear solver memory must be
destroyed and re-allocated following each call to ARKodeResize (). Moreover, the existing ARKDLS or ARK-
SPILS interface should then be deleted and recreated by attaching the updated SUNLinearSolver (and possi-
bly SUNMat rix) object(s) through calls to ARKD1sSetLinearSolver (), ARKSpilsSetLinearSolver(),
ARKDlsSetMassLinearSolver () and ARKSpilsSetMassLinearSolver ().

If any user-supplied routines are provided to aid the linear solver (e.g. Jacobian construction, Jacobian-vector product,
mass-matrix-vector product, preconditioning), then the corresponding “set” routines must be called again following
the solver re-specification.

Resizing the absolute tolerance array

If using array-valued absolute tolerances, the absolute tolerance vector will be invalid after the call to
ARKodeResize (), sothe new absolute tolerance vector should be re-set following each call to ARKodeResize ()
through a new call to ARKodeSVtolerances () (and similarly to ARKodeResVtolerance () if that was used
for the original problem).

If scalar-valued tolerances or a tolerance function was specified through either ARKodeSStolerances () or
ARKodeWFtolerances (), then these will remain valid. and no further action is necessary.

94 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Note:

For an example of ARKodeResize () usage, see the supplied serial C example problem,

ark_heatlD_adapt.c.

4.6

User-supplied functions

The user-supplied functions for ARKode consist of:

at least one function defining the ODE (required),

a function that handles error and warning messages (optional),

a function that provides the error weight vector (optional),

a function that provides the residual weight vector (optional),

a function that handles adaptive time step error control (optional),

a function that handles explicit time step stability (optional),

a function that defines the root-finding problem(s) to solve (optional),

one or two functions that provide Jacobian-related information for the linear solver, if a Newton-based nonlinear
iteration is chosen (optional),

one or two functions that define the preconditioner for use in any of the Krylov iterative algorithms, if a Newton-
based nonlinear iteration and iterative linear solver are chosen (optional), and

if the problem involves a non-identity mass matrix M # I:

— one or two functions that provide mass-matrix-related information for the linear and mass matrix solvers
(required),

— one or two functions that define the mass matrix preconditioner for use in an iterative mass matrix solver
is chosen (optional), and

a function that handles vector resizing operations, if the underlying vector structure supports resizing (as opposed
to deletion/recreation), and if the user plans to call ARKodeResize () (optional).

4.6.1 ODE right-hand side

The user must supply at least one function of type ARKRhsFn to specify the explicit and/or implicit portions of the
ODE system:

typedef int (*ARKRhsFn) (realtype t, N_Vector y, N_Vector ydot, void* user_data)

These functions compute the ODE right-hand side for a given value of the independent variable ¢ and state
vector y.

Arguments:
* ¢ —the current value of the independent variable.
* y — the current value of teh dependent variable vector, y(t).
* ydot — the output vector that forms a portion of the ODE RHS fg(¢,y) + f1(t,y).

* user_data — the user_data pointer that was passed to ARKodeSetUserData ().

4.6.

User-supplied functions 95

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Return value: An ARKRhsFn should return 0 if successful, a positive value if a recoverable error occurred (in
which case ARKode will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and ARK_RHSFUNC_FAIL is returned).

Notes: Allocation of memory for ydot is handled within ARKode. A recoverable failure error return from the
ARKRhsFn is typically used to flag a value of the dependent variable y that is “illegal” in some way (e.g., nega-
tive where only a nonnegative value is physically meaningful). If such a return is made, ARKode will attempt to
recover (possibly repeating the nonlinear iteration, or reducing the step size) in order to avoid this recoverable er-
ror return. There are some situations in which recovery is not possible even if the right-hand side function returns
a recoverable error flag. One is when this occurs at the very first call to the ARKRhsFn (in which case ARKode
returns ARK_FIRST_RHSFUNC_ERR). Another is when a recoverable error is reported by ARKRhsFn after the
integrator completes a successful stage, in which case ARKode returns ARK_ UNREC_RHSFUNC_ERR).

4.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to by errfp (see
ARKodeSetErrFile ()), the user may provide a function of type ARKErrHandlerFn to process any such mes-
sages.

typedef void (*ARKErrHandlerFn) (int error_code, const char* module, const char* function, char* msg,

)) void* user_data))
This function processes error and warning messages from ARKode and is sub-modules.

Arguments:
e error_code — the error code.
* module — the name of the ARKode module reporting the error.
* function — the name of the function in which the error occurred.
* msg — the error message.

* user_data — a pointer to user data, the same as the eh_data parameter that was passed to
ARKodeSetErrHandlerFn().

Return value: An ARKErrHandlerFn function has no return value.

Notes: error_code is negative for errors and positive (ARK_WARNING) for warnings. If a function that returns
a pointer to memory encounters an error, it sets error_code to 0.

4.6.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function of type ARKEwt Fn

1/2
to compute a vector ewt containing the weights in the WRMS norm ||v||wrys = (% S (ewt; vi)2) . These
weights will be used in place of those defined in the section Choice of norm.

typedef int (*ARKEwtFn) (N_Vector y, N_Vector ewt, void* user_data)
This function computes the WRMS error weights for the vector y.

Arguments:
» y—the dependent variable vector at which the weight vector is to be computed.
* ewt — the output vector containing the error weights.

* user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData ().

96 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Return value: An ARKEwtFn function must return 0 if it successfully set the error weights, and -1 otherwise.
Notes: Allocation of memory for ewt? is handled within ARKode.

The error weight vector must have all components positive. It is the user’s responsibility to perform this test and
return -1 if it is not satisfied.

4.6.4 Residual weight function
As an alternative to providing the scalar or vector absolute residual tolerances (when the IVP units differ from the
solution units), the user may provide a function of type ARKRwt F'n to compute a vector rwt containing the weights in

1/2
the WRMS norm ||v||w ryms = (% Soiy (rwt; vi)z) . These weights will be used in place of those defined in the

section Choice of norm.

typedef int (*ARKRwtFn) (N_Vector y, N_Vector rwt, void* user_data)
This function computes the WRMS residual weights for the vector y.

Arguments:
» y — the dependent variable vector at which the weight vector is to be computed.
* rwt — the output vector containing the residual weights.

* user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData ().

Return value: An ARKRwtFn function must return 0 if it successfully set the residual weights, and -1 otherwise.
Notes: Allocation of memory for 7wt is handled within ARKode.

The residual weight vector must have all components positive. It is the user’s responsibility to perform this test
and return -1 if it is not satisfied.

4.6.5 Time step adaptivity function

As an alternative to using one of the built-in time step adaptivity methods for controlling solution error, the user may
provide a function of type ARKAdaptFn to compute a target step size h for the next integration step. These steps
should be chosen as the maximum value such that the error estimates remain below 1.

typedef int (*ARKAdaptFn) (N_Vector y, realtype ¢, realtype hl, realtype h2, realtype h3, realtype el, real-

type e2, realtype €3, int ¢, int p, realtype* hnew, void* user_data)
This function implements a time step adaptivity algorithm that chooses h satisfying the error tolerances.

Arguments:
o y —the current value of the dependent variable vector, y(t).
* ¢t —the current value of the independent variable.
* hl —the current step size, t,,, — ty—1.
* h2 — the previous step size, t,,—1 — ty—2-
e h3 —the step size t,,—o — tip—3.
* ¢l — the error estimate from the current step, m.
* e2 — the error estimate from the previous step, m — 1.
* e3 —the error estimate from the step m — 2.

* g —the global order of accuracy for the integration method.

4.6. User-supplied functions 97

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* p —the global order of accuracy for the embedding.
* hnew — the output value of the next step size.

* user_data — a pointer to user data, the same as the h_data parameter that was passed to
ARKodeSetAdaptivityFn ().

Return value: An ARKAdaptFn function should return O if it successfuly set the next step size, and a non-zero
value otherwise.

4.6.6 Explicit stability function

A user may supply a function to predict the maximum stable step size for the explicit portion of the ImEx system,
fe(t,y). While the accuracy-based time step adaptivity algorithms may be sufficient for retaining a stable solution
to the ODE system, these may be inefficient if fg(¢,y) contains moderately stiff terms. In this scenario, a user may
provide a function of type ARKExpStabFn to provide this stability information to ARKode. This function must set
the scalar step size satisfying the stability restriction for the upcoming time step. This value will subsequently be
bounded by the user-supplied values for the minimum and maximum allowed time step, and the accuracy-based time
step.

typedef int (*ARKExpStabFn) (N_Vector y, realtype , realtype* hstab, void* user_data)
This function predicts the maximum stable step size for the explicit portions of the ImEx ODE system.

Arguments:
* y — the current value of the dependent variable vector, y(t).
¢ t—the current value of the independent variable
* hstab — the output value with the absolute value of the maximum stable step size.

* user_data — a pointer to user data, the same as the estab_data parameter that was passed to
ARKodeSetStabilityFn /().

Return value: An ARKExpStabFn function should return 0 if it successfully set the upcoming stable step size,
and a non-zero value otherwise.

Notes: If this function is not supplied, or if it returns hstab < 0.0, then ARKode will assume that there is no
explicit stability restriction on the time step size.

4.6.7 Rootfinding function
If a rootfinding problem is to be solved during the integration of the ODE system, the user must supply a function of
type ARKRootFn.

typedef int (*ARKRootFn) (realtype t, N_Vector y, realtype* gout, void* user_data)
This function implements a vector-valued function g(¢, y) such that the roots of the nrifn components g;(t,y)
are sought.

Arguments:
e ¢t —the current value of the independent variable
* y —the current value of the dependent variable vector, y(¢).
* gout — the output array, of length nrifn, with components g;(¢, y).

* user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData ().

98 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Return value: An ARKRootFn function should return O if successful or a non-zero value if an error occurred
(in which case the integration is halted and ARKode returns ARK_RTFUNC_FAIL).

Notes: Allocation of memory for gout is handled within ARKode.

4.6.8 Jacobian information (direct method Jacobian)

If the direct linear solver interface is used (i.e., ARKDIsSetLinearSolver () is called in the section A skele-
ton of the user’s main program), the user may provide a function of type ARKD1sJacFn to provide the Jacobian
approximation.

typedef int (*ARKD1sJacFn) (realtype #, N_Vector y, N_Vector fy, SUNMatrix Jac, void* user_data,
N_Vector tmpl, N_Vector tmp2, N_Vector tmp3)
This function computes the Jacobian matrix J = % (or an approximation to it).

Arguments:
¢ t—the current value of the independent variable.
* y — the current value of the dependent variable vector, namely the predicted value of y(t).
* fy — the current value of the vector f7(¢,y).
* Jac — the output Jacobian matrix.

* user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData ().

e tmpl, tmp2, tmp3 — pointers to memory allocated to variables of type N_Vector which can be used
by an ARKDIsacFn as temporary storage or work space.

Return value: An ARKDIsJacFn function should return O if successful, a positive value if a re-
coverable error occurred (in which case ARKode will attempt to correct, while ARKDLS sets
last_flag to ARKDLS_JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which
case the integration is halted, ARKode () returns ARK_LSETUP_FAIL and ARKDLS sets last flag to
ARKDLS_JACFUNC_UNRECVR).

Notes: Information regarding the structure of the specific SUNMatrix structure (e.g.~number of rows, up-
per/lower bandwidth, sparsity type) may be obtained through using the implementation-specific SUNMat rix
interface functions (see the section Matrix Data Structures for details).

Prior to calling the user-supplied Jacobian function, the Jacobian matrix J(¢,y) is zeroed out, so only nonzero
elements need to be loaded into Jac.

If the user’s ARKD1sJacFn function uses difference quotient approximations, then it may need to access
quantities not in the argument list. These include the current step size, the error weights, etc. To obtain these, the
user will need to add a pointer to the ark_mem structure to their user_data, and then use the ARKodeGet*
functions listed in Optional output functions. The unit roundoff can be accessed as UNIT_ROUNDOFF, which
is defined in the header file sundials_types.h.

dense:

A user-supplied dense Jacobian function must load the N by N dense matrix Jac with an approximation to the
Jacobian matrix J(¢,y) at the point (¢, y). The accessor macros SM_ELEMENT_D and SM_COLUMN_D allow
the user to read and write dense matrix elements without making explicit references to the underlying repre-
sentation of the SUNMATRIX_DENSE type. SM_ELEMENT_D (J, i, J) referencesthe (i, j)-th element
of the dense matrix J (for i, j between 0 and N-1). This macro is meant for small problems for which ef-
ficiency of access is not a major concern. Thus, in terms of the indices m and n ranging from 1 to N, the
Jacobian element J,, ,, can be set using the statement SM_ELEMENT_D (J, m-1, n-1) =J,,,. Alterna-
tively, SM_COLUMN_D (J, j) returns a pointer to the first element of the j-th column of J (for j ranging

4.6. User-supplied functions 99

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

from 0 to N-1), and the elements of the j-th column can then be accessed using ordinary array indexing. Con-
sequently, J,, », can be loaded using the statements col_n = SM_COLUMN_D (J, n-1); col_n[m-1]
= Jm,n. For large problems, it is more efficient to use SM_COLUMN_D than to use SM_ELEMENT_D. Note that
both of these macros number rows and columns starting from 0. The SUNMATRIX_DENSE type and accessor
macros are documented in section 7he SUNMATRIX_DENSE Module.

band:

A user-supplied banded Jacobian function must load the band matrix Jac with the elements of the
Jacobian J(t,y) at the point (¢,y). The accessor macros SM_ELEMENT_B, SM_COLUMN_B, and
SM_COLUMN_ELEMENT_B allow the user to read and write band matrix elements without making specific
references to the underlying representation of the SUNMATRIX_BAND type. SM_ELEMENT_B (J, 1, 3J)
references the (i, j)-th element of the band matrix J, counting from 0. This macro is meant for use in small
problems for which efficiency of access is not a major concern. Thus, in terms of the indices m and n rang-
ing from 1 to N with (m,n) within the band defined by mupper and mlower, the Jacobian element .J,,, ,, can
be loaded using the statement SM_ELEMENT_B (J, m-1, n-1) = J,,. The elements within the band
are those with -mupper < m — n < mlower. Alternatively, SM_COLUMN_B (J, J) returns a pointer to the
diagonal element of the j-th column of J, and if we assign this address to realtype =*col_7j, then the
i-th element of the j-th column is given by SM_COLUMN_ELEMENT_B (col_3j, i, 3J), counting from
0. Thus, for (m,n) within the band, Jm,n can be loaded by setting col_n = SM_COLUMN_B (J, n-1);
SM_COLUMN_ELEMENT_B (col_n, m-1, n-1) = J, , . The elements of the j-th column can also be
accessed via ordinary array indexing, but this approach requires knowledge of the underlying storage for a
band matrix of type SUNMATRIX_BAND. The array col_n can be indexed from -mupper to mlower. For
large problems, it is more efficient to use SM_COLUMN_B and SM_COLUMN_ELEMENT_B than to use the
SM_ELEMENT_B macro. As in the dense case, these macros all number rows and columns starting from 0. The
SUNMATRIX_BAND type and accessor macros are documented in section 7he SUNMATRIX_BAND Module.

sparse:

A user-supplied sparse Jacobian function must load the compressed-sparse-column (CSC) or compressed-
sparse-row (CSR) matrix Jac with an approximation to the Jacobian matrix J(t,y) at the point (¢,y). Storage
for Jac already exists on entry to this function, although the user should ensure that sufficient space is allocated
in Jac to hold the nonzero values to be set; if the existing space is insufficient the user may reallocate the data
and index arrays as needed. The amount of allocated space in a SUNMATRIX_SPARSE object may be accessed
using the macro SM_NNZ_S or the routine SUNSparseMatrix_NNZ (). The SUNMATRIX_SPARSE type
is further documented in the section 7he SUNMATRIX SPARSE Module.

4.6.9 Jacobian information (matrix-vector product)

If the ARKSPILS solver interface is selected (i.e. ARKSpilsSetLinearSolver () is called in the section A
skeleton of the user’s main program), the user may provide a function of type ARKSpilsJacTimesVecFn in the
following form, to compute matrix-vector products Jv. If such a function is not supplied, the default is a difference
quotient approximation to these products.

typedef int (*ARKSpilsJacTimesVecFn) (N_Vector v, N_Vector Jv, realtype ¢, N_Vector y, N_Vector fy,

void* user_data, N_Vector tmp)
This function computes the product Jv = (%—Z) v (or an approximation to it).
Arguments:
* v — the vector to multiply.
* Jv — the output vector computed.
e ¢t —the current value of the independent variable.

 y — the current value of the dependent variable vector.

100

Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* fy — the current value of the vector f(¢,y).

* user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData ().

* tmp — pointer to memory allocated to a variable of type N_Vector which can be used as temporary
storage or work space.

Return value: The value to be returned by the Jacobian-vector product function should be 0 if successful. Any
other return value will result in an unrecoverable error of the generic Krylov solver, in which case the integration
is halted.

Notes: If the user’s ARKSpilsJacTimesVecFn function uses difference quotient approximations, it may
need to access quantities not in the argument list. These include the current step size, the error weights, etc.
To obtain these, the user will need to add a pointer to the ark_mem structure to their user_data, and
then use the ARKodeGet* functions listed in Optional output functions. The unit roundoff can be accessed
as UNIT_ROUNDOFF, which is defined in the header file sundials_types.h.

4.6.10 Jacobian information (matrix-vector setup)

If the user’s Jacobian-times-vector requires that any Jacobian-related data be preprocessed or evaluated, then this needs
to be done in a user-supplied function of type ARKSpilsJacTimesSetupFn, defined as follows:

typedef int (*ARKSpilsJacTimesSetupFn) (realtype #, N_Vector y, N_Vector fy, void* user_data)
This function preprocesses and/or evaluates any Jacobian-related data needed by the Jacobian-times-vector rou-
tine.

Arguments:
* ¢t —the current value of the independent variable.
 y — the current value of the dependent variable vector.
* fy — the current value of the vector f(¢t,y).

* user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData ().

Return value: The value to be returned by the Jacobian-vector setup function should be 0 if successful, positive
for a recoverable error (in which case the step will be retried), or negative for an unrecoverable error (in which
case the integration is halted).

Notes: Each call to the Jacobian-vector setup function is preceded by a call to the implicit ARKRhsFn user
function with the same (¢, y) arguments. Thus, the setup function can use any auxiliary data that is computed
and saved during the evaluation of the implicit ODE right-hand side.

If the user’s ARKSpilsJacTimesSetupFn function uses difference quotient approximations, it may need
to access quantities not in the argument list. These include the current step size, the error weights, etc. To
obtain these, the user will need to add a pointer to the ark_mem structure to their user_data, and then
use the ARKodeGet* functions listed in Optional output functions. The unit roundoff can be accessed as
UNIT_ROUNDOFF, which is defined in the header file sundials_types.h.

4.6.11 Preconditioning (linear system solution)

If preconditioning is used with the ARKSPILS solver interface, then the user must provide a function of type
ARKSpilsPrecSolveFn to solve the linear system Pz = r, where P may be either a left or right precondi-
tioning matrix. Here P should approximate (at least crudely) the Newton matrix A = M — ~.J, where M is the mass
matrix (typically M = I unless working in a finite-element setting) and J = %’;f If preconditioning is done on both
sides, the product of the two preconditioner matrices should approximate A.

4.6. User-supplied functions 101

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

typedef int (*ARKSpilsPrecSolveFn) (realtype ¢, N_Vector y, N_Vector fy, N_Vector r, N_Vector z, re-

altype gamma, realtype delta, int Ir, void* user_data)

This function solves the preconditioner system Pz = 7.

Arguments:

t — the current value of the independent variable.

y — the current value of the dependent variable vector.

* fy — the current value of the vector f(¢,y).

r — the right-hand side vector of the linear system.
z — the computed output solution vector.
gamma — the scalar - appearing in the Newton matrix given by A = M — vJ.

delta — an input tolerance to be used if an iterative method is employed in the solution. In that case,
the resdual vector Res = r — Pz of the system should be made to be less than delta in the weighted

1/2
l> norm, i.e. (Z;;l (Res; * ewti)Z) < §, where § = delta. To obtain the N_Vector ewt, call
ARKodeGetErrWeights ().

Ir — an input flag indicating whether the preconditioner solve is to use the left preconditioner (Ir = 1)
or the right preconditioner (Ir = 2).

user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData ().

Return value: The value to be returned by the preconditioner solve function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case the step will be
retried), or negative for an unrecoverable error (in which case the integration is halted).

4.6.12 Preconditioning (Jacobian data)

If the user’s preconditioner requires that any data be preprocessed or evaluated, then these actions need to occur within
a user-supplied function of type ARKSpilsPrecSetupFn.

typedef int (*ARKSpilsPrecSetupFn) (realtype ¢, N_Vector y, N_Vector fy, booleantype jok, boolean-

type* jcurPtr, realtype gamma, void* user_data)

This function preprocesses and/or evaluates Jacobian-related data needed by the preconditioner.

Arguments:

t — the current value of the independent variable.

y — the current value of the dependent variable vector.

* fy — the current value of the vector f7(¢,y).

* jok — is an input flag indicating whether the Jacobian-related data needs to be updated. The jok

argument provides for the reuse of Jacobian data in the preconditioner solve function. When jok =
SUNFALSE, the Jacobian-related data should be recomputed from scratch. When jok = SUNTRUE the
Jacobian data, if saved from the previous call to this function, can be reused (with the current value of
gamma). A call with jok = SUNTRUE can only occur after a call with jok = SUNFALSE.

e jeurPtr —is a pointer to a flag which should be set to SUNTRUE if Jacobian data was recomputed, or

set to SUNFALSE if Jacobian data was not recomputed, but saved data was still reused.
gamma — the scalar -y appearing in the Newton matrix given by A = M — ~J.

user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData ().

102

Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Return value: The value to be returned by the preconditioner setup function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case the step will be
retried), or negative for an unrecoverable error (in which case the integration is halted).

Notes: The operations performed by this function might include forming a crude approximate Jacobian, and
performing an LU factorization of the resulting approximation to A = M — ~J.

Each call to the preconditioner setup function is preceded by a call to the implicit ARKRhsFn user function with
the same (¢, y) arguments. Thus, the preconditioner setup function can use any auxiliary data that is computed
and saved during the evaluation of the ODE right-hand side.

This function is not called in advance of every call to the preconditioner solve function, but rather is called only
as often as needed to achieve convergence in the Newton iteration.

If the user’s ARKSpi 1 sPrecSetupFn function uses difference quotient approximations, it may need to access
quantities not in the call list. These include the current step size, the error weights, etc. To obtain these, the
user will need to add a pointer to the ark_mem structure to their user_data, and then use the ARKodeGet*
functions listed in Optional output functions. The unit roundoff can be accessed as UNIT_ROUNDOFF, which
is defined in the header file sundials_types.h.

4.6.13 Mass matrix information (direct method mass matrix)

If the direct mass matrix linear solver interface is used (i.e., ARKDIsSetMassLinearSolver () is called in the
section A skeleton of the user’s main program), the user must provide a function of type ARKD 1 sMassFn to provide
the mass matrix approximation.

typedef int (*ARKD1sMassFn) (realtype r, SUNMatrix M, void* user_data, N_Vector tmp1, N_Vector tmp2,

N_Vector tmp3)
This function computes the mass matrix M (or an approximation to it).

Arguments:
* N — the size of the ODE system.
¢ t—the current value of the independent variable.
* M — the output mass matrix.

* user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData ().

e tmpl, tmp2, tmp3 — pointers to memory allocated to variables of type N_Vector which can be used
by an ARKDIsDenseMassFn as temporary storage or work space.

Return value: An ARKDIsMassFn function should return O if successful, or a negative value if it failed unre-
coverably (in which case the integration is halted, ARKode () returns ARK_MASSSETUP_FAIL and ARKDLS
sets last_flag to ARKDLS MASSFUNC_UNRECVR).

Notes: Information regarding the structure of the specific SUNMatrix structure (e.g.~number of rows, up-
per/lower bandwidth, sparsity type) may be obtained through using the implementation-specific SUNMat rix
interface functions (see the section Matrix Data Structures for details).

Prior to calling the user-supplied mass matrix function, the mass matrix M (¢) is zeroed out, so only nonzero
elements need to be loaded into M.

dense:

A user-supplied dense mass matrix function must load the N by N dense matrix M with an approximation to the
mass matrix M (t). As discussed above in section Jacobian information (direct method Jacobian), the accessor
macros SM_ELEMENT_D and SM_COLUMN_D allow the user to read and write dense matrix elements without
making explicit references to the underlying representation of the SUNMATRIX_DENSE type. Similarly, the

4.6. User-supplied functions 103

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

SUNMATRIX_DENSE type and accessor macros SM_ELEMENT_D and SM_COLUMN_D are documented in
the section The SUNMATRIX _DENSE Module.

band:

A user-supplied banded mass matrix function must load the band matrix M with the elements of the mass ma-
trix M (t). As discussed above in section Jacobian information (direct method Jacobian), the accessor macros
SM_ELEMENT_B, SM_COLUMN_B, and SM_COLUMN_ELEMENT_ B allow the user to read and write band ma-
trix elements without making specific references to the underlying representation of the SUNMATRIX_BAND
type. Similarly, the SUNMATRIX_BAND type and the accessor macros SM_ELEMENT_B, SM_COLUMN_B,
and SM_COLUMN_ELEMENT_B are documented in the section 7he SUNMATRIX_BAND Module.

sparse:

A user-supplied sparse mass matrix function must load the compressed-sparse-column (CSR) or compressed-
sparse-row (CSR) matrix M with an approximation to the mass matrix M (¢). Storage for M already exists on en-
try to this function, although the user should ensure that sufficient space is allocated in M to hold the nonzero val-
ues to be set; if the existing space is insufficient the user may reallocate the data and row index arrays as needed.
The type of M is SUNMATRIX_SPARSE, and the amount of allocated space in a SUNMATRIX_SPARSE
object may be accessed using the macro SM_NNZ_S or the routine SUNSparseMatrix_NNZ (). The SUN-
MATRIX_SPARSE type is further documented in the section 7he SUNMATRIX_SPARSE Module.

4.6.14 Mass matrix information (matrix-vector product)

If the ARKSPILS solver interface is selected (i.e. ARKSpilsSetMassLinearSolver () is called in the section
A skeleton of the user’s main program), the user must provide a function of type ARKSpilsMassTimesVecFn in
the following form, to compute matrix-vector products Mwv.

typedef int (*ARKSpilsMassTimesVecFn) (N_Vector v, N_Vector Mv, realtype t, void* mtimes_data)
This function computes the product M * v (or an approximation to it).

Arguments:
* v — the vector to multiply.
e Mv — the output vector computed.
* ¢ —the current value of the independent variable.

e mtimes_data — a pointer to user data, the same as the mtimes_data parameter that was passed to
ARKSpilsSetMassTimes ().

Return value: The value to be returned by the mass-matrix-vector product function should be 0 if successful.
Any other return value will result in an unrecoverable error of the generic Krylov solver, in which case the
integration is halted.

4.6.15 Mass matrix information (matrix-vector setup)
If the user’s mass-matrix-times-vector requires that any mass matrix-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied function of type ARKSpilsMassTimesSetupFn, defined as follows:

typedef int (*ARKSpilsMassTimesSetupFn) (realtype ¢, void* mtimes_data)
This function preprocesses and/or evaluates any mass-matrix-related data needed by the mass-matrix-times-
vector routine.

Arguments:

* ¢ —the current value of the independent variable.

104 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

e mtimes_data — a pointer to user data, the same as the mtimes_data parameter that was passed to

ARKSpilsSetMassTimes ().

Return value: The value to be returned by the mass-matrix-vector setup function should be O if successful. Any
other return value will result in an unrecoverable error of the ARKSPILS mass matrix solver interface, in which
case the integration is halted.

4.6.16 Mass matrix preconditioning (linear system solution)

If preconditioning is used with the ARKSPILS mass matrix solver interface, then the user must provide a function
of type ARKSpilsMassPrecSolveFn to solve the linear system Pz = r, where P may be either a left or right
preconditioning matrix. Here P should approximate (at least crudely) the mass matrix M. If preconditioning is done
on both sides, the product of the two preconditioner matrices should approximate M.

typedef int (*xARKSpilsMassPrecSolveFn) (realtype ¢, N_Vector r, N_Vector z, realtype delta, int Ir,

void* user_data)

This function solves the preconditioner system Pz = r.

Arguments:

t — the current value of the independent variable.
r — the right-hand side vector of the linear system.
z — the computed output solution vector.

delta — an input tolerance to be used if an iterative method is employed in the solution. In that case,
the resdual vector Res = r — Pz of the system should be made to be less than delta in the weighted

1/2
l> norm, i.e. (Z?:l (Res; * ewti)2> < 6, where § = delta. To obtain the N_Vector ewt, call
ARKodeGetErrWeights ().

Ir — an input flag indicating whether the preconditioner solve is to use the left preconditioner (Ir = 1)
or the right preconditioner (Ir = 2).

user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData ().

Return value: The value to be returned by the preconditioner solve function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case the step will be
retried), or negative for an unrecoverable error (in which case the integration is halted).

4.6.17 Mass matrix preconditioning (mass matrix data)

If the user’s mass matrix preconditioner requires that any problem data be preprocessed or evaluated, then these actions
need to occur within a user-supplied function of type ARKSpilsMassPrecSetupFn.

typedef int (*ARKSpilsMassPrecSetupFn) (realtype t, void* user_data)
This function preprocesses and/or evaluates mass-matrix-related data needed by the preconditioner.

Arguments:

t — the current value of the independent variable.

user_data — a pointer to user data, the same as the user_data parameter that was passed to

ARKodeSetUserData ().

Return value: The value to be returned by the mass matrix preconditioner setup function is a flag indicating
whether it was successful. This value should be 0 if successful, positive for a recoverable error (in which case
the step will be retried), or negative for an unrecoverable error (in which case the integration is halted).

4.6. User-supplied functions 105

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Notes: The operations performed by this function might include forming a mass matrix and performing an
incomplete factorization of the result. Although such operations would typically be performed only once at the
beginning of a simulation, these may be required if the mass matrix can change as a function of time.

4.6.18 Vector resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatial adaptivity in a PDE simulation), the ARKode integrator may be “resized” between integration steps, through
calls to the ARKodeResize () function. Typically, when performing adaptive simulations the solution is stored in a
customized user-supplied data structure, to enable adaptivity without repeated allocation/deallocation of memory. In
these scenarios, it is recommended that the user supply a customized vector kernel to interface between SUNDIALS
and their problem-specific data structure. If this vector kernel includes a function of type ARKVecResizeFn to
resize a given vector implementation, then this function may be supplied to ARKodeResize () so that all internal
ARKode vectors may be resized, instead of deleting and re-creating them at each call. This resize function should
have the following form:

typedef int (*ARKVecResizeFn) (N_Vector y, N_Vector ytemplate, void* user_data)
This function resizes the vector y to match the dimensions of the supplied vector, ytemplate.

Arguments:
 y — the vector to resize.
* ytemplate — a vector of the desired size.

* user_data — a pointer to user data, the same as the resize_data parameter that was passed to
ARKodeResize ().

Return value: An ARKVecResizeFn function should return O if it successfully resizes the vector y, and a non-
zero value otherwise.

Notes: If this function is not supplied, then ARKode will instead destroy the vector y and clone a new vector y
off of ytemplate.

4.7 Preconditioner modules

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced through precon-
ditioning. For problems in which the user cannot define a more effective, problem-specific preconditioner, ARKode
provides two internal preconditioner modules: a banded preconditioner for serial problems (ARKBANDPRE) and a
band-block-diagonal preconditioner for parallel problems (ARKBBDPRE).

4.7.1 A serial banded preconditioner module

This preconditioner provides a band matrix preconditioner for use with the ARKSPILS iterative linear solver interface,
in a serial setting. It requires that the problem be set up using either the NVECTOR_SERIAL, NVECTOR_OPENMP
or NVECTOR_PTHREADS module, due to data access patterns. It uses difference quotients of the ODE right-hand
side function f; to generate a band matrix of bandwidth m1 + mu + 1, where the number of super-diagonals (mu,
the upper half-bandwidth) and sub-diagonals (m1, the lower half-bandwidth) are specified by the user. This band
matrix is used to to form a preconditioner the Krylov linear solver. Although this matrix is intended to approximate
the Jacobian J = %—’;’, it may be a very crude approximation, since the true Jacobian may not be banded, or its true
bandwidth may be larger than m1 + mu + 1. However, as long as the banded approximation generated for the
preconditioner is sufficiently accurate, it may speed convergence of the Krylov iteration.

106 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

ARKBANDPRE usage

In order to use the ARKBANDPRE module, the user need not define any additional functions. In addition to the
header files required for the remainder of the ODE problem (see the section Access fo library and header files), to use
the ARKBANDPRE module, the user’s program must include the header file arkode_bandpre . h which declares
the needed function prototypes. The following is a summary of the usage of this module. Steps that are unchanged
from the skeleton program presented in A skeleton of the user’s main program are italicized.

1. Initialize multi-threaded environment (if appropriate)
Set problem dimensions

Set vector of initial values

Create ARKode object

Initialize ARKode solver

Specify integration tolerances

Set optional inputs

® Nk w N

Create iterative linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (PREC_LEFT or
PREC_RIGHT) to use.

9. Set linear solver optional inputs
10. Attach linear solver module
11. Initialize the ARKBANDPRE preconditioner module
Specify the upper and lower half-bandwidths (mu and m1, respectively) and call
ier = ARKBandPrecInit (arkode_mem, N, mu, ml);
to allocate memory and initialize the internal preconditioner data.
12. Set linear solver interface optional inputs

Note that the user should not overwrite the preconditioner setup function or solve function through calls to the
ARKSpilsSet* optional input functions.

13. Specify rootfinding problem
14. Advance solution in time
15. Get optional outputs

Additional optional outputs associated with ARKBANDPRE are available by way of the two routines described
below, ARKBandPrecGetWorkSpace () and ARKBandPrecGet NumRhsEvals ().

16. Free solver memory
17. Deallocate memory for solution vector

We note that the ARKBANDPRE preconditioner may not be used for problems involving a non-identity mass matrix,
M # 1.

ARKBANDPRE user-callable functions

The ARKBANDPRE preconditioner module is initialized and attached by calling the following function:

int ARKBandPrecInit (void* arkode_mem, sunindextype N, sunindextype mu, sunindextype ml)
Initializes the ARKBANDPRE preconditioner and allocates required (internal) memory for it.

4.7. Preconditioner modules 107

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* N — problem dimension (size of ODE system).

* mu — upper half-bandwidth of the Jacobian approximation.

* ml — lower half-bandwidth of the Jacobian approximation.
Return value:

* ARKSPILS_SUCCESS if no errors occurred

e ARKSPILS _MEM_NULL if the integrator memory is NULL

* ARKSPILS LMEM_NULL if the linear solver memory is NULL
ARKSPILS_ILL_INPUT if an input has an illegal value

ARKSPILS_MEM_FAIL if a memory allocation request failed

Notes: The banded approximate Jacobian will have nonzero elements only in locations (¢, j) with ml < j —i <
mu.

The following two optional output functions are available for use with the ARKBANDPRE module:

int ARKBandPrecGetWorkSpace (void* arkode_mem, long int* lenrwLS, long int* leniwLS)
Returns the sizes of the ARKBANDPRE real and integer workspaces.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

¢ lenrwLS — the number of realtype values in the ARKBANDPRE workspace.

¢ leniwLS — the number of integer values in the ARKBANDPRE workspace.
Return value:

e ARKSPILS _SUCCESS if no errors occurred

* ARKSPILS_MEM_NULL if the integrator memory is NULL

* ARKSPILS LMEM_NULL if the linear solver memory is NULL

* ARKSPILS PMEM_NULL if the preconditioner memory is NULL

Notes: The workspace requirements reported by this routine correspond only to memory allocated within the
ARKBANDPRE module (the banded matrix approximation, banded SUNLinearSolver object, and tempo-
rary vectors).

The workspaces referred to here exist in addition to those given by the corresponding function
ARKSpilsGetWorkspace ().

int ARKBandPrecGetNumRhsEvals (void* arkode_mem, long int* nfevalsBP)
Returns the number of calls made to the user-supplied right-hand side function f; for constructing the finite-
difference banded Jacobian approximation used within the preconditioner setup function.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* nfevalsBP — number of calls to f;

Return value:

e ARKSPILS _SUCCESS if no errors occurred

108 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

e ARKSPILS _MEM_NULL if the integrator memory is NULL
* ARKSPILS LMEM_NULL if the linear solver memory is NULL
* ARKSPILS PMEM_NULL if the preconditioner memory is NULL

Notes: The counter nfevalsBP is distinct from the counter nfevalsLS returned by the corresponding function
ARKSpilsGetNumRhsEvals () and also from nfi_evals returned by ARKodeGetNumRhsEvals (). The
total number of right-hand side function evaluations is the sum of all three of these counters, plus the nfe_evals
counter for fg calls returned by ARKodeGet NumRhsEvals ().

4.7.2 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel ODE solver (such as ARKode) lies in the solution of partial differential equations
(PDEs). Moreover, Krylov iterative methods are used on many such problems due to the nature of the underlying linear
system of equations that needs to solved at each time step. For many PDEs, the linear algebraic system is large, sparse
and structured. However, if a Krylov iterative method is to be effective in this setting, then a nontrivial preconditioner
is required. Otherwise, the rate of convergence of the Krylov iterative method is usually slow, and degrades as the
PDE mesh is refined. Typically, an effective preconditioner must be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-based problems. It has
been successfully used with CVODE for several realistic, large-scale problems [H77998] and is included in a software
module within the ARKode package. This module works with the parallel vector module NVECTOR_PARALLEL and
is usable with any of the Krylov iterative linear solvers through the ARKSPILS interface. It generates a preconditioner
that is a block-diagonal matrix with each block being a band matrix. The blocks need not have the same number of
super- and sub-diagonals and these numbers may vary from block to block. This Band-Block-Diagonal Preconditioner
module is called ARKBBDPRE.

One way to envision these preconditioners is to think of the computational PDE domain as being subdivided into
@ non-overlapping subdomains, where each subdomain is assigned to one of the () MPI tasks used to solve the
ODE system. The basic idea is to isolate the preconditioning so that it is local to each process, and also to use a
(possibly cheaper) approximate right-hand side function for construction of this preconditioning matrix. This requires
the definition of a new function g(¢,y) ~ f;(¢,y) that will be used to construct the BBD preconditioner matrix. As
with the rest of ARKode, we assume here that the ODE system is written as

My = fE(tay) +f](t7y)a

where f; corresponds to the ODE components to be treated implicitly. The user may set g = f7, if no less expensive
approximation is desired.

Corresponding to the domain decomposition, there is a decomposition of the solution vector y into) disjoint blocks
Yq¢» and a decomposition of g into blocks g,. The block g, depends both on y, and on components of blocks ¥,
associated with neighboring subdomains (so-called ghost-cell data). If we let j, denote y, augmented with those other
components on which g, depends, then we have

_ _ _ 1T
g(tay) = [gl(tvyl)vQZ(tvyZ)a"'7gQ(tva)])
and each of the blocks g, (t, §,) is decoupled from one another.

The preconditioner associated with this decomposition has the form
P =diag[Py, P, ..., Pg]
where
Py~ M —~J,

and where J, is a difference quotient approximation to g—g". This matrix is taken to be banded, with upper and lower
half-bandwidths mudq and mldg defined as the number of non-zero diagonals above and below the main diagonal,

4.7. Preconditioner modules 109

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

respectively. The difference quotient approximation is computed using mudq + mldg + 2 evaluations of g,,, but only
a matrix of bandwidth mukeep + mlkeep + 1 is retained. Neither pair of parameters need be the true half-bandwidths
of the Jacobian of the local block of g, if smaller values provide a more efficient preconditioner. The solution of the
complete linear system

Px=1»
reduces to solving each of the distinct equations
Pirg=bg, q=1,...,0Q,

and this is done by banded LU factorization of P, followed by a banded backsolve.

Similar block-diagonal preconditioners could be considered with different treatments of the blocks P,. For example,
incomplete LU factorization or an iterative method could be used instead of banded LU factorization.

ARKBBDPRE user-supplied functions

The ARKBBDPRE module calls two user-provided functions to construct P: a required function gloc (of type
ARKLocalFn ()) which approximates the right-hand side function g(¢,y) = f7(¢,y) and which is computed locally,
and an optional function cfn (of type ARKCommF'n ()) which performs all interprocess communication necessary to
evaluate the approximate right-hand side g. These are in addition to the user-supplied right-hand side function fj.
Both functions take as input the same pointer user_data that is passed by the user to ARKodeSetUserData () and
that was passed to the user’s function f;. The user is responsible for providing space (presumably within user_data)
for components of y that are communicated between processes by cfin, and that are then used by gloc, which should
not do any communication.

typedef int (*ARKLocalFn) (sunindextype Nlocal, realtype ¢, N_Vector y, N_Vector glocal,

void* user_data)
This gloc function computes g(t, y). It fills the vector glocal as a function of 7 and y.

Arguments:
* Nlocal — the local vector length
e ¢t — the value of the independent variable
 y —the value of the dependent variable vector on this process
* glocal — the output vector of g(¢,y) on this process

* user_data — a pointer to user data, the same as the user_data parameter passed to
ARKodeSetUserData ().

Return value: An ARKLocalFn should return O if successful, a positive value if a recoverable error occurred
(in which case ARKode will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and ARKode () will return ARK_LSETUP_FAIL).

Notes: This function should assume that all interprocess communication of data needed to calculate glocal has
already been done, and that this data is accessible within user data.

The case where g is mathematically identical to f; is allowed.

typedef int (*ARKCommFn) (sunindextype Nlocal, realtype t, N_Vector y, void* user_data)
This cfn function performs all interprocess communication necessary for the executation of the gloc function
above, using the input vector y.

Arguments:
* Nlocal — the local vector length

* ¢ —the value of the independent variable

110 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

 y — the value of the dependent variable vector on this process

* user_data — a pointer to user data, the same as the user_data parameter passed to
ARKodeSetUserData ().

Return value: An ARKCommFn should return 0O if successful, a positive value if a recoverable error occurred
(in which case ARKode will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and ARKode () will return ARK_LSETUP_FAIL).

Notes: The cfn function is expected to save communicated data in space defined within the data structure
user_data.

Each call to the ¢fn function is preceded by a call to the right-hand side function f; with the same (¢, y) argu-
ments. Thus, ¢fnn can omit any communication done by f; if relevant to the evaluation of glocal. If all necessary
communication was done in f, then ¢fn = NULL can be passed in the call to ARKBBDPrecInit () (see
below).

ARKBBDPRE usage

In addition to the header files required for the integration of the ODE problem (see the section Access to library and
header files), to use the ARKBBDPRE module, the user’s program must include the header file arkode_bbdpre.h
which declares the needed function prototypes.

The following is a summary of the proper usage of this module. Steps that are unchanged from the skeleton program
presented in A skeleton of the user’s main program are italicized.

1.

12.

Initialize MPI

2. Set problem dimensions
3. Set vector of initial values
4. Create ARKode object

5.
6
7
8

Initialize ARKode solver

. Specify integration tolerances
. Set optional inputs

. Create iterative linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (PREC_LEFT or
PREC_RIGHT) to use.

. Set linear solver optional inputs
10.
11.

Attach linear solver module
Initialize the ARKBBDPRE preconditioner module

Specify the upper and lower half-bandwidths for computation mudg and mldg, the upper and lower half-
bandwidths for storage mukeep and mlkeep, and call

ier = ARKBBDPrecInit (arkode_mem, Nlocal, mudg, mldg, mukeep, mlkeep,
dgrely, gloc, cfn);

to allocate memory and initialize the internal preconditioner data. The last two arguments of
ARKBBDPrecInit () are the two user-supplied functions of type ARKLocalFn () and ARKCommFn () de-
scribed above, respectivelyl.

Set the linear solver interface optional inputs

4.7.

Preconditioner modules 111

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Note that the user should not overwrite the preconditioner setup function or solve function through calls to
ARKSPILS optional input functions.

11. Specify rootfinding problem
12. Advance solution in time
13. Get optional outputs

Additional optional outputs associated with ARKBBDPRE are available through the routines
ARKBBDPrecGetWorkSpace () and ARKBBDPrecGetNumGfnEvals ().

14. Free solver memory
15. Deallocate memory for solution vector
16. Finalize MPI

We note that the ARKBBDPRE preconditioner may not be used for problems involving a non-identity mass matrix,
M # 1.

ARKBBDPRE user-callable functions
The ARKBBDPRE preconditioner module is initialized (or re-initialized) and attached to the integrator by calling the
following functions:

int ARKBBDPrecInit (void* arkode_mem, sunindextype Nlocal, sunindextype mudgq, sunindextype mldg,
sunindextype mukeep, sunindextype mlkeep, realtype dqrely, ARKLocalFn gloc, ARK-

CommFn cfn)
Initializes and allocates (internal) memory for the ARKBBDPRE preconditioner.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* Nlocal — local vector length.
* mudgq — upper half-bandwidth to be used in the difference quotient Jacobian approximation.
* mldg — lower half-bandwidth to be used in the difference quotient Jacobian approximation.
* mukeep — upper half-bandwidth of the retained banded approximate Jacobian block.
* mlkeep — lower half-bandwidth of the retained banded approximate Jacobian block.

* dgrely — the relative increment in components of y used in the difference quotient approximations.
The default is dgrely = +/unit roundoff, which can be specified by passing dgrely = 0.0.

¢ gloc — the name of the C function (of type ARKLocalFn ()) which computes the approximation
9(t,y) ~ f1(t,y).

* cfn — the name of the C function (of type ARKCommF'n ()) which performs all interprocess commu-
nication required for the computation of g(¢, y).

Return value:

e ARKSPILS SUCCESS if no errors occurred

ARKSPILS_MEM_NULL if the integrator memory is NULL

ARKSPILS_LMEM_NULL if the linear solver memory is NULL
ARKSPILS_ILL_INPUT if an input has an illegal value

ARKSPILS_MEM_FAIL if a memory allocation request failed

112 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Notes: If one of the half-bandwidths mudqg or mldg to be used in the difference quotient calculation of the
approximate Jacobian is negative or exceeds the value Nlocal-1, it is replaced by 0 or Nlocal-1 accordingly.

The half-bandwidths mudg and mldg need not be the true half-bandwidths of the Jacobian of the local block of
g when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate Jacobian block may be even
smaller than mudg and mldg, to reduce storage and computational costs further.

For all four half-bandwidths, the values need not be the same on every processor.

The ARKBBDPRE module also provides a reinitialization function to allow solving a sequence of problems of the
same size, with the same linear solver choice, provided there is no change in Nlocal, mukeep, or mlkeep. Af-
ter solving one problem, and after calling ARKodeReInit () to re-initialize ARKode for a subsequent problem,
a call to ARKBBDPrecReInit () can be made to change any of the following: the half-bandwidths mudg and
mldq used in the difference-quotient Jacobian approximations, the relative increment dgrely, or one of the user-
supplied functions gloc and cfn. If there is a change in any of the linear solver inputs, an additional call to the
Set’’ routines provided by the ‘‘SUNLinearSolver module, and/or one or more of the corre-
sponding ARKSpilsSet %+ functions, must also be made (in the proper order).

int ARKBBDPrecReInit (void* arkode_mem, sunindextype mudq, sunindextype mldg, realtype dgrely)
Re-initializes the ARKBBDPRE preconditioner module.

Arguments:
* arkode_mem — pointer to the ARKode memory block.
* mudq — upper half-bandwidth to be used in the difference quotient Jacobian approximation.
* mldg — lower half-bandwidth to be used in the difference quotient Jacobian approximation.

* dgrely — the relative increment in components of y used in the difference quotient approximations.
The default is dgrely = +/unit roundoff, which can be specified by passing dgrely = 0.0.

Return value:
* ARKSPILS_SUCCESS if no errors occurred
e ARKSPILS MEM_NULL if the integrator memory is NULL
* ARKSPILS LMEM_NULL if the linear solver memory is NULL
* ARKSPILS_PMEM_NULL if the preconditioner memory is NULL

Notes: If one of the half-bandwidths mudq or mldq is negative or exceeds the value Nlocal-1, it is replaced by 0
or Nlocal-1 accordingly.

The following two optional output functions are available for use with the ARKBBDPRE module:

int ARKBBDPrecGetWorkSpace (void* arkode_mem, long int* lenrwBBDP, long int* leniwBBDP)
Returns the processor-local ARKBBDPRE real and integer workspace sizes.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

¢ lenrwBBDP — the number of realtype values in the ARKBBDPRE workspace.

* leniwBBDP — the number of integer values in the ARKBBDPRE workspace.
Return value:

e ARKSPILS SUCCESS if no errors occurred

* ARKSPILS_MEM_NULL if the integrator memory is NULL

e ARKSPILS ILMEM_NULL if the linear solver memory is NULL

4.7. Preconditioner modules 113

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* ARKSPILS PMEM_NULL if the preconditioner memory is NULL

Notes: The workspace requirements reported by this routine correspond only to memory allocated within the
ARKBBDPRE module (the banded matrix approximation, banded SUNLinearSolver object, temporary
vectors). These values are local to each process.

The workspaces referred to here exist in addition to those given by the corresponding function
ARKSpilsGetWorkSpace ().

int ARKBBDPrecGetNumGEfnEvals (void* arkode_mem, long int* ngevalsBBDP)
Returns the number of calls made to the user-supplied gloc function (of type ARKLocalFn ()) due to the finite
difference approximation of the Jacobian blocks used within the preconditioner setup function.

Arguments:

* arkode_mem — pointer to the ARKode memory block.

* ngevalsBBDP — the number of calls made to the user-supplied gloc function.
Return value:

e ARKSPILS SUCCESS if no errors occurred

* ARKSPILS_MEM_NULL if the integrator memory is NULL

* ARKSPILS_LMEM_NULL if the linear solver memory is NULL

* ARKSPILS PMEM_NULL if the preconditioner memory is NULL

In addition to the ngevalsBBDP gloc evaluations, the costs associated with ARKBBDPRE also include nlinsetups
LU factorizations, nlinsetups calls to cfn, npsolves banded backsolve calls, and nfevalsLS right-hand side function
evaluations, where nlinsetups is an optional ARKode output and npsolves and nfevalsLS are linear solver optional
outputs (see the table Irerative linear solver interface optional output functions).

114 Chapter 4. Using ARKode for C and C++ Applications

CHAPTER
FIVE

FARKODE, AN INTERFACE MODULE FOR FORTRAN APPLICATIONS

The FARKODE interface module is a package of C functions which support the use of the ARKODE solver for the
solution of ODE systems

My = fE(tay) +f1(t7y)a

in a mixed Fortran/C setting. While ARKODE is written in C, it is assumed here that the user’s calling program
and user-supplied problem-defining routines are written in Fortran. This package provides the necessary interfaces to
ARKODE for all supplied serial and parallel NVECTOR implementations.

5.1 Important note on portability

In this package, the names of the interface functions, and the names of the Fortran user routines called by them, appear
as dummy names which are mapped to actual values by a series of definitions in the header files. By default, those
mapping definitions depend in turn on the C macro F77_FUNC defined in the header file sundials_config.h.
The mapping defined by F77_FUNC in turn transforms the C interface names to match the name-mangling approach
used by the supplied Fortran compiler.

By “name-mangling”, we mean that due to the case-independent nature of the Fortran language, Fortran compilers
convert all subroutine and object names to use either all lower-case or all upper-case characters, and append either
zero, one or two underscores as a prefix or suffix the the name. For example, the Fortran subroutine MyFunction ()
will be changed to one of myfunction, MYFUNCTION, myfunction__, MYFUNCTION_, and so on, depending
on the Fortran compiler used.

SUNDIALS determines this name-mangling scheme at configuration time (see ARKode Installation Procedure).

5.2 Fortran Data Types

Throughout this documentation, we will refer to data types according to their usage in C. The equivalent types to these
may vary, depending on your computer architecture and on how SUNDIALS was compiled (see ARKode Installation
Procedure). A Fortran user should first determine the equivalent types for their architecture and compiler, and then
take care that all arguments passed through this Fortran/C interface are declared of the appropriate type.

Integers: SUNDIALS uses int, long int and sunindextype types. As discussed in ARKode Installation
Procedure, at compilation SUNDIALS allows the configuration of the ‘index’ type, that accepts values of 32-bit
signed and 64-bit signed. This choice dictates the size of a SUNDIALS sunindextype variable.

e int —equivalent to an INTEGER or INTEGER=+4 in Fortran
* long int - this will depend on the computer architecture:

— 32-bit architecture — equivalent to an INTEGER or INTEGER=« 4 in Fortran

115

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

— 64-bit architecture — equivalent to an INTEGER+ 8 in Fortran

* sunindextype — this will depend on the SUNDIALS configuration:
— 32-bit — equivalent to an INTEGER or INTEGER«*4 in Fortran
— 64-bit — equivalent to an INTEGER« 8 in Fortran

Real numbers: As discussed in ARKode Installation Procedure, at compilation SUNDIALS allows the configuration
option ——with-precision, that accepts values of single, double or extended (the default is double).
This choice dictates the size of a realtype variable. The corresponding Fortran types for these realtype sizes
are:

* single —equivalent to a REAL or REAL«4 in Fortran
* double —equivalent to a DOUBLE PRECISION or REAL« 8 in Fortran
* extended — equivalent to a REAL* 16 in Fortran

Details on the Fortran interface to ARKode are provided in the following sub-sections:

5.2.1 FARKODE routines

In this section, we list the full set of user-callable functions comprising the FARKODE solver interface. For each func-
tion, we list the corresponding ARKode functions, to provide a mapping between the two solver interfaces. Further
documentation on each FARKODE function is provided in the following sections, Usage of the FARKODE interface
module, FARKODE optional output, Usage of the FARKROOT interface to rootfinding and Usage of the FARKODE in-
terface to built-in preconditioners. Additionally, all Fortran and C functions below are hyperlinked to their definitions
in the documentation, for simplified access.

Interface to the NVECTOR modules

* FNVINITS () (defined by NVECTOR_SERIAL) interfaces to N_VNewEmpty_ Serial ().
e FNVINITP () (defined by NVECTOR_PARALLEL) interfaces to N_VNewEmpty_Parallel ().
e FNVINITOMP () (defined by NVECTOR_OPENMP) interfaces to N_VNewEmpty_OpenMP ().

¢ FNVINITPTS () (defined by NVECTOR_PTHREADS) interfaces to N_VNewEmpty_ Pthreads ().

FNVINITPH () (defined by NVECTOR_PARHYP) interfaces to N_VNewEmpty_ParHyp ().

Interface to the SUNMATRIX modules

* FSUNBANDMATINIT () (defined by SUNMATRIX_BAND) interfaces to SUNBandMatrix ().
e FSUNDENSEMATINIT () (defined by SUNMATRIX_DENSE) interfaces to SUNDenseMatrix ().

e FSUNSPARSEMATINIT () (defined by SUNMATRIX_SPARSE) interfaces to SUNSparseMatrix ().

Interface to the SUNLINSOL modules

e FSUNBANDLINSOLINIT () (defined by SUNLINSOL_BAND) interfaces to SUNBandLinearSolver ().

¢ FSUNDENSELINSOLINIT () (defined by SUNLINSOL_DENSE) interfaces to
SUNDenseLinearSolver ().

* FSUNKLUINIT () (defined by SUNLINSOL_KLU) interfaces to SUNKLU ().

116 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

e FSUNKLUREINIT () (defined by SUNLINSOL_KLU) interfaces to SUNKLUReinit ().
* FSUNLAPACKBANDINIT () (defined by SUNLINSOL_LAPACKBAND) interfaces to SUNLapackBand ().

e FSUNLAPACKDENSEINIT () (defined by SUNLINSOL_LAPACKDENSE) interfaces to
SUNLapackDense ().

* FSUNPCGINIT () (defined by SUNLINSOL_PCG) interfaces to SUNPCG ().

* FSUNSPBCGSINIT () (defined by SUNLINSOL_SPBCGS) interfaces to SUNSPBCGS ().

* FSUNSPFGMRINIT () (defined by SUNLINSOL_SPFGMR) interfaces to SUNSPFGMR ().

e FSUNSPGMRINIT () (defined by SUNLINSOL_SPGMR) interfaces to SUNSPGMR ().

* FSUNSPTFQMRINIT () (defined by SUNLINSOL_SPTFQMR) interfaces to SUNSPTFOMR ().

* FSUNSUPERLUMTINIT () (defined by SUNLINSOL_SUPERLUMT) interfaces to SUNSuperLUMT ().

Interface to the main ARKODE module
e FARKMALLOC () interfaces to ARKodeCreate (), ARKodeSetUserData (), and ARKodeInit (), as
well as one of ARKodeSStolerances () or ARKodeSVtolerances ().
e FARKREINIT () interfaces to ARKodeReTInit ().
e FARKRESIZE () interfaces to ARKodeResize ().
e FARKSETIIN () and FARKSETRIN () interface to the ARKodeSet* functions (see Optional input functions).
e FARKEWTSET () interfaces to ARKodeWFtolerances ().
e FARKADAPTSET () interfaces to ARKodeSetAdaptivityFn ().
e FARKEXPSTABSET () interfaces to ARKodeSetStabilityFn ().
e FARKSETERKTABLE () interfaces to ARKodeSetERKTable ().
e FARKSETIRKTABLE () interfaces to ARKodeSet IRKTable ().
e FARKSETARKTABLES () interfaces to ARKodeSetARKTables ().

* FARKSETRESTOLERANCE () interfaces to either ARKodeResStolerance () and
ARKodeResVtolerance ()

* FARKODE () interfaces to ARKode (), the ARKodeGet* functions (see Optional output functions), and to the
optional output functions for the selected linear solver module (see Optional output functions).

e FARKDKY () interfaces to the interpolated output function ARKodeGetDky ().
e FARKGETERRWEIGHTS () interfaces to ARKodeGetErriWeights ().
e FARKGETESTLOCALERR () interfaces to ARKodeGetEstLocalErrors ().

e FARKFREE () interfaces to ARKodeFree ().

Interface to the system linear solver interfaces

e FARKDLSINIT () interfaces to ARKDIsSetLinearSolver ().
e FARKDENSESETJAC () interfaces to ARKDIsSetJacFn ().
e FARKBANDSETJAC () interfaces to ARKDlsSetJacFn ().

e FARKSPARSESETJAC () interfaces to ARKDIsSetJacFn ().

5.2. Fortran Data Types 117

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

e FARKSPILSINIT () interfaces to ARKSpilsSetLinearSolver ()
e FARKSPILSSETEPSLIN () interfaces to ARKSpilsSetEpsLin ().
e FARKSPILSSETJAC () interfaces to ARKSpilsSetJacTimes ().

e FARKSPILSSETPREC () interfaces to ARKSpilsSetPreconditioner ().

Interface to the mass matrix linear solver interfaces

e FARKDLSMASSINIT () interfaces to ARKDlsSetMassLinearSolver ().

e FARKDENSESETMASS () interfaces to ARKDIsSetMassFn ().

e FARKBANDSETMASS () interfaces to ARKD1sSetMassFn ().

* FARKSPARSESETMASS () interfaces to ARKD]1sSetMassFn ().

e FARKSPILSMASSINIT () interfaces to ARKSpilsSetMassLinearSolver ().
e FARKSPILSSETMASSEPSLIN () interfaces to ARKSpilsSetMassEpsLin ().
e FARKSPILSSETMASS () interfaces to ARKSpilsSetMassTimes ().

e FARKSPILSSETMASSPREC () interfaces to ARKSpilsSetMassPreconditioner ().

User-supplied routines

As with the native C interface, the FARKode solver interface requires user-supplied functions to specify the ODE
problem to be solved. In contrast to the case of direct use of ARKode, and of most Fortran ODE solvers, the names of
all user-supplied routines here are fixed, in order to maximize portability for the resulting mixed-language program.
As aresult, whether using a purely implicit, purely explicit, or mixed implicit-explicit solver, routines for both [(¢, y)
and f;(t,y) must be provided by the user (though either of which may do nothing):

FARKODE routine (FORTRAN, user-supplied) | ARKode interface function type
FARKIFUN () ARKRhsFn ()
FARKEFUN () ARKRhsFn ()

In addition, as with the native C interface a user may provide additional routines to assist in the solution process. Each
of the following user-supplied routines is activated by calling the specified “activation” routine, with the exception of
FARKSPJAC () which is required whenever a sparse matrix solver is used:

118 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v2.1.1

(SUNDIALS v3.1.1),

user-supplied)

FARKODE routine (FORTRAN,

ARKode interface function
type

FARKODE “activation”
routine

FARKDJAC ()

ARKD1sJacFn ()

FARKDENSESETJAC ()

FARKBJAC ()

ARKD1sJacFn ()

FARKBANDSETJAC ()

FARKSPJAC ()

ARKD1sJacFn ()

FARKSPARSESETJAC ()

FARKDMASS ()

ARKD1sMassFn ()

FARKDENSESETMASS ()

FARKBMASS ()

ARKD1sMassFEn ()

FARKBANDSETMASS ()

FARKSPMASS ()

ARKD1sMassFn ()

FARKSPARSESETMASS ()

FARKPSET ()

ARKSpilsPrecSetupFn ()

FARKSPILSSETPREC ()

FARKPSOL ()

ARKSpilsPrecSolveFn ()

FARKSPILSSETPREC ()

FARKJTSETUP ()

ARKSpilsJacTimesSetupFn

JFARKSPILSSETJAC ()

FARKJTIMES ()

ARKSpilsJdacTimesVecFn ()

FARKSPILSSETJAC ()

FARKMASSPSET ()

ARKSpilsMassPrecSetupFn

JFARKSPILSSETMASSPREC

FARKMASSPSOL ()

ARKSpilsMassPrecSolveFn

JFARKSPILSSETMASSPREC

FARKMTSETUP ()

ARKSpilsMassTimesSetupkFr

(FARKSPILSSETMASS ()

FARKMTIMES ()

ARKSpilsMassTimesVecFn ()

FARKSPILSSETMASS ()

FARKEWT ()

ARKEwtFn ()

FARKEWTSET ()

FARKADAPT ()

ARKAdaptFn ()

FARKADAPTSET ()

FARKEXPSTAB ()

ARKExpStabFn ()

FARKEXPSTABSET ()

5.2.2 Usage of the FARKODE interface module

The usage of FARKODE requires calls to a variety of interface functions, depending on the method options selected,
and two or more user-supplied routines which define the problem to be solved. These function calls and user rou-
tines are summarized separately below. Some details are omitted, and the user is referred to the description of the
corresponding C interface ARKode functions for complete information on the arguments of any given user-callable
interface routine, or of a given user-supplied function called by an interface function. The usage of FARKODE for

rootfinding and with preconditioner modules is described in later subsections.

Right-hand side specification

The user must in all cases supply the following Fortran routines:

subroutine FARKIFUN (7, Y, YDOT, IPAR, RPAR, IER)

Sets the YDOT array to f(t,y), the implicit portion of the right-hand side of the ODE system, as function of

the independent variable T = ¢ and the array of dependent state variables ¥ = y.

Arguments:

e T (realtype, input) — current value of the independent variable.

* Y (realtype, input) — array containing state variables.

* YDOT (realtype, output) — array containing state derivatives.

* IPAR (long int, input) — array containing integer user data that was passed to FARKMALLOC ().

* RPAR (realtype, input) — array containing real user data that was passed to FARKMALLOC ().

e [ER (int, output) — return flag (0 success, >0 recoverable error, <0 unrecoverable error).

subroutine FARKEFUN (7, Y, YDOT, IPAR, RPAR, IER)

Sets the YDOT array to fg(t,y), the explicit portion of the right-hand side of the ODE system, as function of

the independent variable 7 = ¢ and the array of dependent state variables ¥ = y.

Arguments:

5.2. Fortran Data Types

119

()
()

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

e T (realtype, input) — current value of the independent variable.

* Y (realtype, input) — array containing state variables.

e YDOT (realtype, output) — array containing state derivatives.

* IPAR (long int, input) — array containing integer user data that was passed to FARKMALLOC ().
* RPAR (realtype, input) — array containing real user data that was passed to FARKMALLOC ().

e [ER (int, output) — return flag (0 success, >0 recoverable error, <0 unrecoverable error).

For purely explicit problems, although the routine FARKTFUN () must exist, it will never be called, and may remain
empty. Similarly, for purely implicit problems, FARKEFUN () will never be called and must exist and may remain
empty.

NVECTOR module initialization

If using one of the NVECTOR modules supplied with SUNDIALS, the user must make a call of the form

CALL FNVINITS (4, NEQ, IER)

CALL FNVINITP (COMM, 4, NLOCAL, NGLOBAL, IER)
CALL FNVINITOMP (4, NEQ, NUM_THREADS, IER)
CALL FNVINITPTS (4, NEQ, NUM_THREADS, IER)
CALL FNVINITPH (COMM, 4, NLOCAL, NGLOBAL, IER)

in which the specific arguments are as described in the appropriate section of the Chapter Vector Data Structures.

SUNMATRIX module initialization

In the case of using either an implicit or ImEx method, the solution of each Runge-Kutta stage may involve the solution
of linear systems related to the Jacobian J = %f L of the implicit portion of the ODE system. If using a Newton iteration
with direct SUNLINSOL linear solver module and one of the SUNMATRIX modules supplied with SUNDIALS, the
user must make a call of the form

CALL FSUNBANDMATINIT (4, N, MU, ML, SMU, IER)
CALL FSUNDENSEMATINIT (4, M, N, IER)
CALL FSUNSPARSEMATINIT (4, M, N, NNZ, SPARSETYPE, IER)

in which the specific arguments are as described in the appropriate section of the Chapter Matrix Data Structures.
Note that these matrix options are usable only in a serial or multi-threaded environment.

As described in the section Mass matrix solver, in the case of using a problem with a non-identity mass matrix (no
matter whether the integrator is implicit, explicit or ImEXx), linear systems of the form Mz = b must be solved, where
M (t) is the possibly time-dependent system mass matrix. If these are to be solved with a direct SUNLINSOL linear
solver module and one of the SUNMATRIX modules supplied with SUNDIALS, the user must make a call of the form

CALL FSUNBANDMASSMATINIT (N, MU, ML, SMU, IER)
CALL FSUNDENSEMASSMATINIT (M, N, IER)
CALL FSUNSPARSEMASSMATINIT (M, N, NNZ, SPARSETYPE, IER)

in which the specific arguments are as described in the appropriate section of the Chapter Matrix Data Structures,
again noting that these are only usable in a serial or multi-threaded environment.

SUNLINSOL module initialization

If using a Newton iteration with one of the SUNLINSOL linear solver modules supplied with SUNDIALS, the user
must make a call of the form

120 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

CALL FSUNBANDLINSOLINIT (4, IER)

CALL FSUNDENSELINSOLINIT (4, IER)

CALL FSUNKLUINIT (4, IER)

CALL FSUNLAPACKBANDINIT (4, IER)

CALL FSUNLAPACKDENSEINIT (4, IER)

CALL FSUNPCGINIT (4, PRETYPE, MAXL, IER)
CALL FSUNSPBCGSINIT (4, PRETYPE, MAXL, IER)
CALL FSUNSPFGMRINIT (4, PRETYPE, MAXL, IER)
CALL FSUNSPGMRINIT (4, PRETYPE, MAXL, IER)
CALL FSUNSPTFQMRINIT (4, PRETYPE, MAXL, IER)
CALL FSUNSUPERLUMTINIT (4, NUM_THREADS, IER)

in which the specific arguments are as described in the appropriate section of the Chapter Linear Solver Data Struc-
tures. Note that the dense, band and sparse solvers are usable only in a serial or multi-threaded environment.

Once one of these has been initialized, its solver parameters may be modified using a call to the functions

CALL FSUNKLUSETORDERING (4, ORD_CHOICE, IER)
CALL FSUNSUPERLUMTSETORDERING (4, ORD_CHOICE, IER)
CALL FSUNPCGSETPRECTYPE (4, PRETYPE, IER)
CALL FSUNPCGSETMAXL (4, MAXL, IER)

CALL FSUNSPBCGSSETPRECTYPE (4, PRETYPE, IER)
CALL FSUNSPBCGSSETMAXL (4, MAXL, IER)

CALL FSUNSPFGMRSETGSTYPE (4, GSTYPE, IER)
CALL FSUNSPFGMRSETPRECTYPE (4, PRETYPE, IER)
CALL FSUNSPGMRSETGSTYPE (4, GSTYPE, IER)

CALL FSUNSPGMRSETPRECTYPE (4, PRETYPE, IER)
CALL FSUNSPTFQMRSETPRECTYPE (4, PRETYPE, IER)
CALL FSUNSPTFQMRSETMAXL (4, MAXL, IER)

where again the call sequences are described in the appropriate sections of the Chapter Linear Solver Data Structures.

Similarly, in the case of using one of the SUNLINSOL linear solver modules supplied with SUNDIALS to solve a
problem with a non-identity mass matrix, the user must make a call of the form

CALL FSUNMASSBANDLINSOLINIT (IER)

CALL FSUNMASSDENSELINSOLINIT (IER)

CALL FSUNMASSKLUINIT (IER)

CALL FSUNMASSLAPACKBANDINIT (IER)

CALL FSUNMASSLAPACKDENSEINIT (IER)

CALL FSUNMASSPCGINIT (PRETYPE, MAXL, IER)
CALL FSUNMASSSPBCGSINIT (PRETYPE, MAXL, IER)
CALL FSUNMASSSPFGMRINIT (PRETYPE, MAXL, IER)
CALL FSUNMASSSPGMRINIT (PRETYPE, MAXL, IER)
CALL FSUNMASSSPTFQMRINIT (PRETYPE, MAXL, IER)
CALL FSUNMASSSUPERLUMTINIT (NUM_THREADS, IER)

in which the specific arguments are as described in the appropriate section of the Chapter Linear Solver Data Struc-
tures.

Once one of these has been initialized, its solver parameters may be modified using a call to the functions

CALL FSUNMASSKLUSETORDERING (ORD_CHOICE, IER)

CALL FSUNMASSSUPERLUMTSETORDERING (ORD_CHOICE, IER)
CALL FSUNMASSPCGSETPRECTYPE (PRETYPE, IER)

CALL FSUNMASSPCGSETMAXL (MAXL, IER)

CALL FSUNMASSSPBCGSSETPRECTYPE (PRETYPE, IER)

CALL FSUNMASSSPBCGSSETMAXL (MAXL, IER)

CALL FSUNMASSSPFGMRSETGSTYPE (GSTYPE, IER)

CALL FSUNMASSSPFGMRSETPRECTYPE (PRETYPE, IER)

5.2. Fortran Data Types 121

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

CALL FSUNMASSSPGMRSETGSTYPE (GSTYPE, IER)
CALL FSUNMASSSPGMRSETPRECTYPE (PRETYPE, IER)
CALL FSUNMASSSPTFQMRSETPRECTYPE (PRETYPE, IER)
CALL FSUNMASSSPTFQMRSETMAXL (MAXL, IER)

where again the call sequences are described in the appropriate sections of the Chapter Linear Solver Data Structures.

Problem specification

To set various problem and solution parameters and allocate internal memory, the user must call FARKMALLOC ().

subroutine FARKMALLOC (70, Y0, IMEX, IATOL, RTOL, ATOL, IOUT, ROUT, IPAR, RPAR, IER)
Initializes the Fortran interface to the ARKode solver, providing interfaces to the C routines
ARKodeCreate (), ARKodeSetUserData (), and ARKodeInit (), as well as one of
ARKodeSStolerances () or ARKodeSVtolerances ().

Arguments:
* 70 (realtype, input) — initial value of ¢.
* Y0 (realtype, input) — array of initial conditions.
e IMEX (int, input) — flag denoting basic integration method: 0 = implicit, 1 = explicit, 2 = ImEx.

e JATOL (int, input) — type for absolute tolerance input ATOL: 1 = scalar, 2 = array, 3 = user-supplied
function; the user must subsequently call FARKEWTSET () and supply a routine FARKEWT () to
compute the error weight vector.

* RTOL (realtype, input) — scalar relative tolerance.

¢ ATOL (realtype, input) — scalar or array absolute tolerance.

e JOUT (long int, input/output) — array of length 29 for integer optional outputs.
* ROUT (realtype, input/output) — array of length 6 for real optional outputs.

* IPAR (long int, input/output) — array of user integer data, which will be passed unmodified to all
user-provided routines.

* RPAR (realtype, input/output) — array with user real data, which will be passed unmodified to all
user-provided routines.

e [ER (int, output) — return flag (0 success, # 0 failure).

Notes: Modifications to the user data arrays /PAR and RPAR inside a user-provided routine will be propagated
to all subsequent calls to such routines. The optional outputs associated with the main ARKode integrator are
listed in Table: Optional FARKODE integer outputs and Table: Optional FARKODE real outputs, in the section
FARKODE optional output.

As an alternative to providing tolerances in the call to FARKMALLOC (), the user may provide a routine to compute
the error weights used in the WRMS norm evaluations. If supplied, it must have the following form:

subroutine FARKEWT (Y, EWT, IPAR, RPAR, IER)
It must set the positive components of the error weight vector EWT for the calculation of the WRMS norm of Y.

Arguments:
* Y (realtype, input) — array containing state variables.
e EWT (realtype, output) — array containing the error weight vector.

* JPAR (long int, input) — array containing the integer user data that was passed to
FARKMALLOC ().

122 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* RPAR (realtype, input) — array containing the real user data that was passed to FARKMALLOC ().

e [ER (int, output) — return flag (0 success, # 0 failure).

If the FARKEWT () routine is provided, then, following the call to FARKMALLOC (), the user must call the function

FARKEWTSET ().

subroutine FARKEWTSET (FLAG, IER)
Informs FARKODE to use the user-supplied FARKEWT () function.

Arguments:

* FLAG (int, input) — flag, use “1” to denoting to use FARKEWT ().

e [ER (int, output) — return flag (0 success, # 0 failure).

Setting optional inputs

Unlike ARKode’s C interface, that provides separate functions for setting each optional input, FARKODE uses only
two functions, that accept keywords to specify which optional input should be set to the provided value. These routines
are FARKSETIIN () and FARKSETRIN (), and are further described below.

subroutine FARKSETIIN (KEY, IVAL, IER)
Specification routine to pass optional integer inputs to the FARKODE () solver.

Arguments:

e KEY (quoted string, input) — which optional input is set (see Table: Keys for setting FARKODE integer
optional inputs).

e IVAL (long int, input) — the integer input value to be used.

e IER (int, output) — return flag (0 success, # 0 failure).

Table: Keys for setting FARKODE integer optional inputs

Key ARKode routine

ORDER ARKodeSetOrder ()
DENSE_ORDER ARKodeSetDenseOrder ()
LINEAR ARKodeSetLinear ()
NONLINEAR ARKodeSetNonlinear ()
FIXEDPOINT ARKodeSetFixedPoint ()
NEWTON ARKodeSetNewton ()
EXPLICIT ARKodeSetExplicit ()
IMPLICIT ARKodeSetImplicit ()
IMEX ARKodeSetImEx ()

IRK_TABLE_NUM

ARKodeSetIRKTableNum /()

ERK_TABLE_NUM

ARKodeSetERKTableNum ()

ARK_TABLE_NUM (a)

ARKodeSetARKTableNum/()

MAX_NSTEPS

ARKodeSetMaxNumSteps ()

HNIL_WARNS

ARKodeSetMaxHnilWarns ()

PREDICT_METHOD

ARKodeSetPredictorMethod ()

MAX_ERRFAIL

ARKodeSetMaxErrTestFails ()

MAX_CONVFAIL

ARKodeSetMaxConvFails ()

MAX_NITERS

ARKodeSetMaxNonlinIters ()

ADAPT SMALL_NEF

ARKodeSetSmallNumEFails ()

LSETUP_MSBP

ARKodeSetMaxStepsBetweenLSet ()

5.2. Fortran Data Types

123

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

(a) When setting ARK_TABLE_NUM, pass in /[VAL as an array of length 2, specifying the IRK table number first, then
the ERK table number. The integer specifiers for each table may be found in the section Appendix: ARKode Constants,
or in the ARKode header file arkode . h.

subroutine FARKSETRIN (KEY, RVAL, IER)
Specification routine to pass optional real inputs to the FARKODE () solver.

Arguments:

* KEY (quoted string, input) — which optional input is set (see Table: Keys for setting FARKODE real
optional inputs).

e RVAL (realtype, input) — the real input value to be used.

e [ER (int, output) — return flag (0 success, # 0 failure).

Table: Keys for setting FARKODE real optional inputs

Key ARKode routine

INIT_STEP ARKodeSetInitStep ()
MAX_STEP ARKodeSetMaxStep ()
MIN_STEP ARKodeSetMinStep ()
STOP_TIME ARKodeSetStopTime ()
NLCONV_COEF ARKodeSetNonlinConvCoef ()
ADAPT_CFL ARKodeSetCFLFraction ()
ADAPT_SAFETY ARKodeSetSafetyFactor ()
ADAPT_BIAS ARKodeSetErrorBias ()

ADAPT_GROWTH ARKodeSetMaxGrowth ()
ADAPT_ETAMX1 ARKodeSetMaxFirstGrowth ()
ADAPT_BOUNDS ARKodeSetFixedStepBounds ()
ADAPT_ETAMXF ARKodeSetMaxEFailGrowth ()

ADAPT_ETACF ARKodeSetMaxCFailGrowth ()
NONLIN_CRDOWN | ARKodeSetNonlinCRDown ()
NONLIN_RDIV ARKodeSetNonlinRDiv ()
LSETUP_DGMAX ARKodeSetDeltaGammaMax ()
FIXED_STEP ARKodeSetFixedStep ()

If a user wishes to reset all of the options to their default values, they may call the routine FARKSETDEFAULTS ().

subroutine FARKSETDEFAULTS (/ER)
Specification routine to reset all FARKODE optional inputs to their default values.

Arguments:

* IER (int, output) — return flag (0 success, # 0 failure).

Optional advanced FARKODE inputs

FARKODE supplies additional routines to specify optional advanced inputs to the ARKode () solver. These are
summarized below, and the user is referred to their C routine counterparts for more complete information.

subroutine FARKSETERKTABLE (S, O, P, C, A, B, BEMBED, IER)
Interface to the routine ARKodeSetERKTable ().

Arguments:

* S (int, input) — number of stages in the table.

124 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

QO (int, input) — global order of accuracy of the method.
P (int, input) — global order of accuracy of the embedding.
C (realtype, input) — array of length S containing the stage times.

A (realtype, input) — array of length §*S containing the ERK coefficients (stored in row-major,
“C”, order).

B (realtype, input) — array of length S containing the solution coefficients.
BEMBED (realtype, input) — array of length S containing the embedding coefficients.
IER (int, output) — return flag (0 success, # 0 failure).

subroutine FARKSETIRKTABLE (S, O, P, C, A, B, BEMBED, IER)
Interface to the routine ARKodeSet IRKTable ().

Arguments:

S (int, input) — number of stages in the table.

QO (int, input) — global order of accuracy of the method.

P (int, input) — global order of accuracy of the embedding.

C (realtype, input) — array of length S containing the stage times.

A (realtype, input) — array of length S*S containing the IRK coefficients (stored in row-major,
“C”, order).

B (realtype, input) — array of length S containing the solution coefficients.
BEMBED (realtype, input) — array of length S containing the embedding coefficients.
IER (int, output) — return flag (0 success, # 0 failure).

subroutine FARKSETARKTABLES (S, O, P, CI, CE, Al, AE, BI, BE, B2I, B2E, IER)
Interface to the routine ARKodeSetARKTables ().

Arguments:

S (int, input) — number of stages in the table.

0 (int, input) — global order of accuracy of the method.

P (int, input) — global order of accuracy of the embedding.

CI (realtype, input) — array of length S containing the implicit stage times.
CE (realtype, input) — array of length S containing the explicit stage times.

Al (realtype, input) — array of length $*S containing the IRK coefficients (stored in row-major,
“C”, order)

AE (realtype, input) — array of length S*S containing the ERK coefficients (stored in row-major,
“C”, order)

BI (realtype, input) — array of length S containing the implicit solution coefficients
BE (realtype, input) — array of length S containing the explicit solution coefficients
B2I (realtype, input) — array of length S containing the implicit embedding coefficients
B2E (realtype, input) — array of length S containing the explicit embedding coefficients

IER (int, output) — return flag (0 success, # 0 failure)

5.2. Fortran Data Types 125

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

subroutine FARKSETRESTOLERANCE (/ATOL, ATOL, IER)
Interface to the routines ARKodeResStolerance () and ARKodeResVtolerance ().

Arguments:
* JATOL (int, input) — type for absolute residual tolerance input ATOL: 1 = scalar, 2 = array
* ATOL (realtype, input) — scalar or array absolute residual tolerance.
e [ER (int, output) — return flag (0 success, # 0 failure).

Additionally, a user may set the accuracy-based step size adaptivity strategy (and it’s associated parameters) through
acall to FARKSETADAPTIVITYMETHOD (), as described below.

subroutine FARKSETADAPTIVITYMETHOD (IMETHOD, IDEFAULT, IPQ, PARAMS, IER)
Specification routine to set the step size adaptivity strategy and parameters within the FARKODE () solver.
Interfaces with the C routine ARKodeSetAdaptivityMethod().

Arguments:
* IMETHOD (int, input) — choice of adaptivity method.

e IDEFAULT (int, input) — flag denoting whether to use default parameters (1) or that customized
parameters will be supplied (1).

* IPQ (int, input) — flag denoting whether to use the embedding order of accuracy (0) or the method
order of accuracy (1) within step adaptivity algorithm.

* PARAMS (realtype, input) — array of 3 parameters to be used within the adaptivity strategy.
¢ IER (int, output) — return flag (O success, # 0 failure).

Lastly, the user may provide functions to aid/replace those within ARKode for handling adaptive error control and
explicit stability. The former of these is designed for advanced users who wish to investigate custom step adaptivity
approaches as opposed to using any of those built-in to ARKode. In ARKode’s C/C++ interface, this would be provided
by a function of type ARKAdaptFn (); in the Fortran interface this is provided through the user-supplied function:

subroutine FARKADAPT (Y, T, Hl, H2, H3, El, E2, E3, Q, P, HNEW, IPAR, RPAR, IER)
It must set the new step size HNEW based on the three previous steps (H1, H2, H3) and the three previous error
estimates (E1, E2, E3).

Arguments:
* Y (realtype, input) — array containing state variables.
* T (realtype, input) — current value of the independent variable.
* HI (realtype, input) — current step size.
* H2 (realtype, input) — previous step size.
* H3 (realtype, input) — previous-previous step size.
* E] (realtype, input) — estimated temporal error in current step.
e E2 (realtype, input) — estimated temporal error in previous step.
e E3 (realtype, input) — estimated temporal error in previous-previous step.
* O (int, input) — global order of accuracy for RK method.
e P (int, input) — global order of accuracy for RK embedding.
e HNEW (realtype, output) — array containing the error weight vector.

e JPAR (long int, input) — array containing the integer user data that was passed to
FARKMALLOC ().

126 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* RPAR (realtype, input) — array containing the real user data that was passed to FARKMALLOC ().
e [ER (int, output) — return flag (0 success, # 0 failure).
This routine is enabled by a call to the activation routine:

subroutine FARKADAPTSET (FLAG, IER)
Informs FARKODE to use the user-supplied FARKADAPT () function.

Arguments:

e FLAG (int, input) — flag, use “1” to denoting to use FARKADAPT (), or use “0” to denote a return
to the default adaptivity strategy.

e [ER (int, output) — return flag (0 success, # 0 failure).
Note: The call to FARKADAPTSET () must occur after the call to FARKMALLOC ().

Similarly, if either an explicit or mixed implicit-explicit integration method is to be employed, the user may specify
a function to provide the maximum explicitly-stable step for their problem. Again, in the C/C++ interface this would
be a function of type ARKExpStabFn (), while in ARKode’s Fortran interface this must be given through the user-
supplied function:

subroutine FARKEXPSTAB (Y, T, HSTAB, IPAR, RPAR, IER)
It must set the maximum explicitly-stable step size, HSTAB, based on the current solution, Y.

Arguments:
* Y (realtype, input) — array containing state variables.
e T (realtype, input) — current value of the independent variable.
* HSTAB (realtype, output) — maximum explicitly-stable step size.

¢ JPAR (long int, input) — array containing the integer user data that was passed to
FARKMALLOC ().

* RPAR (realtype, input) — array containing the real user data that was passed to FARKMALLOC ().
e [ER (int, output) — return flag (0 success, # 0 failure).
This routine is enabled by a call to the activation routine:

subroutine FARKEXPSTABSET (FLAG, IER)
Informs FARKODE to use the user-supplied FARKEXPSTAB () function.

Arguments:

e FLAG (int, input) — flag, use “1” to denoting to use FARKEXPSTAB (), or use “0” to denote a return
to the default error-based stability strategy.

e [ER (int, output) — return flag (0 success, # 0 failure).

Note: The call to FARKEXPSTABSET () must occur after the call to FARKMALLOC ().

System linear solver interface specification

To attach the linear solver (and optionally the matrix) object(s) initialized in steps SUNMATRIX module initialization
and SUNLINSOL module initialization above, the user of FARKODE must initialize the ARKDLS or ARKSPILS

linear solver interface.

5.2. Fortran Data Types 127

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

ARKDLS direct linear solver interface

To attach a direct SUNLINSOL object and corresponding SUNMATRIX object to the ARKDLS interface, then fol-
lowing calls to initialize the SUNLINSOL and SUNMATRIX objects in steps SUNMATRIX module initialization and
SUNLINSOL module initialization above, the user must call the FARKDLSINIT () routine:

subroutine FARKDLSINIT (/ER)
Interfaces with the ARKD1sSetLinearSolver () function to specify use of the direct linear solver interface.

Arguments:

e JER (int, output) — return flag (0 if success, -1 if a memory allocation error occurred, -2 for an illegal
input).

As an option when using the ARKDLS interface with SUNLINSOL_DENSE or SUNLINSOL_LAPACKDENSE
linear solver modules, the user may supply a routine that computes a dense approximation of the system Jacobian
J = da—l;’. If supplied, it must have the following form:

subroutine FARKDJAC (NEQ, T, Y, FY, DJAC, H, IPAR, RPAR, WK1, WK2, WK3, IER)
Interface to provide a user-supplied dense Jacobian approximation function (of type ARKDI1sJacFn ()), to be
used by the SUNLINSOL_DENSE or SUNLINSOL_LAPACKDENSE solver modules.

Arguments:
* NEQ (long int, input)— size of the ODE system.
e T (realtype, input) — current value of the independent variable.
* Y (realtype, input) — array containing values of the dependent state variables.
e FY (realtype, input) — array containing values of the dependent state derivatives.
e DJAC (realtype of size (NEQ,NEQ), output) — 2D array containing the Jacobian entries.
* H (realtype, input) — current step size.
* IPAR (long 1int, input) — array containing integer user data that was passed to FARKMALLOC ().
* RPAR (realtype, input) — array containing real user data that was passed to FARKMALLOC ().
» WKI, WK2, WK3 (realtype, input) — array containing temporary workspace of same size as Y.

e [ER (int, output) —return flag (0O if success, >0 if a recoverable error occurred, <0 if an unrecoverable
error occurred).

Notes: Typically this routine will use only NEQ, T, Y, and DJAC. It must compute the Jacobian and store it
column-wise in DJAC.

If the above routine uses difference quotient approximations, it may need to access the error weight array EWT in the
calculation of suitable increments. The array EWT can be obtained by calling FARKGETERRWEIGHTS () using one
of the work arrays as temporary storage for EWT. It may also need the unit roundoff, which can be obtained as the
optional output ROUT(6), passed from the calling program to this routine using either RPAR or a common block.

If the FARKDJAC () routine is provided, then, following the call to FARKDLSINIT (), the user must call the routine
FARKDENSESETJAC ():

subroutine FARKDENSESETJAC (FLAG, IER)
Interface to the ARKD1sSetJacFn () function, specifying to use the user-supplied routine FARKDJAC () for
the Jacobian approximation.

Arguments:
e FLAG (int, input) — any nonzero value specifies to use FARKDJAC ().

e [ER (int, output) — return flag (0 if success, # 0 if an error occurred).

128 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

As an option when using the ARKDLS interface with SUNLINSOL_BAND or SUNLINSOL_LAPACKBAND linear
solver modules, the user may supply a routine that computes a banded approximation of the linear system Jacobian
J = %—J;. If supplied, it must have the following form:

subroutine FARKBJAC (NEQ, MU, ML, MDIM, T, Y, FY, BJAC, H, IPAR, RPAR, WK1, WK2, WK3, IER)
Interface to provide a user-supplied band Jacobian approximation function (of type ARKD1sJacFn ()), to be
used by the SUNLINSOL_BAND or SUNLINSOL_LAPACKBAND solver modules.

Arguments:
* NEQ (long int, input) — size of the ODE system.
* MU (long int, input) — upper half-bandwidth.
* ML (Long int, input) — lower half-bandwidth.
* MDIM (long int, input) — leading dimension of BJAC array.
* T (realtype, input) — current value of the independent variable.
* Y (realtype, input) — array containing dependent state variables.
e FY (realtype, input) — array containing dependent state derivatives.
* BJAC (realtype of size (MDIM,NEQ), output) — 2D array containing the Jacobian entries.
* H (realtype, input) — current step size.
* IPAR (long int, input) — array containing integer user data that was passed to FARKMALLOC ().
* RPAR (realtype, input) — array containing real user data that was passed to FARKMALLOC ().
» WKI, WK2, WK3 (realtype, input) — array containing temporary workspace of same size as Y.

e IER (int, output) —return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecoverable
error occurred).

Notes: Typically this routine will use only NEQ, MU, ML, T, Y, and BJAC. It must load the MDIM by N array
BJAC with the Jacobian matrix at the current (¢, y) in band form. Store in BJAC(k,j) the Jacobian element .J; ;
withk=i-j+ MU+ I (ork=1, .., ML+MU+I)andj =1, ..., N.

If the above routine uses difference quotient approximations, it may need to use the error weight array EWT in the
calculation of suitable increments. The array EWT can be obtained by calling FARKGETERRWEIGHTS () using one
of the work arrays as temporary storage for EWT. It may also need the unit roundoff, which can be obtained as the
optional output ROUT(6), passed from the calling program to this routine using either RPAR or a common block.

If the FARKBJAC () routine is provided, then, following the call to FARKDLSINIT (), the user must call the routine
FARKBANDSETJAC ().

subroutine FARKBANDSETJAC (FLAG, IER)
Interface to the ARKD1sSetJacFn () function, specifying to use the user-supplied routine FARKBJAC () for
the Jacobian approximation.

Arguments:
e FLAG (int, input) — any nonzero value specifies to use FARKBJAC ().
¢ IER (int, output) — return flag (0 if success, # 0 if an error occurred).

When using the ARKDLS interface with the SUNLINSOL_KLU or SUNLINSOL_SUPERLUMT sparse direct linear
solver modules, the user must supply a routine that computes a sparse approximation of the system Jacobian J = %.
Both the KLU and SuperLU_MT solvers allow specification of J in either compressed-sparse-column (CSC) format
or compressed-sparse-row (CSR) format. The sparse Jacobian approximation function must have the following form:

5.2. Fortran Data Types 129

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

subroutine FARKSPJAC (7, Y, FY, N, NNZ, JDATA, JINDEXVALS, JINDEXPTRS, H, IPAR, RPAR, WK1, WK2,

WK3, IER)
Interface to provide a user-supplied sparse Jacobian approximation function (of type ARKD1sJacFn ()), to be

used by the SUNLINSOL_KLU or SUNLINSOL_SUPERLUMT solver modules.
Arguments:

e T (realtype, input) — current value of the independent variable.

* Y (realtype, input) — array containing values of the dependent state variables.

* FY (realtype, input) — array containing values of the dependent state derivatives.

* N (sunindextype, input) — number of matrix rows and columns in Jacobian.

* NNZ (sunindextype, input) — allocated length of nonzero storage in Jacobian.

* JDATA (realtype of size NNZ, output) — nonzero values in Jacobian.

e JINDEXVALS (sunindextype of size NNZ, output) — row [CSR: column] indices for each nonzero
Jacobian entry.

* JINDEXPTRS (sunindextype of size N+1, output) — indices of where each column’s [CSR: row’s]
nonzeros begin in data array; last entry points just past end of data values.

* H (realtype, input) — current step size.

* IPAR (long int, input) — array containing integer user data that was passed to FARKMALLOC ().
* RPAR (realtype, input) — array containing real user data that was passed to FARKMALLOC ().

* WKI, WK2, WK3 (realtype, input) — array containing temporary workspace of same size as Y.

e [ER (int, output) —return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecoverable
error occurred).

Notes: due to the internal storage format of the SUNMATRIX_SPARSE module, the matrix-specific integer
parameters and arrays are all of type sunindextype — the index precision (32-bit vs 64-bit signed integers)
specified during the SUNDIALS build. It is assumed that the user’s Fortran codes are constructed to have
matching type to how SUNDIALS was installed.

If the above routine uses difference quotient approximations to compute the nonzero entries, it may need to access
the error weight array EWT in the calculation of suitable increments. The array EWT can be obtained by calling
FARKGETERRWEIGHTS () using one of the work arrays as temporary storage for EWT. It may also need the unit
roundoff, which can be obtained as the optional output ROUT(6), passed from the calling program to this routine using
either RPAR or a common block.

When supplying the FARKSPJAC () routine, following the call to FARKDLSINIT (), the user must call the routine
FARKSPARSESETJAC().

subroutine FARKSPARSESETJAC (/ER)
Interface to the ARKDIsSetJacFn () function, specifying that the user-supplied routine FARKSPJAC () has
been provided for the Jacobian approximation.

Arguments:

* [ER (int, output) — return flag (0 if success, # 0 if an error occurred).

ARKSPILS iterative linear solver interface

To attach an iterative SUNLINSOL object to the ARKSPILS interface, then following the call to initialize the SUN-
LINSOL object in step SUNLINSOL module initialization above, the user must call the FARKSPILSINIT () routine:

130 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

subroutine FARKSPILSINIT (/ER)
Interfaces with the ARKSpilsSetLinearSolver () function to specify use of the iterative linear solver
interface.

Arguments:

e JER (int, output) — return flag (0 if success, -1 if a memory allocation error occurred, -2 for an illegal
input).

As described in the section Linear iteration error control, a user may adjust the linear solver tolerance scaling factor
€1,. Fortran users may adjust this value by calling the function FARKSPILSSETEPSLIN ():

subroutine FARKSPILSSETEPSLIN (EPLIFAC, IER)
Interface to the function ARKSpilsSetEpsLin () to specify the linear solver tolerance scale factor e, for
the Newton system linear solver.

This routine must be called after FARKSPILSINIT ().
Arguments:

e EPLIFAC (realtype, input) — value to use for e7,. Passing a value of 0 indicates to use the default
value (0.05).

¢ IER (int, output) — return flag (O if success, # 0 if an error).

Optional user-supplied routines FARKJTSETUP () and FARKJTIMES () may be provided to compute the prod-
uct of the system Jacobian J = %—2’ and a given vector v. If these are supplied, then following the call to

FARKSPILSINIT (), the user must call the FARKSPTILSSETJAC () routine with FLAG # 0:

subroutine FARKSPILSSETJAC (FLAG, IER)
Interface to the function ARKSpilsSetJdacTimes () to specify use of the user-supplied Jacobian-times-
vector setup and product functions, FARKJTSETUP () and FARKJTIMES (), respectively.

This routine must be called after FARKSPTLSINIT ().
Arguments:

* FLAG (int, input) — flag denoting use of user-supplied Jacobian-times-vector routines. A nonzero
value specifies to use these the user-supplied routines, a zero value specifies not to use these.

e [ER (int, output) — return flag (0 if success, # 0 if an error).

Similarly, optional user-supplied routines FARKPSET () and FARKPSOL () may be provided to perform precondi-
tioning of the iterative linear solver (note: the SUNLINSOL module must have been configured with preconditioning
enabled). If these routines are supplied, then following the call to FARKSPILSINIT () the user must call the routine
FARKSPILSSETPREC () with FLAG # 0:

subroutine FARKSPILSSETPREC (FLAG, IER)
Interface to the function ARKSpilsSetPreconditioner () to specify use of the user-supplied precondi-
tioner setup and solve functions, FARKPSET () and FARKPSOL (), respectively.

This routine must be called after FARKSPTLSINIT ().
Arguments:

e FLAG (int, input) — flag denoting use of user-supplied preconditioning routines. A nonzero value
specifies to use these the user-supplied routines, a zero value specifies not to use these.

e [ER (int, output) —return flag (0 if success, # 0 if an error).

With treatment of the linear systems by any of the Krylov iterative solvers, there are four optional user-supplied
routines — FARKJTSETUP (), FARKJTIMES (), FARKPSET () and FARKPSOL (). The specifications of these
functions are given below.

5.2. Fortran Data Types 131

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

As an option when using the ARKSPILS linear solver interface, the user may supply a routine that computes the

product of the system Jacobian J = % and a given vector v. If supplied, it must have the following form:
Y

subroutine FARKJTIMES (V, FJV, T, Y, FY, H, IPAR, RPAR, WORK, IER)
Interface to provide a user-supplied Jacobian-times-vector product approximation function (corresponding to a
C interface routine of type ARKSpilsJacTimesVecFn ()), to be used by one of the Krylov iterative linear
solvers.

Arguments:
e V (realtype, input) — array containing the vector to multiply.
* FJV (realtype, output) — array containing resulting product vector.
e T (realtype, input) — current value of the independent variable.
* Y (realtype, input) — array containing dependent state variables.
* FY (realtype, input) — array containing dependent state derivatives.
* H (realtype, input) — current step size.
e IPAR (long int, input) — array containing integer user data that was passed to FARKMALLOC ().
* RPAR (realtype, input) — array containing real user data that was passed to FARKMALLOC ().
* WORK (realtype, input) — array containing temporary workspace of same size as Y.
e [ER (int, output) — return flag (0 if success, # 0 if an error).

Notes: Typically this routine will use only 7, Y, V, and FJV. It must compute the product vector Jv, where v is
given in V, and the product is stored in FJV.

If the user’s Jacobian-times-vector product routine requires that any Jacobian related data be evaluated or preprocessed,
then the following routine can be used for the evaluation and preprocessing of this data:

subroutine FARKJTSETUP (T, Y, FY, H, IPAR, RPAR, IER)
Interface to setup data for use in a user-supplied Jacobian-times-vector product approximation function (corre-
sponding to a C interface routine of type ARKSpilsJacTimesSetupFn ()).

Arguments:
e T (realtype, input) — current value of the independent variable.
* Y (realtype, input) — array containing dependent state variables.
* FY (realtype, input) — array containing dependent state derivatives.
* H (realtype, input) — current step size.
e IPAR (long int, input) — array containing integer user data that was passed to FARKMALLOC ().
* RPAR (realtype, input) — array containing real user data that was passed to FARKMALLOC ().
e [ER (int, output) — return flag (0 if success, # 0 if an error).

Notes: Typically this routine will use only 7 and Y, and store the results in either the arrays /PAR and RPAR, or
in a Fortran module or common block.

If preconditioning is to be included, the following routine must be supplied, for solution of the preconditioner linear
system:

subroutine FARKPSOL (7, Y, FY, R, Z, GAMMA, DELTA, LR, IPAR, RPAR, VT, IER)
User-supplied preconditioner solve routine (of type ARKSpilsPrecSolveFn ()).

Arguments:

* T (realtype, input) — current value of the independent variable.

132 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Y (realtype, input) — current dependent state variable array.

FY (realtype, input) — current dependent state variable derivative array.
R (realtype, input) — right-hand side array.

Z (realtype, output) — solution array.

GAMMA (realtype, input) — Jacobian scaling factor.

DELTA (realtype, input) — desired residual tolerance.

LR (int, input) — flag denoting to solve the right or left preconditioner system: 1 = left preconditioner,
2 = right preconditioner.

IPAR (long int, input/output) — array containing integer user data that was passed to
FARKMALLOC ().

RPAR (realtype, input/output) — array containing real user data that was passed to
FARKMALLOC ().

IER (int, output) — return flag (O if success, >0 if a recoverable failure, <0 if a non-recoverable
failure).

Notes: Typically this routine will use only 7, Y, GAMMA, R, LR, and Z. It must solve the preconditioner linear
system Pz = r. The preconditioner (or the product of the left and right preconditioners if both are nontrivial)
should be an approximation to the matrix M (T') — ~.J, where M is the system mass matrix, -y is the input
GAMMA, and J = 1.

dy

If the user’s preconditioner requires that any Jacobian related data be evaluated or preprocessed, then the following
routine can be used for the evaluation and preprocessing of the preconditioner:

subroutine FARKPSET (7, Y, FY, JOK, JCUR, GAMMA, H, IPAR, RPAR, IER)
User-supplied preconditioner setup routine (of type ARKSpilsPrecSetupFn ()).

Arguments:

T (realtype, input) — current value of the independent variable.
Y (realtype, input) — current dependent state variable array.
FY (realtype, input) — current dependent state variable derivative array.

JOK (int, input) — flag indicating whether Jacobian-related data needs to be recomputed: 0 = recom-
pute, 1 = reuse with the current value of GAMMA.

JCUR (realtype, output) — return flag to denote if Jacobian data was recomputed (1=yes, 0=no).
GAMMA (realtype, input) — Jacobian scaling factor.
H (realtype, input) — current step size.

IPAR (long int, input/output) — array containing integer user data that was passed to
FARKMALLOC ().

RPAR (realtype, input/output) — array containing real user data that was passed to
FARKMALLOC ().

IER (int, output) — return flag (0 if success, >0 if a recoverable failure, <0 if a non-recoverable
failure).

Notes: This routine must set up the preconditioner P to be used in the subsequent call to FARKPSOL (). The
preconditioner (or the product of the left and right preconditioners if using both) should be an approximation to
the matrix M — ~J, where M is the system mass matrix, y is the input GAMMA, and J = %—fy’

Notes:

5.2. Fortran Data Types 133

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

1. If the user’s FARKJTSETUP (), FARKJTIMES () or FARKPSET () routines use difference quotient approxi-
mations, they may need to use the error weight array EWT and/or the unit roundoff, in the calculation of suitable
increments. Also, if FARKPSOL () uses an iterative method in its solution, the residual vector p = r — Pz of
the system should be made less than § = DELTA in the weighted 12 norm, i.e.

1/2
(Z (pi Ewn>2> <o,

K2

2. If needed in FARKJTSETUP () FARKJTIMES (), FARKPSOL (), or FARKPSET (), the error weight array
EWT can be obtained by calling FARKGETERRWEIGHTS () using a user-allocated array as temporary storage
for EWT.

3. If needed in FARKJTSETUP () FARKJTIMES (), FARKPSOL (), or FARKPSET (), the unit roundoff can be
obtained as the optional output ROUT(6) (available after the call to FARKMALLOC ()) and can be passed using
either the RPAR user data array or a common block.

Mass matrix linear solver interface specification

To attach the mass matrix linear solver (and optionally the mass matrix) object(s) initialized in steps SUNMATRIX
module initialization and SUNLINSOL module initialization above, the user of FARKODE must initialize the ARK-
MASSDLS or ARKMASSSPILS linear solver interface.

ARKDLS direct mass matrix linear solver interface

To attach a direct SUNLINSOL object and corresponding SUNMATRIX object to the ARKDLS mass matrix solver
interface, then following the calls to initialize the SUNLINSOL and SUNMATRIX objects for the mass-matrix sys-
tem in steps SUNMATRIX module initialization and SUNLINSOL module initialization above, the user must call the
FARKDLSMASSINIT () routine:

subroutine FARKDLSMASSINIT (TIME_DEP, IER)
Interfaces with the ARKD1sSetMassLinearSolver () function to specify use of the direct mass matrix
linear solver interface.

Arguments:
e TIME_DEP (int, input) — flag indicating whether the mass matrix is time-dependent (1) or not (0).

e JER (int, output) — return flag (0 if success, -1 if a memory allocation error occurred, -2 for an illegal
input).

When using the ARKDLS interface with the SUNLINSOL_DENSE or SUNLINSOL_LAPACKDENSE mass matrix
linear solver modules, the user must supply a routine that computes the dense mass matrix M (¢). This routine must
have the following form:

subroutine FARKDMASS (NEQ, T, DMASS, IPAR, RPAR, WK1, WK2, WK3, IER)
Interface to provide a user-supplied dense mass matrix computation function (of type ARKD1sMassFn ()), to
be used by the SUNLINSOL_DENSE or SUNLINSOL_LAPACKDENSE solver modules.

Arguments:
* NEQ (long int, input)— size of the ODE system.
e T (realtype, input) — current value of the independent variable.
* DMASS (realtype of size (NEQ,NEQ), output) — 2D array containing the mass matrix entries.

* IPAR (long int, input) — array containing integer user data that was passed to FARKMALLOC ().

134 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* RPAR (realtype, input) — array containing real user data that was passed to FARKMALLOC ().
* WKI, WK2, WK3 (realtype, input) — array containing temporary workspace of same size as Y.

e [ER (int, output) —return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecoverable
error occurred).

Notes: Typically this routine will use only NEQ, T, and DMASS. It must compute the mass matrix and store it
column-wise in DMASS.

To indicate that the FARKDMASS () routine has been provided, then, following the call to FARKDLSMASSINIT (),
the user must call the routine FARKDENSESETMASS () :

subroutine FARKDENSESETMASS (/ER)
Interface to the ARKD1sSetMassFn () function, specifying to use the user-supplied routine FARKDMASS ()
for the mass matrix calculation.

Arguments:
e IER (int, output) — return flag (0 if success, # 0 if an error occurred).

When using the ARKDLS interface with the SUNLINSOL_BAND or SUNLINSOL_LAPACKBAND mass matrix
linear solver modules, the user must supply a routine that computes the banded mass matrix M (¢). This routine must
have the following form:

subroutine FARKBMASS (NEQ, MU, ML, MDIM, T, BMASS, IPAR, RPAR, WK1, WK2, WK3, IER)
Interface to provide a user-supplied band mass matrix calculation function (of type ARKD1sMassFn ()), to be
used by the SUNLINSOL_BAND or SUNLINSOL_LAPACKBAND solver modules.

Arguments:
* NEQ (long int, input) — size of the ODE system.
* MU (long int, input) — upper half-bandwidth.
* ML (long int, input)— lower half-bandwidth.
e MDIM (long int, input) — leading dimension of BMASS array.
* T (realtype, input) — current value of the independent variable.
* BMASS (realtype of size (MDIM,NEQ), output) — 2D array containing the mass matrix entries.
e IPAR (long int, input) — array containing integer user data that was passed to FARKMALLOC ().
* RPAR (realtype, input) — array containing real user data that was passed to FARKMALLOC ().
* WKI, WK2, WK3 (realtype, input) — array containing temporary workspace of same size as Y.

e JER (int, output) —return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecoverable
error occurred).

Notes: Typically this routine will use only NEQ, MU, ML, T, and BMASS. It must load the MDIM by N array
BMASS with the mass matrix at the current (¢) in band form. Store in BMASS(k,j) the mass matrix element M; ;
withk=i-j+ MU+ 1(ork=1,.., ML+MU+I)andj=1, .., N.

To indicate that the FARKBMASS () routine has been provided, then, following the call to FARKDLSMASSINIT (),
the user must call the routine FARKBANDSETMASS ()

subroutine FARKBANDSETMASS (/ER)
Interface to the ARKD1sSetMassFn () function, specifying to use the user-supplied routine FARKBMASS ()
for the mass matrix calculation.

Arguments:

e IER (int, output) — return flag (0 if success, # 0 if an error occurred).

5.2. Fortran Data Types 135

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

When using the ARKDLS interface with the SUNLINSOL_KLU or SUNLINSOL_SUPERLUMT mass matrix lin-
ear solver modules, the user must supply a routine that computes the sparse mass matrix M (¢). Both the KLU and
SuperLU_MT solver interfaces support the compressed-sparse-column (CSC) and compressed-sparse-row (CSR) ma-
trix formats. The desired format must have been specified to the FSUNSPARSEMASSMATINIT () function when
initializing the sparse mass matrix. The user-provided routine to compute M (¢) must have the following form:

subroutine FARKSPMASS (T, N, NNZ, MDATA, MINDEXVALS, MINDEXPTRS, IPAR, RPAR, WK1, WK2,

WK3, IER)
Interface to provide a user-supplied sparse mass matrix approximation function (of type ARKD1sMassFn ()),

to be used by the SUNLINSOL_KLU or SUNLINSOL_SUPERLUMT solver modules.
Arguments:
e T (realtype, input) — current value of the independent variable.
* N (sunindextype, input) — number of mass matrix rows and columns.
* NNZ (sunindextype, input) — allocated length of nonzero storage in mass matrix.
* MDATA (realtype of size NNZ, output) — nonzero values in mass matrix.

* MINDEXVALS (sunindextype of size NNZ, output) — row [CSR: column] indices for each
nonzero mass matrix entry.

* MINDEXPTRS (sunindextype of size N+1, output) — indices of where each column’s [CSR:
row’s] nonzeros begin in data array; last entry points just past end of data values.

* IPAR (long int, input) — array containing integer user data that was passed to FARKMALLOC ().
* RPAR (realtype, input) — array containing real user data that was passed to FARKMALLOC ().
* WKI, WK2, WK3 (realtype, input) — array containing temporary workspace of same size as Y.

e [ER (int, output) —return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecoverable
error occurred).

Notes: due to the internal storage format of the SUNMATRIX_SPARSE module, the matrix-specific integer
parameters and arrays are all of type sunindextype — the index precision (32-bit vs 64-bit signed integers)
specified during the SUNDIALS build. It is assumed that the user’s Fortran codes are constructed to have
matching type to how SUNDIALS was installed.

To indicate that the FARKSPMASS () routine has been provided, then, following the call to FARKDLSMASSINIT (),
the user must call the routine FARKSPARSESETMASS () :

subroutine FARKSPARSESETMASS (/ER)
Interface to the ARKDI1sSetMassFn () function, specifying that the user-supplied routine FARKSPMASS ()
has been provided for the mass matrix calculation.

Arguments:

* [ER (int, output) — return flag (0O if success, # 0 if an error occurred).

ARKSPILS iterative mass matrix linear solver interface

To attach an iterative SUNLINSOL object to the ARKSPILS mass matrix solver interface, then following the
call to initialize the SUNLINSOL object in step SUNLINSOL module initialization above, the user must call the
FARKSPILSMASSINIT () routine:

subroutine FARKSPILSMASSINIT (7IME_DEP, IER)
Interfaces with the ARKSpilsSetMassLinearSolver () function to specify use of the iterative mass ma-
trix solver interface.

Arguments:

136 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

e TIME_DEP (int, input) — flag indicating whether the mass matrix is time-dependent (1) or not (0).

e JER (int, output) — return flag (0 if success, -1 if a memory allocation error occurred, -2 for an illegal
input).

As described in the section Linear iteration error control, a user may adjust the linear solver tolerance scal-
ing factor €. Fortran users may adjust this value for the mass matrix linear solver by calling the function
FARKSPILSSETMASSEPSLIN ():

subroutine FARKSPILSSETMASSEPSLIN (EPLIFAC, IER)
Interface to the function ARKSpilsSetEpsLin () to specify the linear solver tolerance scale factor €7, for
the mass matrix linear solver.

This routine must be called after FARKSPTLSMASSINIT ().
Arguments:

e EPLIFAC (realtype, input) — value to use for €;,. Passing a value of 0 indicates to use the default
value (0.05).

e [ER (int, output) — return flag (0 if success, # 0 if an error).

With treatment of the mass matrix linear systems by any of the Krylov iterative solvers, there are two required
user-supplied routines, FARKMTSETUP () and FARKMTIMES (), and there are two optional user-supplied routines,
FARKMASSPSET () and FARKMASSPSOL (). The specifications of these functions are given below.

The required routines when using a Krylov iterative mass matrix linear solver perform setup and computation of the
product of the possibly time-dependent system mass matrix M (¢) and a given vector v. The product routine must have
the following form:

subroutine FARKMTIMES (V, MV, T, IPAR, RPAR, IER)
Interface to a user-supplied mass-matrix-times-vector product approximation function (corresponding to a C
interface routine of type ARKSpilsMassTimesVecFn ()), to be used by one of the Krylov iterative linear
solvers.

Arguments:
* V (realtype, input) — array containing the vector to multiply.
* MV (realtype, output) — array containing resulting product vector.
e T (realtype, input) — current value of the independent variable.
* IPAR (long int, input) — array containing integer user data that was passed to FARKMALLOC ().
* RPAR (realtype, input) — array containing real user data that was passed to FARKMALLOC ().
e [ER (int, output) — return flag (0 if success, # 0 if an error).

Notes: Typically this routine will use only 7, V, and MV. It must compute the product vector M v, where v is
given in V, and the product is stored in MV.

If the user’s mass-matrix-times-vector product routine requires that any mass matrix data be evaluated or preprocessed,
then the following routine can be used for the evaluation and preprocessing of this data:

subroutine FARKMTSETUP (T, IPAR, RPAR, IER)
Interface to a user-supplied mass-matrix-times-vector setup function (corresponding to a C interface routine of
type ARKSpilsMassTimesSetupFn ()).

Arguments:
e T (realtype, input) — current value of the independent variable.
e IPAR (long int, input) — array containing integer user data that was passed to FARKMALLOC ().

* RPAR (realtype, input) — array containing real user data that was passed to FARKMALLOC ().

5.2. Fortran Data Types 137

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

e [ER (int, output) — return flag (0 if success, # 0 if an error).

Notes: Typically this routine will use only 7, and store the results in either the arrays /PAR and RPAR, or in a
Fortran module or common block. If no mass matrix setup is needed, this routine should just set /ER to 0 and
return.

To indicate that these routines have been supplied by the user, then, following the call to FARKSPTLSMASSINIT (),
the user must call the routine FARKSPILSSETMASS () :

subroutine FARKSPILSSETMASS (/ER)
Interface to the function ARKSpilsSetMassTimes () to specify use of the user-supplied mass-matrix-times-
vector setup and product functions FARKMTSETUP () and FARKMTIMES ().

This routine must be called after FARKSPTLSMASSINIT ().
Arguments:
¢ IER (int, output) — return flag (O if success, # 0 if an error).

Two optional user-supplied preconditioning routines may be supplied to help accelerate convergence of the Krylov
mass matrix linear solver. If preconditioning was selected when enabling the Krylov solver (i.e. the solver was set up
with IPRETYPE # 0), then the user must also call the routine FARKSPILSSETMASSPREC () with FLAG # O:

subroutine FARKSPILSSETMASSPREC (FLAG, IER)
Interface to the function ARKSpilsSetMassPreconditioner () to specify use of the user-supplied pre-
conditioner setup and solve functions, FARKMASSPSET () and FARKMASSPSOL (), respectively.

This routine must be called after FARKSPTLSMASSINIT ().

Arguments:
* FLAG (int, input) — flag denoting use of user-supplied preconditioning routines.
e [ER (int, output) — return flag (0 if success, # 0 if an error).

In addition, the user must provide the following two routines to implement the preconditioner setup and solve functions
to be used within the solve.

subroutine FARKMASSPSET (7, IPAR, RPAR, IER)
User-supplied preconditioner setup routine (of type ARKSpilsMassPrecSetupFn ()).

Arguments:
e T (realtype, input) — current value of the independent variable.

* IPAR (long int, input/output) — array containing integer user data that was passed to
FARKMALLOC ().

* RPAR (realtype, input/output) — array containing real user data that was passed to
FARKMALLOC ().

e IER (int, output) — return flag (0 if success, >0 if a recoverable failure, <0 if a non-recoverable
failure).

Notes: This routine must set up the preconditioner P to be used in the subsequent call to FARKMASSPSOL ().
The preconditioner (or the product of the left and right preconditioners if using both) should be an approximation
to the matrix M (t), where M is the system mass matrix.

subroutine FARKMASSPSOL (T, R, Z, DELTA, LR, IPAR, RPAR, IER)
User-supplied preconditioner solve routine (of type ARKSpilsMassPrecSolveFn ()).

Arguments:
e T (realtype, input) — current value of the independent variable.

* R (realtype, input) — right-hand side array.

138 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

e Z (realtype, output) — solution array.
* DELTA (realtype, input) — desired residual tolerance.

* LR (int, input) —flag denoting to solve the right or left preconditioner system: 1 = left preconditioner,
2 = right preconditioner.

¢ [PAR (long int, input/output) — array containing integer user data that was passed to
FARKMALLOC ().

* RPAR (realtype, input/output) — array containing real user data that was passed to
FARKMALLOC ().

e IER (int, output) — return flag (0 if success, >0 if a recoverable failure, <0 if a non-recoverable
failure).

Notes: Typically this routine will use only 7, R, LR, and Z. It must solve the preconditioner linear system
Pz = r. The preconditioner (or the product of the left and right preconditioners if both are nontrivial) should
be an approximation to the system mass matrix M ().

Notes:

1. If the user’s FARKMASSPSOL () uses an iterative method in its solution, the residual vector p = r — Pz of the
system should be made less than § = DELTA in the weighted 12 norm, i.e.

1/2
(Z (pi EWT»Q> <o,

i

2. If needed in FARKMTIMES (), FARKMTSETUP (), FARKMASSPSOL (), or FARKMASSPSET (), the error
weight array EWT can be obtained by calling FARKGETERRWEIGHTS () using a user-allocated array as tem-
porary storage for EWT.

3. If needed in FARKMTIMES (), FARKMTSETUP (), FARKMASSPSOL (), or FARKMASSPSET (), the unit
roundoff can be obtained as the optional output ROUT(6) (available after the call to FARKMALLOC ()) and
can be passed using either the RPAR user data array or a common block.

Problem solution

Carrying out the integration is accomplished by making calls to FARKODE ().

subroutine FARKODE (TOUT, T, Y, ITASK, IER)
Fortran interface to the C routine ARKode () for performing the solve, along with many of the ARK*Get*
routines for reporting on solver statistics.

Arguments:
e TOUT (realtype, input) — next value of ¢ at which a solution is desired.
e T (realtype, output) — value of independent variable that corresponds to the output Y
* Y (realtype, output) — array containing dependent state variables on output.
e ITASK (int, input) — task indicator :

— 1 = normal mode (overshoot TOUT and interpolate)

2 = one-step mode (return after each internal step taken)

3 = normal ‘tstop’ mode (like 1, but integration never proceeds past TSTOP, which must be
specified through a preceding call to FARKSETRIN () using the key STOP_TIME)

4 = one step ‘tstop’ mode (like 2, but integration never goes past 7TSTOP).

5.2. Fortran Data Types 139

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

 [ER (int, output) — completion flag:

— 0 = success,

1 = tstop return,

— 2 =root return,

values -1, ..., -10 are failure modes (see ARKode () and Appendix: ARKode Constants).

Notes: The current values of the optional outputs are immediately available in /JOUT and ROUT upon return
from this function (see Table: Optional FARKODE integer outputs and Table: Optional FARKODE real outputs).

A full description of error flags and output behavior of the solver (values filled in for 7" and Y) is provided in the
description of ARKode ().

Additional solution output
After a successful return from FARKODE (), the routine FARKDKY () may be used to obtain a derivative of the
solution, of order up to 3, at any ¢ within the last step taken.

subroutine FARKDKY (7, K, DKY, IER)
Fortran interface to the C routine ARKDKY () for interpolating output of the solution or its derivatives at any
point within the last step taken.

Arguments:
* T (realtype, input) — time at which solution derivative is desired, within the interval [t,, — h, t,,].
* K (int, input) — derivative order (0 < k < 3).
* DKY (realtype, output) — array containing the computed K-th derivative of y.

e IER (int, output) — return flag (0 if success, <0 if an illegal argument).

Problem reinitialization

To re-initialize the ARKode solver for the solution of a new problem of the same size as one already solved, the user
must call FPARKREINIT ():

subroutine FARKREINIT (70, YO0, IMEX, IATOL, RTOL, ATOL, IER)
Re-initializes the Fortran interface to the ARKode solver.

Arguments: The arguments have the same names and meanings as those of FARKMALLOC ().

Notes: This routine performs no memory allocation, instead using the existing memory created by the previous
FARKMALLOC () call. The call to specify the linear system solution method may or may not be needed.

Following a call to FARKREINIT () if the choice of linear solver is being changed then a user must make a call to
create the alternate SUNLINSOL module and then attach it to the ARKDLS or ARKSPILS interface, as shown above.
If only linear solver parameters are being modified, then these calls may be made without re-attaching to the ARKDLS
or ARKSPILS interface.

Resizing the ODE system

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when solving a
spatially-adaptive PDE), the FARKODE () integrator may be “resized” between integration steps, through calls to the
FARKRESIZE () function, that interfaces with the C routine ARKodeResize (). This function modifies ARKode’s
internal memory structures to use the new problem size, without destruction of the temporal adaptivity heuristics.

140 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

It is assumed that the dynamical time scales before and after the vector resize will be comparable, so that all time-
stepping heuristics prior to calling FARKRESIZE () remain valid after the call. If instead the dynamics should be
re-calibrated, the FARKODE memory structure should be deleted with a call to FARKFREE (), and re-created with a
call to FARKMALLOC ().

subroutine FARKRESIZE (70, YO, HSCALE, ITOL, RTOL, ATOL, IER)
Re-initializes the Fortran interface to the ARKode solver for a differently-sized ODE system.

Arguments:
* 70 (realtype, input) — initial value of the independent variable ¢.
* Y0 (realtype, input) — array of dependent-variable initial conditions.
e HSCALE (realtype, input) — desired step size scale factor:
— 1.0 is the default,
— any value <= 0.0 results in the default.

* ITOL (int, input) — flag denoting that a new relative tolerance and vector of absolute tolerances are
supplied in the RTOL and ATOL arguments:

— 0 = retain the current scalar-valued relative and absolute tolerances, or the user-supplied error
weight function, FARKEWT ().

— 1 = RTOL contains the new scalar-valued relative tolerance and ATOL contains a new array of
absolute tolerances.

* RTOL (realtype, input) — scalar relative tolerance.
* ATOL (realtype, input) — array of absolute tolerances.
e [ER (int, output) — return flag (0 success, # 0 failure).

Notes: This routine performs the opposite set of of operations as FARKREINIT (): it does not reinitialize any
of the time-step heuristics, but it does perform memory reallocation.

Following a call to FARKRESIZE (), the internal data structures for all linear solver and matrix objects will be the
incorrect size. Hence, calls must be made to re-create the linear system solver, mass matrix solver, linear system
matrix, and mass matrix, followed by calls to attach the updated objects to the ARKDLS or ARKSPILS interfaces.

If any user-supplied linear solver helper routines were used (Jacobian evaluation, Jacobian-vector product, mass matrix
evaluation, mass-matrix-vector product, preconditioning, etc.), then the relevant “set” routines to specify their usage
must be called again following the re-specification of the linear solver module(s).

Memory deallocation

To free the internal memory created by FARKMALLOC (), FARKDLSINIT()/FARKSPILSINIT(),
FARKDLSMASSINIT ()/FARKSPILSMASSINIT (), and the SUNMATRIX and SUNLINSOL objects, the
user may call FARKFREE (), as follows:

subroutine FARKFREE ()
Frees the internal memory created by FARKMALLOC ().

Arguments: None.

5.2.3 FARKODE optional output

We note that the optional inputs to FARKODE have already been described in the section Setting optional inputs.

5.2. Fortran Data Types 141

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

IOUT and ROUT arrays

In the Fortran interface, the optional outputs from the FARKODE () solver are accessed not through individual func-
tions, but rather through a pair of user-allocated arrays, IOUT (having long int type) of dimension at least 29, and
ROUT (having realtype type) of dimension at least 6. These arrays must be allocated by the user program that
calls FARKODE (), that passes them through the Fortran interface as arguments to FARKMALLOC (). Following this
call, FARKODE () will modify the entries of these arrays to contain all optional output values provided to a Fortran
user.

In the following tables, Table: Optional FARKODE integer outputs and Table: Optional FARKODE real outputs, we
list the entries in these arrays by index, naming them according to their role with the main ARKode solver, and list
the relevant ARKode C/C++ function that is actually called to extract the output value. Similarly, optional integer
output values that are specific to the ARKDLS linear solver interface are listed in Table: Optional ARKDLS interface
outputs, while integer optional output values specific to the ARKSPILS iterative linear solver interface are listed in
Table: Optional ARKSPILS interface outputs.

For more details on the optional inputs and outputs to ARKode, see the sections Optional input functions and Optional
output functions.

Table: Optional FARKODE integer outputs

IOUT Index | Optional output | ARKode function

1 LENRW ARKodeGetWorkSpace ()

2 LENIW ARKodeGetWorkSpace ()

3 NST ARKodeGetNumSteps ()

4 NST_STB ARKodeGetNumExpSteps ()

5 NST_ACC ARKodeGetNumAccSteps ()

6 NST_ATT ARKodeGetNumStepAttempts ()

7 NFE ARKodeGetNumRhsEvals () (num fg calls)
8 NFI ARKodeGetNumRhsEvals () (num fr calls)

9 NSETUPS ARKodeGetNumLinSolvSetups ()

10 NETF ARKodeGetNumErrTestFails ()

11 NNI ARKodeGetNumNonlinSolvIters ()

12 NCFN ARKodeGetNumNonlinSolvConvFails ()
13 NGE ARKodeGetNumGEvals ()

Table: Optional FARKODE real outputs

ROUT Index | Optional output | ARKode function
1 HOU ARKodeGetActualInitStep ()
2 HU ARKodeGetLastStep ()
3 HCUR ARKodeGetCurrentStep ()
4 TCUR ARKodeGetCurrentTime ()
5 TOLSF ARKodeGetTolScaleFactor ()
6 UROUND UNIT_ROUNDOFTF (see the section Data Types)
142 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v2.1.1

(SUNDIALS v3.1.1),

Table: Optional ARKDLS interface outputs

IOUT Index | Optional output | ARKode function

14 LENRWLS ARKD1sGetWorkSpace ()
15 LENIWLS ARKDIsGetWorkSpace ()

16 LSTF ARKDIsGetLastFlag()

17 NFELS ARKD1sGetNumRhsEvals ()
18 NIJE ARKD1sGetNumJacEvals ()

Table: Optional ARKDLS mass interface outputs

IOUT Index | Optional output | ARKode function

23 LENRWMS ARKD1sGetMassWorkSpace ()
24 LENIWMS ARKD1sGetMassWorkSpace ()
25 LSTMF ARKD1sGetLastMassFlag ()
26 NMSET ARKD1sGetNumMassSetups ()
27 NMSOL ARKD1sGetNumMassSolves ()
28 NMMUL ARKD1sGetNumMassMult ()

Table: Optional ARKSPILS interface outputs

IOUT Index | Optional output | ARKode function

14 LENRWLS ARKSpilsGetWorkSpace ()

15 LENIWLS ARKSpilsGetWorkSpace ()

16 LSTF ARKSpilsGetLastFlag ()

17 NFELS ARKSpilsGetNumRhsEvals ()

18 NITV ARKSpilsGetNumJtimesEvals ()
19 NPE ARKSpilsGetNumPrecEvals ()
20 NPS ARKSpilsGetNumPrecSolves ()
21 NLI ARKSpilsGetNumLinIters ()

22 NCFL ARKSpilsGetNumConvFails ()

Table: Optional ARKSPILS mass interface outputs

IOUT Index | Optional output | ARKode function

23 LENRWMS ARKSpilsGetMassWorkSpace ()

24 LENIWMS ARKSpilsGetMassWorkSpace ()

25 LSTMF ARKSpilsGetLastMassFlaqg /()

26 NMPE ARKSpilsGetNumMassPrecEvals ()
27 NMPS ARKSpilsGetNumMassPrecSolves ()
28 NMLI ARKSpilsGetNumMassIters ()

29 NMCFL ARKSpilsGetNumMassConvFails ()

Additional optional output routines

In addition to the optional inputs communicated through FARKSET* calls and the optional outputs extracted from
IOUT and ROUT, the following user-callable routines are available.

5.2. Fortran Data Types

143

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

To obtain the error weight array EWT, containing the multiplicative error weights used in the WRMS norms, the user
may call the routine FARKGETERRWEIGHTS () as follows:

subroutine FARKGETERRWEIGHTS (EWT, IER)
Retrieves the current error weight vector (interfaces with ARKodeGetErrieights ()).

Arguments:
* EWT (realtype, output) — array containing the error weight vector.
¢ IER (int, output) — return flag (O if success, # 0 if an error).
Notes: The array EWT must have already been allocated by the user, of the same size as the solution array Y.

Similarly, to obtain the estimated local truncation errors, following a successful call to FARKODE (), the user may call
the routine FARKGETESTLOCALERR () as follows:

subroutine FARKGETESTLOCALERR (ELE, IER)
Retrieves the current local truncation error estimate vector (interfaces with
ARKodeGetEstLocalErrors ()).

Arguments:
e ELE (realtype, output) — array with the estimated local truncation error vector.
e [ER (int, output) — return flag (0 if success, # 0 if an error).

Notes: The array ELE must have already been allocated by the user, of the same size as the solution array Y.

5.2.4 Usage of the FARKROOT interface to rootfinding

The FARKROOT interface package allows programs written in Fortran to use the rootfinding feature of the ARKode
solver module. The user-callable functions in FARKROOT, with the corresponding ARKODE functions, are as fol-
lows:

e FARKROOTINIT () interfaces to ARKodeRootInit (),
e FARKROOTINFO () interfaces to ARKodeGetRootInfo (), and

* FARKROOTFREE () interfaces to ARKodeRootInit (), freeing memory by calling the initializer with no
root functions.

Note that at this time, FARKROOT does not provide support to specify the direction of zero-crossing that is to be
monitored. Instead, all roots are considered. However, the actual direction of zero-crossing may be captured by the
user through monitoring the sign of any non-zero elements in the array INFO returned by FARKROOTINFO ().

In order to use the rootfinding feature of ARKode, after calling FARKMALLOC () but prior to calling FARKODE (),
the user must call FARKROOTINIT () to allocate and initialize memory for the FARKROOT module:

subroutine FARKROOTINIT (NRTFEN, IER)
Initializes the Fortran interface to the FARKROOT module.

Arguments:
* NRTFN (int, input) — total number of root functions.

e JER (int, output) — return flag (O success, -1 if ARKode memory is NULL, and -11 if a memory
allocation error occurred).

If rootfinding is enabled, the user must specify the functions whose roots are to be found. These rootfinding functions
should be implemented in the user-supplied FARKROOTEN () subroutine:

144 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

subroutine FARKROOTFEN (7, Y, G, IPAR, RPAR, IER)
User supplied function implementing the vector-valued function g(t, y) such that the roots of the NRTFN com-
ponents g; (¢, y) = 0 are sought.

Arguments:
* T (realtype, input) — independent variable value ¢.
* Y (realtype, input) — dependent variable array y.
* G (realtype, output) — function value array g(t,y).

* IPAR (long int, input/output) — integer user data array, the same as the array passed to
FARKMALLOC ().

* RPAR (realtype, input/output) — real-valued user data array, the same as the array passed to
FARKMALLOC ().

* [ER (int, output) — return flag (0 success, < 0 if error).

When making calls to FARKODE () to solve the ODE system, the occurrence of a root is flagged by the return value
IER = 2. In that case, if NRTFN > 1, the functions g; (¢, y) which were found to have a root can be identified by calling
the routine FARKROOTINFO ():

subroutine FARKROOTINFO (NRTFN, INFO, IER)
Initializes the Fortran interface to the FARKROOT module.

Arguments:
e NRTFN (int, input) — total number of root functions.

* INFO (int, input/output) — array of length NRTFN with root information (must be allocated by the
user). For each index, i = 1, ..., NRTFN:

— INFO(i) = 1if g;(t,y) was found to have a root, and g; is increasing.
- INFO(i) = -1 if g;(t, y) was found to have a root, and g; is decreasing.
— INFO(i) = 0 otherwise.

e JER (int, output) — return flag (0 success, < 0 if error).

The total number of calls made to the root function FARKROOTFEN (), denoted NGE, can be obtained from IOUT(12).
If the FARKODE/ARKode memory block is reinitialized to solve a different problem via a call to FARKREINIT (),
then the counter NGE is reset to zero.

Lastly, to free the memory resources allocated by a prior call to FARKROOTINIT (), the user must make a call to
FARKROOTFREE ():

subroutine FARKROOTFREE ()
Frees memory associated with the FARKODE rootfinding module.

5.2.5 Usage of the FARKODE interface to built-in preconditioners
The FARKODE interface enables usage of the two built-in preconditioning modules ARKBANDPRE and ARKBBD-

PRE. Details on how these preconditioners work are provided in the section Preconditioner modules. In this section,
we focus specifically on the Fortran interface to these modules.

Usage of the FARKBP interface to ARKBANDPRE

The FARKBP interface module is a package of C functions which, as part of the FARKODE interface module, support
the use of the ARKode solver with the serial or threaded NVector modules (The NVECTOR_SERIAL Module, The

5.2. Fortran Data Types 145

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

NVECTOR_OPENMP Module or The NVECTOR_PTHREADS Module), and the combination of the ARKBANDPRE
preconditioner module (see the section A serial banded preconditioner module) with the ARKSPILS interface and any
of the Krylov iterative linear solvers.

The two user-callable functions in this package, with the corresponding ARKode function around which they wrap,
are:

e FARKBPINIT () interfaces to ARKBandPrecInit ().

e FARKBPOPT () interfaces to the ARKBANDPRE optional output functions,
ARKBandPrecGetWorkSpace () and ARKBandPrecGetNumRhsEvals ().

As with the rest of the FARKODE routines, the names of the user-supplied routines are mapped to actual values
through a series of definitions in the header file farkbp.h.

The following is a summary of the usage of this module. Steps that are unchanged from the main program described
in the section Usage of the FARKODE interface module are italicized.

1. Right-hand side specification
2. NVECTOR module initialization
3. SUNLINSOL module initialization

Initialize one of the iterative SUNLINSOL modules, by calling one of FSUNPCGINIT, FSUNSPBCGSINIT,
FSUNSPFGMRINIT, FSUNSPGMRINIT or FSUNSPTFQMRINIT, supplying an argument to specify that the
SUNLINSOL module should utilize left or right preconditioning.

4. Problem specification
5. Set optional inputs
6. Linear solver interface specification
First, initialize the ARKSPILS iterative linear solver interface by calling FARKSPTILSINIT ().

Optionally, to specify that ARKSPILS should use the supplied FARKJTIMES () and FARKJTSETUP () rou-
tines, the user should call FARKSPTLSSETJAC () with FLAG # 0, as described in the section ARKSPILS
iterative linear solver interface.

Then, to initialize the ARKBANDPRE preconditioner, call the routine FARKBPINIT (), as follows:

subroutine FARKBPINIT (NEQ, MU, ML, IER)
Interfaces with the ARKBandPrecInit () function to allocate memory and initialize data associated
with the ARKBANDPRE preconditioner.

Arguments:
* NEQ (long int, input) — problem size.

* MU (long int, input) —upper half-bandwidth of the band matrix that is retained as an approx-
imation of the Jacobian.

* ML(long int,input)-lower half-bandwidth of the band matrix approximation to the Jacobian.
* [ER (int, output) — return flag (0 if success, -1 if a memory failure).

7. Problem solution

8. ARKBANDPRE optional outputs

Optional outputs specific to the ARKSPILS interface are listed in Table: Optional ARKSPILS interface out-
puts. To obtain the optional outputs associated with the ARKBANDPRE module, the user should call the
FARKBPOPT (), as specified below:

146 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v2.1.1

(SUNDIALS v3.1.1),
subroutine FARKBPOPT (LENRWBP, LENIWBP, NFEBP)
Interfaces with the ARKBANDPRE optional output functions.
Arguments:
* LENRWBP (long int, output) — length of real preconditioner work space (from

ARKBandPrecGetWorkSpace ()).

* LENIWBP (long int, output) — length of integer preconditioner work space, in integer words
(from ARKBandPrecGetWorkSpace ()).

* NFEBP (long int,

output) — number

ARKBandPrecGetNumRhsEvals ())

9. Additional solution output
10. Problem reinitialization

11. Memory deallocation

of

fr(t,y) evaluations

(The memory allocated for the FARKBP module is deallocated automatically by FARKFREE ())

Usage of the FARKBBD interface to ARKBBDPRE

(from

The FARKBBD interface module is a package of C functions which, as part of the FARKODE interface module,
support the use of the ARKode solver with the parallel vector module (7h¢e NVECTOR_PARALLEL Module), and the
combination of the ARKBBDPRE preconditioner module (see the section A parallel band-block-diagonal precondi-
tioner module) with any of the Krylov iterative linear solvers.

The user-callable functions in this package, with the corresponding ARKode and ARKBBDPRE functions, are as

follows:

e FARKBBDINIT () interfaces to ARKBBDPrecInit ().

e FARKBBDREINIT () interfaces to ARKBBDPrecReInit ().

* FARKBBDOPT () interfaces to the ARKBBDPRE optional output functions.

In addition to the functions required for general FARKODE usage, the user-supplied functions required by this pack-
age are listed in the table below, each with the corresponding interface function which calls it (and its type within

ARKBBDPRE or ARKode).
Table: FARKBBD function mapping

FARKBBD routine (FORTRAN,
user-supplied)

ARKode routine (C,
interface)

ARKode interface function
type

FARKGLOCFN () FARKgloc ARKLocalFn ()

FARKCOMMEFN () FARKcfn ARKCommFn ()

FARKJTIMES () FARKIJtimes ARKSpilsJacTimesVecFn ()
FARKJTSETUP () FARKIJTSetup ARKSpilsJacTimesSetupFn

As with the rest of the FARKODE routines, the names of all user-supplied routines here are fixed, in order to maximize
portability for the resulting mixed-language program. Additionally, based on flags discussed above in the section
FARKODE routines, the names of the user-supplied routines are mapped to actual values through a series of definitions

in the header file farkbbd.h.

The following is a summary of the usage of this module. Steps that are unchanged from the main program described
in the section Usage of the FARKODE interface module are italicized.

1. Right-hand side specification
2. NVECTOR module initialization

5.2. Fortran Data Types

147

()

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

SUNLINSOL module initialization

Initialize one of the iterative SUNLINSOL modules, by calling one of FSUNPCGINIT, FSUNSPBCGSINIT,
FSUNSPFGMRINIT, FSUNSPGMRINIT or FSUNSPTFQMRINIT, supplying an argument to specify that the
SUNLINSOL module should utilize left or right preconditioning.

Problem specification

Set optional inputs

Linear solver interface specification

First, initialize the ARKSPILS iterative linear solver interface by calling FARKSPILSINIT ().

Optionally, to specify that ARKSPILS should use the supplied FARKJTIMES () and FARKJTSETUP () rou-
tines, the user should call FARKSPTLSSETJAC () with FLAG # 0, as described in the section ARKSPILS
iterative linear solver interface.

Then, to initialize the ARKBBDPRE preconditioner, call the function FARKBBDINIT (), as described below:

subroutine FARKBBDINIT (NLOCAL, MUDQ, MLDQ, MU, ML, DQRELY, IER)
Interfaces with the ARKBBDPrecInit () routine to initialize the ARKBBDPRE preconditioning mod-
ule.

Arguments:
* NLOCAL (long 1int, input) — local vector size on this process.

* MUDQ (long int, input) — upper half-bandwidth to be used in the computation of the local
Jacobian blocks by difference quotients. These may be smaller than the true half-bandwidths of
the Jacobian of the local block of g, when smaller values may provide greater efficiency.

* MLDQ (long int, input) — lower half-bandwidth to be used in the computation of the local
Jacobian blocks by difference quotients.

* MU (long int, input)— upper half-bandwidth of the band matrix that is retained as an approx-
imation of the local Jacobian block (may be smaller than MUDQ).

* ML (long int, input) — lower half-bandwidth of the band matrix that is retained as an approx-
imation of the local Jacobian block (may be smaller than MLDQ).

* DORELY (realtype, input) — relative increment factor in y for difference quotients (0.0 indi-
cates to use the default).

* [ER (int, output) — return flag (0 if success, -1 if a memory failure).

7. Problem solution

8. ARKBBDPRE optional outputs

Optional outputs specific to the ARKSPILS interface are listed in Table: Optional ARKSPILS interface outputs.
To obtain the optional outputs associated with the ARKBBDPRE module, the user should call FARKBBDOPT (),
as specified below:

subroutine FARKBBDOPT (LENRWBBD, LENIWBBD, NGEBBD)
Interfaces with the ARKBBDPRE optional output functions.

Arguments:

* LENRWBP (long 1int, output) — length of real preconditioner work space on this process (from
ARKBBDPrecGetWorkSpace ()).

* LENIWBP (long int, output) — length of integer preconditioner work space on this process
(from ARKBBDPrecGetWorkSpace ()).

148

Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* NGEBBD (long int, output) - number of g(¢t,y) evaluations (from
ARKBBDPrecGetNumGfnEvals ()) so far.

9. Additional solution output
10. Problem reinitialization

If a sequence of problems of the same size is being solved using the same linear solver in combination with the
ARKBBDPRE preconditioner, then the ARKode package can be re-initialized for the second and subsequent
problems by calling FARKREINIT (), following which a call to FARKBBDREINIT () may or may not be
needed. If the input arguments are the same, no FARKBBDREINIT () call is needed.

If there is a change in input arguments other than MU or ML, then the user program should call
FARKBBDREINIT () as specified below:

subroutine FARKBBDREINIT (NLOCAL, MUDQ, MLDQ, DORELY, IER)
Interfaces with the ARKBBDPrecReInit () function to reinitialize the ARKBBDPRE module.

Arguments: The arguments of the same names have the same meanings as in FARKBBDINIT ().
However, if the value of MU or ML is being changed, then a call to FARKBBDINIT () must be made instead.

Finally, if there is a change in any of the linear solver inputs, then a call to one of FSUNSPGMRINIT (),
FSUNSPBCGSINIT (), FSUNSPTFQMRINIT (), FSUNSPFGMRINIT () or FSUNPCGINIT (), followed
by acall to FARKSPILSINIT () must also be made; in this case the linear solver memory is reallocated.

11. Problem resizing

If a sequence of problems of different sizes (but with similar dyanamical time scales) is being solved using the
same linear solver (SPGMR, SPBCG, SPTFQMR, SPFGMR or PCG) in combination with the ARKBBDPRE
preconditioner, then the ARKode package can be re-initialized for the second and subsequent problems by
calling FARKRESTIZE (), following which a call to FARKBBDINIT () is required to delete and re-allocate the
preconditioner memory of the correct size.

subroutine FARKBBDREINIT (NLOCAL, MUDQ, MLDQ, DORELY, IER)
Interfaces with the ARKBBDPrecReInit () function to reinitialize the ARKBBDPRE module.

Arguments: The arguments of the same names have the same meanings as in FARKBBDINIT ().
However, if the value of MU or ML is being changed, then a call to FARKBBDINIT () must be made instead.

Finally, if there is a change in any of the linear solver inputs, then a call to one of FSUNSPGMRINIT (),
FSUNSPBCGSINIT (), FSUNSPTFQMRINIT (), FSUNSPFGMRINIT () or FSUNPCGINIT (), followed
by acall to FARKSPILSINIT () must also be made; in this case the linear solver memory is reallocated.

12. Memory deallocation

(The memory allocated for the FARKBBD module is deallocated automatically by FARKFREE ()).
13. User-supplied routines

The following two routines must be supplied for use with the ARKBBDPRE module:

subroutine FARKGLOCFEN (NLOC, T, YLOC, GLOC, IPAR, RPAR, IER)
User-supplied routine (of type ARKLocalFn ()) that computes a processor-local approximation g(t, y)
to the right-hand side function f (¢, y).

Arguments:
* NLOC (long int, input) — local problem size.
* T (realtype, input) — current value of the independent variable.
* YLOC (realtype, input) — array containing local dependent state variables.

* GLOC (realtype, output) — array containing local dependent state derivatives.

5.2. Fortran Data Types 149

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* IPAR (long int, input/output) — array containing integer user data that was passed to
FARKMALLOC ().

* RPAR (realtype, input/output) — array containing real user data that was passed to
FARKMALLOC ().

* [ER (int, output) — return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecov-
erable error occurred).

subroutine FARKCOMMEN (NLOC, T, YLOC, IPAR, RPAR, IER)
User-supplied routine (of type ARKCommFn ()) that performs all interprocess communication necessary
for the executation of the FARKGLOCFN () function above, using the input vector YLOC.

Arguments:
* NLOC (long int, input) — local problem size.
* T (realtype, input) — current value of the independent variable.
* YLOC (realtype, input) — array containing local dependent state variables.

* [PAR (long int, input/output) — array containing integer user data that was passed to
FARKMALLOC ().

* RPAR (realtype, input/output) — array containing real user data that was passed to
FARKMALLOC ().

* [ER (int, output) — return flag (O if success, >0 if a recoverable error occurred, <0 if an unrecov-
erable error occurred).

Notes: This subroutine must be supplied even if it is not needed, and must return /ER = 0.

150 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

CHAPTER
SIX

VECTOR DATA STRUCTURES

The SUNDIALS library comes packaged with a variety of NVECTOR implementations, designed for simulations
in serial, shared-memory parallel, and distributed-memory parallel environments, as well as interfaces to vector data
structures used within external linear solver libraries. All native implementations assume that the process-local data is
stored contiguously, and they in turn provide a variety of standard vector algebra operations that may be performed on
the data.

In addition, SUNDIALS provides a simple interface for generic vectors (akin to a C++ abstract base class). All of
the major SUNDIALS solvers (CVODE(s), IDA(s), KINSOL, ARKODE) in turn are constructed to only depend on
these generic vector operations, making them immediately extensible to new user-defined vector objects. The only
exceptions to this rule relate to the dense, banded and sparse-direct linear system solvers, since they rely on particular
data storage and access patterns in the NVECTORS used.

6.1 Description of the NVECTOR Modules

The SUNDIALS solvers are written in a data-independent manner. They all operate on generic vectors (of type
N_Vector) through a set of operations defined by, and specific to, the particular NVECTOR implementation. Users
can provide a custom implementation of the NVECTOR module or use one of four provided within SUNDIALS - a
serial and three parallel implementations. The generic operations are described below. In the sections following, the
implementations provided with SUNDIALS are described.

The generic N_Vector type is a pointer to a structure that has an implementation-dependent content field containing
the description and actual data of the vector, and an ops field pointing to a structure with generic vector operations.
The type N_Vector is defined as:

typedef struct _generic_N_Vector xN_Vector;

struct _generic_N_Vector ({

void *content;

struct _generic_N_Vector_Ops xops;
by

Here, the _generic_N_Vector_Op structure is essentially a list of function pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {
N_Vector_ID (*nvgetvectorid) (N_Vector);
N_Vector (#nvclone) (N_Vector);
N_Vector (#nvcloneempty) (N_Vector);
void (xnvdestroy) (N_Vector) ;
(
(
(

void *nvspace) (N_Vector, sunindextype *, sunindextype x);
realtypex snvgetarraypointer) (N_Vector);
void +*nvsetarraypointer) (realtype *, N_Vector);

151

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

void +*nvlinearsum) (realtype, N_Vector, realtype, N_Vector, N_Vector);
void snvconst) (realtype, N_Vector);

void *nvprod) (N_Vector, N_Vector, N_Vector);

void +nvdiv) (N_Vector, N_Vector, N_Vector);

void *nvscale) (realtype, N_Vector, N_Vector);

void *nvabs) (N_Vector, N_Vector);

void +nvinv) (N_Vector, N_Vector);

void +*nvaddconst) (N_Vector, realtype, N_Vector);

realtype *nvdotprod) (N_Vector, N_Vector);

(
(
(
(
(
(
(
(
(
realtype (»nvmaxnorm) (N_Vector) ;
(
(
(
(
(
(
(
(
(

realtype *nvwrmsnorm) (N_Vector, N_Vector);

realtype snvwrmsnormmask) (N_Vector, N_Vector, N_Vector);
realtype +nvmin) (N_Vector) ;

realtype +nvwl2norm) (N_Vector, N_Vector);

realtype +*nvllnorm) (N_Vector);

void x*nvcompare) (realtype, N_Vector, N_Vector);
booleantype (*nvinvtest) (N_Vector, N_Vector);

booleantype (*nvconstrmask) (N_Vector, N_Vector, N_Vector);
realtype xnvminquotient) (N_Vector, N_Vector);

}i

The generic NVECTOR module defines and implements the vector operations acting on a N_Vector. These routines
are nothing but wrappers for the vector operations defined by a particular NVECTOR implementation, which are
accessed through the ops field of the N_Vector structure. To illustrate this point we show below the implementation
of a typical vector operation from the generic NVECTOR module, namely N_VScale, which performs the scaling of
a vector x by a scalar c:

void N_VScale(realtype c¢, N_Vector x, N_Vector z) {
z—>ops—>nvscale(c, x, z);

}

The subsection Description of the NVECTOR operations contains a complete list of all vector operations defined
by the generic NVECTOR module. Finally, we note that the generic NVECTOR module defines the functions
N_VCloneVectorArray and N_VCloneVectorArrayEmpty. Both functions create (by cloning) an array
of count variables of type N_Vector, each of the same type as an existing N_Vector. Their prototypes are:

N_Vector xN_VCloneVectorArray (int count, N_Vector w);
N_Vector xN_VCloneVectorArrayEmpty (int count, N_Vector w);

and their definitions are based on the implementation-specific N_VClone and N_VCloneEmpty operations, respec-
tively.

Similarly, an array of variables of type N_Vector can be destroyed by calling N_VDestroyVectorArray, whose
prototype is

void N_VDestroyVectorArray (N_Vector =*vs, int count);

and whose definition is based on the implementation-specific N_VDest roy operation.
In particular, any implementation of the NVECTOR module must:
* Specify the content field of the N_Vector.

* Define and implement the necessary vector operations. Note that the names of these routines should be unique to
that implementation in order to permit using more than one NVECTOR module (each with different N_Vector
internal data representations) in the same code. We further note that not all of the defined operations are required
for each solver in SUNDIALS. The list of required operations for use with ARKode is given in the section
NVECTOR functions required by ARKode.

152 Chapter 6. Vector Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* Define and implement user-callable constructor and destructor routines to create and free a N_Vector with the
new content field and with ops pointing to the new vector operations.

 Optionally, define and implement additional user-callable routines acting on the newly defined N_Vector (e.g.,
a routine to print the content for debugging purposes).

 Optionally, provide accessor macros as needed for that particular implementation to be used to access different
parts in the content field of the newly defined N_Vector.

Each NVECTOR implementation included in SUNDIALS has a unique identifier specified in enumeration
and shown in the table below. It is recommended that a user supplied NVECTOR implementation use the
SUNDIALS_NVEC_CUSTOM identifier.

6.1.1 Vector Identifications associated with vector kernels supplied with SUNDI-

ALS
Vector ID Vector type ID Value
SUNDIALS_NVEC_SERIAL Serial

SUNDIALS_NVEC_PARALLEL | Distributed memory parallel (MPI)
SUNDIALS_NVEC_OPENMP OpenMP shared memory parallel
SUNDIALS_NVEC_PTHREADS | PThreads shared memory parallel
SUNDIALS_NVEC_PARHYP hypre ParHyp parallel vector
SUNDIALS_NVEC_PETSC PETSc parallel vector
SUNDIALS_NVEC_CUSTOM User-provided custom vector

NN AW =IO

6.2 Description of the NVECTOR operations

For each of the N_Vector operations, we give the name, usage of the function, and a description of its mathematical
operations below.

N_Vector_ID N_VGetVectorID (N_Vector w)
Returns the vector type identifier for the vector w. It is used to determine the vector implementation type (e.g.
serial, parallel, ...) from the abstract N_Vector interface. Returned values are given in the table, Vecror
Identifications associated with vector kernels supplied with SUNDIALS

Usage:

id = N_VGetVectorID (w);

N_Vector N_VClone (N_Vector w)
Creates a new N_Vector of the same type as an existing vector w and sets the ops field. It does not copy the
vector, but rather allocates storage for the new vector.

Usage:

v = N_VClone (w);

N_Vector N_VCloneEmpty (N_Vector w)
Creates a new N_Vector of the same type as an existing vector w and sets the ops field. It does not allocate
storage for the new vector’s data.

Usage:

v = N VCloneEmpty (w) ;

6.2. Description of the NVECTOR operations 153

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

void N_VDestroy (N_Vector v)
Destroys the N_Vector v and frees memory allocated for its internal data.

Usage:

N_VDestroy (v) ;

void N_VSpace (N_Vector v, sunindextype* [rw, sunindextype* liw)
Returns storage requirements for the N_Vector v: Irw contains the number of realtype words and liw
contains the number of integer words. This function is advisory only, for use in determining a user’s total space
requirements; it could be a dummy function in a user-supplied NVECTOR module if that information is not of
interest.

Usage:

N_VSpace (nvSpec, &lrw, &liw);

realtype* N_VGetArrayPointer (N_Vector v)
Returns a pointer to a realtype array from the N_Vector v. Note that this assumes that the internal data in
the N_Vector is a contiguous array of realtype. This routine is only used in the solver-specific interfaces to
the dense and banded (serial) linear solvers, and in the interfaces to the banded (serial) and band-block-diagonal
(parallel) preconditioner modules provided with SUNDIALS.

Usage:

vdata = NVGetArrayPointer (v);

void N_VSetArrayPointer (realtype* vdata, N_Vector v)
Replaces the data array pointer in an N_Vector with a given array of realtype. Note that this assumes
that the internal data in the N_Vector is a contiguous array of realtype. This routine is only used in the
interfaces to the dense (serial) linear solver, hence need not exist in a user-supplied NVECTOR module.

Usage:

NVSetArrayPointer (vdata,v) ;

void N_VLinearSum (realtype a, N_Vector x, realtype b, N_Vector y, N_Vector z)
Performs the operation z = ax + by, where a and b are realtype scalars and x and y are of type N_Vector:

zi=ax; +by;, i=1,...,n.

Usage:

N_VLinearSum(a, X, b, y, z);

void N_VConst (realtype ¢, N_Vector z)
Sets all components of the N_Vector zto realtype c:

Usage:

N_VConst (c, z);

void N_VProd (N_Vector x, N_Vector y, N_Vector z)
Sets the N_Vector z to be the component-wise product of the N_Vector inputs x and y:

Zi =xYi, 1=1,...,n.

Usage:

154 Chapter 6. Vector Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

N_VProd(x, y, 2z);

void N_VDiwv (N_Vector x, N_Vector y, N_Vector z)
Sets the N_Vector zto be the component-wise ratio of the N_Vector inputs x and y:

Lq

Z; = y i:l,...,n.
Yi
The y; may not be tested for O values. It should only be called with a y that is guaranteed to have all nonzero
components.
Usage:

N_VDiv(x, vy, z);

void N_VScale (realtype ¢, N_Vector x, N_Vector z)
Scales the N_Vector x by the realtype scalar ¢ and returns the result in z:

zi=cx;, t=1,...,n.

Usage:

N_VScale(c, x, z);

void N_VAbs (N_Vector x, N_Vector z)
Sets the components of the N_Vector z to be the absolute values of the components of the N_Vector x:

y1:‘11|7 Z:].,,TL

Usage:

N_VAbs (x, z);

void N_VInv (N_Vector x, N_Vector z)
Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x:

Zi:1~0/xi7 i:l,...,n.

This routine may not check for division by 0. It should be called only with an x which is guaranteed to have all
nonzero components.

Usage:

N_VInv(x, z);

void N_VAddConst (N_Vector x, realtype b, N_Vector z)
Adds the realtype scalar b to all components of x and returns the result in the N_Vector z:

zi=x;+b, i=1,...,n.

Usage:

N_VAddConst (x, b, z);

realtype N_VDotProd (N_Vector x, N_Vector z)
Returns the value of the dot-product of the N_Vectors x and y:

n
i=1

Usage:

6.2. Description of the NVECTOR operations 155

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

d = N_VDotProd(x, vy);

realtype N_VMaxNorm (N_Vector x)
Returns the value of the [, norm of the N_Vector x:

m = max |z;|.
1<i<n

Usage:

m = N_VMaxNorm(x) ;

realtype N_VWrmsNorm (N_Vector x, N_Vector w)
Returns the weighted root-mean-square norm of the N_Vector x with (positive) realtype weight vector w:

n 1/2
m = (i Z (chwz)2> .

=1

Usage:

m = N_VWrmsNorm(x, w);

realtype N_VWrmsNormMask (N_Vector x, N_Vector w, N_Vector id)
Returns the weighted root mean square norm of the N_Vector x with (positive) realtype weight vector w
built using only the elements of x corresponding to nonzero elements of the N_Vector id:

" 1/2
m= (711 Z (miwisign(idi))2> .

i=1

m = N_VWrmsNormMask (x, w, id);

realtype N_VMin (N_Vector x)
Returns the smallest element of the N_Vector x:

m = min x;.
1<i<n

Usage:

m = N_VMin (x) ;

realtype N_VW12Norm (N_Vector x, N_Vector w)
Returns the weighted Euclidean /> norm of the N_Vector x with realtype weight vector w:

n 1/2
m = (Z (xiwi)z) .

i=1

Usage:

m = N_VWL2Norm(x, w);

realtype N_VL1Norm (N_Vector x)
Returns the {1 norm of the N_Vector x:

n
i=1

Usage:

156 Chapter 6. Vector Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

m = N_VLINorm(x) ;

void N_VCompare (realtype ¢, N_Vector x, N_Vector z)
Compares the components of the N_Vector x to the realtype scalar ¢ and returns an N_Vector z such
that forall 1 <7 <n,

P =

1.0 if |z;] > ¢,
0.0 otherwise

Usage:

N_VCompare (c, X, z);

booleantype N_VInvTest (N_Vector x, N_Vector z)
Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x, with prior
testing for zero values:

z;=10/x;, i=1,...,n.

This routine returns a boolean assigned to SUNTRUE if all components of x are nonzero (successful inversion)
and returns SUNFALSE otherwise.

Usage:

t = N_VInvTest (x, z);

booleantype N_VConstrMask (N_Vector ¢, N_Vector x, N_Vector m)
Performs the following constraint tests based on the values in ¢;:

x; > 0if ¢; = 2,
x; > 0if¢; =1,
z; < 0if ¢; = -2,
z; <0if ¢; = —1.

There is no constraint on z; if ¢; = 0. This routine returns a boolean assigned to SUNFALSE if any element
failed the constraint test and assigned to SUNTRUE if all passed. It also sets a mask vector m, with elements
equal to 1.0 where the constraint test failed, and 0.0 where the test passed. This routine is used only for constraint
checking.

Usage:

t = N_VConstrMask (c, x, m);

realtype N_VMinQuotient (N_Vector num, N_Vector denom)
This routine returns the minimum of the quotients obtained by termwise dividing the elements of n by the
elements in d:

num;
min ——.
i=1,...,n denom;
A zero element in denom will be skipped. If no such quotients are found, then the large value BIG_REAL

(defined in the header file sundials_types.h) is returned.

Usage:

‘ ming = N_VMinQuotient (num, denom);

6.2. Description of the NVECTOR operations 157

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

6.3 The NVECTOR_SERIAL Module

The serial implementation of the NVECTOR module provided with SUNDIALS, NVECTOR_SERIAL, defines the
content field of a N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a
contiguous data array, and a boolean flag own_data which specifies the ownership of data.

struct _N VectorContent_Serial {
sunindextype length;
booleantype own_data;
realtype *data;

}i

The header file to be included when using this module is nvector_serial.h.

The following five macros are provided to access the content of an NVECTOR_SERIAL vector. The suffix _S in the
names denotes the serial version.

NV_CONTENT_S (V)
This macro gives access to the contents of the serial vector N_Vector v.

The assignment v_cont = NV_CONTENT_S (v) sets v_cont to be a pointer to the serial N_Vector con-
tent structure.

Implementation:

#define NV_CONTENT S (v) ((N_VectorContent_Serial) (v—>content))

NV_OWN_DATA_S (V)
Access the own_data component of the serial N_Vector v.

Implementation:

#define NV_OWN_DATA S (v) (NV_CONTENT_S(v)->own_data)

NV_DATA S (v)
The assignment v_data = NV_DATA_S (v) sets v_data to be a pointer to the first component of the data
for the N_Vector v.

Similarly, the assignment NV_DATA_S (v) = v_data sets the component array of v to be v_data by stor-
ing the pointer v_data.

Implementation:

#define NV_DATA _S(v) (NV_CONTENT_S(v)->data)

NV_LENGTH_S (v)
Access the length component of the serial N_Vector v.

The assignment v_len = NV_LENGTH_S (v) sets v_1len to be the length of v. On the other hand, the call
NV_LENGTH_S (v) = len_wv sets the length of vtobe len_v.

Implementation:

#define NV_LENGTH_S(v) (NV_CONTENT_S (v)->length)

NV_Ith_S(v,1i)
This macro gives access to the individual components of the data array of an N_Vector, using standard O-based
C indexing.

The assignment r = NV_Ith_S (v, 1) sets r to be the value of the i-th component of v.

The assignment NV_TIth_S (v, 1) = r setsthe value of the i-th component of v to be r.

158 Chapter 6. Vector Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Here i ranges from O to n — 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,1i) (NV_DATA S(v)[i])

The NVECTOR_SERIAL module defines serial implementations of all vector operations listed in the section De-
scription of the NVECTOR operations. Their names are obtained from those in that section by appending the suffix
_Serial (e.g. N_VDestroy_Serial). The module NVECTOR_SERIAL provides the following additional user-
callable routines:

N_Vector N_VNew_Serial (sunindextype vec_length)
This function creates and allocates memory for a serial N_Vector. Its only argument is the vector length.

N_Vector N_VNewEmpty_Serial (sunindextype vec_length)
This function creates a new serial N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Serial (sunindextype vec_length, realtype* v_data)
This function creates and allocates memory for a serial vector with user-provided data array, v_data.

(This function does not allocate memory for v_data itself.)

N_Vector* N_VCloneVectorArray_ Serial (int count, N_Vector w)
This function creates (by cloning) an array of count serial vectors.

N_Vector* N_VCloneVectorArrayEmpty_ Serial (int count, N_Vector w)
This function creates (by cloning) an array of count serial vectors, each with an empty (*NULL) data array.

void N_VDestroyVectorArray Serial (N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_ Serial () or with N_VCloneVectorArrayEmpty Serial ().

sunindextype N_VGetLength_Serial (N_Vector v)
This function returns the number of vector elements.

void N_VPrint_Serial (N_Vector v)
This function prints the content of a serial vector to stdout.

void N_VPrintFile_Serial (N_Vector v, FILE *outfile)
This function prints the content of a serial vector to out file.

Notes

e When looping over the components of an N_Vector v, it is more efficient to first obtain the compo-
nent array via v_data = NV_DATA_S (v) and then access v_data [i] within the loop than it is to use
NV_Ith_S (v, i) within the loop.

e N _VNewEmpty_ Serial (), N_VMake_ Serial (), and N_VCloneVectorArrayEmpty_ Serial ()
set the field own_data to SUNFALSE. The functions N_VDestroy_Serial () and
N_VDestroyVectorArray_Serial () will not attempt to free the pointer data for any N_Vector
with own_data set to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the data pointer.

* To maximize efficiency, vector operations in the NVECTOR_SERIAL implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same length.

For solvers that include a Fortran interface module, the NVECTOR_SERIAL module also includes a Fortran-callable
function FNVINITS (code, NEQ, IER), to initialize this NVECTOR_SERIAL module. Here code is an input
solver id (1 for CVODE, 2 for IDA, 3 for KINSOL, 4 for ARKode); NEQ is the problem size (declared so as to match
Ctype long int); and IERis an error return flag equal O for success and -1 for failure.

6.3. The NVECTOR_SERIAL Module 159

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

6.4 The NVECTOR_PARALLEL Module

The NVECTOR_PARALLEL implementation of the NVECTOR module provided with SUNDIALS is based on MPL.
It defines the content field of a N_Vector to be a structure containing the global and local lengths of the vector, a
pointer to the beginning of a contiguous local data array, an MPI communicator, an a boolean flag own_data indicating
ownership of the data array data.

struct _N _VectorContent_Parallel {
sunindextype local_length;
sunindextype global_length;
booleantype own_data;
realtype =xdata;
MPI_Comm comm;

}i

The header file to be included when using this module is nvector_parallel.h.

The following seven macros are provided to access the content of a NVECTOR_PARALLEL vector. The suffix _P in
the names denotes the distributed memory parallel version.

NV_CONTENT_P (V)
This macro gives access to the contents of the parallel N_Vector v.

The assignment v_cont = NV_CONTENT_P (v) sets v_cont to be a pointer to the N_Vector content
structure of type struct N_VectorContent_Parallel.

Implementation:

#define NV_CONTENT P (v) ((N_VectorContent_Parallel) (v—>content))

NV_OWN_DATA_P (V)
Access the own_data component of the parallel N_Vector v.

Implementation:

#define NV_OWN_DATA P (v) (NV_CONTENT P (v)->own_data)

NV_DATA P (v)
The assignment v_data = NV_DATA_P (v) sets v_data to be a pointer to the first component of the lo-
cal_data for the N_Vector wv.

The assignment NV_DATA_P (v) = v_data sets the component array of v to be v_data by storing the
pointer v_data into data.

Implementation:

#define NV_DATA P (v) (NV_CONTENT_P (v)->data)

NV_LOCLENGTH_P (v)
The assignment v_1len = NV_LOCLENGTH_P (v) sets v_11len to be the length of the local part of v.

The call NV_LOCLENGTH_P (v) = llen_v setsthe local_length of vtobe 11len_v.

Implementation:

#define NV_LOCLENGTH_ P (v) (NV_CONTENT P (v)->local_length)

NV_GLOBLENGTH_P (V)
The assignment v_glen = NV_GLOBLENGTH_P (v) sets v_glen to be the global_length of the vector v.

The call NV_GLOBLENGTH_P (v) = glen_uv sets the global_length of v to be glen_v.

160 Chapter 6. Vector Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Implementation:

#define NV_GLOBLENGTH P (v) (NV_CONTENT P (v)->global_ length)

NV_COMM_P (v)
This macro provides access to the MPI communicator used by the parallel N_Vector v.

Implementation:

#define NV_COMM P (v) (NV_CONTENT P (v)->comm)

NV_Ith P (v,i)
This macro gives access to the individual components of the local_data array of an N_Vector.

The assignment r = NV_Ith_P (v, 1) sets r to be the value of the i-th component of the local part of v.
The assignment NV_Ith_P (v, 1) = r setsthe value of the i-th component of the local part of v to be r.
Here i ranges from O to n — 1, where n is the local_length.

Implementation:

#define NV_Ith P(v,i) (NV_DATA P(v)[i])

The NVECTOR_PARALLEL module defines parallel implementations of all vector operations listed in the section
Description of the NVECTOR operations. Their names are obtained from those that section by appending the suf-
fix _Parallel (e.g. N_VDestroy_Parallel). The module NVECTOR_PARALLEL provides the following
additional user-callable routines:

N_Vector N_VNew_Parallel (MPI_Comm comm, sunindextype local_length, sunindextype global_length)
This function creates and allocates memory for a parallel vector having global length global_length, having
processor-local length local_length, and using the MPI communicator comm.

N_Vector N_VNewEmpty_Parallel (MPI_Comm comm, sunindextype local_length, sunindex-
type global_length)
This function creates a new parallel N_Vector with an empty (NULL) data array.
N_Vector N_VMake Parallel (MPI_Comm comm, sunindextype local_length, sunindex-
type global_length, realtype* v_data)
This function creates and allocates memory for a parallel vector with user-provided data array.
(This function does not allocate memory for v_data itself.)

N_Vector* N_VCloneVectorArray Parallel (int count, N_Vector w)
This function creates (by cloning) an array of count parallel vectors.

N_Vector* N_VCloneVectorArrayEmpty_ Parallel (int count, N_Vector w)
This function creates (by cloning) an array of count parallel vectors, each with an empty (NULL) data array.

void N_VDestroyVectorArray Parallel (N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_ Parallel () orwith N VCloneVectorArrayEmpty Parallel ().

sunindextype N_VGetLength_Parallel (N_Vector v)
This function returns the number of vector elements (global vector length).

sunindextype N_VGetLocalLength_ Parallel (N_Vector v)
This function returns the local vector length.

void N_VPrint Parallel (N_Vectorv)
This function prints the local content of a parallel vector to stdout.

void N_VPrintFile_ Parallel (N_Vector v, FILE *outfile)
This function prints the local content of a parallel vector to out file.

6.4. The NVECTOR_PARALLEL Module 161

User
(SUN

Documentation for ARKode v2.1.1
DIALS v3.1.1),

Notes

When looping over the components of an N_Vector v, it is more efficient to first obtain the local compo-
nent array via v_data = NV_DATA_P (v) and then access v_data[i] within the loop than it is to use
NV_Ith_ P (v, 1) within the loop.

N_VNewEmpty_ Parallel (),N_VMake Parallel(),and N _VCloneVectorArrayEmpty_ Parallel ()
set the field own_data to SUNFALSE. The routines N_VDestroy_Parallel() and
N_VDestroyVectorArray Parallel () will not attempt to free the pointer data for any N_Vector

with own_data set to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the data pointer.

To maximize efficiency, vector operations in the NVECTOR_PARALLEL implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

For solvers that include a Fortran interface module, the NVECTOR_PARALLEL module also includes a
Fortran-callable function FNVINITP (COMM, code, NLOCAL, NGLOBAL, IER), to initialize this NVEC-

TOR_

PARALLEL module. Here COMM is the MPI communicator, code is an input solver id (1 for CVODE, 2

for IDA, 3 for KINSOL, 4 for ARKode); NLOCAL and NGLOBAL are the local and global vector sizes, respectively
(declared so as to match C type Long int); and IER is an error return flag equal O for success and -1 for failure.

Note:

If the header file sundials_config.h defines SUNDIALS_MPI_COMM_F2C to be 1 (meaning the MPI

implementation used to build SUNDIALS includes the MPI_Comm_f2c function), then COMM can be any valid MPI
communicator. Otherwise, MPI__COMM_WORLD will be used, so just pass an integer value as a placeholder.

6.5

The NVECTOR_OPENMP Module

In situations where a user has a multi-core processing unit capable of running multiple parallel threads with shared
memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVECTOR_OPENMP, and
an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown that vectors should be of length
at least 100, 000 before the overhead associated with creating and using the threads is made up by the parallelism in
the vector calculations.

The OpenMP NVECTOR implementation provided with SUNDIALS, NVECTOR_OPENMP, defines the content
field of N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a contiguous
data array, a boolean flag own_data which specifies the ownership of data, and the number of threads. Operations on
the vector are threaded using OpenMP, the number of threads used is based on the supplied argument in the vector
constructor.

struct _N_VectorContent_OpenMP {
sunindextype length;
booleantype own_data;
realtype xdata;
int num_threads;

}i

The header file to be included when using this module is nvector_openmp.h.

The following six macros are provided to access the content of an NVECTOR_OPENMP vector. The suffix _OMP in
the names denotes the OpenMP version.

NV_CONTENT_OMP (V)

This macro gives access to the contents of the OpenMP vector N_Vector v.

The assignment v_cont = NV_CONTENT_OMP (v) sets v_cont to be a pointer to the OpenMP N_Vector
content structure.

162

Chapter 6. Vector Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Implementation:

#define NV_CONTENT_OMP (v) ((N_VectorContent_OpenMP) (v->content))

NV_OWN_DATA OMP (V)
Access the own_data component of the OpenMP N_Vector v.

Implementation:

#define NV_OWN_DATA OMP (v) (NV_CONTENT OMP (v)->own_data)

NV_DATA_ OMP (V)
The assignment v_data = NV_DATA_OMP (v) sets v_data to be a pointer to the first component of the
data for the N_Vector v.

Similarly, the assignment NV_DATA_OMP (v) = v_data sets the component array of v to be v_data by
storing the pointer v_data.

Implementation:

#define NV_DATA _OMP (v) (NV_CONTENT_OMP (v)->data)

NV_LENGTH_OMP (V)
Access the length component of the OpenMP N_Vector v.

The assignment v_len = NV_LENGTH_OMP (v) sets v_1len to be the length of v. On the other hand, the
call NV_LENGTH_OMP (v) = len_v sets the length of vtobe len_v.

Implementation:

#define NV_LENGTH_OMP (v) (NV_CONTENT_OMP (v)->length)

NV_NUM_THREADS_OMP (V)
Access the num_threads component of the OpenMP N_Vector v.

The assignment v_threads = NV_NUM_THREADS_OMP (v) sets v_threads to be the num_threads of
v. On the other hand, the call NV_NUM_THREADS_OMP (v) = num_threads_v sets the num_threads of
v tobe num_threads_v.

Implementation:

#define NV_NUM _THREADS OMP (v) (NV_CONTENT_ OMP (v)—->num_threads)

NV_Ith OMP (v,i)
This macro gives access to the individual components of the data array of an N_Vector, using standard O-based
C indexing.

The assignment r = NV_Ith_OMP (v, 1) sets r to be the value of the i-th component of v.
The assignment NV_TIth_OMP (v, i) = r sets the value of the i-th component of v to be r.
Here i ranges from O to n — 1 for a vector of length n.

Implementation:

#define NV_Ith OMP(v,i) (NV_DATA OMP(v)[i])

The NVECTOR_OPENMP module defines OpenMP implementations of all vector operations listed in the section
Description of the NVECTOR operations. Their names are obtained from those in that section by appending the suffix
_OpenMP (e.g. N_vVDestroy_OpenMP). The module NVECTOR_OPENMP provides the following additional
user-callable routines:

6.5. The NVECTOR_OPENMP Module 163

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

N_Vector N_VNew_OpenMP (sunindextype vec_length, int num_threads)
This function creates and allocates memory for a OpenMP N_Vector. Arguments are the vector length and
number of threads.

N_Vector N_VNewEmpty_OpenMP (sunindextype vec_length, int num_threads)
This function creates a new OpenMP N_Vector with an empty (NULL) data array.

N_Vector N_VMake_OpenMP (sunindextype vec_length, realtype* v_data, int num_threads)
This function creates and allocates memory for a OpenMP vector with user-provided data array, v_data.

(This function does not allocate memory for v_data itself.)

N_Vector* N_VCloneVectorArray OpenMP (int count, N_Vector w)
This function creates (by cloning) an array of count OpenMP vectors.

N_Vector* N_VCloneVectorArrayEmpty_ OpenMP (int count, N_Vector w)
This function creates (by cloning) an array of count OpenMP vectors, each with an empty (*NULL) data array.

void N_VDestroyVectorArray_ OpenMP (N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_ OpenMP () or with N_VCloneVectorArrayEmpty OpenMP ().

sunindextype N_VGetLength_OpenMP (N_Vector v)
This function returns the number of vector elements.

void N_VPrint_OpenMP (N_Vector v)
This function prints the content of an OpenMP vector to stdout.

void N_VPrintFile_OpenMP (N_Vector v, FILE *outfile)
This function prints the content of an OpenMP vector to out file.

Notes

e When looping over the components of an N_Vector w, it is more efficient to first obtain the component
array via v_data = NV_DATA_OMP (v) and then access v_data[i] within the loop than it is to use
NV_Ith_OMP (v, i) within the loop.

e N_VNewEmpty_ OpenMP (), N_VMake_OpenMP (), and N_VCloneVectorArrayEmpty_ OpenMP ()
set the field own_data to SUNFALSE. The functions N_VDestroy_OpenMP () and
N_VDestroyVectorArray_ OpenMP () will not attempt to free the pointer data for any N_Vector
with own_data set to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the data pointer.

» To maximize efficiency, vector operations in the NVECTOR_OPENMP implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

For solvers that include a Fortran interface module, the NVECTOR_OPENMP module also includes a Fortran-callable
function FNVINITOMP (code, NEQ, NUMTHREADS, IER), to initialize this NVECTOR_OPENMP module.
Here code is an input solver id (1 for CVODE, 2 for IDA, 3 for KINSOL, 4 for ARKode); NEQ is the problem size
(declared so as to match C type long int); NUMTHREADS is the number of threads; and IER is an error return flag
equal O for success and -1 for failure.

6.6 The NVECTOR_PTHREADS Module

In situations where a user has a multi-core processing unit capable of running multiple parallel threads with shared
memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVECTOR_OPENMP, and
an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown that vectors should be of length

164 Chapter 6. Vector Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

at least 100, 000 before the overhead associated with creating and using the threads is made up by the parallelism in
the vector calculations.

The Pthreads NVECTOR implementation provided with SUNDIALS, denoted NVECTOR_PTHREADS, defines the
content field of N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a
contiguous data array, a boolean flag own_data which specifies the ownership of data, and the number of threads.
Operations on the vector are threaded using POSIX threads (Pthreads), the number of threads used is based on the
supplied argument in the vector constructor.

struct _N_VectorContent_Pthreads {
sunindextype length;
booleantype own_data;
realtype =xdata;
int num_threads;

}i

The header file to be included when using this module is nvector_pthreads.h.

The following six macros are provided to access the content of an NVECTOR_PTHREADS vector. The suffix _PT in
the names denotes the Pthreads version.

NV_CONTENT_PT (V)
This macro gives access to the contents of the Pthreads vector N_Vector v.

The assignment v_cont = NV_CONTENT_PT (v) sets v_cont to be a pointer to the Pthreads N_Vector
content structure.

Implementation:

#define NV_CONTENT PT(v) ((N_VectorContent_Pthreads) (v—->content))

NV_OWN_DATA_PT (V)
Access the own_data component of the Pthreads N_Vector v.

Implementation:

#define NV_OWN_DATA PT(v) (NV_CONTENT PT(v)->own _data)

NV_DATA PT (V)
The assignment v_data = NV_DATA_PT (v) sets v_data to be a pointer to the first component of the data
for the N_Vector v.

Similarly, the assignment NV_DATA_PT (v) = v_data sets the component array of v to be v_data by
storing the pointer v_data.

Implementation:

#define NV_DATA PT(v) (NV_CONTENT PT(v)->data)

NV_LENGTH_PT (V)
Access the length component of the Pthreads N_Vector v.

The assignment v_len = NV_LENGTH_PT (v) sets v_len to be the length of v. On the other hand, the call
NV_LENGTH_PT (v) = len_v sets the length of vtobe len_v.

Implementation:

#define NV_LENGTH _PT(v) (NV_CONTENT_PT(v)->length)

NV_NUM_ THREADS PT (V)
Access the num_threads component of the Pthreads N_Vector v.

6.6. The NVECTOR_PTHREADS Module 165

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

The assignment v_threads = NV_NUM_THREADS_PT (v) sets v_threads to be the num_threads of v.
On the other hand, the call NV_NUM_THREADS_PT (v) = num_threads_v sets the num_threads of v to
be num_threads_v.

Implementation:

#define NV_NUM THREADS PT(v) (NV_CONTENT PT(v)->num_threads)

NV_Ith_PT (v,1)
This macro gives access to the individual components of the data array of an N_Vect or, using standard O-based
C indexing.

The assignment r = NV_Ith_PT (v, i) sets r to be the value of the i-th component of v.
The assignment NV_Ith_PT (v,1) = r setsthe value of the i-th component of v to be r.
Here i ranges from O to n — 1 for a vector of length n.

Implementation:

#define NV_Ith PT(v,i) (NV_DATA PT(v)[i])

The NVECTOR_PTHREADS module defines Pthreads implementations of all vector operations listed in the section
Description of the NVECTOR operations. Their names are obtained from those in that section by appending the suffix
_Pthreads (e.g. N_VDestroy_Pthreads). The module NVECTOR_PTHREADS provides the following additional
user-callable routines:

N_Vector N_VNew_Pthreads (sunindextype vec_length, int num_threads)
This function creates and allocates memory for a Pthreads N_Vector. Arguments are the vector length and
number of threads.

N_Vector N_VNewEmpty_Pthreads (sunindextype vec_length, int num_threads)
This function creates a new Pthreads N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Pthreads (sunindextype vec_length, realtype* v_data, int num_threads)
This function creates and allocates memory for a Pthreads vector with user-provided data array, v_data.

(This function does not allocate memory for v_data itself.)

N_Vector* N_VCloneVectorArray Pthreads (int count, N_Vector w)
This function creates (by cloning) an array of count Pthreads vectors.

N_Vector* N_VCloneVectorArrayEmpty_ Pthreads (int count, N_Vector w)
This function creates (by cloning) an array of count Pthreads vectors, each with an empty (*NULL) data array.

void N_VDestroyVectorArray Pthreads (N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_ Pthreads () or with N_VCloneVectorArrayEmpty Pthreads ().

sunindextype N_VGetLength_Pthreads (N_Vector v)
This function returns the number of vector elements.

void N_VPrint_Pthreads (N_Vector v)
This function prints the content of a Pthreads vector to stdout.

void N_VPrintFile_ Pthreads (N_Vector v, FILE *outfile)
This function prints the content of a Pthreads vector to outfile.

Notes

* When looping over the components of an N_Vector v, it is more efficient to first obtain the component
array via v_data = NV_DATA_PT(v) and then access v_data[i] within the loop than it is to use
NV_Ith_S (v, 1) within the loop.

166 Chapter 6. Vector Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* N_VNewEmpty Pthreads (),N_VMake Pthreads(),and N _VCloneVectorArrayEmpty Pthreads ()
set the field own_data to SUNFALSE. The functions N_VDestroy_ Pthreads() and
N_VDestroyVectorArray_ Pthreads () will not attempt to free the pointer data for any N_Vector
with own_data set to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the data pointer.

» To maximize efficiency, vector operations in the NVECTOR_PTHREADS implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

For solvers that include a Fortran interface module, the NVECTOR_PTHREADS module slso includes a Fortran-
callable function FNVINITPTS (code, NEQ, NUMTHREADS, IER), toinitialize this NVECTOR_PTHREADS
module. Here code is an input solver id (1 for CVODE, 2 for IDA, 3 for KINSOL, 4 for ARKode); NEQ is the
problem size (declared so as to match C type Llong int); NUMTHREADS is the number of threads; and IER is an
error return flag equal O for success and -1 for failure.

6.7 The NVECTOR_PARHYP Module

The NVECTOR_PARHYP implementation of the NVECTOR module provided with SUNDIALS is a wrapper around
HYPRE’s ParVector class. Most of the vector kernels simply call HYPRE vector operations. The implementation
defines the content field of N_Vector to be a structure containing the global and local lengths of the vector, a pointer
to an object of type hypre_ParVector, an MPI communicator, and a boolean flag own_parvector indicating
ownership of the HYPRE parallel vector object x.

struct _N_VectorContent_ParHyp {
sunindextype local_length;
sunindextype global_length;
booleantype own_data;
booleantype own_parvector;
realtype =*data;
MPI_Comm comm;
hypre_ParVector =*x;

}i

The header file to be included when using this module is nvector_parhyp.h. Unlike native SUNDIALS vector
types, NVECTOR_PARHYP does not provide macros to access its member variables.

The NVECTOR_PARHYP module defines implementations of all vector operations listed in the section Description of
the NVECTOR operations, except for N_VSetArrayPointer and N_VGetArrayPointer, because accessing
raw vector data is handled by low-level HYPRE functions. As such, this vector is not available for use with SUN-
DIALS Fortran interfaces. When access to raw vector data is needed, one should extract the HYPRE HYPRE vector
first, and then use HYPRE methods to access the data. Usage examples of NVECTOR_PARHYP are provided in the
cvAdvDiff_non_ph.c example programs for CVODE and the ark_diurnal_kry_ph.c example program
for ARKode.

The names of parhyp methods are obtained from those in the section Description of the NVECTOR operations by ap-
pending the suffix _ParHyp (e.g. N_VDestroy_ParHyp). The module {nvecph} provides the following additional
user-callable routines:

N_Vector N_VNewEmpty_ParHyp (MPI_Comm comm, sunindextype local_length, sunindex-

type global_length)
This function creates a new parhyp N_Vector with the pointer to the HYPRE vector set to NULL.

N_Vector N_VMake_ParHyp (hypre_ParVector *x)
This function creates an N_Vector wrapper around an existing HYPRE parallel vector. It does not allocate
memory for x itself.

6.7. The NVECTOR_PARHYP Module 167

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

hypre_ParVector *N_VGetVector_ParHyp (N_Vector v)
This function returns a pointer to the underlying HYPRE vector.

N_Vector* N_VCloneVectorArray ParHyp (int count, N_Vector w)
This function creates (by cloning) an array of count parhyp vectors.

N_Vector* N_VCloneVectorArrayEmpty_ ParHyp (int count, N_Vector w)
This function creates (by cloning) an array of count parhyp vectors, each with an empty (*NULL) data array.

void N_VDestroyVectorArray ParHyp (N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_ ParHyp () or with N_VCloneVectorArrayEmpty ParHyp ().

void N_VPrint_ParHyp (N_Vector v)
This function prints the local content of a parhyp vector to stdout.

void N_VPrintFile_ParHyp (N_Vector v, FILE *outfile)
This function prints the local content of a parhyp vector to out file.

Notes

* When there is a need to access components of an N_Vector_ParHyp v, it is recommended to extract the
HYPRE vector via x_vec = N_VGetVector_ParHyp (v) and then access components using appropriate
HYPRE functions.

e N_VNewEmpty_ ParHyp (), N_VMake_ParHyp (), and N_VCloneVectorArrayEmpty ParHyp ()
set the field own_parvector to SUNFALSE. The functions N_VDestroy_ParHyp() and
N_VDestroyVectorArray_ ParHyp () will not attempt to delete an underlying HYPRE vector for
any N_Vector with own_parvector set to SUNFALSE. In such a case, it is the user’s responsibility to delete
the underlying vector.

* To maximize efficiency, vector operations in the NVECTOR_PARHYP implementation that have more than
one N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.8 The NVECTOR_PETSC Module

The NVECTOR_PETSC module is an NVECTOR wrapper around the PETSc vector. It defines the content field of a
N_Vector to be a structure containing the global and local lengths of the vector, a pointer to the PETSc vector, an
MPI communicator, and a boolean flag own_data indicating ownership of the wrapped PETSc vector.

struct _N_VectorContent_Petsc {
sunindextype local_length;
sunindextype global_length;
booleantype own_data;
Vec =*pvec;
MPI_Comm comm;

bi

The header file to be included when using this module is nvector_petsc.h. Unlike native SUNDIALS vector
types, NVECTOR_PETSC does not provide macros to access its member variables. Note that NVECTOR_PETSC
requires SUNDIALS to be built with MPI support.

The NVECTOR_PETSC module defines implementations of all vector operations listed in the section Description of
the NVECTOR operations, except for N_VGetArrayPointer and N_VSetArrayPointer. As such, this vector
cannot be used with SUNDIALS Fortran interfaces. When access to raw vector data is needed, it is recommended to

168 Chapter 6. Vector Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

extract the PETSc vector first, and then use PETSc methods to access the data. Usage examples of NVECTOR_PETSC
is provided in example programs for IDA.

The names of vector operations are obtained from those in the section Description of the NVECTOR operations by ap-
pending the suffice _Petsc (e.g. N_VDestroy_Petsc). The module NVECTOR_PETSC provides the following
additional user-callable routines:

N_Vector N_VNewEmpty_Petsc (MPI_Comm comm, sunindextype local_length, sunindex-
type global_length)
This function creates a new PETSC N_Vector with the pointer to the wrapped PETSc vector set to NULL. It
is used by the N_VMake_Petsc and N_VClone_Petsc implementations. It should be used only with great
caution.

N_Vector N_VMake_Petsc (Vec* pvec)
This function creates and allocates memory for an NVECTOR_PETSC wrapper with a user-provided PETSc
vector. It does not allocate memory for the vector pvec itself.

Vec *N_VGetVector_ Petsc (N_Vector v)
This function returns a pointer to the underlying PETSc vector.

N_Vector* N_VCloneVectorArray Petsc (int count, N_Vector w)
This function creates (by cloning) an array of count NVECTOR_PETSC vectors.

N_Vector* N_VCloneVectorArrayEmpty_ Petsc (int count, N_Vector w)
This function creates (by cloning) an array of count NVECTOR_PETSC vectors, each with pointers to PETSc
vectors set to NULL.

void N_VDestroyVectorArray Petsc (N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_ Petsc () orwith N_VCloneVectorArrayEmpty Petsc ().

void N_VPrint_Petsc (N_Vector v)
This function prints the global content of a wrapped PETSc vector to stdout.

void N_VPrintFile_Petsc (N_Vector v, const char fname/])
This function prints the global content of a wrapped PETSc vector to fname.

Notes

* When there is a need to access components of an N_Vector_Petsc v, itis recommeded to extract the PETSc
vector via

x_vec = N_VGetVector_Petsc(v);
and then access components using appropriate PETSc functions.

e The functions N_VNewEmpty_ Petsc(), N _VMake Petsc(), and
N_VCloneVectorArrayEmpty Petsc () set the field own_data to SUNFALSE. The routines
N_VDestroy_Petsc () and N_VDestroyVectorArray_ Petsc () will not attempt to free the pointer
pvec for any N_Vector with own_data set to SUNFALSE. In such a case, it is the user’s responsibility to
deallocate the pvec pointer.

» To maximize efficiency, vector operations in the NVECTOR_PETSC implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.8. The NVECTOR_PETSC Module 169

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

6.9 The NVECTOR_CUDA Module

The NVECTOR_CUDA module is an experimental implementation of N_Vector in CUDA language. It allows for
SUNDIALS vector kernels to run on GPU devices. It is intended for users who are already familiar with CUDA and
GPU programming. Building this vector module requires CUDA compiler and, by extension, C++ compiler. Class
Vector in namespace suncudavec manages vector data layout.

template <class T, class I>
class Vector {
I size_;
I mem_size_;
T h_vec_;
T+ d_vec_;
StreamPartitioning<T, I>x partStream_;
ReducePartitioning<T, I>* partReduce_;
bool ownPartitioning_;

}i

The class members are vector size (length), size of the vector data memory block, pointers to vector data on the host
and the device, pointers to classes StreamPartitioning and ReducePartitioning, which handle thread
partitioning for streaming and reduction vector kernels, respectively, and the boolean flag that signals if the vector
owns thread partitioning. The class Vector inherits from empty structure

struct _N VectorContent_ Cuda {
}i

to interface the C++ class with N_Vector C code. When instantiated, the class Vector will allocate memory on
both, host and device. Due to rapid progress in of CUDA development, we expect that suncudavec: :Vector
class will change frequently in the future SUNDIALS releases. The code is structured so that it can tolerate significant
changes in the suncudavec: : Vector class without requiring changes to user API.

The header file to be included when using this module is nvector/nvector_cuda.h. Unlike other native SUN-
DIALS vector types, NVECTOR_CUDA does not provide macros to access its member variables. Note that NVEC-
TOR_CUDA requires SUNDIALS to be built with MPI support.

The NVECTOR_CUDA module defines implementations of all vector operations listed in the section Description
of the NVECTOR operations, except for N_VGetArrayPointer and N_VSetArrayPointer. As such, this
vector cannot be used with SUNDIALS Fortran interfaces, nor with SUNDIALS direct solvers and preconditioners.
This support will be added in subsequent SUNDIALS releases. The NVECTOR_CUDA module provides separate
functions to access data on the host and on the device. It also provides methods for copying from the host to the device
and vice versa. Usage examples of NVECTOR_CUDA are provided in example programs for CVODE [HSR2017].

The names of vector operations are obtained from those in the section Description of the NVECTOR operations by
appending the suffix _Cuda (e.g. N_VDestroy_Cuda). The module NVECTOR_CUDA provides the following
additional user-callable routines:

N_Vector N_VNew_Cuda (sunindextype vec_length)
This function creates and allocates memory for a CUDA N_Vector. The memory is allocated on both, host
and device. Its only argument is the vector length.

N_Vector N_VNewEmpty_Cuda (sunindextype vec_length)
This function creates a new N_Vector wrapper with the pointer to the wrapped CUDA vector set to NULL. It
isused by N_VNew_Cuda (), N_VMake_Cuda (),and N_VClone_Cuda () implementations.

N_Vector N_VMake Cuda (N_VectorContent_Cuda c¢)
This function creates and allocates memory for an NVECTOR_CUDA wrapper around a user-provided

170 Chapter 6. Vector Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

suncudavec: :Vector class. Its only argument is of type N_VectorContent_Cuda, which is the
pointer to the class.

N_Vector* N_VCloneVectorArray Cuda (int count, N_Vector w)
This function creates (by cloning) an array of count NVECTOR_CUDA vectors.

N_Vector* N_VCloneVectorArrayEmpty_Cuda (int count, N_Vector w)
This function creates (by cloning) an array of count NVECTOR_CUDA vectors, each with pointers to CUDA
vectors set to NULL.

void N_VDestroyVectorArray_Cuda (N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_ Cuda () or with N_VCloneVectorArrayEmpty_ Cuda ().

sunindextype N_VGetLength_Cuda (N_Vector v)
This function returns the length of the vector.

realtype* N_VGetHostArrayPointer_Cuda (N_Vector v)
This function returns pointer to the vector data on the host.

realtype* N_VGetDeviceArrayPointer_Cuda (N_Vector v)
This function returns pointer to the vector data on the device.

realtype™ N_VCopyToDevice_Cuda (N_Vector v)
This function copies host vector data to the device.

realtype* N_VCopyFromDevice_Cuda (N_Vector v)
This function copies vector data from the device to the host.

void N_VPrint_Cuda (N_Vector v)
This function prints the content of a CUDA vector to st dout.

void N_VPrintFile_Cuda (N_Vector v, FILE *outfile)
This function prints the content of a CUDA vector to outfile.

Notes

* When there is a need to access components of an N_Vector_Cuda, v, it is recommeded to use functions
N_VGetDeviceArrayPointer. Cuda () or N_VGetHostArrayPointer_ Cuda/().

» To maximize efficiency, vector operations in the NVECTOR_CUDA implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.10 The NVECTOR_RAJA Module

The NVECTOR_RAIJA module is an experimental implementation of N_Vector using the RAJA hardware abstrac-
tion layer https://software.llnl.gov/RAJA/. In this implementation, RAJA allows for SUNDIALS vector kernels to
run on GPU devices. The module is intended for users who are already familiar with RAJA and GPU programming.
Building this vector module requires a C++11 compliant compiler and a CUDA software development toolkit. Besides
the CUDA backend, RAJA has other backends such as serial, OpenMP and OpenAC. These backends are not used in
this SUNDIALS release. Class Vector in namespace sunra javec manages the vector data layout:

template <class T, class I>
class Vector {

I size_;

I mem_size_;

Tx h_vec_;

6.10. The NVECTOR_RAJA Module 171

https://software.llnl.gov/RAJA/

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

T+ d_vec_;

}i

The class members are: vector size (length), size of the vector data memory block, and pointers to vector data on the
host and on the device. The class Vector inherits from an empty structure

struct _N_VectorContent_Raja {
bi

to interface the C++ class with the N_Vector C code. When instantiated, the class Vector will allocate
memory on both the host and the device. Due to the rapid progress of RAJA development, we expect that the
sunrajavec: :Vector class will change frequently in the future SUNDIALS releases. The code is structured
so that it can tolerate significant changes in the sunrajavec: :Vector class without requiring changes to the user
APL.

The header file to be included when using this module is nvector/nvector_raja.h. Unlike other native SUN-
DIALS vector types, NVECTOR_RAJA does not provide macros to access its member variables. Note that NVEC-
TOR_RAJA requires SUNDIALS to be built with MPI support.

The NVECTOR_RAJA module defines the implementations of all vector operations listed in the section Description of
the NVECTOR operations, except for N_VGetArrayPointer and N_VSetArrayPointer. As such, this vector
cannot be used with SUNDIALS Fortran interfaces, nor with SUNDIALS direct solvers and preconditioners. The
NVECTOR_RAIJA module provides separate functions to access data on the host and on the device. It also provides
methods for copying from the host to the device and vice versa. Usage examples of NVECTOR_RAJA are provided
in some example programs for CVODE [HSR2017].

The names of vector operations are obtained from those in the section Description of the NVECTOR operations by
appending the suffix _Raja (e.g. N_VDestroy_Raja). The module NVECTOR_RAJA provides the following
additional user-callable routines:

N_Vector N_VNew_Raja (sunindextype vec_length)
This function creates and allocates memory for a RAJA N_Vector. The memory is allocated on both the host
and the device. Its only argument is the vector length.

N_Vector N_VNewEmpty_Raja (sunindextype vec_length)
This function creates a new N_Vector wrapper with the pointer to the wrapped RAJA vector set to NULL. It
isused by N_VNew_Raja (), N_VMake Raja(),and N_VClone_Raja () implementations.

N_Vector N_VMake_Raja (N_VectorContent_Raja c)
This function creates and allocates memory for an NVECTOR_RAJA wrapper around a user-provided
sunrajavec: :Vector class. Its only argument is of type N_VectorContent_Raja, which is the
pointer to the class.

N_Vector* N_VCloneVectorArray Raja (int count, N_Vector w)
This function creates (by cloning) an array of count NVECTOR_RAJA vectors.

N_Vector* N_VCloneVectorArrayEmpty_ Raija (int count, N_Vector w)
This function creates (by cloning) an array of count NVECTOR_RAIJA vectors, each with pointers to RAJA
vectors set to NULL.

void N_VDestroyVectorArray Raja (N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_ Raja () orwith N _VCloneVectorArrayEmpty Raja ().

sunindextype N_VGetLength_Raja (N_Vector v)
This function returns the length of the vector.

172 Chapter 6. Vector Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

realtype* N_VGetHostArrayPointer_Raja (N_Vector v)
This function returns a pointer to the vector data on the host.

realtype* N_VGetDeviceArrayPointer_ Raja (N_Vector v)
This function returns a pointer to the vector data on the device.

realtype* N_VCopyToDevice_Raja (N_Vector v)
This function copies host vector data to the device.

realtype* N_VCopyFromDevice_Raja (N_Vector v)
This function copies vector data from the device to the host.

void N_VPrint_Raja (N_Vector v)
This function prints the content of a RAJA vector to stdout.

void N_VPrintFile_Raja (N_Vector v, FILE *outfile)
This function prints the content of a RAJA vector to outfile.

Notes

e When there is a need to access components of an N_Vector_Raija, v, it is recommeded to use functions
N_VGetDeviceArrayPointer._ Raja () or N_VGetHostArrayPointer_Raja().

* To maximize efficiency, vector operations in the NVECTOR_RAIJA implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.11 NVECTOR Examples

There are NVECTOR examples that may be installed for each implementation: serial, parallel, OpenMP, and Pthreads.
Each implementation makes use of the functions in test_nvector. c. These example functions show simple usage
of the NVECTOR family of functions. The input to the examples are the vector length, number of threads (if threaded
implementation), and a print timing flag.

The following is a list of the example functions in test_nvector.c:
* Test_N_VClone: Creates clone of vector and checks validity of clone.
* Test_N_VCloneEmpty: Creates clone of empty vector and checks validity of clone.
e Test_N_VCloneVectorArray: Creates clone of vector array and checks validity of cloned array.
* Test_N_VCloneVectorArray: Creates clone of empty vector array and checks validity of cloned array.
* Test_N_VGetArrayPointer: Get array pointer.
* Test_N_VSetArrayPointer: Allocate new vector, set pointer to new vector array, and check values.
* Test_N_VLinearSumCase la: Testy =x+y
* Test_N_VLinearSum Case 1b: Testy =-x +y
* Test_N_VLinearSum Case lc: Testy =ax +y
* Test_N_VLinearSum Case 2a: Testx=x+y
* Test_N_VLinearSum Case 2b: Testx =x -y
* Test_N_VLinearSum Case 2c: Test x = X + by
* Test_N_VLinearSumCase 3: Testz=x+Yy

* Test_N_VLinearSum Case 4a: Testz=x-y

6.11. NVECTOR Examples 173

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* Test_N_VLinearSum Case 4b: Testz=-x +y

e Test_N_VLinearSum Case 5a: Test z=x + by

* Test_N_VLinearSum Case 5b: Testz=ax +y

* Test_N_VLinearSum Case 6a: Test z=-x + by

* Test_N_VLinearSum Case 6b: Testz=ax -y

* Test_N_VLinearSum Case 7: Testz = a(X +y)

* Test_N_VLinearSum Case 8: Testz=a(x - y)

e Test_N_VLinearSum Case 9: Test z = ax + by

e Test_N_VConst: Fill vector with constant and check result.

* Test_N_VProd: Test vector multiply: z=x *y

e Test_N_VDiv: Test vector division: z=x/y

e Test_N_VScale: Case 1: scale: x =cx

* Test_N_VScale: Case 2: copy: z =X

e Test_N_VScale: Case 3: negate: z = -x

e Test_N_VScale: Case 4: combination: z = cxX

e Test_N_VAbs: Create absolute value of vector.

e Test_N_VAddConst: add constant vector: z = ¢ + X

* Test_N_VDotProd: Calculate dot product of two vectors.

e Test_N_VMaxNorm: Create vector with known values, find and validate max norm.
* Test_N_VWrmsNorm: Create vector of known values, find and validate weighted root mean square.

* Test_N_VWrmsNormMask: Case 1: Create vector of known values, find and validate weighted root mean
square using all elements.

* Test_N_VWrmsNormMask: Case 2: Create vector of known values, find and validate weighted root mean
square using no elements.

e Test_N_VMin: Create vector, find and validate the min.

* Test_N_VWL2Norm: Create vector, find and validate the weighted Euclidean L2 norm.

e Test_N_VLI1Norm: Create vector, find and validate the L1 norm.

e Test_N_VCompare: Compare vector with constant returning and validating comparison vector.
e Test_N_VInvTest: Test z[i] = 1/ x][i]

e Test_N_VConstrMask: Test mask of vector x with vector c.

e Test_N_VMinQuotient: Fill two vectors with known values. Calculate and validate minimum quotient.

6.12 NVECTOR functions required by ARKode

In the table below, we list the vector functions in the N_Vect or module that are called within the ARKode package.
The table also shows, for each function, which ARKode module uses the function. The ARKode column shows func-
tion usage within the main integrator module, while the remaining columns show function usage within the ARKode
linear solvers, the ARKBANDPRE and ARKBBDPRE preconditioner modules, and the FARKODE module. Here

174 Chapter 6. Vector Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

ARKDLS stands for the direct linear solver interface in ARKode, and ARKSPILS stands for the scaled, precondi-

tioned, iterative linear solver interface in ARKode.

At this point, we should emphasize that the user does not need to know anything about ARKode’s usage of vector
functions in order to use ARKode. Instead, this information is provided primarily for users interested in constructing
a custom N_Vector module. We note that a number of N_Vector functions from the section Description of the
NVECTOR Modules are not listed in the above table. Therefore a user-supplied N_Vect or module for ARKode could
safely omit these functions from their implementation.

Routine ARKode | ARKDLS | ARKSPILS | ARKBAND- ARKBBD- FARKODE
PRE PRE
N_VAbs X X
N_VAddConst X X
N_VClone X X X
N_VCloneEmpty X
N_VConst X X X X
N_VDestroy X X X
N_VDiv X X X
N_VDotProd XT X XT
N_VGetArrayPointer X X X X
N_VGetVectorID
N_Vinv X X
N_VLinearSum X X X X
N_VMaxNorm X X
N_VMin X X
N_VProd X
N_VScale X X X X X X
N_VSetArrayPointer X X
N_VSpace X? X?
N_VWrmsNorm X X X X X X

1. The N_VDotProd () function is only used by the main ARKode integrator module when the fixed-point non-
linear solver is specified; when solving an explicit problem or when using a Newton solver with direct linear
solver, it need not be supplied by the N_Vector implementation.

2. The N_VSpace () function is only informational, and need not be supplied by the N_Vect or implementation.

6.12. NVECTOR functions required by ARKode

175

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

176 Chapter 6. Vector Data Structures

CHAPTER
SEVEN

MATRIX DATA STRUCTURES

The SUNDIALS library comes packaged with a variety of SUNMat rix implementations, designed for simulations
requiring direct linear solvers for problems in serial or shared-memory parallel environments. SUNDIALS addition-
ally provides a simple interface for generic matrices (akin to a C++ abstract base class). All of the major SUNDIALS
packages (CVODE(s), IDA(s), KINSOL, ARKODE), are constructed to only depend on these generic matrix opera-
tions, making them immediately extensible to new user-defined matrix objects. For each of the SUNDIALS-provided
matrix types, SUNDIALS also provides at least two SUNLinearSolver implementations that factor these matrix
objects and use them in the solution of linear systems.

7.1 Description of the SUNMATRIX Modules

For problems that involve direct methods for solving linear systems, the SUNDIALS solvers not only operate on
generic vectors, but also on generic matrices (of type SUNMat rix), through a set of operations defined by the par-
ticular SUNMATRIX implementation. Users can provide their own specific implementation of the SUNMATRIX
module, particularly in cases where they provide their own N_Vector and/or linear solver modules, and require
matrices that are compatible with those implementations. Alternately, we provide three SUNMATRIX implementa-
tions: dense, banded, and sparse. The generic operations are described below, and descriptions of the implementations
provided with SUNDIALS follow.

The generic SUNMatrix type has been modeled after the object-oriented style of the generic N_Vector type.
Specifically, a generic SUNMatrix is a pointer to a structure that has an implementation-dependent content field
containing the description and actual data of the matrix, and an ops field pointing to a structure with generic matrix
operations. The type SUNMat rix is defined as:

typedef struct _generic_SUNMatrix »SUNMatrix;

struct _generic_SUNMatrix {

void xcontent;

struct _generic_SUNMatrix_Ops =*ops;
bi

Here, the _generic_SUNMatrix_Ops structure is essentially a list of function pointers to the various actual matrix
operations, and is defined as

struct _generic_SUNMatrix_Ops {
SUNMatrix_ID (xgetid) (SUNMatrix);
SUNMatrix (#clone) (SUNMatrix) ;
void (+«destroy) (SUNMatrix) ;
int (xzero) (SUNMatrix) ;
(
(
(
(

int *copy) (SUNMatrix, SUNMatrix);

int xscaleadd) (realtype, SUNMatrix, SUNMatrix);
int +*scaleaddi) (realtype, SUNMatrix);

int *matvec) (SUNMatrix, N_Vector, N_Vector);

177

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

int (#space) (SUNMatrix, long int»*, long int~«);
by

The generic SUNMATRIX module defines and implements the matrix operations acting on a SUNMatrix. These
routines are nothing but wrappers for the matrix operations defined by a particular SUNMATRIX implementation,
which are accessed through the ops field of the SUNMat rix structure. To illustrate this point we show below the
implementation of a typical matrix operation from the generic SUNMATRIX module, namely SUNMat Zero, which
sets all values of a matrix A to zero, returning a flag denoting a successful/failed operation:

int SUNMatZero (SUNMatrix A)
{
return((int) A->ops->zero(A));

}

The subsection Description of the SUNMATRIX operations contains a complete list of all matrix operations defined
by the generic SUNMATRIX module. A particular implementation of the SUNMATRIX module must:

* Specify the content field of the SUNMat rix object.

* Define and implement a minimal subset of the matrix operations. See the documentation for each SUNDIALS
solver to determine which SUNMATRIX operations they require. The list of required operations for use with
ARKode is given in the section SUNMATRIX functions required by ARKode.

Note that the names of these routines should be unique to that implementation in order to permit using more than
one SUNMATRIX module (each with different SUNMat rix internal data representations) in the same code.

* Define and implement user-callable constructor and destructor routines to create and free a SUNMat rix with
the new content field and with ops pointing to the new matrix operations.

* Optionally, define and implement additional user-callable routines acting on the newly defined SUNMat rix
(e.g., a routine to print the content for debugging purposes).

 Optionally, provide accessor macros as needed for that particular implementation to be used to access different
parts in the content field of the newly defined SUNMat rix.

Each SUNMATRIX implementation included in SUNDIALS has a unique identifier specified in enumeration
and shown in the table below. It is recommended that a user-supplied SUNMATRIX implementation use the
SUNMATRIX_CUSTOM identifier.

7.1.1 ldentifiers associated with matrix kernels supplied with SUNDIALS

Matrix 1D Matrix type ID Value
SUNMATRIX_DENSE Dense M x N matrix 0

SUNMATRIX_BAND Band M x M matrix 1
SUNMATRIX_SPARSE Sparse (CSR or CSC) M x N matrix | 2
SUNMATRIX_CUSTOM | User-provided custom matrix 3

7.2 Description of the SUNMATRIX operations

For each of the SUNMat r i x operations, we give the name, usage of the function, and a description of its mathematical
operations below.

SUNMatrix_ID SUNMatGet ID (SUNMatrix A)
Returns the type identifier for the matrix A. It is used to determine the matrix implementation type (e.g.
dense, banded, sparse,...) from the abstract SUNMat rix interface. This is used to assess compatibility with

178 Chapter 7. Matrix Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

SUNDIALS-provided linear solver implementations. Returned values are given in the Table /dentifiers associ-
ated with matrix kernels supplied with SUNDIALS

Usage:

id = SUNMatGetID (A);

SUNMatrix SUNMatClone (SUNMatrix A)
Creates a new SUNMat rix of the same type as an existing matrix A and sets the ops field. It does not copy the
matrix, but rather allocates storage for the new matrix.

Usage:

B = SUNMatClone (A) ;

void SUNMatDestroy (SUNMatrix A)
Destroys the SUNMat rix A and frees memory allocated for its internal data.

Usage:

SUNMatDestroy (A) ;

int SUNMat Space (SUNMatrix A, long int */rw, long int */iw)
Returns the storage requirements for the matrix A. Irw contains the number of realtype words and /iw contains
the number of integer words. The return value denotes success/failure of the operation.

This function is advisory only, for use in determining a user’s total space requirements; it could be a dummy
function in a user-supplied SUNMat rix module if that information is not of interest.

Usage:

ier = SUNMatSpace (A, \&lrw, \&liw);

int SUNMatZero (SUNMatrix A)
Zeros all entries of the SUNMat rix A. The return value is an integer flag denoting success/failure of the oper-
ation:

Usage:

ier = SUNMatZero (A);

int SUNMatCopy (SUNMatrix A, SUNMatrix B)
Performs the operation B = A for all entries of the matrices A and B. The return value is an integer flag denoting
success/failure of the operation:

Bi,j:Ai,jv i:1,...,m7j:1,...,n.

Usage:

ier = SUNMatCopy (A,B);

SUNMat ScaleAdd (realtype ¢, SUNMatrix A, SUNMatrix B)
Performs the operation A = cA + B. The return value is an integer flag denoting success/failure of the operation:

AZ‘J:CA,L‘J—FB?;J, i:l,...,m,j:l,...,n.

Usage:

7.2. Description of the SUNMATRIX operations 179

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

ier = SUNMatScaleAdd(c, A, B);

SUNMat ScaleAddI (realtype ¢, SUNMatrix A)
Performs the operation A = cA + I. The return value is an integer flag denoting success/failure of the operation:

Aij=cAij+6i;, 4,j=1...,n

Usage:

ier = SUNMatScaleAddI (c, A);

SUNMatMatvec (SUNMatrix A, N_Vector x, N_Vector y)
Performs the matrix-vector product y = Ax. It should only be called with vectors x and y that are compatible with
the matrix A — both in storage type and dimensions. The return value is an integer flag denoting success/failure
of the operation:

n
Yi = E Am»xj, 7,:1,,7’77,
j=1

Usage:

ier = SUNMatMatvec (A, x, V);

7.3 Compatibility of SUNMATRIX types

We note that not all SUNMatrix types are compatible with all N_Vector types provided with SUNDIALS.
This is primarily due to the need for compatibility within the SUNMatMatvec routine; however, compatibility
between SUNMatrix and N_Vector implementations is more crucial when considering their interaction within
SUNLinearSolver objects, as will be described in more detail in section Linear Solver Data Structures. More
specifically, in the Table SUNDIALS matrix interfaces and vector implementations that can be used for each we show
the matrix interfaces available as SUNMat rix modules, and the compatible vector implementations.

7.3.1 SUNDIALS matrix interfaces and vector implementations that can be used for
each

Linear Se- Parallel OpenMR pThreads hypre PETSc CUDA| RAJA| User
Solver rial (MPI) Vec. Vec. Suppl.
Dense
Band
Sparse
User
supplied

ikl
||| <
ikl

7.4 The SUNMATRIX_DENSE Module

The dense implementation of the SUNMat rix module provided with SUNDIALS, SUNMATRIX_DENSE, defines
the content field of SUNMat rix to be the following structure:

180 Chapter 7. Matrix Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

struct _SUNMatrixContent_Dense {
sunindextype M;
sunindextype N;
realtype =*data;
sunindextype ldata;
realtype x+*cols;
}i

These entries of the content field contain the following information:
* M - number of rows
* N - number of columns

* data - pointer to a contiguous block of realtype variables. The elements of the dense matrix are stored
columnwise, i.e. the A, ; element of a dense SUNMatrix A (with0 < ¢ < M and 0 < j < N) may be
accessed viadata [JxM+1i].

e ldata - length of the data array (= M - N).

* cols - array of pointers. cols[j] points to the first element of the j-th column of the matrix in the array
data. The A; ; element of a dense SUNMatrix A (with0 < ¢ < M and 0 < j < N) may be accessed may
be accessed via cols[J] [1].

The header file to be included when using this module is sunmatrix/sunmatrix_dense.h.

The following macros are provided to access the content of a SUNMATRIX_DENSE matrix. The prefix SM__ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _D denotes that these are specific
to the dense version.

SM_CONTENT_D (A)
This macro gives access to the contents of the dense SUNMatrix A.

The assignment A_cont = SM_CONTENT_D (A) sets A_cont to be a pointer to the dense SUNMat rix
content structure.

Implementation:

#define SM_CONTENT_D (A) ((SUNMatrixContent_Dense) (A->content))

SM ROWS_D (A)
Access the number of rows in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows =
SM_ROWS_D (A) sets A_rows to be the number of rows in the matrix A. Similarly, the assignment
SM_ROWS_D (A) = A_rows sets the number of columns in A to equal 2_rows.

Implementation:

#define SM_ROWS_D (A) (SM_CONTENT D (A)->M)

SM COLUMNS D (A)
Access the number of columns in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_columns =
SM_COLUMNS_D (A) sets A_columns to be the number of columns in the matrix A. Similarly, the assign-
ment SM_COLUMNS_D (A) = A_columns sets the number of columns in A to equal 2_columns

Implementation:

#define SM_COLUMNS_D (A) (SM_CONTENT_D (A)—->N)

7.4. The SUNMATRIX_DENSE Module 181

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

SM_LDATA D (A)
Access the total data length in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_ldata =
SM_LDATA_D (A) sets A_ldata to be the length of the data array in the matrix A. Similarly, the assignment
SM_LDATA_D (A) = A_ldata sets the parameter for the length of the data array in A to equal A_1data.

Implementation:

#define SM_LDATA D (A) (SM_CONTENT_D (A)->1data)

SM_DATA_D (A)
This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_D (A) sets A_data to be a pointer to the first component of the data
array for the dense SUNMatrix A.The assignment SM_DATA_D (A) = A_data sets the data array of A to
be A_data by storing the pointer 2_data.

Implementation:

#define SM _DATA D (A) (SM_CONTENTI_D (A)—->data)

SM_COLS_D (A)
This macro gives access to the cols pointer for the matrix entries.

The assignment A_cols = SM_COLS_D (A) sets A_cols to be a pointer to the array of column pointers for
the dense SUNMatrix A. The assignment SM_COLS_D (A) = A_cols sets the column pointer array of A
to be A_cols by storing the pointer A_cols.

Implementation:

#define SM_COLS_D (A) (SM_CONTENT D (A)—->cols)

SM_COLUMN_D (A)
This macros gives access to the individual columns of the data array of a dense SUNMat rix.
The assignment col_j = SM_COLUMN_D (A, j) sets col_7 to be a pointer to the first entry of the j-th
column of the M x N dense matrix A (with 0 < 5 < N). The type of the expression SM_COLUMN_D (A, J)

is realtype =*. The pointer returned by the call SM_COLUMN_D (A, j) can be treated as an array which is
indexed from O to M—1.

Implementation:

#define SM_COLUMN_D (A, 7) ((SM_CONTENT_D (A)->cols) [j])

SM_ELEMENT_D (A)
This macro gives access to the individual entries of the data array of a dense SUNMat rix.

The assignments SM_ELEMENT_D (A,1i,J) = a_ijanda_ij = SM_ELEMENT_D (A, i, j) reference
the A; ; element of the M x N dense matrix A (with0 <4 < M and 0 < j < N).

Implementation:

#define SM_ELEMENT D (A,i, j) ((SM_CONTENT D (A)->cols) [j][i])

The SUNMATRIX_DENSE module defines dense implementations of all matrix operations listed in the section De-
scription of the SUNMATRIX operations. Their names are obtained from those in that section by appending the suffix
_Dense (e.g. SUNMatCopy_Dense). The module SUNMATRIX_DENSE provides the following additional user-
callable routines:

SUNMatrix SUNDenseMat rix (sunindextype M, sunindextype N)
This constructor function creates and allocates memory for a dense SUNMat rix. Its arguments are the number
of rows, M, and columns, N, for the dense matrix.

182 Chapter 7. Matrix Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

void SUNDenseMatrix_Print (SUNMatrix A, FILE* outfile)
This function prints the content of a dense SUNMatrix to the output stream specified by out file. Note:
stdout or stderr may be used as arguments for out £i1le to print directly to standard output or standard
error, respectively.

sunindextype SUNDenseMatrix_Rows (SUNMatrix A)
This function returns the number of rows in the dense SUNMat rix.

sunindextype SUNDenseMatrix_Columns (SUNMatrix A)
This function returns the number of columns in the dense SUNMat rix.

sunindextype SUNDenseMatrix_LData (SUNMatrix A)
This function returns the length of the data array for the dense SUNMat rix.

realtype* SUNDenseMatrix_ Data (SUNMatrix A)
This function returns a pointer to the data array for the dense SUNMatrix.

realtype** SUNDenseMatrix_ Cols (SUNMatrix A)
This function returns a pointer to the cols array for the dense SUNMatrix.

realtype* SUNDenseMatrix_Column (SUNMatrix A, sunindextype j)
This function returns a pointer to the first entry of the jth column of the dense SUNMatrix. The resulting
pointer should be indexed over the range 0 to M—1.

Notes
* When looping over the components of a dense SUNMatrix A, the most efficient approaches are to:

— First obtain the component array via A_data = SM_DATA_D(A) or A_data =
SUNDenseMatrix_Data (A) and then access A_data [i] within the loop.

— First obtain the array of column pointers via A _cols = SM_COLS_D(A) or A_cols =
SUNDenseMatrix_Cols (A), and then access A_cols[J] [1] within the loop.

— Within a loop over the columns, access the column pointer via A_colj =
SUNDenseMatrix_Column (A, j) and then to access the entries within that column using
A_colj[1] within the loop.

All three of these are more efficient than using SM_ELEMENT_D (A, i, j) within a double loop.

* Within the SUNMatMatvec_Dense routine, internal consistency checks are performed to ensure that the ma-
trix is called with consistent N_Vect or implementations. These are currently limited to: NVECTOR_SERIAL,
NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible vector implementations are
added to SUNDIALS, these will be included within this compatibility check.

For solvers that include a Fortran interface module, the SUNMATRIX_DENSE module also includes the Fortran-
callable function FSUNDenseMatInit () to initialize this SUNMATRIX_DENSE module for a given SUNDIALS
solver.

subroutine FSUNDenseMatInit (CODE, M, N, IER)
Initializes a dense SUNMat rix structure for use in a SUNDIALS solver.

Arguments:

e CODE (int, input) — flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

* M (long int, input) — number of matrix rows.
* N (long int, input) — number of matrix columns.

* [ER (int, output) — return flag (0 success, -1 for failure).

7.4. The SUNMATRIX_DENSE Module 183

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNDenseMassMatInit () initializes this SUNMATRIX_DENSE module for storing the mass matrix.

subroutine FSUNDenseMassMatInit (M, N, IER)

7.5

Initializes a dense SUNMat rix structure for use as a mass matrix in ARKode.
Arguments:

* M (long int, input) — number of matrix rows.

* N(long int, input) — number of matrix columns.

e IER (int, output) — return flag (O success, -1 for failure).

The SUNMATRIX_BAND Module

The banded implementation of the SUNMat rix module provided with SUNDIALS, SUNMATRIX_BAND, defines
the content field of SUNMat rix to be the following structure:

struct _SUNMatrixContent_Band {

sunindextype M;

sunindextype N;

sunindextype mu;

sunindextype ml;

sunindextype smu;
sunindextype ldim;

realtype xdata;

sunindextype ldata;

realtype =x=*cols;

}i

A diagram of the underlying data representation in a banded matrix is shown in Figure SUNBandMatrix Diagram. A
more complete description of the parts of this content field is given below:

M - number of rows

N - number of columns (N = M)

mu - upper half-bandwidth, 0 < mu < N
ml - lower half-bandwidth, 0 < ml < N

smu - storage upper bandwidth, mu < smu < N. The LU decomposition routines in the associated SUN-
LINSOL_BAND and SUNLINSOL_LAPACKBAND modules write the LU factors into the existing storage for
the band matrix. The upper triangular factor U, however, may have an upper bandwidth as big as min (N-1,
mu+ml) because of partial pivoting. The smu field holds the upper half-bandwidth allocated for the band
matrix.

1dim - leading dimension (Idim > smu)

data - pointer to a contiguous block of realtype variables. The elements of the banded matrix are stored
columnwise (i.e. columns are stored one on top of the other in memory). Only elements within the specified
half-bandwidths are stored. data is a pointer to 1data contiguous locations which hold the elements within
the banded matrix.

ldata - length of the data array (= Idim - (smu + ml + 1))

cols - array of pointers. cols[j] is a pointer to the uppermost element within the band in the j-th column.
This pointer may be treated as an array indexed from smu-mu (to access the uppermost element within the
band in the j-th column) to smu+ml (to access the lowest element within the band in the j-th column). Indices

184

Chapter 7. Matrix Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

from O to smu-mu—1 give access to extra storage elements required by the LU decomposition function. Finally,
cols[Jj] [1—J+smu] is the (¢, 7)-th element with j — mu < ¢ < j + ml.

The header file to be included when using this module is sunmatrix/sunmatrix_band.h.

The following macros are provided to access the content of a SUNMATRIX BAND matrix. The prefix SM_ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _B denotes that these are specific
to the banded version.

SM_CONTENT_B (A)
This macro gives access to the contents of the banded SUNMatrix A.

The assignment A_cont = SM_CONTENT_B (A) sets A_cont to be a pointer to the banded SUNMat rix
content structure.

Implementation:

#define SM_CONTENT_ B (A) ((SUNMatrixContent_Band) (A->content))

SM ROWS_B (A)
Access the number of rows in the banded SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows =
SM_ROWS_B (A) sets A_rows to be the number of rows in the matrix A. Similarly, the assignment

SM_ROWS_B (A) = A_rows sets the number of columns in A to equal 2_rows.
Implementation:
#define SM_ROWS_B (A) (SM_CONTENT_B (A)->M)

SM_COLUMNS_B (A)
Access the number of columns in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_COLUMNS_B(A) (SM_CONTENT_B(A)—->N)

SM UBAND B (A)
Access the mu parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_UBAND_B(A) (SM_CONTENT_B(A)->mu)

SM_LBAND_B (A)
Access the m1 parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_LBAND B (A) (SM_CONTENT_B(A)->ml)

SM SUBAND B (A)
Access the smu parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to
retrieve or to set the value.

Implementation:

#define SM _SUBAND B (A) (SM_CONTENT B (A)—->smu)

7.5. The SUNMATRIX_BAND Module 185

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

mu ml smu

A i
® mu+ml+1
v
¢ -
size data data[0] ©
N ° data[l] | e
e}
o

data(j] @
datalj+1] | data[j][smu-mu] A(j-mu,j)
: A(j—mu-1,j)
data|N-1] ¢ :
data[j][smu] AG.)

data[j][smu+ml]| A(j+mlj)

o
(o]
o

Fig. 7.1: Diagram of the storage for the SUNMATRIX_BAND module. Here A is an N x N band matrix with upper
and lower half-bandwidths mu and m1, respectively. The rows and columns of A are numbered from O to N-1 and the
(2, j)-th element of A is denoted A (i, j). The greyed out areas of the underlying component storage are used by the
associated SUNLINSOL_BAND or SUNLINSOL_LAPACKBAND linear solver.

186 Chapter 7. Matrix Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

SM LDIM B(A)
Access the 1dim parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_LDIM B (A) (SM_CONTENT B (A)->1dim)

SM LDATA B (A)
Access the 1data parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_LDATA B(A) (SM_CONTENT_B (A)->I1data)

SM _DATA B (A)
This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_B (A) sets A_data to be a pointer to the first component of the data
array for the banded SUNMatrix A. The assignment SM_DATA_B (A) = A_data sets the data array of A
to be A_data by storing the pointer A_data.

Implementation:

#define SM _DATA B(A) (SM_CONTENT_ B (A)—->data)

SM _COLS_B (A)
This macro gives access to the cols pointer for the matrix entries.

The assignment A_cols = SM_COLS_B (A) sets A_cols to be a pointer to the array of column pointers for
the banded SUNMatrix A.The assignment SM_COLS_B (A) = A_cols sets the column pointer array of A
to be A_cols by storing the pointer A_cols.

Implementation:

#define SM _COLS_B (A) (SM_CONTENT_B(A)—->cols)

SM_COLUMN_B (A)
This macros gives access to the individual columns of the data array of a banded SUNMat rix.

The assignment col_7J = SM_COLUMN_B (A, j) sets col_7] to be a pointer to the diagonal element of the
j-th column of the N x N band matrix A, 0 < 7 < N — 1. The type of the expression SM_COLUMN_B (A, J)
is realtype =*. The pointer returned by the call SM_COLUMN_B (A, j) can be treated as an array which is
indexed from —mu to m1.

Implementation:

#define SM_COLUMN_B (A,) (((SM_CONTENT_B(A)->cols) [j])+SM _SUBAND B (A))

SM_ELEMENT_B (A)
This macro gives access to the individual entries of the data array of a banded SUNMat rix.

The assignments SM_ELEMENT_B(A,1i,J) = a_ijanda_ij = SM_ELEMENT_B (A, i, j) reference
the (¢, 7)-th element of the NV x N band matrix A, where 0 < ¢, 5 < N — 1. The location (7, j) should further
satisfy j —mu <7 < j + ml.

Implementation:

#define SM_ELEMENT B (A,1i, 7) ((SM_CONTENT _B(A)->cols) [j][(i)—-(j)+SM_SUBAND_B (A)] |)

SM_COLUMN_ELEMENT_B (A)
This macro gives access to the individual entries of the data array of a banded SUNMat rix.

7.5. The SUNMATRIX_BAND Module 187

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

The assignments SM_COLUMN_ELEMENT_B (col_3j,i,3) = a_ij and a_ij =
SM_COLUMN_ELEMENT_B (col_7j, i, j) reference the (¢, j)-th entry of the band matrix A when used
in conjunction with SM_COLUMN_RB to reference the j-th column through col_j. The index (i, 5) should
satisfy 7 —mu <7 < 5+ ml.

Implementation:

#define SM_COLUMN_ELEMENT B (col_3,1,7) (col_F[(i)-(F)])

The SUNMATRIX_BAND module defines banded implementations of all matrix operations listed in the section De-
scription of the SUNMATRIX operations. Their names are obtained from those in that section by appending the
suffix _Band (e.g. SUNMatCopy_Band). The module SUNMATRIX_BAND provides the following additional
user-callable routines:

SUNMatrix SUNBandMat rix (sunindextype N, sunindextype mu, sunindextype ml, sunindextype smu)
This constructor function creates and allocates memory for a banded SUNMat rix. Its arguments are the ma-
trix size, N, the upper and lower half-bandwidths of the matrix, mu and m1, and the stored upper bandwidth,
smu. When creating a band SUNMat rix, if the matrix will be used by the SUNLINSOL_BAND or SUNLIN-
SOL_LAPACKBAND module then smu should be at least min (N—-1, mu+ml) ; otherwise smu should be at
least mu.

void SUNBandMatrix_Print (SUNMatrix A, FILE* outfile)
This function prints the content of a banded SUNMat rix to the output stream specified by out £ile. Note:
stdout or stderr may be used as arguments for out £i1le to print directly to standard output or standard
error, respectively.

sunindextype SUNBandMatrix_Rows (SUNMatrix A)
This function returns the number of rows in the banded SUNMat rix.

sunindextype SUNBandMatrix_Columns (SUNMatrix A)
This function returns the number of columns in the banded SUNMat rix.

sunindextype SUNBandMatrix_ LowerBandwidth (SUNMatrix A)
This function returns the lower half-bandwidth for the banded SUNMat rix.

sunindextype SUNBandMatrix_UpperBandwidth (SUNMatrix A)
This function returns the upper half-bandwidth of the banded SUNMat rix.

sunindextype SUNBandMatrix StoredUpperBandwidth (SUNMatrix A)
This function returns the stored upper half-bandwidth of the banded SUNMat rix.

sunindextype SUNBandMatrix_LDim (SUNMatrix A)
This function returns the length of the leading dimension of the banded SUNMat rix.

realtype* SUNBandMatrix_Data (SUNMatrix A)
This function returns a pointer to the data array for the banded SUNMatrix.

realtype** SUNBandMatrix_Cols (SUNMatrix A)
This function returns a pointer to the cols array for the band SUNMat rix.

realtype* SUNBandMatrix_Column (SUNMatrix A, sunindextype j)
This function returns a pointer to the diagonal entry of the j-th column of the banded SUNMat rix. The resulting
pointer should be indexed over the range —mu to m1.

Notes
* When looping over the components of a banded SUNMatrix A, the most efficient approaches are to:

— First obtain the component array via A_data = SM_DATA B(A) or A_data
SUNBandMatrix_Data (A) and then access A_data [1i] within the loop.

— First obtain the array of column pointers via A_cols = SM_COLS_B(A) or A_cols
SUNBandMatrix_Cols (A7), and then access A_cols[j] [1] within the loop.

188 Chapter 7. Matrix Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

— Within a loop over the columns, access the column pointer via A_colj =
SUNBandMatrix_Column (A, j) and then to access the entries within that column using
SM_COLUMN_ELEMENT_B (A_colj, i, j).

All three of these are more efficient than using SM_ELEMENT_B (A, 1, j) within a double loop.

¢ Within the SUNMatMatvec_Band routine, internal consistency checks are performed to ensure that the matrix
is called with consistent N_Vector implementations. These are currently limited to: NVECTOR_SERIAL,
NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible vector implementations are
added to SUNDIALS, these will be included within this compatibility check.

For solvers that include a Fortran interface module, the SUNMATRIX_BAND module also includes the Fortran-
callable function FSUNBandMatInit () to initialize this SUNMATRIX_BAND module for a given SUNDIALS
solver.

subroutine FSUNBandMat Init (CODE, N, MU, ML, SMU, IER)
Initializes a band SUNMat rix structure for use in a SUNDIALS solver.

Arguments:

* CODE (int, input) — flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

* N(long int, input) — number of matrix rows (and columns).

MU (long int, input) — upper half-bandwidth.
* ML (long int, input) — lower half-bandwidth.

SMU (long int, input) — storage upper half-bandwidth.
* JER (int, output) — return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNBandMassMatInit () initializes this SUNMATRIX_BAND module for storing the mass matrix.

subroutine FSUNBandMassMatInit (N, MU, ML, SMU, IER)
Initializes a band SUNMat rix structure for use as a mass matrix in ARKode.

Arguments:
* N (long int, input) — number of matrix rows (and columns).
* MU (long int, input) — upper half-bandwidth.
* ML (long int, input)— lower half-bandwidth.
* SMU (long int, input) — storage upper half-bandwidth.

e [ER (int, output) — return flag (0 success, -1 for failure).

7.6 The SUNMATRIX_SPARSE Module

The sparse implementation of the SUNMat rix module provided with SUNDIALS, SUNMATRIX_SPARSE, is de-
signed to work with either compressed-sparse-column (CSC) or compressed-sparse-row (CSR) sparse matrix formats.
To this end, it defines the content field of SUNMat rix to be the following structure:

struct _SUNMatrixContent_Sparse {
sunindextype M;
sunindextype N;
sunindextype NNZ;
sunindextype NP;

7.6. The SUNMATRIX_SPARSE Module 189

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

realtype =*data;

int sparsetype;
sunindextype xindexvals;
sunindextype xindexptrs;
/% CSC indices =/
sunindextype xxrowvals;
sunindextype xxcolptrs;
/% CSR indices */
sunindextype *=*colvals;
sunindextype xxrowptrs;

}i

A diagram of the underlying data representation in a sparse matrix is shown in Figure SUNSparseMatrix Diagram. A
more complete description of the parts of this content field is given below:

M - number of rows
N - number of columns
NNZ - maximum number of nonzero entries in the matrix (allocated length of data and indexvals arrays)

NP - number of index pointers (e.g. number of column pointers for CSC matrix). For CSC matrices NP=N,
and for CSR matrices NP=M. This value is set automatically at construction based the input choice for
sparsetype.

data - pointer to a contiguous block of realtype variables (of length NNZ), containing the values of the
nonzero entries in the matrix

sparsetype - type of the sparse matrix (CSC_MAT or CSR_MAT)

indexvals - pointer to a contiguous block of int variables (of length NNZ), containing the row indices (if
CSC) or column indices (if CSR) of each nonzero matrix entry held in data

indexptrs - pointer to a contiguous block of int variables (of length NP+1). For CSC matrices each entry
provides the index of the first column entry into the data and indexvals arrays, e.g. if indexptr[3]1=7,
then the first nonzero entry in the fourth column of the matrix is located in data[7], and is located in row
indexvals[7] of the matrix. The last entry contains the total number of nonzero values in the matrix and
hence points one past the end of the active data in the data and indexvals arrays. For CSR matrices, each
entry provides the index of the first row entry into the data and indexvals arrays.

The following pointers are added to the SUNMATRIX_SPARSE content structure for user convenience, to provide a
more intuitive interface to the CSC and CSR sparse matrix data structures. They are set automatically when creating
a sparse SUNMat rix, based on the sparse matrix storage type.

rowvals - pointer to indexvals when sparsetype is CSC_MAT, otherwise set to NULL.
colptrs - pointer to indexptrs when sparsetype is CSC_MAT, otherwise set to NULL.
colvals - pointer to indexvals when sparsetype is CSR_MAT, otherwise set to NULL.

rowptrs - pointer to indexptrs when sparsetype is CSR_MAT, otherwise set to NULL.

For example, the 5 x 4 matrix

O = O Wwo
SO NO W
OO O O
O O N O

could be stored as a CSC matrix in this structure as either

190

Chapter 7. Matrix Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

M = 5;
N = 4;
NNZ = 8;
NP = N;

i
data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0};
sparsetype = CSC_MAT;

indexvals = {1, 3, 0, 2, 0, 1, 3, 4};

indexptrs = {0, 2, 4, 5, 8};

or

M = 5;
N = 4
NNZ = 10;

NP = N;

data {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0, *, =*};
sparsetype = CSC_MAT;

indexvals = {1, 3, 0, 2, 0, 1, 3, 4, *, *};

indexptrs = {0, 2, 4, 5, 8};

where the first has no unused space, and the second has additional storage (the entries marked with « may contain any
values). Note in both cases that the final value in indexptrs is 8, indicating the total number of nonzero entries in
the matrix.

Similarly, in CSR format, the same matrix could be stored as

M = 5;

N = 4;

NNZ = 8;

NP = N;

data {3.0, 1.0, 3.0, 2.0, 7.0, 1.0, 9.0, 5.0};

sparsetype = CSR_MAT;
indexvals = {1, 2, 0, 3, 1, 0, 3, 3};
indexptrs = {0, 2, 4, 5, 7, 8};

The header file to be included when using this module is sunmatrix/sunmatrix_sparse.h.

The following macros are provided to access the content of a SUNMATRIX_SPARSE matrix. The prefix SM__ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _S denotes that these are specific
to the sparse version.

SM_CONTENT_S (A)
This macro gives access to the contents of the sparse SUNMatrix A.

The assignment A_cont = SM_CONTENT_S (A) sets A_cont to be a pointer to the sparse SUNMat rix
content structure.

Implementation:

#define SM _CONTENT_S (A) ((SUNMatrixContent_Sparse) (A->content))

SM_ROWS_S (A)
Access the number of rows in the sparse SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows =
SM_ROWS_S (A) sets A_rows to be the number of rows in the matrix A. Similarly, the assignment
SM_ROWS_S (A) = A_rows sets the number of columns in A to equal A_rows.

Implementation:

7.6. The SUNMATRIX_SPARSE Module 191

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

NULL NULL

[l Pl
owvale colplrz colvals o ptrs M NP=MN N
A & & = =
EEEEEE———
indexvalz| wdexptrz data NMNZ zparzetype=C5C_MAT
P P ¥
[
=————— 0 F----- == AlFovevalz[0],m0
===] - I Al*oaevalz[1],00 column 0
| |
H : H : :
- | - | -,
| |
| |
= ---1 k [-—- '- Al*rowvalz[]],1)
I I -
| | a
e : :
e} 1 I 1 o]
11 (|
11 (|
=--11 V=== Al*owealz[k] NP1 T
1 1
: i i : column MP-
1 1
l l Al*owvals[nz—1],NP-1) l
1 1
: L. }
unuzed
storaga

Fig. 7.2: Diagram of the storage for a compressed-sparse-column matrix of type SUNMATRIX_SPARSE: Here A
isan M x N sparse CSC matrix with storage for up to NNZ nonzero entries (the allocated length of both data and
indexvals). The entries in indexvals may assume values from 0 to M-1, corresponding to the row index (zero-
based) of each nonzero value. The entries in data contain the values of the nonzero entries, with the row i, column
j entry of A (again, zero-based) denoted as A (i, j). The indexptrs array contains N+1 entries; the first N denote
the starting index of each column within the indexvals and data arrays, while the final entry points one past the
final nonzero entry. Here, although NNZ values are allocated, only nz are actually filled in; the greyed-out portions of
data and indexvals indicate extra allocated space.

192 Chapter 7. Matrix Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

#define SM_ROWS_S (A) (SM_CONTENT_S (A)—->M)

SM COLUMNS_ S (A)
Access the number of columns in the sparse SUNMatrix A. As with SM_ROWS__S, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_COLUMNS_S (A) (SM_CONTENT_S (A)—->N)

SM NNZ S (A)
Access the allocated number of nonzeros in the sparse SUNMatrix A. As with SM_ROWS__S, this may be used
either to retrieve or to set the value.

Implementation:

#define SM_NNZ_S (A) (SM_CONTENT_S (A) —>NNZ)

SM NP _S (A)
Access the number of index pointers NP in the sparse SUNMatrix A. As with SM_ROWS__S, this may be used
either to retrieve or to set the value.

Implementation:

#define SM_NP_S (A) (SM_CONTENT_S (A)—>NP)

SM_SPARSETYPE_S (A)
Access the sparsity type parameter in the sparse SUNMatrix A. As with SM_ROWS__S, this may be used either
to retrieve or to set the value.

Implementation:

#define SM_SPARSETYPE_S(A) (SM_CONTENT_S (A)->sparsetype)

SM_DATA_ S (A)
This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_S (A) sets A_data to be a pointer to the first component of the data
array for the sparse SUNMatrix A. The assignment SM_DATA_S (A) = A_data sets the data array of A to
be A_data by storing the pointer A_data.

Implementation:

#define SM_DATA S (A) (SM_CONTENTI_S (A)—->data)

SM_INDEXVALS_ S (A)
This macro gives access to the indexvals pointer for the matrix entries.

The assignment A_indexvals = SM_INDEXVALS_S (A) sets A_indexvals to be a pointer to the ar-
ray of index values (i.e. row indices for a CSC matrix, or column indices for a CSR matrix) for the sparse
SUNMatrix A.

Implementation:

#define SM_INDEXVALS_S (A) (SM_CONTENT_ S (A)->indexvals)

SM_INDEXPTRS_S (A)
This macro gives access to the indexpt rs pointer for the matrix entries.

The assignment A_indexptrs = SM_INDEXPTRS_S (A) sets A_indexptrs to be a pointer to the array
of index pointers (i.e. the starting indices in the data/indexvals arrays for each row or column in CSR or CSC
formats, respectively).

7.6. The SUNMATRIX_SPARSE Module 193

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Implementation:

#define SM_INDEXPTRS_S (A) (SM_CONTENT_S (A) ->indexptrs)

The SUNMATRIX_SPARSE module defines sparse implementations of all matrix operations listed in the section De-
scription of the SUNMATRIX operations. Their names are obtained from those in that section by appending the suffix
_Sparse (e.g. SUNMatCopy_Sparse). The module SUNMATRIX_SPARSE provides the following additional
user-callable routines:

SUNMatrix SUNSparseMatrix (sunindextype M, sunindextype N, sunindextype NNZ, int sparsetype)
This constructor function creates and allocates memory for a sparse SUNMat rix. Its arguments are the number
of rows and columns of the matrix, M and N, the maximum number of nonzeros to be stored in the matrix, NNZ,
and a flag sparsetype indicating whether to use CSR or CSC format (valid choices are CSR_MAT or CSC_MAT).

SUNMatrix SUNSparseFromDenseMatrix (SUNMatrix A, realtype droptol, int sparsetype)
This constructor function creates a new sparse matrix from an existing SUNMATRIX_DENSE object by copy-
ing all values with magnitude larger than droprol into the sparse matrix structure.

Requirements:
*A must have type SUNMATRIX_DENSE
*droptol must be non-negative
esparsetype must be either CSC_MAT or CSR_MAT
The function returns NULL if any requirements are violated, or if the matrix storage request cannot be satisfied.

SUNMatrix SUNSparseFromBandMat rix (SUNMatrix A, realtype droptol, int sparsetype)
This constructor function creates a new sparse matrix from an existing SUNMATRIX_BAND object by copying
all values with magnitude larger than droptol into the sparse matrix structure.

Requirements:
*A must have type SUNMATRIX_BAND
*droptol must be non-negative
esparsetype must be either CSC_MAT or CSR_MAT.
The function returns NULL if any requirements are violated, or if the matrix storage request cannot be satisfied.

int SUNSparseMatrix Realloc (SUNMatrix A)
This function reallocates internal storage arrays in a sparse matrix so that the resulting sparse matrix
has no wasted space (i.e. the space allocated for nonzero entries equals the actual number of nonzeros,
indexptrs [NP]). Returns 0 on success and 1 on failure (e.g. if the input matrix is not sparse).

void SUNSparseMatrix_ Print (SUNMatrix A, FILE* outfile)
This function prints the content of a sparse SUNMatrix to the output stream specified by out file. Note:
stdout or stderr may be used as arguments for out £ile to print directly to standard output or standard
error, respectively.

sunindextype SUNSparseMatrix_ Rows (SUNMatrix A)
This function returns the number of rows in the sparse SUNMat rix.

sunindextype SUNSparseMatrix_Columns (SUNMatrix A)
This function returns the number of columns in the sparse SUNMat rix.

sunindextype SUNSparseMatrix_ NNZ (SUNMatrix A)
This function returns the number of entries allocated for nonzero storage for the sparse SUNMat rix.

sunindextype SUNSparseMatrix_NP (SUNMatrix A)
This function returns the number of index pointers for the sparse SUNMatrix (the indexptrs array has
NP+1 entries).

194 Chapter 7. Matrix Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

int SUNSparseMatrix SparseType (SUNMatrix A)
This function returns the storage type (CSR_MAT or CSC_MAT) for the sparse SUNMat rix.

realtype* SUNSparseMatrix_Data (SUNMatrix A)
This function returns a pointer to the data array for the sparse SUNMat rix.

sunindextype* SUNSparseMatrix_ IndexValues (SUNMatrix A)
This function returns a pointer to index value array for the sparse SUNMatrix: for CSR format this is the
column index for each nonzero entry, for CSC format this is the row index for each nonzero entry.

sunindextype* SUNSparseMatrix_IndexPointers (SUNMatrix A)
This function returns a pointer to the index pointer array for the sparse SUNMatrix: for CSR format this is
the location of the first entry of each row in the data and indexvalues arrays, for CSC format this is the
location of the first entry of each column.

Note: Within the SUNMatMatvec_Sparse routine, internal consistency checks are performed to ensure that the
matrix is called with consistent N_Vector implementations. These are currently limited to: NVECTOR_SERIAL,

NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible vector implementations are added to
SUNDIALS, these will be included within this compatibility check.

For solvers that include a Fortran interface module, the SUNMATRIX_ SPARSE module also includes the Fortran-
callable function FSUNSparseMatInit () to initialize this SUNMATRIX_SPARSE module for a given SUNDI-
ALS solver.

subroutine FSUNSparseMatInit (CODE, M, N, NNZ, SPARSETYPE, IER)
Initializes a sparse SUNMat rix structure for use in a SUNDIALS solver.

Arguments:

* CODE (int, input) — flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

* M (long int, input) — number of matrix rows.
* N(long int, input) — number of matrix columns.

* NNZ (long int, input) — amount of nonzero storage to allocate.

SPARSETYPE (int, input) — matrix sparsity type (CSC_MAT or CSR_MAT)
e JER (int, output) — return flag (O success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNSparseMassMatInit () initializes this SUNMATRIX_SPARSE module for storing the mass matrix.

subroutine FSUNSparseMassMatInit (M, N, NNZ, SPARSETYPE, IER)
Initializes a sparse SUNMat rix structure for use as a mass matrix in ARKode.

Arguments:
* M (long int, input) — number of matrix rows.
* N (long int, input) — number of matrix columns.

* NNZ (long int, input) — amount of nonzero storage to allocate.

SPARSETYPE (int, input) — matrix sparsity type (CSC_MAT or CSR_MAT)

e IER (int, output) — return flag (O success, -1 for failure).

7.6. The SUNMATRIX_SPARSE Module 195

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

7.7 SUNMATRIX Examples

There are SUNMatrix examples that may be installed for each implementation: dense, banded, and sparse. Each
implementation makes use of the functions in test_sunmatrix.c. These example functions show simple usage
of the SUNMatrix family of functions. The inputs to the examples depend on the matrix type, and are output to
stdout if the example is run without the appropriate number of command-line arguments.

The following is a list of the example functions in test_sunmatrix.c:
* Test_SUNMatGet ID: Verifies the returned matrix ID against the value that should be returned.
e Test_SUNMatClone: Creates clone of an existing matrix, copies the data, and checks that their values match.
e Test_SUNMatZero: Zeros out an existing matrix and checks that each entry equals 0.0.
e Test_SUNMatCopy: Clones an input matrix, copies its data to a clone, and verifies that all values match.

* Test_SUNMatScaleAdd: Given an input matrix A and an input identity matrix I, this test clones and copies
A to anew matrix B, computes B = — B+ B, and verifies that the resulting matrix entries equal 0. Additionally,
if the matrix is square, this test clones and copies A to a new matrix D, clones and copies [to a new matrix C,
computes D = D 4 I and C' = C' + A using SUNMat ScaleAdd, and then verifies that C = D.

* Test_SUNMatScaleAddI: Given an input matrix A and an input identity matrix I, this clones and copies /
to a new matrix B, computes B = —B + I using SUNMat ScaleAddlI, and verifies that the resulting matrix
entries equal 0.

* Test_SUNMatMatvec Given an input matrix A and input vectors « and y such that y = Az, this test has
different behavior depending on whether A is square. If it is square, it clones and copies A to a new matrix B,
computes B = 3B + [using SUNMat ScaleAddlI, clones y to new vectors w and z, computes z = Bx using
SUNMatMatvec, computes w = 3y + x using N_VLinearSum, and verifies that w == z. If A is not square,
it just clones y to a new vector z, computes :math: ‘z=Ax using SUNMatMatvec, and verifies that y = z.

* Test_SUNMatSpace: verifies that SUNMat Space can be called, and outputs the results to stdout.

7.8 SUNMATRIX functions required by ARKode

In Table List of matrix functions usage by ARKode code modules, we list the matrix functions in the SUNMatrix
module used within the ARKode package. The table also shows, for each function, which of the code modules uses
the function. Neither the main ARKode integrator or the ARKSPILS interface call SUNMat rix functions directly,
so the table columns are specific to the ARKDLS direct solver interface and the ARKBANDPRE and ARKBBDPRE
preconditioner modules.

At this point, we should emphasize that the ARKode user does not need to know anything about the usage of matrix
functions by the ARKode code modules in order to use ARKode. The information is presented as an implementation
detail for the interested reader.

196 Chapter 7. Matrix Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

7.8.1 List of matrix functions usage by ARKode code modules

Routine ARKDLS | ARKBANDPRE | ARKBBDPRE
SUNMatGetID X

SUNMatClone X

SUNMatDestroy X X X
SUNMatZero X X X
SUNMatCopy X X X
SUNMatScaleAddl | X X X
SUNMatScaleAdd 1

SUNMatMatvec 1

SUNMatSpace 2 2 2

1. These matrix functions are only used for problems involving a non-identity mass matrix.

2. These matrix functions are optionally used, in that these are only called if they are implemented in the
SUNMat rix module that is being used (i.e. their function pointers are non-NULL).

7.8. SUNMATRIX functions required by ARKode 197

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

198 Chapter 7. Matrix Data Structures

CHAPTER
EIGHT

LINEAR SOLVER DATA STRUCTURES

The SUNDIALS library comes packaged with a variety of SUNLinearSolver implementations, designed for sim-
ulations requiring either direct or matrix-free iterative linear solvers for problems in serial or shared-memory parallel
environments. SUNDIALS additionally provides a simple interface for generic linear solvers (akin to a C++ abstract
base class). All of the major SUNDIALS packages (CVODE(s), IDA(s), KINSOL, ARKODE), are constructed to
only depend on these generic linear solver operations, making them immediately extensible to new user-defined linear
solver objects.

8.1 Description of the SUNLinearSolver Module

For problems that involve the solution of linear systems of equations, the SUNDIALS solvers operate using
generic linear solver modules (of type SUNLinearSolver), through a set of operations defined by the particu-
lar SUNLinearSolver implementation. These work in coordination with the SUNDIALS generic N_Vector and
SUNMat rix modules to provide a set of compatible data structures and solvers for the solution of linear systems us-
ing direct or iterative methods. Moreover, users can provide their own specific SUNLinearSolver implementation
to each SUNDIALS solver, particularly in cases where they provide their own N_Vector and/or SUNMat rix mod-
ules, and the customized linear solver leverages these additional data structures to create highly efficient and/or scalable
solvers for their particular problem. Additionally, SUNDIALS provides native implementations SUNLinearSolver
modules, as well as SUNLinearSolver modules that interface between SUNDIALS and external linear solver li-
braries.

The various SUNDIALS solvers have been designed to specifically leverage the use of either direct linear solvers or
matrix-free, scaled, preconditioned, iterative linear solvers, through their “Dls” and “Spils” interfaces, respectively.
Additionally, SUNDIALS solvers can make use of user-supplied custom linear solvers, whether these are problem-
specific or come from external solver libraries.

For iterative (and possibly custom) linear solvers, the SUNDIALS solvers leverage scaling and preconditioning, as
applicable, to balance error between solution components and to accelerate convergence of the linear solver. To
this end, instead of solving the linear system Ax = b directly, we apply the underlying iterative algorithm to the
transformed system

Az =b (8.1)
where
A= 8P AP 1SS!,
b=S8,P b, (82)
T = SQPQJ?,
and where

e P is the left preconditioner,

199

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

¢ P, is the right preconditioner,
¢ S is a diagonal matrix of scale factors for Pflb,
¢ S5 is a diagonal matrix of scale factors for Pyx.

The SUNDIALS solvers request that iterative linear solvers stop based on the 2-norm of the scaled preconditioned
residual meeting a prescribed tolerance

o 3], < o

We note that not all of the iterative linear solvers implemented in SUNDIALS support the full range of the above
options. Similarly, some of the SUNDIALS integrators only utilize a subset of these options. Exceptions to the
operators shown above are described in the documentation for each SUNLinearSolver implementation, or for
each SUNDIALS solver “Spils” interface.

The generic SUNLinearSolver type has been modeled after the object-oriented style of the generic N_Vector
type. Specifically, a generic SUNLinearSolver is a pointer to a structure that has an implementation-dependent
content field containing the description and actual data of the linear solver, and an ops field pointing to a structure with
generic linear solver operations. The type SUNLinearSolver is defined as

typedef struct _generic_SUNLinearSolver xSUNLinearSolver;

struct _generic_SUNLinearSolver {

void xcontent;

struct _generic_SUNLinearSolver_Ops *0ps;
}i

The _generic_SUNLinearSolver_Ops structure is essentially a list of pointers to the various actual linear
solver operations, and is defined as

struct _generic_SUNLinearSolver_Ops {
SUNLinearSolver_Type (*xgettype) (SUNLinearSolver);

int (#setatimes) (SUNLinearSolver, wvoids, ATimesFn);

int (#setpreconditioner) (SUNLinearSolver, wvoidsx,
PSetupFn, PSolveFn);

int (xrsetscalingvectors) (SUNLinearSolver,
N_Vector, N_Vector);

int (#initialize) (SUNLinearSolver) ;

int (xsetup) (SUNLinearSolver, SUNMatrix);

int (#solve) (SUNLinearSolver, SUNMatrix, N_Vector,

N_Vector, realtype);

int (#numiters) (SUNLinearSolver) ;

realtype (#resnorm) (SUNLinearSolver) ;

long int (xlastflag) (SUNLinearSolver) ;

int (xspace) (SUNLinearSolver, long int*, long int«);
N_Vector (#resid) (SUNLinearSolver) ;

int (xfree) (SUNLinearSolver) ;

}i

The generic SUNLinearSolver module defines and implements the linear solver operations acting on
SUNLinearSolver objects. These routines are in fact only wrappers for the linear solver operations de-
fined by a particular SUNLinearSolver implementation, which are accessed through the {em ops} field of the
SUNLinearSolver structure. To illustrate this point we show below the implementation of a typical linear solver
operation from the generic SUNLinearSolver module, namely SUNLinSolInitialize, which initializes a
SUNLinearSolver object for use after it has been created and configured, and returns a flag denoting a success-
ful/failed operation:

200 Chapter 8. Linear Solver Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

int SUNLinSolInitialize (SUNLinearSolver S)
{

return ((int) S->ops->initialize(S));

}

The subsection Description of the SUNLinearSolver operations contains a complete list of all linear solver operations
defined by the generic SUNLinearSolver module. In order to support both direct and iterative linear solver types,
the generic SUNLinearSolver module defines linear solver routines (or arguments) that may be specific to indi-
vidual use cases. As such, for each routine we specify its intended use. If a custom SUNLinearSolver module is
provided, the function pointers for non-required routines may be set to NULL to indicate that they are not provided.

A particular implementation of the SUNLinearSolver module must:
* Specify the content field of the SUNLinearSolver object.

* Define and implement a minimal subset of the linear solver operations. See the documentation for each SUN-
DIALS linear solver interface to determine which SUNLinearSolver operations they require.

Note that the names of these routines should be unique to that implementation in order to permit using more than
one SUNLinearSolver module (each with different SUNLinearSolver internal data representations) in
the same code.

* Define and implement user-callable constructor and destructor routines to create and free a
SUNLinearSolver with the new content field and with ops pointing to the new linear solver opera-
tions.

e Optionally, define and implement additional user-callable routines acting on the newly defined
SUNLinearSolver (e.g., routines to set various configuration options for tuning the linear solver to a partic-
ular problem).

* Optionally, provide functions as needed for that particular implementation to access different parts in the content
field of the newly defined SUNLinearSolver object (e.g., routines to return various statistics from the solver).

Each SUNLinearSolver implementation included in SUNDIALS has a “type” identifier specified in enumeration
and shown in Table Identifiers associated with linear solver kernels supplied with SUNDIALS. It is recommended that a
user-supplied SUNLinearSolver implementation set this identifier based on the SUNDIALS solver interface they
intend to use: “Dls” interfaces require the SUNLINEARSOLVER_DIRECT SUNLinearSolver objects, “Spils”
interfaces require the SUNLINEARSOLVER_ITERATIVE objects.

8.1.1 Identifiers associated with linear solver kernels supplied with SUNDIALS

Linear Solver ID Solver type ID Value
SUNLINEARSOLVER_DIRECT Direct solvers 0
SUNLINEARSOLVER_ITERATIVE | Iterative solvers | 1
SUNLINEARSOLVER_CUSTOM Custom solvers | 2

8.2 Description of the SUNLinearSolver operations

For each of the SUNLinearSolver operations, we give the name, usage of the function, and a description of its
mathematical operations below.

SUNLinearSolver_Type SUNLinSolGetType (SUNLinearSolver LS)
Returns the type identifier for the linear solver LS. It is used to determine the solver type (direct, iterative, or cus-
tom) from the abstract SUNLinearSolver interface. This is used to assess compatibility with SUNDIALS-
provided linear solver interfaces. Returned values are given in the Table Identifiers associated with linear solver
kernels supplied with SUNDIALS.

8.2. Description of the SUNLinearSolver operations 201

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Usage:

type = SUNLinSolGetType (LS);

int SUNLinSolInitialize (SUNLinearSolver LS)

Performs linear solver initialization (assumes that all solver-specific options have been set). This should return
zero for a successful call, and a negative value for a failure, ideally returning one of the generic error codes listed
in section Error Codes returned from SUNLinearSolver implementations.

Usage:

ier = SUNLinSolInitialize (LS);

int SUNLinSolSetup (SUNLinearSolver LS, SUNMatrix A)

Performs any linear solver setup needed, based on an updated system SUNMatrix A. This may be called
frequently (e.g. with a full Newton method) or infrequently (for a modified Newton method), based on the
type of integrator and/or nonlinear solver requesting the solves. This should return zero for a successful call, a
positive value for a recoverable failure and a negative value for an unrecoverable failure, ideally returning one
of the generic error codes listed in section Error Codes returned from SUNLinearSolver implementations.

Usage:

ier = SUNLinSolSetup (LS, A);

int SUNLinSolSolve (SUNLinearSolver LS, SUNMatrix A, N_Vector x, N_Vector b, realtype rol)

Solves a linear system Az = b. This should return zero for a successful call, a positive value for a recoverable
failure and a negative value for an unrecoverable failure, ideally returning one of the generic error codes listed
in section Error Codes returned from SUNLinearSolver implementations.

Direct solvers: can ignore the fo/ argument.

Iterative solvers: can ignore the SUNMatrix input A since a NULL argument will be passed (these should
instead rely on the matrix-vector product function supplied through the routine SUNLinSolSetATimes ()).
These should attempt to solve to the specified realtype tolerance tol in a weighted 2-norm. If the solver does
not support scaling then it should just use a 2-norm.

Custom solvers: all arguments will be supplied, and if the solver is approximate then it should attempt to solve
to the specified realtype tolerance fol in a weighted 2-norm. If the solver does not support scaling then it
should just use a 2-norm.

Usage:

ier = SUNLinSolSolve (LS, A, x, b, tol);

int SUNLinSolFree (SUNLinearSolver LS)

Frees memory allocated by the linear solver. This should return zero for a successful call, and a negative value
for a failure.

Usage:

ier = SUNLinSolFree (LS);

int SUNLinSolSetATimes (SUNLinearSolver LS, void* A_data, ATimesFn ATimes)

Provides ATimesFn function pointer, as well as a void x pointer to a data structure used by this routine, to
a linear solver object. SUNDIALS solvers will call this function to set the matrix-vector product function to
either a solver-provided difference-quotient via vector operations or a user-supplied solver-specific routine. This
routine should return zero for a successful call, and a negative value for a failure, ideally returning one of the
generic error codes listed in section Error Codes returned from SUNLinearSolver implementations.

Usage:

202

Chapter 8. Linear Solver Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

ier = SUNLinSolSetATimes (LS, A_data, ATimes);

int SUNLinSolSetPreconditioner (SUNLinearSolver LS, void* P_data, PSetupFn Pset,

PSolveFn Psol)
(Optional; Iterative/Custom linear solvers only)

Provides PSetupFnand PSolveFn function pointers that implement the preconditioner solves P~ Land Py L
This routine will be called by a SUNDIALS solver, which will provide translation between the generic Pser and
Psol calls and the integrator-specific and integrator- or user-supplied routines. This routine should return zero
for a successful call, and a negative value for a failure, ideally returning one of the generic error codes listed in
section Error Codes returned from SUNLinearSolver implementations.

Usage:

ier = SUNLinSolSetPreconditioner (LS, Pdata, Pset, Psol);

int SUNLinSolSetScalingVectors (SUNLinearSolver LS, N_Vector s/, N_Vector s2)
(Optional; Iterative/Custom linear solvers only)

Sets pointers to left/right scaling vectors for the linear system solve. Here, s/ is an N_Vector of positive scale
factors containing the diagonal of the S; scaling matrix. Similarly, s2 is an N_Vector containing the diagonal
of the S5 scaling matrix. Neither of these vectors are tested for positivity, and a NULL argument for either
indicates that the corresponding scaling matrix is the identity. This routine should return zero for a successful
call, and a negative value for a failure, ideally returning one of the generic error codes listed in section Error
Codes returned from SUNLinearSolver implementations.

Usage:

ier = SUNLinSolSetScalingVectors (LS, sl, s2);

int SUNLinSolNumIters (SUNLinearSolver LS)
(Optional; Iterative/Custom linear solvers only)

Should return the number of linear iterations performed in the last “solve” call.

Usage:

its = SUNLinSolNumIters (LS);

realtype SUNLinSolResNorm (SUNLinearSolver LS)
(Optional; Iterative/Custom linear solvers only)

Should return the final residual norm from the last “solve” call.

Usage:

rnorm = SUNLinSolResNorm (LS) ;

N_Vector SUNLinSolResid (SUNLinearSolver LS)
(Optional; Iterative/Custom linear solvers only)

If an iterative method computes the preconditioned initial residual and returns with a successful solve without
performing any iterations (i.e. either the initial guess or the preconditioner is sufficiently accurate), then this
function may be called by the SUNDIALS solver. This routine should return the N_Vector containing the
preconditioned initial residual vector.

Usage:

rvec = SUNLinSolResid (LS);

long int SUNLinSolLastFlag (SUNLinearSolver LS)
(Optional)

8.2. Description of the SUNLinearSolver operations 203

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Should return the last error flag encountered within the linear solver. This is not called by the SUNDIALS
solvers directly; it allows the user to investigate linear solver issues after a failed solve.

Usage:

1flag = SUNLinLastFlag(LS);

int SUNLinSolSpace (SUNLinearSolver LS, long int *lenrwLS, long int *leniwLS)
(Optional)

Returns the storage requirements for the linear solver LS. Irwis a long int containing the number of realtype
words and liw is a long int containing the number of integer words. The return value is an integer flag
denoting success/failure of the operation.

This function is advisory only, for use in determining a user’s total space requirements.

Usage:

ier = SUNLinSolSpace (LS, &lrw, &liw);

8.3 Description of the client-supplied SUNLinearSolver routines

The SUNDIALS packages provide the ATimes, Pset and Psol routines utilized by the SUNLinearSolver modules.
These function types are defined in the header file sundials/sundials_iterative.h, and are described here
in case a user wishes to interact directly with an iterative SUNLinearSolver object.

typedef int (*ATimesFn) (void *A_data, N_Vector v, N_Vector z)
These functions compute the action of a matrix on a vector, performing the operation z = Av. Memory for z
should already be allocted prior to calling this function. The parameter A_data is a pointer to any information
about A which the function needs in order to do its job. The vector v should be left unchanged. This routine
should return O if successful and a non-zero value if unsuccessful.

typedef int (*PSetupFn) (void *P_data)
These functions set up any requisite problem data in preparation for calls to the corresponding PSo1veFn. This
routine should return 0 if successful and a non-zero value if unsuccessful.

typedef int (*PSolveFn) (void *P_data, N_Vector r, N_Vector z, realtype tol, int Ir)
These functions solve the preconditioner equation Pz = r for the vector z. Memory for z should already be
allocted prior to calling this function. The parameter P_data is a pointer to any information about P which the
function needs in order to do its job (set up by the corresponding PSetupFn. The parameter /r is input, and
indicates whether P is to be taken as the left preconditioner or the right preconditioner: Ir = 1 for left and Ir =
2 for right. If preconditioning is on one side only, /r can be ignored. If the preconditioner is iterative, then it
should strive to solve the preconditioner equation so that

[Pz — 7||wms < tol

where the weight vector for the WRMS norm may be accessed from the main package memory structure. The
vector r should not be modified by the PSolveFn. This routine should return O if successful and a non-zero value
if unsuccessful. On a failure, a negative return value indicates an unrecoverable condition, while a positive value
indicates a recoverable one, in which the calling routine may reattempt the solution after updating preconditioner
data.

8.4 Compatibility of SUNLinearSolver modules

We note that not all SUNLinearSolver types are compatible with all SUNMat rix and N_Vector types provided
with SUNDIALS. In Table Compatible SUNLinearSolver and SUNMatrix implementations we show the direct linear

204 Chapter 8. Linear Solver Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

solvers available as SUNLinearSolver modules, and the compatible matrix implementations. Recall that Table
SUNDIALS linear solver interfaces and vector implementations that can be used for each shows the compatibility
between all SUNLinearSolver modules and vector implementations.

8.4.1 Compatible SUNLinearSolver and SUNMatrix implementations

Linear Solver | Dense | Banded | Sparse | User Supplied
Dense X X
Band X X
LapackDense X X
LapackBand X X
KLU X X
SuperLU_MT X X
User supplied X X X X
8.5 Error Codes returned from SUNLinearSolver implementations

The functions within the SUNDIALS-provided SUNLinearSolver implementations return a common set of error
codes, listed here:

SUNLS_SUCCESS (0) — successful call or converged solve

SUNLS_MEM_NULL (-1) — the memory argument to the function is NULL

SUNLS_ILL_INPUT (-2) - an illegal input has been provided to the function

SUNLS_MEM_FATIL (-3) — failed memory access or allocation

SUNLS_ATIMES_FAIL_UNREC (-4) — an unrecoverable failure occurred in the AT imes routine
SUNLS_PSET_FAIL_UNREC (-5) — an unrecoverable failure occurred in the Pset routine
SUNLS_PSOLVE_FAIL_UNREC (-6) — an unrecoverable failure occurred in the Psolve routine
SUNLS_PACKAGE_FAIL_UNREC (-7) —an unrecoverable failure occurred in an external linear solver package
SUNLS_GS_FAIL (-8) — a failure occurred during Gram-Schmidt orthogonalization (SPGMR/SPFGMR)
SUNLS_QRSOL_FATL (-9) —a singular R matrix was encountered in a QR factorization (SPGMR/SPFGMR)

SUNLS_RES_REDUCED (1) — an iterative solver reduced the residual, but did not converge to the desired
tolerance

SUNLS_CONV_FAIL (2) — an iterative solver did not converge (and the residual was not reduced)
SUNLS_ATIMES_FAIL_REC (3) — arecoverable failure occurred in the AT imes routine
SUNLS_PSET_FAIIL_REC (4)— arecoverable failure occurred in the Pset routine
SUNLS_PSOLVE_FAIL_REC (5) — a recoverable failure occurred in the Psolve routine
SUNLS_PACKAGE_FAIL_REC (6) — a recoverable failure occurred in an external linear solver package

SUNLS_QRFACT_FAIL (7) - a singular matrix was encountered during a QR factorization
(SPGMR/SPFGMR)

SUNLS_LUFACT_FATIL (8) — a singular matrix was encountered during a LU factorization

8.5.

Error Codes returned from SUNLinearSolver implementations 205

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

8.6

The SUNLINSOL_DENSE Module

The dense implementation of the SUNLinearSolver module provided with SUNDIALS, SUNLINSOL_DENSE,
is designed to be used with the corresponding SUNMATRIX_DENSE matrix type, and one of the serial or shared-
memory N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS).
The SUNLINSOL_DENSE module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Dense ({

sunindextype N;
sunindextype *pivots;
long int last_flag;

}i

These entries of the content field contain the following information:

N - size of the linear system,
pivots - index array for partial pivoting in LU factorization,

last_flag - last error return flag from internal function evaluations.

This solver is constructed to perform the following operations:

The “setup” call performs a LU factorization with partial (row) pivoting (O(N?3) cost), PA = LU, where P isa
permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an upper triangular matrix.
This factorization is stored in-place on the input SUNMATRIX_DENSE object A, with pivoting information
encoding P stored in the pivots array.

The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and
the LU factors held in the SUNMATRIX_DENSE object (O(IN?) cost).

The header file to be included when using this module is sunlinsol/sunlinsol_dense.h.

The SUNLINSOL_DENSE module defines dense implementations of all “direct” linear solver operations listed in the
section Description of the SUNLinearSolver operations:

SUNLinSolGetType_Dense

SUNLinSolInitialize_Dense — this does nothing, since all consistency checks are performed at solver
creation.

SUNLinSolSetup_Dense — this performs the LU factorization.
SUNLinSolSolve_Dense — this uses the LU factors and pivots array to perform the solve.
SUNLinSolLastFlag_Dense

SUNLinSolSpace_Dense — this only returns information for the storage within the solver object, i.e. storage
for N, last_flag,and pivots.

SUNLinSolFree_Dense

The module SUNLINSOL_DENSE provides the following additional user-callable constructor routine:

SUNLinearSolver SUNDenseLinearSolver (N_Vector y, SUNMatrix A)

This function creates and allocates memory for a dense SUNLinearSolver. Its arguments are an N_Vector
and SUNMatrix, that it uses to determine the linear system size and to assess compatibility with the linear
solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_DENSE matrix type and
the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional

206

Chapter 8. Linear Solver Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

compatible matrix and vector implementations are added to SUNDIALS, these will be included within this
compatibility check.

If either A or y are incompatible then this routine will return NULL.

For solvers that include a Fortran interface module, the SUNLINSOL_DENSE module also includes the Fortran-
callable function FSUNDenseLinSolInit () toinitialize this SUNLINSOL_DENSE module for a given SUNDI-
ALS solver.

subroutine FSUNDenseLinSolInit (CODE, IER)
Initializes a dense SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after both the N_Vector and SUNMat rix objects have been initialized.
Arguments:

e CODE (int, input) — flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

e [ER (int, output) — return flag (O success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassDenseLinSolInit () initializes this SUNLINSOL_DENSE module for solving mass matrix
linear systems.

subroutine FSUNMassDenseLinSolInit (/ER)
Initializes a dense SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after both the N_Vector and SUNMat rix objects have been initialized.
Arguments:

e [ER (int, output) — return flag (O success, -1 for failure).

8.7 The SUNLINSOL_BAND Module

The band implementation of the SUNLinearSolver module provided with SUNDIALS, SUNLINSOL_BAND,
is designed to be used with the corresponding SUNMATRIX_BAND matrix type, and one of the serial or shared-
memory N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS).
The SUNLINSOL_BAND module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Band {
sunindextype N;
sunindextype *pivots;
long int last_flag;

}i

These entries of the content field contain the following information:

* N - size of the linear system,

* pivots - index array for partial pivoting in LU factorization,

e last_flag - last error return flag from internal function evaluations.
This solver is constructed to perform the following operations:

* The “setup” call performs a LU factorization with partial (row) pivoting, PA = LU, where P is a permutation
matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an upper triangular matrix. This
factorization is stored in-place on the input SUNMATRIX_BAND object A, with pivoting information encoding
P stored in the pivots array.

8.7. The SUNLINSOL_BAND Module 207

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and
the LU factors held in the SUNMATRIX_BAND object.

A must be allocated to accommodate the increase in upper bandwidth that occurs during factorization. More
precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth m1, then the upper triangular
factor U can have upper bandwidth as big as smu = MIN (N-1,mu+ml). The lower triangular factor L has
lower bandwidth m1.

The header file to be included when using this module is sunlinsol/sunlinsol_band.h.

The SUNLINSOL_BAND module defines band implementations of all “direct” linear solver operations listed in the
section Description of the SUNLinearSolver operations:

SUNLinSolGetType_Band

SUNLinSolInitialize_Band — this does nothing, since all consistency checks are performed at solver
creation.

SUNLinSolSetup_Band — this performs the LU factorization.
SUNLinSolSolve_Band — this uses the LU factors and pivots array to perform the solve.
SUNLinSolLastFlag_Band

SUNLinSolSpace_Band — this only returns information for the storage within the solver object, i.e. storage
for N, last_flag, and pivots.

SUNLinSolFree_Band

The module SUNLINSOL_BAND provides the following additional user-callable constructor routine:

SUNLinearSolver SUNBandLinearSolver (N_Vector y, SUNMatrix A)

This function creates and allocates memory for a band SUNLinearSolver. Its arguments are an N_Vector
and SUNMatrix, that it uses to determine the linear system size and to assess compatibility with the linear
solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMat rix implementations. These are currently limited to the SUNMATRIX_BAND matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional com-
patible matrix and vector implementations are added to SUNDIALS, these will be included within this compat-
ibility check.

Additionally, this routine will verify that the input matrix A is allocated with appropriate upper bandwidth
storage for the LU factorization.

If either A or y are incompatible then this routine will return NULL.

For solvers that include a Fortran interface module, the SUNLINSOL_BAND module also includes the Fortran-
callable function FSUNBandLinSolInit () toinitialize this SUNLINSOL_BAND module for a given SUNDIALS
solver.

subroutine FSUNBandLinSolInit (CODE, IER)

Initializes a banded SUNLinearSolver structure for use in a SUNDIALS package.
This routine must be called after both the N_Vector and SUNMat rix objects have been initialized.
Arguments:

* CODE (int, input) — flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

* [ER (int, output) — return flag (0 success, -1 for failure).

208

Chapter 8. Linear Solver Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassBandLinSolInit () initializes this SUNLINSOL_BAND module for solving mass matrix lin-
ear systems.

subroutine FSUNMassBandLinSolInit (/ER)
Initializes a banded SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after both the N_Vector and SUNMat rix objects have been initialized.
Arguments:

* JER (int, output) — return flag (0 success, -1 for failure).

8.8 The SUNLINSOL_LAPACKDENSE Module

The LAPACK dense implementation of the SUNLinearSolver module provided with SUNDIALS, SUNLIN-
SOL_LAPACKDENSE, is designed to be used with the corresponding SUNMATRIX_DENSE matrix type, and one of
the serial or shared-memory N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP, or NVEC-
TOR_PTHREADS). The SUNLINSOL_LAPACKDENSE module defines the content field of a SUNLinearSolver
to be the following structure:

struct _SUNLinearSolverContent_Dense {
sunindextype N;
sunindextype *pivots;
long int last_flag;

}i

These entries of the content field contain the following information:
* N - size of the linear system,
* pivots - index array for partial pivoting in LU factorization,
e last_flag - last error return flag from internal function evaluations.

The SUNLINSOL_LAPACKDENSE module is a SUNLinearSolver wrapper for the LAPACK dense matrix fac-
torization and solve routines, *GETRF and »GETRS, where « is either D or S, depending on whether SUNDIALS
was configured to have realtype set to double or single, respectively (see section Data Types for details). In
order to use the SUNLINSOL_LAPACKDENSE module it is assumed that LAPACK has been installed on the system
prior to installation of SUNDIALS, and that SUNDIALS has been configured appropriately to link with LAPACK
(see section Working with external Libraries for details). We note that since there do not exist 128-bit floating-point
factorization and solve routines in LAPACK, this interface cannot be compiled when using extended precision for
realtype. Similarly, since there do not exist 64-bit integer LAPACK routines, the SUNLINSOL_LAPACKDENSE
module also cannot be compiled when using int 64_t for the sunindextype.

This solver is constructed to perform the following operations:

* The “setup” call performs a LU factorization with partial (row) pivoting (O(N3) cost), PA = LU, where P is a
permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an upper triangular matrix.
This factorization is stored in-place on the input SUNMATRIX_DENSE object A, with pivoting information
encoding P stored in the pivots array.

* The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and
the LU factors held in the SUNMATRIX_DENSE object (O(N?) cost).

The header file to be included when using this module is sunlinsol/sunlinsol_lapackdense.h.

The SUNLINSOL_LAPACKDENSE module defines dense implementations of all “direct” linear solver operations
listed in the section Description of the SUNLinearSolver operations:

8.8. The SUNLINSOL_LAPACKDENSE Module 209

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* SUNLinSolGetType_LapackDense

* SUNLinSolInitialize_LapackDense — this does nothing, since all consistency checks are performed
at solver creation.

* SUNLinSolSetup_LapackDense — this calls either DGETRF or SGETRF to perform the LU factorization.

e SUNLinSolSolve_LapackDense - this calls either DGETRS or SGETRS to use the LU factors and
pivots array to perform the solve.

* SUNLinSolLastFlag_LapackDense

* SUNLinSolSpace_LapackDense — this only returns information for the storage within the solver object,
i.e. storage for N, last_flag, and pivots.

* SUNLinSolFree_LapackDense
The module SUNLINSOL_LAPACKDENSE provides the following additional user-callable constructor routine:

SUNLinearSolver SUNLapackDense (N_Vector y, SUNMatrix A)
This function creates and allocates memory for a LAPACK dense SUNLinearSolver. Its arguments are an
N_Vector and SUNMat rix, that it uses to determine the linear system size and to assess compatibility with
the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX DENSE matrix type and
the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional
compatible matrix and vector implementations are added to SUNDIALS, these will be included within this
compatibility check.

If either A or y are incompatible then this routine will return NULL.

For solvers that include a Fortran interface module, the SUNLINSOL_LAPACKDENSE module also includes the
Fortran-callable function FSUNLapackDenseInit () to initialize this SUNLINSOL_LAPACKDENSE module for
a given SUNDIALS solver.

subroutine FSUNLapackDenseInit (CODE, IER)
Initializes a dense LAPACK SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after both the N_Vector and SUNMat rix objects have been initialized.
Arguments:

* CODE (int, input) — flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

e IER (int, output) — return flag (O success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassLapackDenseInit () initializes this SUNLINSOL_LAPACKDENSE module for solving mass
matrix linear systems.

subroutine FSUNMassLapackDenseInit (/ER)
Initializes a dense LAPACK SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after both the N_Vector and SUNMat rix objects have been initialized.
Arguments:

e JER (int, output) — return flag (O success, -1 for failure).

210 Chapter 8. Linear Solver Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

8.9 The SUNLINSOL_LAPACKBAND Module

The LAPACK band implementation of the SUNLinearSolver module provided with SUNDIALS, SUNLIN-
SOL_LAPACKBAND, is designed to be used with the corresponding SUNMATRIX_BAND matrix type, and one of
the serial or shared-memory N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP, or NVEC-
TOR_PTHREADS). The SUNLINSOL_LAPACKBAND module defines the content field of a SUNLinearSolver
to be the following structure:

struct _SUNLinearSolverContent_Band {
sunindextype N;
sunindextype xpivots;
long int last_flag;

}i

These entries of the content field contain the following information:
* N - size of the linear system,
* pivots - index array for partial pivoting in LU factorization,
e last_flag - last error return flag from internal function evaluations.

The SUNLINSOL_LAPACKBAND module is a SUNLinearSolver wrapper for the LAPACK band matrix factor-
ization and solve routines, *GBTRF and +GBTRS, where « is either D or S, depending on whether SUNDIALS was
configured to have realtype setto double or single, respectively (see section Data Types for details). In order
to use the SUNLINSOL_LAPACKBAND module it is assumed that LAPACK has been installed on the system prior to
installation of SUNDIALS, and that SUNDIALS has been configured appropriately to link with LAPACK (see section
Working with external Libraries for details). We note that since there do not exist 128-bit floating-point factorization
and solve routines in LAPACK, this interface cannot be compiled when using extended precision for realtype.
Similarly, since there do not exist 64-bit integer LAPACK routines, the SUNLINSOL_LAPACKBAND module also
cannot be compiled when using int 64_t for the sunindextype.

This solver is constructed to perform the following operations:

* The “setup” call performs a LU factorization with partial (row) pivoting, PA = LU, where P is a permutation
matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an upper triangular matrix. This
factorization is stored in-place on the input SUNMATRIX_BAND object A, with pivoting information encoding
P stored in the pivots array.

* The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and
the LU factors held in the SUNMATRIX_BAND object.

e A must be allocated to accommodate the increase in upper bandwidth that occurs during factorization. More
precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth m1, then the upper triangular
factor U can have upper bandwidth as big as smu = MIN (N-1,mu+ml). The lower triangular factor L has
lower bandwidth m1.

The header file to be included when using this module is sunlinsol/sunlinsol_lapackband.h.

The SUNLINSOL_LAPACKBAND module defines band implementations of all “direct” linear solver operations
listed in the section Description of the SUNLinearSolver operations:

* SUNLinSolGetType_LapackBand

* SUNLinSolInitialize_LapackBand — this does nothing, since all consistency checks are performed at
solver creation.

* SUNLinSolSetup_LapackBand — this calls either DGBTRF or SGBTRF to perform the LU factorization.

e SUNLinSolSolve_LapackBand —this calls either DGBTRS or SGBTRS to use the LU factors and pivots
array to perform the solve.

8.9. The SUNLINSOL_LAPACKBAND Module 211

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* SUNLinSolLastFlag_LapackBand

* SUNLinSolSpace_LapackBand — this only returns information for the storage within the solver object, i.e.
storage for N, last_flag, and pivots.

* SUNLinSolFree_LapackBand
The module SUNLINSOL_LAPACKBAND provides the following additional user-callable routine:

SUNLinearSolver SUNLapackBand (N_Vector y, SUNMatrix A)
This function creates and allocates memory for a LAPACK band SUNLinearSolver. Its arguments are an
N_Vector and SUNMat rix, that it uses to determine the linear system size and to assess compatibility with
the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMat rix implementations. These are currently limited to the SUNMATRIX_BAND matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional com-
patible matrix and vector implementations are added to SUNDIALS, these will be included within this compat-
ibility check.

Additionally, this routine will verify that the input matrix A is allocated with appropriate upper bandwidth
storage for the LU factorization.

If either A or y are incompatible then this routine will return NULL.

For solvers that include a Fortran interface module, the SUNLINSOL_LAPACKBAND module also includes the
Fortran-callable function FSUNLapackBandInit () to initialize this SUNLINSOL_LAPACKBAND module for a
given SUNDIALS solver.

subroutine FSUNLapackBandInit (CODE, IER)
Initializes a banded LAPACK SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after both the N_Vector and SUNMat rix objects have been initialized.
Arguments:

e CODE (int, input) — flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

e JER (int, output) — return flag (O success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassLapackBandInit () initializes this SUNLINSOL_LAPACKBAND module for solving mass
matrix linear systems.

subroutine FSUNMassLapackBandInit (/ER)
Initializes a banded LAPACK SUNLinearSolver structure for use in solving mass matrix systems in
ARKode.

This routine must be called after both the N_Vector and SUNMat rix objects have been initialized.
Arguments:

e JER (int, output) — return flag (O success, -1 for failure).

8.10 The SUNLINSOL_KLU Module

The KLU implementation of the SUNLinearSolver module provided with SUNDIALS, SUNLINSOL_KLU, is
designed to be used with the corresponding SUNMATRIX_SPARSE matrix type, and one of the serial or shared-
memory N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP, or NVECTOR_PTHREADS).
The SUNLINSOL_KLU module defines the content field of a SUNLinearSolver to be the following structure:

212 Chapter 8. Linear Solver Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

struct _SUNLinearSolverContent_KLU {
long int last_flag;
int first_factorize;
sun_klu_symbolic *symbolic;
sun_klu_numeric +numeric;
sun_klu_common common;
sunindextype (xrklu_solver) (sun_klu_symbolicx, sun_klu_numericx,
sunindextype, sunindextype,
doublex, sun_klu_common=x) ;
bi

These entries of the content field contain the following information:
e last_flag - last error return flag from internal function evaluations,
e first_factorize - flag indicating whether the factorization has ever been performed,
* Symbolic - KLU storage structure for symbolic factorization components,
* Numeric - KLU storage structure for numeric factorization components,
e Common - storage structure for common KLU solver components,

* klu_solver — pointer to the appropriate KLU solver function (depending on whether it is using a CSR or
CSC sparse matrix).

The SUNLINSOL_KLU module is a SUNLinearSolver wrapper for the KLU sparse matrix factorization and
solver library written by Tim Davis (/KLU], [DP2010]). In order to use the SUNLINSOL_KLU interface to KLU, it is
assumed that KLU has been installed on the system prior to installation of SUNDIALS, and that SUNDIALS has been
configured appropriately to link with KLU (see section Working with external Libraries for details). Additionally, this
wrapper only supports double-precision calculations, and therefore cannot be compiled if SUNDIALS is configured
to have realtype set to either extended or single (see section Data Types for details). Since the KLU library
supports both 32-bit and 64-bit integers, this interface will be compiled for either of the available sunindextype
options.

The KLU library has a symbolic factorization routine that computes the permutation of the linear system matrix to
block triangular form and the permutations that will pre-order the diagonal blocks (the only ones that need to be
factored) to reduce fill-in (using AMD, COLAMD, CHOLAMD, natural, or an ordering given by the user). Of these
ordering choices, the default value in the SUNLINSOL_KLU module is the COLAMD ordering.

KLU breaks the factorization into two separate parts. The first is a symbolic factorization and the second is a numeric
factorization that returns the factored matrix along with final pivot information. KLU also has a refactor routine that
can be called instead of the numeric factorization. This routine will reuse the pivot information. This routine also
returns diagnostic information that a user can examine to determine if numerical stability is being lost and a full
numerical factorization should be done instead of the refactor.

Since the linear systems that arise within the context of SUNDIALS calculations will typically have identical sparsity
patterns, the SUNLINSOL_KLU module is constructed to perform the following operations:

* The first time that the “setup” routine is called, it performs the symbolic factorization, followed by an initial
numerical factorization.

* On subsequent calls to the “setup” routine, it calls the appropriate KLU “refactor” routine, followed by esti-
mates of the numerical conditioning using the relevant “rcond”, and if necessary “condest”, routine(s). If these
estimates of the condition number are larger than £ ~2/% (where ¢ is the double-precision unit roundoff), then a
new factorization is performed.

e The module includes the routine SUNKLUReInit, that can be called by the user to force a full refactorization
at the next “setup” call.

8.10. The SUNLINSOL_KLU Module 213

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

The “solve” call performs pivoting and forward and backward substitution using the stored KLU data structures.
We note that in this solve KLU operates on the native data arrays for the right-hand side and solution vectors,
without requiring costly data copies.

The header file to be included when using this module is sunlinsol/sunlinsol_klu.h.

The SUNLINSOL_KLU module defines implementations of all “direct” linear solver operations listed in the section
Description of the SUNLinearSolver operations:

SUNLinSolGetType_ KLU

SUNLinSolInitialize_ KLU - this sets the first_factorize flag to 1, forcing both symbolic and
numerical factorizations on the subsequent “setup” call.

SUNLinSolSetup_KLU — this performs either a LU factorization or refactorization of the input matrix.

SUNLinSolSolve_KLU — this calls the appropriate KLU solve routine to utilize the LU factors to solve the
linear system.

SUNLinSolLastFlag_KLU

SUNLinSolSpace_KLU - this only returns information for the storage within the solver interface, i.e. stor-
age for the integers last_flagand first_factorize. For additional space requirements, see the KLU
documentation.

SUNLinSolFree_KLU

The module SUNLINSOL_KLU provides the following additional user-callable routines:

SUNLinearSolver SUNKLU (N_Vector y, SUNMatrix A)

This constructor function creates and allocates memory for a SUNLINSOL_KLU object. Its arguments are an
N_Vector and SUNMat rix, that it uses to determine the linear system size and to assess compatibility with
the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_SPARSE matrix type (us-
ing either CSR or CSC storage formats) and the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVEC-
TOR_PTHREADS vector types. As additional compatible matrix and vector implementations are added to
SUNDIALS, these will be included within this compatibility check.

If either A or y are incompatible then this routine will return NULL.

int SUNKLUReInit (SUNLinearSolver S, SUNMatrix A, sunindextype nnz, int reinit_type)

This function reinitializes memory and flags for a new factorization (symbolic and numeric) to be conducted at
the next solver setup call. This routine is useful in the cases where the number of nonzeroes has changed or if
the structure of the linear system has changed which would require a new symbolic (and numeric factorization).

The reinit_type argument governs the level of reinitialization. The allowed values are:

1.The Jacobian matrix will be destroyed and a new one will be allocated based on the nnz value passed to
this call. New symbolic and numeric factorizations will be completed at the next solver setup.

2.0nly symbolic and numeric factorizations will be completed. It is assumed that the Jacobian size has not
exceeded the size of nnz given in the sparse matrix provided to the original constructor routine (or the
previous SUNKLUReInit call).

This routine assumes no other changes to solver use are necessary.

The return values from this function are SUNLS_MEM_NULL (either S or A are NULL), SUNLS_ILL_INPUT
(A does not have type SUNMATRIX_SPARSE or reinit_type isinvalid), SUNLS_MEM_FATIL (reallocation
of the sparse matrix failed) or SUNLS_SUCCESS.

214

Chapter 8. Linear Solver Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

int SUNKLUSetOrdering (SUNLinearSolver S, int ordering_choice)
This function sets the ordering used by KLU for reducing fill in the linear solve. Options for
ordering_choice are:

0.AMD,
1.COLAMD, and
2.the natural ordering.
The default is 1 for COLAMD.

The return values from this function are SUNLS_MEM_NULL (S is NULL), SUNLS_ILL_INPUT (invalid
ordering_choice), or SUNLS_SUCCESS.

For solvers that include a Fortran interface module, the SUNLINSOL_KLU module also includes the Fortran-callable
function FSUNKLUInit () to initialize this SUNLINSOL_KLU module for a given SUNDIALS solver.

subroutine FSUNKLUInit (CODE, IER)
Initializes a KLU sparse SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after both the N_Vector and SUNMat rix objects have been initialized.
Arguments:

* CODE (int, input) — flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

e JER (int, output) — return flag (O success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassKLUInit () initializes this SUNLINSOL_KLU module for solving mass matrix linear systems.

subroutine FSUNMassKLUInit (/ER)
Initializes a KLU sparse SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after both the N_Vector and SUNMat rix objects have been initialized.
Arguments:
e JER (int, output) — return flag (O success, -1 for failure).

The SUNKLUReInit () and SUNKLUSetOrdering () routines also support Fortran interfaces for the system and
mass matrix solvers:

subroutine FSUNKLUReInit (CODE, NNZ, REINIT TYPE, IER)
Fortran interface to SUNKLUReInit () for system linear solvers.

This routine must be called after FSUNKLUInit () has been called.

Arguments: NNZ should have type 1long int, all others should have type int; all arguments have meanings
identical to those listed above.

subroutine FSUNMassKLUReInit (NNZ, REINIT TYPE, IER)
Fortran interface to SUNKLUReInit () for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassKLUInit () has been called.

Arguments: NNZ should have type 1ong int, all others should have type int; all arguments have meanings
identical to those listed above.

subroutine FSUNKLUSetOrdering (CODE, ORDERING, IER)
Fortran interface to SUNKLUSetOrdering () for system linear solvers.

This routine must be called after FSUNKLUInit () has been called.

8.10. The SUNLINSOL_KLU Module 215

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassKLUSetOrdering (ORDERING, IER)
Fortran interface to SUNKL.USet Ordering () for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassKLUInit () has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

8.11 The SUNLINSOL_SUPERLUMT Module

The SuperLU_MT implementation of the SUNLinearSolver module provided with SUNDIALS, SUNLIN-
SOL_SUPERLUMT, is designed to be used with the corresponding SUNMATRIX_SPARSE matrix type, and
one of the serial or shared-memory N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP,
or NVECTOR_PTHREADS). While these are compatible, it is not recommended to use a threaded vector mod-
ule with SUNLINSOL_SUPERLUMT unless it is the NVECTOR_OPENMP module and the SuperLU_MT library
has also been compiled with OpenMP. The SUNLINSOL_SUPERLUMT module defines the content field of a
SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SuperLUMT ({

long int last_flag;

int first_factorize;
SuperMatrix «A, *=AC, L, *U, +*B;
Gstat_t +*Gstat;

sunindextype *perm_r, xperm_c;
sunindextype N;

int num_threads;
realtype diag_pivot_thresh;
int ordering;

superlumt_options_t *options;
bi

These entries of the content field contain the following information:
e last_flag - last error return flag from internal function evaluations,
e first_factorize - flag indicating whether the factorization has ever been performed,
A, AC, L, U, B-SuperMatrix pointers used in solve,
* Gstat - GStat_t object used in solve,
e perm_r, perm_c - permutation arrays used in solve,
* N - size of the linear system,
* num_threads - number of OpenMP/Pthreads threads to use,
* diag_pivot_thresh - threshold on diagonal pivoting,
* ordering - flag for which reordering algorithm to use,
* options - pointer to SuperLU_MT options structure.

The SUNLINSOL_SUPERLUMT module is a SUNLinearSolver wrapper for the SuperLU_MT sparse matrix
factorization and solver library written by X. Sherry Li (/SuperLUMT], [L2005], [DGL1999]). The package performs
matrix factorization using threads to enhance efficiency in shared memory parallel environments. It should be noted
that threads are only used in the factorization step. In order to use the SUNLINSOL_SUPERLUMT interface to Su-
perLU_MT, it is assumed that SuperLU_MT has been installed on the system prior to installation of SUNDIALS, and
that SUNDIALS has been configured appropriately to link with SuperLU_MT (see section Working with external Li-
braries for details). Additionally, this wrapper only supports single- and double-precision calculations, and therefore

216 Chapter 8. Linear Solver Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

cannot be compiled if SUNDIALS is configured to have realtype set to extended (see section Data Types for
details). Moreover, since the SuperLU_MT library may be installed to support either 32-bit or 64-bit integers, it is as-
sumed that the SuperLU_MT library is installed using the same integer precision as the SUNDIALS sunindextype
option.

The SuperLU_MT library has a symbolic factorization routine that computes the permutation of the linear system
matrix to reduce fill-in on subsequent LU factorizations (using COLAMD, minimal degree ordering on AT x A,
minimal degree ordering on AT + A, or natural ordering). Of these ordering choices, the default value in the SUN-
LINSOL_SUPERLUMT module is the COLAMD ordering.

Since the linear systems that arise within the context of SUNDIALS calculations will typically have identical sparsity
patterns, the SUNLINSOL_SUPERLUMT module is constructed to perform the following operations:

The first time that the “setup” routine is called, it performs the symbolic factorization, followed by an initial
numerical factorization.

On subsequent calls to the “setup” routine, it skips the symbolic factorization, and only refactors the input
matrix.

The “solve” call performs pivoting and forward and backward substitution using the stored SuperLU_MT data
structures. We note that in this solve SuperLU_MT operates on the native data arrays for the right-hand side and
solution vectors, without requiring costly data copies.

The header file to be included when using this module is sunlinsol/sunlinsol_superlumt.h.

The SUNLINSOL_SUPERLUMT module defines implementations of all “direct” linear solver operations listed in the
section Description of the SUNLinearSolver operations:

SUNLinSolGetType_SuperLUMT

SUNLinSolInitialize_ SuperLUMT —thissetsthe first_factorize flagto 1 and resets the internal
SuperLU_MT statistics variables.

SUNLinSolSetup_SuperLUMT - this performs either a LU factorization or refactorization of the input
matrix.

SUNLinSolSolve_SuperLUMT - this calls the appropriate SuperLU_MT solve routine to utilize the LU
factors to solve the linear system.

SUNLinSolLastFlag_SuperLUMT

SUNLinSolSpace_SuperLUMT — this only returns information for the storage within the solver interface,
i.e. storage for the integers last_flagand first_factorize. For additional space requirements, see the
SuperLU_MT documentation.

SUNLinSolFree_SuperLUMT

The module SUNLINSOL_SUPERLUMT provides the following additional user-callable routines:

SUNLinearSolver SUNSuperLUMT (N_Vector y, SUNMatrix A, int num_threads)

This constructor function creates and allocates memory for a SUNLINSOL_SUPERLUMT object. Its argu-
ments are an N_Vector, a SUNMatrix, and a desired number of threads (OpenMP or Pthreads, depending
on how SuperLU_MT was installed) to use during the factorization steps. This routine analyzes the input matrix
and vector to determine the linear system size and to assess compatibility with the SuperLU_MT library.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_SPARSE matrix type (us-
ing either CSR or CSC storage formats) and the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVEC-
TOR_PTHREADS vector types. As additional compatible matrix and vector implementations are added to
SUNDIALS, these will be included within this compatibility check.

If either A or y are incompatible then this routine will return NULL. The num_threads argument is not
checked and is passed directly to SuperLU_MT routines.

8.11.

The SUNLINSOL_SUPERLUMT Module 217

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

int SUNSuperLUMTSetOrdering (SUNLinearSolver S, int ordering_choice)
This function sets the ordering used by SuperLU_MT for reducing fill in the linear solve. Options for
ordering_choice are:

0O.natural ordering

1.minimal degree ordering on AT A

2.minimal degree ordering on A7 + A

3.COLAMD ordering for unsymmetric matrices
The default is 3 for COLAMD.

The return values from this function are SUNLS_MEM_NULL (S is NULL), SUNLS_ILL_INPUT (invalid
ordering_choice), or SUNLS_SUCCESS.

For solvers that include a Fortran interface module, the SUNLINSOL_SUPERLUMT module also includes the
Fortran-callable function FF.SUNSuperLUMTInit () to initialize this SUNLINSOL_SUPERLUMT module for a
given SUNDIALS solver.

subroutine FSUNSuperLUMTInit (CODE, NUM_THREADS, IER)
Initializes a SuperLU_MT sparse SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after both the N_Vector and SUNMat rix objects have been initialized.
Arguments:

* CODE (int, input) — flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

e NUM_THREADS (int, input) — desired number of OpenMP/Pthreads threads to use in the factoriza-
tion.

e JER (int, output) — return flag (O success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassSuperLUMTInit () initializes this SUNLINSOL_SUPERLUMT module for solving mass matrix
linear systems.

subroutine FSUNMassSuperLUMTInit (NUM_THREADS, IER)
Initializes a SuperLU_MT sparse SUNLinearSolver structure for use in solving mass matrix systems in
ARKode.

This routine must be called after both the N_Vector and the mass SUNMat rix objects have been initialized.
Arguments:

e NUM_THREADS (int, input) — desired number of OpenMP/Pthreads threads to use in the factoriza-
tion.

* [ER (int, output) — return flag (0 success, -1 for failure).

The SUNSuperLUMTSetOrdering () routine also supports Fortran interfaces for the system and mass matrix
solvers:

subroutine FSUNSuperLUMTSetOrdering (CODE, ORDERING, IER)
Fortran interface to SUNSuperLUMTSetOrdering () for system linear solvers.

This routine must be called after FSUNSuperLUMTInit () has been called
Arguments: all should have type int and have meanings identical to those listed above

subroutine FSUNMassSuperLUMTSetOrdering (ORDERING, IER)
Fortran interface to SUNSuperLUMTSetOrdering () for mass matrix linear solves in ARKode.

218 Chapter 8. Linear Solver Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

This routine must be called after FSUNMassSuperLUMTInit () has been called

Arguments: all should have type int and have meanings identical to those listed above

8.12 The SUNLINSOL_SPGMR Module

The SPGMR (Scaled, Preconditioned, Generalized Minimum Residual [SS7986]) implementation of the
SUNLinearSolver module provided with SUNDIALS, SUNLINSOL_SPGMR, is an iterative linear solver that
is designed to be compatible with any N_Vector implementation (serial, threaded, parallel, and user-supplied) that
supports a minimal subset of operations (N_VClone (), N_VDotProd(), N_VScale (), N_VLinearSum/(),
N_VProd (), N_VConst (), N_VDiv(),and N_VDestroy()).

The SUNLINSOL_SPGMR module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_ SPGMR {
int maxl;
int pretype;
int gstype;
int max_restarts;
int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
voidx ATData;
PSetupkFn Psetup;
PSolveFn Psolve;
void+ PData;
N_Vector sl;
N_Vector s2;
N_Vector *V;
realtype =*=xHes;
realtype *givens;
N_Vector xcor;
realtype *yg;
N_Vector vtemp;

}i

These entries of the content field contain the following information:
e maxl - number of GMRES basis vectors to use (default is 5),
* pretype - flag for type of preconditioning to employ (default is none),
* gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),
e max_restarts - number of GMRES restarts to allow (default is 0),
* numiters - number of iterations from the most-recent solve,
e resnorm - final linear residual norm from the most-recent solve,
* last_flag - last error return flag from an internal function,
¢ ATimes - function pointer to perform Av product,
* ATData - pointer to structure for ATimes,
* Psetup - function pointer to preconditioner setup routine,
* Psolve - function pointer to preconditioner solve routine,

* PData - pointer to structure for Psetup and Psolve,

8.12. The SUNLINSOL_SPGMR Module 219

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

sl, s2 - vector pointers for supplied scaling matrices (default is NULL),

V - the array of Krylov basis vectors vy, . .., Unaxi+1, Storedin V{0], ... V[maxl]. Eachv; is a vector
of type N_Vector,

Hes - the (maxl 4+ 1) x maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th element is given by
Hes[1] []1,

givens - alength 2 maxl array which represents the Givens rotation matrices that arise in the GMRES algo-
rithm. These matrices are Fy, I, ..., F;, where

1
1
E == ¢ o)
Si C;
1

. 1_
are represented in the givens vector as givens[0] = c¢g, givens[l] = Sp, givens[2] = c,
givens([3] = s1,...,givens[2]] =¢j,givens[2])+1] = s,

xcor - a vector which holds the scaled, preconditioned correction to the initial guess,
v9g - a length (maxl 4 1) array of realtype values used to hold “short” vectors (e.g. y and g),

vtemp - temporary vector storage.

This solver is constructed to perform the following operations:

During construction, the xcor and vtemp arrays are cloned from a template N_Vector that is input, and
default solver parameters are set.

User-facing “set” routines may be called to modify default solver parameters.

Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLINSOL_SPGMR to
supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg)

In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDI-
ALS solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-
supplied or user-supplied).

In the “solve” call, the GMRES iteration is performed. This will include scaling, preconditioning, and restarts
if those options have been supplied.

The header file to be included when using this module is sunlinsol/sunlinsol_spgmr.h.

The SUNLINSOL_SPGMR module defines implementations of all “iterative” linear solver operations listed in the
section Description of the SUNLinearSolver operations:

SUNLinSolGetType_SPGMR
SUNLinSolInitialize_SPGMR
SUNLinSolSetATimes_SPGMR
SUNLinSolSetPreconditioner_SPGMR
SUNLinSolSetScalingVectors_SPGMR

SUNLinSolSetup_SPGMR

220

Chapter 8. Linear Solver Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

e SUNLinSolSolve_SPGMR
e SUNLinSolNumIters_SPGMR
* SUNLinSolResNorm_SPGMR
* SUNLinSolResid_SPGMR
e SUNLinSolLastFlag_SPGMR
¢ SUNLinSolSpace_SPGMR
* SUNLinSolFree_SPGMR
The module SUNLINSOL_SPGMR provides the following additional user-callable routines:

SUNLinearSolver SUNSPGMR (N_Vector y, int pretype, int maxl)
This constructor function creates and allocates memory for a SPGMR SUNLinearSolver. Its arguments are
an N_Vector, the desired type of preconditioning, and the number of Krylov basis vectors to use.

This routine will perform consistency checks to ensure that it is called with a consistent N_Vector implemen-
tation (i.e. that it supplies the requisite vector operations). If y is incompatible, then this routine will return
NULL.

A max1 argument that is < 0 will result in the default value (5).

Allowable inputs for pretype are PREC_NONE (0), PREC_LEFT (1), PREC_RIGHT (2) and PREC_BOTH
(3); any other integer input will result in the default (no preconditioning). We note that some SUNDIALS solvers
are designed to only work with left preconditioning (IDA and IDAS) and others with only right preconditioning
(KINSOL). While it is possible to configure a SUNLINSOL_SPGMR object to use any of the preconditioning
options with these solvers, this use mode is not supported and may result in inferior performance.

int SUNSPGMRSetPrecType (SUNLinearSolver S, int pretype)
This function updates the type of preconditioning to use. Supported values are PREC_NONE (0), PREC_LEFT
(1), PREC_RIGHT (2) and PREC_BOTH (3).

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal pretype),
SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

int SUNSPGMRSetGSType (SUNLinearSolver S, int gstype)
This function sets the type of Gram-Schmidt orthogonalization to use. Supported values are MODIFIED_GS
(1) and CLASSICAL_GS (2). Any other integer input will result in a failure, returning error code
SUNLS_ILL_INPUT.

This routine will return with one of the error codes SUNLS_ILIL_INPUT (illegal gstype),
SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

int SUNSPGMRSetMaxRestarts (SUNLinearSolver S, int maxrs)
This function sets the number of GMRES restarts to allow. A negative input will result in the default of 0.

This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

For solvers that include a Fortran interface module, the SUNLINSOL _SPGMR module also includes the Fortran-
callable function FSUNSPGMRInit () to initialize this SUNLINSOL_SPGMR module for a given SUNDIALS
solver.

subroutine FSUNSPGMRInit (CODE, PRETYPE, MAXL, IER)
Initializes a SPGMR SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after the N_Vector object has been initialized.
Arguments:

* CODE (int, input) — flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

8.12. The SUNLINSOL_SPGMR Module 221

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

e PRETYPE (int, input) — flag denoting type of preconditioning to use: none=0, left=1, right=2,
both=3.

e MAXL (int, input) — number of GMRES basis vectors to use.
* [ER (int, output) — return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassSPGMRInit () initializes this SUNLINSOL_SPGMR module for solving mass matrix linear sys-
tems.

subroutine FSUNMassSPGMRInit (PRETYPE, MAXL, IER)
Initializes a SPGMR SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after the N_Vector object has been initialized.
Arguments:

* PRETYPE (int, input) — flag denoting type of preconditioning to use: none=0, left=1, right=2,
both=3.

* MAXL (int, input) — number of GMRES basis vectors to use.
* JER (int, output) — return flag (0 success, -1 for failure).

The SUNSPGMRSetGSType (), SUNSPGMRSetPrecType () and SUNSPGMRSetMaxRestarts () routines
also support Fortran interfaces for the system and mass matrix solvers:

subroutine FSUNSPGMRSetGSType (CODE, GSTYPE, IER)
Fortran interface to SUNSPGMRSetGSType () for system linear solvers.

This routine must be called after FSUNSPGMRInit () has been called.
Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPGMRSetGSType (GSTYPE, IER)
Fortran interface to SUNSPGMRSetGSType () for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPGMRInit () has been called.
Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNSPGMRSetPrecType (CODE, PRETYPE, IER)
Fortran interface to SUNSPGMRSetPrecType () for system linear solvers.

This routine must be called after FSUNSPGMRInit () has been called.
Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPGMRSetPrecType (PRETYPE, IER)
Fortran interface to SUNSPGMRSetPrecType () for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPGMRInit () has been called.
Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNSPGMRSetMaxRS (CODE, MAXRS, IER)
Fortran interface to SUNSPGMRSetMaxRS () for system linear solvers.

This routine must be called after FSUNSPGMRInit () has been called.
Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPGMRSetMaxRS (MAXRS, IER)
Fortran interface to SUNSPGMRSetMaxRS () for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPGMRInit () has been called.

222 Chapter 8. Linear Solver Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Arguments: all should have type int, and have meanings identical to those listed above.

8.13 The SUNLINSOL_SPFGMR Module

The SPFGMR (Scaled, Preconditioned, Flexible, Generalized Minimum Residual /S7993]) implementation of the
SUNLinearSolver module provided with SUNDIALS, SUNLINSOL_SPFGMR, is an iterative linear solver that
is designed to be compatible with any N_Vector implementation (serial, threaded, parallel, and user-supplied) that
supports a minimal subset of operations (NN_VClone (), N_VDotProd(), N_VScale (), N_VLinearSum(),
N_VProd(), N_VConst (), N_VDiv(),and N_VDestroy ()). Unlike the other Krylov iterative linear solvers
supplied with SUNDIALS, FGMRES is specifically designed to work with a changing preconditioner (e.g. from an
iterative method).

The SUNLINSOL_SPFGMR module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_ SPFGMR ({
int maxl;
int pretype;
int gstype;
int max_restarts;
int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
voidx ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void+ PData;
N_Vector sl;
N_Vector s2;
N_Vector *V;
N_Vector =*Z;
realtype =*xHes;
realtype *givens;
N_Vector xcor;
realtype *vyg;
N_Vector vtemp;

}i

These entries of the content field contain the following information:
¢ max1 - number of FGMRES basis vectors to use (default is 5),
* pretype - flag for use of preconditioning (default is none),
* gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),
e max_restarts - number of FGMRES restarts to allow (default is 0),
e numiters - number of iterations from the most-recent solve,
* resnorm - final linear residual norm from the most-recent solve,
* last_flag - last error return flag from an internal function,
e ATimes - function pointer to perform Av product,
e ATData - pointer to structure for ATimes,
* Psetup - function pointer to preconditioner setup routine,

* Psolve - function pointer to preconditioner solve routine,

8.13. The SUNLINSOL_SPFGMR Module 223

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

PData - pointer to structure for Psetup and Psolve,
sl, s2 - vector pointers for supplied scaling matrices (default is NULL),

V - the array of Krylov basis vectors vy, . .., Unaxi+1, Storedin V[0], ..., V[maxl]. Each v; is a vector
of type N_Vector,

Z - the array of preconditioned Krylov basis vectors 21, . . ., Zmaxi+1, Storedin Z[0], ..., Z[maxl].Each
z; 1s a vector of type N_Vector,

Hes - the (maxl + 1) x maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th element is given by
Hes[1i] [J],

givens - a length 2 maxl array which represents the Givens rotation matrices that arise in the FGMRES algo-
rithm. These matrices are Fy, I, . .., F};, where

1
1
Cc: —s
F‘ — 1 1
7 SZ Cl b)
1
. 1_
are represented in the givens vector as givens[0] = c¢g, givens[1l] = Sp, givens[2] = cq,
givens[3] = s1,...,givens[2]] =¢j,givens[2]+1] = s,

xcor - a vector which holds the scaled, preconditioned correction to the initial guess,
vg - a length (maxl + 1) array of realtype values used to hold “short” vectors (e.g. y and g),

vtemp - temporary vector storage.

This solver is constructed to perform the following operations:

During construction, the xcor and vtemp arrays are cloned from a template N_Vector that is input, and
default solver parameters are set.

User-facing “set” routines may be called to modify default solver parameters.

Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLINSOL_SPFGMR to
supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yqg)

In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDI-
ALS solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-
supplied or user-supplied).

In the “solve” call, the FGMRES iteration is performed. This will include scaling, preconditioning, and restarts
if those options have been supplied.

The header file to be included when using this module is sunlinsol/sunlinsol_spfgmr.h.

The SUNLINSOL_SPFGMR module defines implementations of all “iterative” linear solver operations listed in the
section Description of the SUNLinearSolver operations:

SUNLinSolGetType_SPFGMR
SUNLinSolInitialize_SPFGMR

SUNLinSolSetATimes_SPFGMR

224

Chapter 8. Linear Solver Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

e SUNLinSolSetPreconditioner_SPFGMR
* SUNLinSolSetScalingVectors_SPFGMR
* SUNLinSolSetup_SPFGMR

* SUNLinSolSolve_SPFGMR

e SUNLinSolNumIters_SPFGMR

e SUNLinSolResNorm_SPFGMR

* SUNLinSolResid_SPFGMR

* SUNLinSolLastFlag_SPFGMR

¢ SUNLinSolSpace_SPFGMR

¢ SUNLinSolFree_SPFGMR

The module SUNLINSOL_SPFGMR provides the following additional user-callable routines:

SUNLinearSolver SUNSPFGMR (N_ Vector y, int pretype, int maxl)
This constructor function creates and allocates memory for a SPFGMR SUNLinearSolver. Its arguments
are an N_Vector, a flag indicating to use preconditioning, and the number of Krylov basis vectors to use.

This routine will perform consistency checks to ensure that it is called with a consistent N_Vector implemen-
tation (i.e. that it supplies the requisite vector operations). If y is incompatible, then this routine will return
NULL.

A max1 argument that is < 0 will result in the default value (5).

Since the FGMRES algorithm is designed to only support right preconditioning, then any of the pretype
inputs PREC_LEFT (1), PREC_RIGHT (2), or PREC_BOTH (3) will result in use of PREC_RIGHT; any other
integer input will result in the default (no preconditioning). We note that some SUNDIALS solvers are designed
to only work with left preconditioning (IDA and IDAS). While it is possible to use a right-preconditioned
SUNLINSOL_SPFGMR object for these packages, this use mode is not supported and may result in inferior
performance.

int SUNSPFGMRSetPrecType (SUNLinearSolver S, int pretype)
This function updates the flag indicating use of preconditioning. Since the FGMRES algorithm is designed
to only support right preconditioning, then any of the pretype inputs PREC_LEFT (1), PREC_RIGHT (2),
or PREC_BOTH (3) will result in use of PREC_RIGHT; any other integer input will result in the default (no
preconditioning).

This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

int SUNSPFGMRSetGSType (SUNLinearSolver S, int gstype)
This function sets the type of Gram-Schmidt orthogonalization to use. Supported values are MODIFIED_GS
(1) and CLASSICAL_GS (2). Any other integer input will result in a failure, returning error code
SUNLS_TILIL_INPUT.

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal gstype),
SUNLS_MEM_NULL (S is NULL), or SUNLS_SUCCESS.

int SUNSPFGMRSetMaxRestarts (SUNLinearSolver S, int maxrs)
This function sets the number of FGMRES restarts to allow. A negative input will result in the default of 0.

This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

For solvers that include a Fortran interface module, the SUNLINSOL_SPFGMR module also includes the Fortran-
callable function FSUNSPFGMRInit () to initialize this SUNLINSOL_SPFGMR module for a given SUNDIALS
solver.

8.13. The SUNLINSOL_SPFGMR Module 225

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

subroutine FSUNSPFGMRInit (CODE, PRETYPE, MAXL, IER)
Initializes a SPFGMR SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after the N_Vector object has been initialized.
Arguments:

e CODE (int, input) — flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

* PRETYPE (int, input) — flag denoting whether to use preconditioning: no=0, yes=1.
* MAXL (int, input) — number of FGMRES basis vectors to use.
e IER (int, output) — return flag (O success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassSPFGMRInit () initializes this SUNLINSOL_SPFGMR module for solving mass matrix linear
systems.

subroutine FSUNMassSPFGMRInit (PRETYPE, MAXL, IER)
Initializes a SPFGMR SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after the N_Vector object has been initialized.

Arguments:
e PRETYPE (int, input) — flag denoting whether to use preconditioning: no=0, yes=1.
* MAXL (int, input) — number of FGMRES basis vectors to use.
* [ER (int, output) — return flag (0 success, -1 for failure).

The SUNSPFGMRSetGSType (), SUNSPFGMRSetPrecType () and SUNSPFGMRSetMaxRestarts () rou-
tines also support Fortran interfaces for the system and mass matrix solvers:

subroutine FSUNSPFGMRSetGSType (CODE, GSTYPE, IER)
Fortran interface to SUNSPFGMRSet GSType () for system linear solvers.

This routine must be called after FSUNSPFGMRInit () has been called.
Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPFGMRSetGSType (GSTYPE, IER)
Fortran interface to SUNSPFGMRSet GSType () for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPFGMRInit () has been called.
Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNSPFGMRSetPrecType (CODE, PRETYPE, IER)
Fortran interface to SUNSPFGMRSetPrecType () for system linear solvers.

This routine must be called after FSUNSPFGMRInit () has been called.
Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPFGMRSetPrecType (PRETYPE, IER)
Fortran interface to SUNSPFGMRSetPrecType () for mass matrix linear solvers in ARKode.

This routine must be called after F'SUNMassSPFGMRInit () has been called.
Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNSPFGMRSetMaxRS (CODE, MAXRS, IER)
Fortran interface to SUNSPFGMRSetMaxRS () for system linear solvers.

This routine must be called after FSUNSPFGMRInit () has been called.

226 Chapter 8. Linear Solver Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPFGMRSetMaxRS (MAXRS, IER)
Fortran interface to SUNSPFGMRSetMaxRS () for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPFGMRInit () has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

8.14 The SUNLINSOL_SPBCGS Module

The SPBCGS (Scaled, Preconditioned, Bi-Conjugate Gradient, Stabilized [V/992]) implementation of the
SUNLinearSolver module provided with SUNDIALS, SUNLINSOL_SPBCGS, is an iterative linear solver that
is designed to be compatible with any N_Vector implementation (serial, threaded, parallel, and user-supplied) that
supports a minimal subset of operations (NN_VClone (), N_VDotProd(), N_VScale (), N_VLinearSum(),
N_VProd(),N_VDiv (),and N_VDestroy ()). Unlike the SPGMR and SPFGMR algorithms, SPBCGS requires
a fixed amount of memory that does not increase with the number of allowed iterations.

The SUNLINSOL_SPBCGS module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_ SPBCGS {
int maxl;
int pretype;
int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
voidx ATData;
PSetupFn Psetup;
PSolveFn Psolve;
voidx PData;
N_Vector sl;
N_Vector s2;
N_Vector r;
N_Vector r_star;
N_Vector p;
N_Vector g;
N_Vector u;
N_Vector Ap;
N_Vector vtemp;

}i

These entries of the content field contain the following information:
¢ maxl - number of SPBCGS iterations to allow (default is 5),
* pretype - flag for type of preconditioning to employ (default is none),
* numiters - number of iterations from the most-recent solve,
e resnorm - final linear residual norm from the most-recent solve,
* last_flag - last error return flag from an internal function,
e ATimes - function pointer to perform Av product,
* ATData - pointer to structure for ATimes,
* Psetup - function pointer to preconditioner setup routine,

* Psolve - function pointer to preconditioner solve routine,

8.14. The SUNLINSOL_SPBCGS Module 227

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

PData - pointer to structure for Psetup and Psolve,

sl, s2 - vector pointers for supplied scaling matrices (default is NULL),

r - aN_Vector which holds the current scaled, preconditioned linear system residual,
r_star - aN_Vector which holds the initial scaled, preconditioned linear system residual,

P, 49, u, Ap, vtemp-N_Vector used for workspace by the SPBCGS algorithm.

This solver is constructed to perform the following operations:

During construction all N_Vector solver data is allocated, with vectors cloned from a template N_Vector
that is input, and default solver parameters are set.

User-facing “set” routines may be called to modify default solver parameters.

Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLINSOL_SPBCGS to
supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

In the “initialize” call, the solver parameters are checked for validity.

In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDI-
ALS solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-
supplied or user-supplied).

In the “solve” call the SPBCGS iteration is performed. This will include scaling and preconditioning if those
options have been supplied.

The header file to be included when using this module is sunlinsol/sunlinsol_spbcgs.h.

The SUNLINSOL_SPBCGS module defines implementations of all “iterative” linear solver operations listed in the
section Description of the SUNLinearSolver operations:

SUNLinSolGetType_SPBCGS
SUNLinSolInitialize_SPBCGS
SUNLinSolSetATimes_SPBCGS
SUNLinSolSetPreconditioner_ SPBCGS
SUNLinSolSetScalingVectors_SPBCGS
SUNLinSolSetup_SPBCGS
SUNLinSolSolve_SPBCGS
SUNLinSolNumIters_SPBCGS
SUNLinSolResNorm_ SPBCGS
SUNLinSolResid_SPBCGS
SUNLinSolLastFlag_SPBCGS
SUNLinSolSpace_SPBCGS

SUNLinSolFree_SPBCGS

The module SUNLINSOL_SPBCGS provides the following additional user-callable routines:

SUNLinearSolver SUNSPBCGS (N_ Vector y, int pretype, int maxl)

This constructor function creates and allocates memory for a SPBCGS SUNLinearSolver. Its arguments
are an N_Vector, the desired type of preconditioning, and the number of linear iterations to allow.

228

Chapter 8. Linear Solver Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

This routine will perform consistency checks to ensure that it is called with a consistent N_Vector implemen-

tation (i.e. that it supplies the requisite vector operations). If y is incompatible, then this routine will return
NULL.

A max] argument that is < 0 will result in the default value (5).

Allowable inputs for pretype are PREC_NONE (0), PREC_LEFT (1), PREC_RIGHT (2) and PREC_BOTH
(3); any other integer input will result in the default (no preconditioning). We note that some SUNDIALS solvers
are designed to only work with left preconditioning (IDA and IDAS) and others with only right preconditioning
(KINSOL). While it is possible to configure a SUNLINSOL_SPBCGS object to use any of the preconditioning
options with these solvers, this use mode is not supported and may result in inferior performance.

int SUNSPBCGSSetPrecType (SUNLinearSolver S, int pretype)
This function updates the type of preconditioning to use. Supported values are PREC_NONE (0), PREC_LEFT
(1), PREC_RIGHT (2), and PREC_BOTH (3).

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal pretype),
SUNLS_MEM_NULL (S is NULL), or SUNLS_SUCCESS.

int SUNSPBCGSSetMax1 (SUNLinearSolver S, int maxl)
This function updates the number of linear solver iterations to allow.

A max1 argument that is < 0 will result in the default value (5).
This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

For solvers that include a Fortran interface module, the SUNLINSOL_SPBCGS module also includes the Fortran-
callable function FSUNSPBCGSInit () to initialize this SUNLINSOL_SPBCGS module for a given SUNDIALS
solver.

subroutine FSUNSPBCGSInit (CODE, PRETYPE, MAXL, IER)
Initializes a SPBCGS SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after the N_Vector object has been initialized.
Arguments:

* CODE (int, input) — flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

e PRETYPE (int, input) — flag denoting type of preconditioning to use: none=0, left=1, right=2,
both=3.

e MAXL (int, input) — number of SPBCGS iterations to allow.
e IER (int, output) — return flag (O success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassSPBCGSInit () initializes this SUNLINSOL_SPBCGS module for solving mass matrix linear
systems.

subroutine FSUNMassSPBCGSInit (PRETYPE, MAXL, IER)
Initializes a SPBCGS SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after the N_Vector object has been initialized.
Arguments:

e PRETYPE (int, input) — flag denoting type of preconditioning to use: none=0, left=1, right=2,
both=3.

e MAXL (int, input) — number of SPBCGS iterations to allow.

* [ER (int, output) — return flag (0 success, -1 for failure).

8.14. The SUNLINSOL_SPBCGS Module 229

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

The SUNSPBCGSSetPrecType () and SUNSPBCGSSetMax1 () routines also support Fortran interfaces for the
system and mass matrix solvers:

subroutine FSUNSPBCGSSetPrecType (CODE, PRETYPE, IER)
Fortran interface to SUNSPBCGSSetPrecType () for system linear solvers.

This routine must be called after FSUNSPBCGSTInit () has been called.
Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPBCGSSetPrecType (PRETYPE, IER)
Fortran interface to SUNSPBCGSSetPrecType () for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPBCGSTnit () has been called.
Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNSPBCGSSetMax1 (CODE, MAXL, IER)
Fortran interface to SUNSPBCGSSetMax1 () for system linear solvers.

This routine must be called after FSUNSPBCGSTInit () has been called.
Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPBCGSSetMaxl (MAXL, IER)
Fortran interface to SUNSPBCGSSetMax]1 () for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPBCGSTnit () has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

8.15 The SUNLINSOL_SPTFQMR Module

The SPTFQMR (Scaled, Preconditioned, Transpose-Free Quasi-Minimum Residual /F'7993]) implementation of the
SUNLinearSolver module provided with SUNDIALS, SUNLINSOL_SPTFQMR, is an iterative linear solver that
is designed to be compatible with any N_Vect or implementation (serial, threaded, parallel, and user-supplied) that
supports a minimal subset of operations (N_VClone (), N_VDotProd(), N_VScale (), N_VLinearSum/(),
N_VProd(), N_VConst (), N.VDiv(),and N_VDestroy ()). Unlike the SPGMR and SPFGMR algorithms,
SPTFQMR requires a fixed amount of memory that does not increase with the number of allowed iterations.

The SUNLINSOL_SPTFQMR module defines the content field of a SUNLinearSolver to be the following struc-
ture:

struct _SUNLinearSolverContent_SPTFQMR {
int maxl;
int pretype;
int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
voidx ATData;
PSetupFn Psetup;
PSolveFn Psolve;
voidx PData;
N_Vector sl;
N_Vector s2;
N_Vector r_star;
N_Vector qg;
N_Vector d;
N_Vector v;

230 Chapter 8. Linear Solver Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

N_Vector

N_Vector

N_Vector

N_Vector

N_Vector

N_Vector
bi

pi

*r;

ujy
vtempl;
vtemp?2;
vtemp3;

These entries of the content field contain the following information:

¢ max1 - number of TFQMR iterations to allow (default is 5),

* pretype - flag for type of preconditioning to employ (default is none),

e numiters - number of iterations from the most-recent solve,

e resnorm - final linear residual norm from the most-recent solve,

e last_flag - last error return flag from an internal function,

e ATimes - function pointer to perform Av product,

e ATData - pointer to structure for ATimes,

* Psetup - function pointer to preconditioner setup routine,

* Psolve - function pointer to preconditioner solve routine,

* PData - pointer to structure for Psetup and Psolve,

* s1, s2 -vector pointers for supplied scaling matrices (default is NULL),

* r_star - aN_Vector which holds the initial scaled, preconditioned linear system residual,

*q, d,

v, p, u-N_Vector used for workspace by the SPTFQMR algorithm,

e r - array of two N_Vector used for workspace within the SPTFQMR algorithm,

e vtempl, vtempZ2, vtemp3 -temporary vector storage.

This solver is constructed to perform the following operations:

* During construction all N_Vector solver data is allocated, with vectors cloned from a template N_Vector
that is input, and default solver parameters are set.

 User-facing “set” routines may be called to modify default solver parameters.

* Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLINSOL_SPTFQMR to
supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

¢ In the “initialize” call, the solver parameters are checked for validity.

e In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDI-
ALS solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-
supplied or user-supplied).

¢ In the “solve” call the TFQMR iteration is performed. This will include scaling and preconditioning if those

options have been supplied.

The header file to be included when using this module is sunlinsol/sunlinsol_sptfgmr.h.

The SUNLINSOL_SPTFQMR module defines implementations of all “iterative” linear solver operations listed in the
section Description of the SUNLinearSolver operations:

* SUNLinSolGetType_SPTFQMR

e SUNLinSolInitialize_SPTFQMR

8.15. The SUNLINSOL_SPTFQMR Module 231

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

SUNLinSolSetATimes_SPTFQMR
SUNLinSolSetPreconditioner_SPTFQMR
SUNLinSolSetScalingVectors_SPTFQOMR
SUNLinSolSetup_SPTFQMR
SUNLinSolSolve_SPTFQMR
SUNLinSolNumIters_SPTFQMR
SUNLinSolResNorm_SPTFQMR
SUNLinSolResid_SPTFQMR
SUNLinSolLastFlag_SPTFQMR
SUNLinSolSpace_SPTFQMR

SUNLinSolFree_SPTFQMR

The module SUNLINSOL_SPTFQMR provides the following additional user-callable routines:

SUNLinearSolver SUNSPTEFQMR (N_Vector y, int pretype, int maxl)

This constructor function creates and allocates memory for a SPTFQMR SUNLinearSolver. Its arguments
are an N_Vector, the desired type of preconditioning, and the number of linear iterations to allow.

This routine will perform consistency checks to ensure that it is called with a consistent N_Vector implemen-
tation (i.e. that it supplies the requisite vector operations). If y is incompatible, then this routine will return
NULL.

A max] argument that is < 0 will result in the default value (5).

Allowable inputs for pretype are PREC_NONE (0), PREC_LEFT (1), PREC_RIGHT (2) and PREC_BOTH
(3); any other integer input will result in the default (no preconditioning). We note that some SUNDIALS solvers
are designed to only work with left preconditioning (IDA and IDAS) and others with only right preconditioning
(KINSOL). While it is possible to configure a SUNLINSOL_SPTFQMR object to use any of the preconditioning
options with these solvers, this use mode is not supported and may result in inferior performance.

int SUNSPTFOMRSetPrecType (SUNLinearSolver S, int pretype)

This function updates the type of preconditioning to use. Supported values are PREC_NONE (0), PREC_LEFT
(1), PREC_RIGHT (2), and PREC_BOTH (3).

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal pretype),
SUNLS_MEM_NULL (S is NULL), or SUNLS_SUCCESS.

int SUNSPTFQMRSetMax1 (SUNLinearSolver S, int max/)

This function updates the number of linear solver iterations to allow.
A max1 argument that is < 0 will result in the default value (5).

This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

For solvers that include a Fortran interface module, the SUNLINSOL_SPTFQMR module also includes the Fortran-
callable function FSUNSPTFOMRInit () to initialize this SUNLINSOL_SPTFQMR module for a given SUNDIALS
solver.

subroutine FSUNSPTFQMRInit (CODE, PRETYPE, MAXL, IER)

Initializes a SPTFQMR SUNLinearSolver structure for use in a SUNDIALS package.
This routine must be called after the N_Vector object has been initialized.

Arguments:

232

Chapter 8. Linear Solver Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* CODE (int, input) — flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

PRETYPE (int, input) — flag denoting type of preconditioning to use: none=0, left=1, right=2,
both=3.

e MAXL (int, input) — number of SPTFQMR iterations to allow.
e JER (int, output) — return flag (O success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassSPTFOMRInit () initializes this SUNLINSOL_SPTFQMR module for solving mass matrix lin-
ear systems.

subroutine FSUNMassSPTFQMRInit (PRETYPE, MAXL, IER)
Initializes a SPTFQMR SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after the N_Vector object has been initialized.
Arguments:

e PRETYPE (int, input) — flag denoting type of preconditioning to use: none=0, left=1, right=2,
both=3.

* MAXL (int, input) — number of SPTFQMR iterations to allow.
e [ER (int, output) — return flag (O success, -1 for failure).

The SUNSPTFQOMRSetPrecType () and SUNSPTFOMRSetMax1 () routines also support Fortran interfaces for
the system and mass matrix solvers:

subroutine FSUNSPTFQMRSetPrecType (CODE, PRETYPE, IER)
Fortran interface to SUNSPTFOMRSetPrecType () for system linear solvers.

This routine must be called after FSUNSPTFOMRInit () has been called.
Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPTFQOMRSetPrecType (PRETYPE, IER)
Fortran interface to SUNSPTFQOMRSetPrecType () for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPTFOMRInit () has been called.
Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNSPTFQMRSetMax1 (CODE, MAXL, IER)
Fortran interface to SUNSPTFOMRSetMax1 () for system linear solvers.

This routine must be called after FSUNSPTFOMRTInit () has been called.
Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPTFQMRSetMaxl (MAXL, IER)
Fortran interface to SUNSPTFOMRSetMax1 () for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPTFOMRInit () has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

8.16 The SUNLINSOL_ PCG Module

The PCG (Preconditioned Conjugate Gradient /HS7952] implementation of the SUNLinearSolver module pro-
vided with SUNDIALS, SUNLINSOL_PCQG, is an iterative linear solver that is designed to be compatible with any
N_Vector implementation (serial, threaded, parallel, and user-supplied) that supports a minimal subset of operations

8.16. The SUNLINSOL_PCG Module 233

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

(N_vClone(),N_VDotProd(),N_VScale(),N_VLinearSum(),N_VProd(),and N_VDestroy ()). Un-
like the SPGMR and SPFGMR algorithms, PCG requires a fixed amount of memory that does not increase with the
number of allowed iterations.

Unlike all of the other iterative linear solvers supplied with SUNDIALS, PCG should only be used on symmetric linear
systems (e.g. mass matrix linear systems encountered in ARKode). As a result, the explanation of the role of scaling
and preconditioning matrices given in general must be modified in this scenario. The PCG algorithm solves a linear
system Az = b where A is a symmetric (A7 = A), real-valued matrix. Preconditioning is allowed, and is applied in
a symmetric fashion on both the right and left. Scaling is also allowed and is applied symmetrically. We denote the
preconditioner and scaling matrices as follows:

¢ P is the preconditioner (assumed symmetric),
 Sis a diagonal matrix of scale factors.

The matrices A and P are not required explicitly; only routines that provide A and P! as operators are required. The
diagonal of the matrix S is held in a single N_Vector, supplied by the user.

In this notation, PCG applies the underlying CG algorithm to the equivalent transformed system

Az =1b (8.3)
where
A=8pP~tAP1S,
b=SP b, (8.4)
7= 58"1pPz.

The scaling matrix must be chosen so that the vectors SP~!b and S~! Pz have dimensionless components.

The stopping test for the PCG iterations is on the L2 norm of the scaled preconditioned residual:

|b— AZ|s < &
|SP~*h — SP™ Azl < 6

[P~ — Pt Az|js < 0

where ||v]|s = VvT ST Sv, with an input tolerance 4.
The SUNLINSOL_PCG module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_PCG {
int maxl;
int pretype;
int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
voidx ATData;
PSetupFn Psetup;
PSolveFn Psolve;
voidx PData;
N_Vector s;
N_Vector r;
N_Vector p;
N_Vector z;
N_Vector Ap;

}i

234 Chapter 8. Linear Solver Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Thes

This

e entries of the content field contain the following information:
max1 - number of PCG iterations to allow (default is 5),
pretype - flag for use of preconditioning (default is none),
numiters - number of iterations from the most-recent solve,
resnorm - final linear residual norm from the most-recent solve,
last_flag - last error return flag from an internal function,
ATimes - function pointer to perform Av product,
ATData - pointer to structure for ATimes,
Psetup - function pointer to preconditioner setup routine,
Psolve - function pointer to preconditioner solve routine,
PData - pointer to structure for Psetup and Psolve,
s - vector pointer for supplied scaling matrix (default is NULL),
r - a N_Vector which holds the preconditioned linear system residual,
p, 2z, Ap-N_Vector used for workspace by the PCG algorithm.
solver is constructed to perform the following operations:

During construction all N_Vector solver data is allocated, with vectors cloned from a template N_Vector
that is input, and default solver parameters are set.

User-facing “set” routines may be called to modify default solver parameters.

Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLINSOL_PCG to supply
the ATimes, PSetup, and Psolve function pointers and s scaling vector.

In the “initialize” call, the solver parameters are checked for validity.

In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDI-
ALS solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-
supplied or user-supplied).

In the “solve” call the PCG iteration is performed. This will include scaling and preconditioning if those options
have been supplied.

The header file to be included when using this module is sunlinsol/sunlinsol_pcg.h.

The SUNLINSOL_PCG module defines implementations of all “iterative” linear solver operations listed in the section

Desc

ription of the SUNLinearSolver operations:
SUNLinSolGetType_PCG
SUNLinSolInitialize_PCG
SUNLinSolSetATimes_PCG
SUNLinSolSetPreconditioner_PCG

SUNLinSolSetScalingVectors_PCG — since PCG only supports symmetric scaling, the second
N_Vector argument to this function is ignored

SUNLinSolSetup_PCG
SUNLinSolSolve_PCG

SUNLinSolNumIters_PCG

8.16

. The SUNLINSOL_PCG Module 235

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

SUNLinSolResNorm_ PCG
SUNLinSolResid_ PCG
SUNLinSolLastFlag_PCG
SUNLinSolSpace_PCG

SUNLinSolFree_PCG

The module SUNLINSOL_PCG provides the following additional user-callable routines:

SUNLinearSolver SUNPCG (N_Vector y, int pretype, int maxl)

This constructor function creates and allocates memory for a PCG SUNLinearSolver. Its arguments are an
N_Vector, a flag indicating to use preconditioning, and the number of linear iterations to allow.

This routine will perform consistency checks to ensure that it is called with a consistent N_Vector implemen-
tation (i.e. that it supplies the requisite vector operations). If y is incompatible then this routine will return
NULL.

A max1 argument that is < 0 will result in the default value (5).

Since the PCG algorithm is designed to only support symmetric preconditioning, then any of the pretype
inputs PREC_LEFT (1), PREC_RIGHT (2), or PREC_BOTH (3) will result in use of the symmetric precon-
ditioner; any other integer input will result in the default (no preconditioning). Although some SUNDIALS
solvers are designed to only work with left preconditioning (IDA and IDAS) and others with only right precon-
ditioning (KINSOL), PCG should only be used with these packages when the linear systems are known to be
symmetric. Since the scaling of matrix rows and columns must be identical in a symmetric matrix, symmetric
preconditioning should work appropriately even for packages designed with one-sided preconditioning in mind.

int SUNPCGSetPrecType (SUNLinearSolver S, int pretype)

This function updates the flag indicating use of preconditioning. As above, any one of the input values,
PREC_LEFT (1), PREC_RIGHT (2), or PREC_BOTH (3) will enable preconditioning; PREC_NONE (0) dis-
ables preconditioning.

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal pretype),
SUNLS_MEM_NULL (S is NULL), or SUNLS_SUCCESS.

int SUNPCGSetMax1 (SUNLinearSolver S, int max/)

This function updates the number of linear solver iterations to allow.
A max1 argument that is < 0 will result in the default value (5).

This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

For solvers that include a Fortran interface module, the SUNLINSOL_PCG module also includes the Fortran-callable
function FSUNPCGInit () to initialize this SUNLINSOL_PCG module for a given SUNDIALS solver.

subroutine FSUNPCGInit (CODE, PRETYPE, MAXL, IER)

Initializes a PCG SUNLinearSolver structure for use in a SUNDIALS package.
This routine must be called after the N_Vector object has been initialized.
Arguments:

e CODE (int, input) — flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

e PRETYPE (int, input) — flag denoting whether to use symmetric preconditioning: no=0, yes=1.
* MAXL (int, input) — number of PCG iterations to allow.

e JER (int, output) — return flag (0 success, -1 for failure).

236

Chapter 8. Linear Solver Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassPCGInit () initializes this SUNLINSOL_PCG module for solving mass matrix linear systems.

subroutine FSUNMassPCGInit (PRETYPE, MAXL, IER)
Initializes a PCG SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after the N_Vector object has been initialized.

Arguments:
* PRETYPE (int, input) — flag denoting whether to use symmetric preconditioning: no=0, yes=1.
* MAXL (int, input) — number of PCG iterations to allow.
e JER (int, output) — return flag (O success, -1 for failure).

The SUNPCGSetPrecType () and SUNPCGSetMax1 () routines also support Fortran interfaces for the system
and mass matrix solvers:

subroutine FSUNPCGSetPrecType (CODE, PRETYPE, IER)
Fortran interface to SUNPCGSetPrecType () for system linear solvers.

This routine must be called after FSUNPCGInit () has been called.
Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassPCGSetPrecType (PRETYPE, IER)
Fortran interface to SUNPCGSetPrecType () for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassPCGInit () has been called.
Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNPCGSetMaxl (CODE, MAXL, IER)
Fortran interface to SUNPCGSetMax1 () for system linear solvers.

This routine must be called after FSUNPCGInit () has been called.
Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassPCGSetMax1 (MAXL, IER)
Fortran interface to SUNPCGSetMax1 () for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassPCGInit () has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

8.17 SUNLinearSolver Examples

There are SUNLinearSolver examples that may be installed for each implementation; these make use of the
functionsin test_sunlinsol.c. These example functions show simple usage of the SUNLinearSolver family
of modules. The inputs to the examples depend on the linear solver type, and are output to stdout if the example is
run without the appropriate number of command-line arguments.

The following is a list of the example functions in test_sunlinsol.c:
* Test_SUNLinSolGetType: Verifies the returned solver type against the value that should be returned.

e Test_SUNLinSolInitialize: Verifies that SUNLinSolInitialize can be called and returns suc-
cessfully.

* Test_SUNLinSolSetup: Verifies that SUNLinSolSetup can be called and returns successfully.

8.17. SUNLinearSolver Examples 237

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

* Test_SUNLinSolSolve: Given a SUNMatrix object A, N_Vector objects x and b (where Ax = b) and
a desired solution tolerance texttt{tol}, this routine clones x into a new vector y, calls SUNLinSolSolve to fill
y as the solution to Ay = b (to the input tolerance), verifies that each entry in x and y match to within 10xto1l,
and overwrites x with y prior to returning (in case the calling routine would like to investigate further).

* Test_SUNLinSolSetATimes (iterative solvers only): Verifies that SUNLinSolSetATimes can be called
and returns successfully.

e Test_SUNLinSolSetPreconditioner (iterative solvers only): Verifies that
SUNLinSolSetPreconditioner can be called and returns successfully.

e Test_SUNLinSolSetScalingVectors (iterative solvers only): Verifies that
SUNLinSolSetScalingVectors can be called and returns successfully.

e Test_SUNLinSolLastFlag: Verifies that SUNLinSolLastFlag can be called, and outputs the result to
stdout.

e Test_SUNLinSolNumIters (iterative solvers only): Verifies that SUNLinSolNumIters can be called,
and outputs the result to stdout.

e Test_SUNLinSolResNorm (iterative solvers only): Verifies that SUNLinSolResNorm can be called, and
that the result is non-negative.

e Test_SUNLinSolResid (iterative solvers only): Verifies that SUNLinSolResid can be called.
e Test_SUNLinSolSpace verifies that SUNLinSolSpace can be called, and outputs the results to stdout.

We’ll note that these tests should be performed in a particular order. For either direct or iterative linear solvers,
Test_SUNLinSolInitialize must be called before Test_SUNLinSolSetup, which must be called be-
fore Test_SUNLinSolSolve. Additionally, for iterative linear solvers Test_SUNLinSolSetATimes,
Test_SUNLinSolSetPreconditioner and Test_SUNLinSolSetScalingVectors should
be called before Test _SUNLinSolInitialize; similarly Test_SUNLinSolNumlIters,
Test_SUNLinSolResNorm and Test_ SUNLinSolResid should be called after Test_SUNLinSolSolve.
These are called in the appropriate order in all of the example problems.

8.18 SUNLinearSolver functions required by ARKode

In the table below, we list the linear solver functions in the SUNLinearSolver module used within the ARKode
package. The table also shows, for each function, which of the code modules uses the function. In general, the main
ARKode integrator considers three categories of linear solvers, direct, iterative and custom, with interfaces accessi-
ble in the ARKode header files arkode/arkode_direct.h (ARKDLS), arkode/arkode_spils.h (ARK-
SPILS) and arkode/arkode_customls.h (ARKCLS), respectively. Hence, the the table columns reference the
use of SUNLinearSolver functions by each of these solver interfaces.

As with the SUNMatrix module, we emphasize that the ARKode user does not need to know detailed usage of
linear solver functions by the ARKode code modules in order to use ARKode. The information is presented as an
implementation detail for the interested reader. vector functions in the N_Vector

238 Chapter 8. Linear Solver Data Structures

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Routine ARKDLS | ARKSPILS | ARKCLS
SUNLinSolGetType X X (0]
SUNLinSolSetATimes X (0]
SUNLinSolSetPreconditioner X (0]
SUNLinSolSetScalingVectors X (0]
SUNLinSollnitialize X X X
SUNLinSolSetup X X X
SUNLinSolSolve X X X
SUNLinSolNumlters X (0]
SUNLinSolResNorm X (0]
SUNLinSolResid

SUNLinSolLastFlag

SUNLinSolFree X X X
SUNLinSolSpace O O (0]

The linear solver functions listed above with a “O” are optionally used, in that these are only called if they are
implemented in the SUNLinearSolver module that is being used (i.e. their function pointers are non-NULL). Also,
although ARKode does not call SUNLinSolLastFlag () directly, this routine is available for users to query linear
solver issues directly.

8.18. SUNLinearSolver functions required by ARKode 239

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

240 Chapter 8. Linear Solver Data Structures

CHAPTER
NINE

ARKODE INSTALLATION PROCEDURE

The installation of any SUNDIALS package is accomplished by installing the SUNDIALS suite as a whole, according
to the instructions that follow. The same procedure applies whether or not the downloaded file contains one or all
solvers in SUNDIALS.

The SUNDIALS suite (or individual solvers) are distributed as compressed archives (. tar . gz). The name of the dis-
tribution archive is of the form SOLVER-X.Y.Z.tar.gz, where SOLVER is one of: sundials, cvode, cvodes,
arkode, ida, idas, or kinsol, and X.Y . Z represents the version number (of the SUNDIALS suite or of the in-
dividual solver). To begin the installation, first uncompress and expand the sources, by issuing

% tar -zxf SOLVER-X.Y.Z.tar.gz

This will extract source files under a directory SOLVER-X. Y. Z.

Starting with version 2.6.0 of SUNDIALS, CMake is the only supported method of installation. The explanations of
the installation procedure begins with a few common observations:

» The remainder of this chapter will follow these conventions:
SRCDIR is the directory SOLVER-X. Y . Z created above; i.e. the directory containing the SUNDIALS sources.
BUILDDIR is the (temporary) directory under which SUNDIALS is built.

INSTDIR is the directory under which the SUNDIALS exported header files and libraries will be installed.
Typically, header files are exported under a directory INSTDIR/include while libraries are installed
under INSTDIR/1ib, with INSTDIR specified at configuration time.

* For SUNDIALS’ CMake-based installation, in-source builds are prohibited; in other words, the build directory
BUILDDIR can not be the same as SRCDIR and such an attempt will lead to an error. This prevents “polluting”
the source tree and allows efficient builds for different configurations and/or options.

* The installation directory INSTDIR can not be the same as the source directory SRCDIR.

* By default, only the libraries and header files are exported to the installation directory INSTDIR. If enabled by
the user (with the appropriate toggle for CMake), the examples distributed with SUNDIALS will be built to-
gether with the solver libraries but the installation step will result in exporting (by default in a subdirectory of the
installation directory) the example sources and sample outputs together with automatically generated configura-
tion files that reference the installed SUNDIALS headers and libraries. As such, these configuration files for the
SUNDIALS examples can be used as “templates” for your own problems. CMake installs CMakeLists.txt
files and also (as an option available only under Unix/Linux) Makef1ile files. Note this installation approach
also allows the option of building the SUNDIALS examples without having to install them. (This can be used
as a sanity check for the freshly built libraries.)

* Even if generation of shared libraries is enabled, only static libraries are created for the FCMIX modules.
Because of the use of fixed names for the Fortran user-provided subroutines, FCMIX shared libraries would
result in “undefined symbol” errors at link time.

241

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Further details on the CMake-based installation procedures, instructions for manual compilation, and a roadmap of the
resulting installed libraries and exported header files, are provided in the following subsections:

e CMake-based installation

e [nstalled libraries and exported header files

9.1 CMake-based installation

CMake-based installation provides a platform-independent build system. CMake can generate Unix and Linux Make-
files, as well as KDevelop, Visual Studio, and (Apple) XCode project files from the same configuration file. In addition,
CMake also provides a GUI front end and which allows an interactive build and installation process.

The SUNDIALS build process requires CMake version 2.8.1 or higher and a working C compiler. On Unix-like
operating systems, it also requires Make (and curses, including its development libraries, for the GUI front end to
CMake, ccmake or cmake—gui), while on Windows it requires Visual Studio. While many Linux distributions offer
CMake, the version included may be out of date. Many new CMake features have been added recently, and you should
download the latest version from http://www.cmake.org. Build instructions for CMake (only necessary for Unix-like
systems) can be found on the CMake website. Once CMake is installed, Linux/Unix users will be able to use ccmake
or cmake—-gui (depending on the version of CMake), while Windows users will be able to use CMakeSetup.

As previously noted, when using CMake to configure, build and install SUNDIALS, it is always required to use a
separate build directory. While in-source builds are possible, they are explicitly prohibited by the SUNDIALS CMake
scripts (one of the reasons being that, unlike autotools, CMake does not provide amake distclean procedure and
it is therefore difficult to clean-up the source tree after an in-source build). By ensuring a separate build directory, it
is an easy task for the user to clean-up all traces of the build by simply removing the build directory. CMake does
generate amake clean which will remove files generated by the compiler and linker.

9.1.1 Configuring, building, and installing on Unix-like systems

The default CMake configuration will build all included solvers and associated examples and will build
static and shared libraries. =~ The INSTDIR defaults to /usr/local and can be changed by setting the
CMAKE_INSTALL_PREFIX variable. Support for FORTRAN and all other options are disabled.

CMake can be used from the command line with the cmake command, or from a curses-based GUI by using the
ccmake command, or from a wxWidgets or QT based GUI by using the cmake—gui command. Examples for using
both text and graphical methods will be presented. For the examples shown it is assumed that there is a top level
SUNDIALS directory with appropriate source, build and install directories:

S mkdir (...)/INSTDIR
$ mkdir (...)/BUILDDIR
$ cd (...)/BUILDDIR

Building with the GUI

Using CMake with the ccmake GUI follows the general process:
 Select and modify values, run configure (c key)
» New values are denoted with an asterisk
* To set a variable, move the cursor to the variable and press enter
— Ifitis a boolean (ON/OFF) it will toggle the value

— Ifitis string or file, it will allow editing of the string

242 Chapter 9. ARKode Installation Procedure

http://www.cmake.org

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

— For file and directories, the <t ab> key can be used to complete
Repeat until all values are set as desired and the generate option is available (g key)
Some variables (advanced variables) are not visible right away
To see advanced variables, toggle to advanced mode (t key)

To search for a variable press / key, and to repeat the search, press the n key

Using CMake with the cmake—-gui GUI follows a similar process:

Select and modify values, click Configure

The first time you click Configure, make sure to pick the appropriate generator (the following will ssume
generation of Unix Makfiles).

New values are highlighted in red
To set a variable, click on or move the cursor to the variable and press enter
— Ifit is a boolean (ON/OFF) it will check/uncheck the box

— Ifit is string or file, it will allow editing of the string. Additionally, an ellipsis button will appear . . . on
the far right of the entry. Clicking this button will bring up the file or directory selection dialog.

— For files and directories, the <t ab> key can be used to complete
Repeat until all values are set as desired and click the Generate button
Some variables (advanced variables) are not visible right away

To see advanced variables, click the advanced button

To build the default configuration using the curses GUI, from the BUILDDIR enter the ccmake command and point
to the SRCDIR:

E

ccmake (...)/SRCDIR

Similarly, to build the default configuration using the wxWidgets GUI, from the BUILDDIR enter the cmake-gui
command and point to the SRCDIR:

cmake-gui (...)/SRCDIR

The default curses configuration screen is shown in the following figure.

The default INSTDIR for both SUNDIALS and corresponding examples can be changed by setting the
CMAKE_INSTALL_PREFIX and the EXAMPLES_INSTALL_PATH as shown in the following figure.

Pressing the g key or clicking generate will generate makefiles including all dependencies and all rules to build
SUNDIALS on this system. Back at the command prompt, you can now run:

make

or for a faster parallel build (e.g. using 4 threads), you can run

’3 make -j 4

To install SUNDIALS in the installation directory specified in the configuration, simply run:

make install

9.1. CMake-based installation 243

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Terminal

File Edit Vview Search Terminal Help
BLAS_ENABLE
BUILD_ ARKODE
BUILD CVODE
BUILD_ CVODES
BUILD IDA
BUILD_IDAS
BUILD_KINSOL
BUILD_SHARED LIBS
BUILD_STATIC LIBS
CMAKE BUILD TYPE
CMAKE_C_COMPILER
CMAKE FLAGS

CMAKE INSTALL PREFIX
CUDA_ENABLE

EXAMPLES ENABLE C
EXAMPLES_ENABLE C
EXAMPLES INSTALL
EXAMPLES_INSTALL PATH
FCMIX_ENABLE
HYPRE_ENABLE
KLU_ENABLE

LAPACK ENABLE
MPI_ENABLE
OPENMP_ENABLE
PETSC_ENABLE
PTHREAD_EMNABLE

CMAKE C FLAGS
Press [enter] to edit option
Press [c] to configure

Press [h] for help

Press [t] to toggle advanced mode (Currently Off)

Flags used by the compiler during all build types.

Press [g] to generate and exit
Press [q] to quit without generating

CMake Version

Fig. 9.1: Default configuration screen. Note: Initial screen is empty. To get this default configuration, press ‘c’
repeatedly (accepting default values denoted with asterisk) until the ‘g’ option is available.

Terminal

File Edit View Search Terminal Help

BLAS_ENABLE
BUILD ARKODE
BUILD_CVODE

BUILD CVODES

BUILD IDA

BUTLD_TDAS
BUILD_KINSOL

BUILD SHARED_LIBS
BUILD STATIC LIBS
CMAKE_BUILD_TYPE
CMAKE C COMPILER
CMAKE_C_FLAGS
CMAKE_TNSTALL PREFTX
CUDA_ENABLE
EXAMPLES_ENABLE C
EXAMPLES ENABLE CXX
EXAMPLES_INSTALL
EXAMPLES TNSTALL PATH
FCMIX_ENABLE
HYPRE_ENABLE

KLU ENABLE
LAPACK_ENABLE
MPI_ENABLE
OPENMP_ENABLE
PETSC_ENABLE
PTHREAD_ENABLE

CMAKE C FLAGS

Press [g] to quit w
0ff)

Flags used by the compiler during all build types.
Press [enter] to edit option
Press [c] to configure

Press [h] for help

Press [t] to toggle advanced mode (Current

Press [g] to generate and exit

CMake Version

hout generating

Fig. 9.2: Changing the INSTDIR for SUNDIALS and corresponding EXAMPLES.

244

Chapter 9. ARKode Installation Procedure

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Building from the command line

Using CMake from the command line is simply a matter of specifying CMake variable settings with the cmake
command. The following will build the default configuration:

S cmake -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> —-DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> ../srcdir

S make

S make install

9.1.2 Configuration options (Unix/Linux)

A complete list of all available options for a CMake-based SUNDIALS configuration is provide below. Note that the
default values shown are for a typical configuration on a Linux system and are provided as illustration only.

BLAS_ENABLE Enable BLAS support

Default: OFF

Note: Setting this option to ON will trigger additional CMake options. See additional information on building
with BLAS enabled in Working with external Libraries.

BLAS_LIBRARIES BLAS library
Default: /usr/1lib/libblas.so

Note: CMake will search for libraries in your LD_LIBRARY_PATH prior to searching default system paths.

BUILD_ARKODE Build the ARKODE library
Default: ON

BUILD_CVODE Build the CVODE library
Default: ON

BUILD_CVODES Build the CVODES library
Default: ON

BUILD_IDA Build the IDA library
Default: ON

BUILD_IDAS Build the IDAS library
Default: ON

BUILD_KINSOL Build the KINSOL library
Default: ON

BUILD_SHARED_LIBS Build shared libraries
Default: ON

BUILD_STATIC_LIBS Build static libraries
Default: ON

9.1. CMake-based installation 245

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

CMAKE_BUILD_TYPE Choose the type of build, options are: None (CMAKE_C_FLAGS used), Debug,
Release, RelWithDebInfo,and MinSizeRel

Default:

Note: Specifying a build type will trigger the corresponding build type specific compiler flag options below
which will be appended to the flags set by CMAKE_<language>_FLAGS.

CMAKE_C_COMPILER C compiler
Default: /usr/bin/cc
CMAKE_C_FLAGS Flags for C compiler

Default:
CMAKE_C_FLAGS_DEBUG Flags used by the C compiler during debug builds
Default: —g

CMAKE_C_FLAGS_MINSIZEREL Flags used by the C compiler during release minsize builds
Default: -Os -DNDEBUG

CMAKE_C_FLAGS_RELEASE Flags used by the C compiler during release builds
Default: ~-O3 -DNDEBUG

CMAKE_CXX_COMPILER C++ compiler

Default: /usr/bin/c++

Note: A C++ compiler (and all related options) are only are triggered if C++ examples are enabled
(EXAMPLES_ENABLE_CXX is ON). All SUNDIALS solvers can be used from C++ applications by default

without setting any additional configuration options.

CMAKE_CXX_FLAGS Flags for C++ compiler
Default:
CMAKE_CXX_ FLAGS_DEBUG Flags used by the C++ compiler during debug builds
Default: —g
CMAKE_CXX_FLAGS_MINSIZEREL Flags used by the C++ compiler during release minsize builds
Default: ~-Os —-DNDEBUG
CMAKE_CXX_FLAGS_RELEASE Flags used by the C++ compiler during release builds
Default: -03 -DNDEBUG
CMAKE_Fortran_COMPILER Fortran compiler

Default: /usr/bin/gfortran

Note: Fortran support (and all related options) are triggered only if either Fortran-C support is
(FCMIX_ENABLE is ON) or BLAS/LAPACK support is enabled (BLAS_ENABLE or LAPACK_ENABLE is
ON).

CMAKE_Fortran_FLAGS Flags for Fortran compiler
Default:

246 Chapter 9. ARKode Installation Procedure

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

CMAKE_Fortran_FLAGS_DEBUG Flags used by the Fortran compiler during debug builds
Default: —g
CMAKE_Fortran_FLAGS_MINSIZEREL Flags used by the Fortran compiler during release minsize builds

Default: -Os
CMAKE_Fortran_FLAGS_RELEASE Flags used by the Fortran compiler during release builds
Default: -03

CMAKE_INSTALL_PREFIX Install path prefix, prepended onto install directories

Default: /usr/local

Note: The user must have write access to the location specified through this option. Exported
SUNDIALS header files and libraries will be installed under subdirectories include and 1ib of

CMAKE_INSTALL_PREFIX, respectively.

CXX_ENABLE Flag to enable C++ ARKode examples (if examples are enabled)
Default: OFF

CUDA_ENABLE Build the SUNDIALS CUDA vector module.
Default: OFF

EXAMPLES_ENABLE_C Build the SUNDIALS C examples
Default: ON

EXAMPLES_ENABLE_CUDA Build the SUNDIALS CUDA examples

Default: OFF

Note: You need to enable CUDA support to build these examples.

EXAMPLES_ENABLE_CXX Build the SUNDIALS C++ examples
Default: OFF

EXAMPLES_ENABLE_RAJA Build the SUNDIALS RAJA examples
Default: OFF

Note: You need to enable CUDA and RAJA support to build these examples.

EXAMPLES_ENABLE_F77 Build the SUNDIALS Fortran77 examples
Default: ON (if FCMIX_ENABLE is ON)

EXAMPLES_ENABLE_F90 Build the SUNDIALS Fortran90 examples
Default: OFF

EXAMPLES_INSTALL Install example files
Default: ON

Note: This option is triggered when any of the SUNDIALS example programs are enabled
(EXAMPLES_ENABLE_<language> is ON). If the user requires installation of example programs then the

sources and sample output files for all SUNDIALS modules that are currently enabled will be exported to the
directory specified by EXAMPLES_INSTALL_PATH. A CMake configuration script will also be automatically

9.1. CMake-based installation 247

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

generated and exported to the same directory. Additionally, if the configuration is done under a Unix-like sys-
tem, makefiles for the compilation of the example programs (using the installed SUNDIALS libraries) will be
automatically generated and exported to the directory specified by EXAMPLES_INSTALL_PATH.

EXAMPLES_INSTALL_PATH Output directory for installing example files

Default: /usr/local/examples

Note: The actual default value for this option will be an examples subdirectory created under
CMAKE_INSTALL_PREFIX.

FCMIX_ENABLE Enable Fortran-C support
Default: OFF

F90_ENABLE Flag to enable Fortran 90 ARKode examples (if examples are enabled)
Default: OFF

HYPRE_ENABLE Flag to enable hypre support
Default: OFF

Note: See additional information on building with hypre enabled in Working with external Libraries.

HYPRE_INCLUDE_DIR Path to hypre header files
Default: none

HYPRE_LIBRARY Path to hypre installed library files
Default: none

KLU_ENABLE Enable KLU support

Default: OFF

Note: See additional information on building with KLU enabled in Working with external Libraries.

KLU_INCLUDE_DIR Path to SuiteSparse header files
Default: none

KLU_LIBRARY_DIR Path to SuiteSparse installed library files
Default: none

LAPACK_ENABLE Enable LAPACK support

Default: OFF

Note: Setting this option to ON will trigger additional CMake options. See additional information on building
with LAPACK enabled in Working with external Libraries.

LAPACK_LIBRARIES LAPACK (and BLAS) libraries
Default: /usr/lib/liblapack.so; /usr/lib/libblas.so

Note: CMake will search for libraries in your LD_LIBRARY_PATH prior to searching default system paths.

248 Chapter 9. ARKode Installation Procedure

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

MPI_ENABLE Enable MPI support (build the parallel nvector).

Default: OFF

Note: Setting this option to ON will trigger several additional options related to MPI.

MPI_MPICC mpicc program
Default:

MPI_MPICXX mpicxx program
Default:

Note: This option is triggered only if MPI is enabled (MPI_ENABLE is ON) and C++ examples are enabled
(EXAMPLES_ENABLE_CXX is ON). All SUNDIALS solvers can be used from C++ MPI applications by default

without setting any additional configuration options other than MPI_ENABLE.

MPI_MPIF77 mpif77 program
Default:

Note: This option is triggered only if MPI is enabled (MPI_ENABLE is ON) and Fortran-C support is enabled
(FCMIX_ENABLE is ON).

MPI_MPIF90 mpif90 program
Default:

Note: This option is triggered only if MPI is enabled (MPI_ENABLE is ON), Fortran-C support is enabled
(FCMIX_ENABLE is ON), and Fortran90 examples are enabled (EXAMPLES_ENABLE_F 90 is ON).

MPI_RUN_COMMAND Specify run command for MPI

Default: mpirun

Note: This option is triggered only if MPI is enabled (MPI_ENABLE is ON).

OPENMP_ENABLE Enable OpenMP support (build the OpenMP N Vector)
Default: OFF
PETSC_ENABLE Enable PETSc support

Default: OFF

Note: See additional information on building with PETSc enabled in Working with external Libraries.

PETSC_INCLUDE_DIR Path to PETSc header files
Default: none

PETSC_LIBRARY_DIR Path to PETSc installed library files
Default: none

PTHREAD_ENABLE Enable Pthreads support (build the Pthreads NVector)
Default: OFF

9.1. CMake-based installation 249

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

RAJA_ENABLE Enable RAJA support (build the RAJA NVector).
Default: OFF

Note: You need to enable CUDA in order to build the RAJA vector module.

SUNDIALS_INDEX TYPE Integer type used for SUNDIALS indices, options are: int32_t or int64_t
Default: int64_t

SUNDIALS_PRECISION Precision used in SUNDIALS, options are: double, single or extended
Default: double

SUPERLUMT_ENABLE Enable SuperLU_MT support
Default: OFF

Note: See additional information on building with SuperLU_MT enabled in Working with external Libraries.

SUPERLUMT_INCLUDE_DIR Path to SuperLU_MT header files (under a typical SuperLU_MT install, this is
typically the SuperLU_MT SRC directory)

Default: none
SUPERLUMT_LIBRARY_DIR Path to SuperLU_MT installed library files
Default: none

SUPERLUMT_THREAD_TYPE Must be set to Pthread or OpenMP, depending on how SuperLU_MT was com-
piled.

Default: Pthread
USE_GENERIC_MATH Use generic (stdc) math libraries
Default: ON

xSDK Configuration Options
SUNDIALS supports CMake configuration options defined by the Extreme-scale Scientific Software Development Kit

(xSDK) community policies (see https://xsdk.info for more information). xXSDK CMake options are unused by default
but may be activated by setting USE_XSDK_DEFAULTS to ON.

Note: When xSDK options are active, they will overwrite the corresponding SUNDIALS option and may have differ-
ent default values (see details below). As such the equivalent SUNDIALS options should not be used when configuring

with xSDK options. In the GUI front end to CMake (ccmake or cmake—gui), setting USE_XSDK_DEFAULTS to
ON will hide the corresponding SUNDIALS options as advanced CMake variables. During configuration, messages
are output detailing which xSDK flags are active and the equivalent SUNDIALS options that are replaced. Below is a
complete list xSDK options and the corresponding SUNDIALS options if applicable.

TPL_BLAS_LIBRARIES BLAS library
Default: /usr/1ib/libblas.so

SUNDIALS equivalent: BLAS_LIBRARIES

Note: CMake will search for libraries in your LD_LIBRARY_PATH prior to searching default system paths.

250 Chapter 9. ARKode Installation Procedure

https://xsdk.info

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

TPL_ENABLE_BLAS Enable BLAS support

Default: OFF

SUNDIALS equivalent: BLAS_ENABLE
TPL_ENABLE_HYPRE Enable hypre support

Default: OFF

SUNDIALS equivalent: HYPRE_ENABLE
TPL_ENABLE_KLU Enable KLU support

Default: OFF

SUNDIALS equivalent: KLU_ENABLE
TPL_ENABLE_PETSC Enable PETSc support

Default: OFF

SUNDIALS equivalent: PETSC_ENABLE
TPL_ENABLE_LAPACK Enable LAPACK support

Default: OFF

SUNDIALS equivalent: LAPACK_ENABLE
TPL_ENABLE_SUPERLUMT Enable SuperLU_MT support

Default: OFF

SUNDIALS equivalent: SUPERLUMT_ENABLE
TPL_HYPRE_INCLUDE_DIRS Path to hypre header files

SUNDIALS equivalent: HYPRE_INCLUDE_DIR
TPL_HYPRE_LIBRARIES #hypre library

SUNDIALS equivalent: N/A
TPL_KLU_INCLUDE_DIRS Path to KLU header files

SUNDIALS equivalent: KLU_INCLUDE_DIR
TPL_KLU_LIBRARIES KLU library

SUNDIALS equivalent: N/A
TPL_LAPACK_LIBRARIES LAPACK (and BLAS) libraries

Default: /usr/lib/liblapack.so; /usr/lib/libblas.so

SUNDIALS equivalent: LAPACK_LIBRARIES

Note: CMake will search for libraries in your LD_LIBRARY_PATH prior to searching default system paths.

TPL_PETSC_INCLUDE_DIRS Path to PETSc header files
SUNDIALS equivalent: PETSC_INCLUDE_DIR
TPL_PETSC_LIBRARIES PETSc library
SUNDIALS equivalent: N/A

9.1. CMake-based installation

251

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

TPL_SUPERLUMT_INCLUDE_DIRS Path to SuperLU_MT header files
SUNDIALS equivalent: SUPERLUMT_INCLUDE_DIR
TPL_SUPERLUMT_LIBRARIES SuperLU_MT library
SUNDIALS equivalent: N/A
TPL_SUPERLUMT_THREAD_TYPE SuperLU_MT library thread type
SUNDIALS equivalent: SUPERLUMT_THREAD_TYPE
USE_XSDK_DEFAULTS Enable xSDK default configuration settings
Default: OFF
SUNDIALS equivalent: N/A

Note: Enabling xSDK defaults also sets CMAKE_BUILD_TYPE to Debug

XSDK_ENABLE_FORTRAN Enable SUNDIALS Fortran interface
Default: OFF
SUNDIALS equivalent: FCMIX_ENABLE

XSDK_INDEX_SIZE Integer size (bits) used for indices in SUNDIALS, options are: 32 or 64
Default: 32
SUNDIALS equivalent: SUNDIALS_INDEX_TYPE

XSDK_PRECISION Precision used in SUNDIALS, options are: double, single, or quad
Default: double

SUNDIALS equivalent: SUNDIALS_PRECISION

9.1.3 Configuration examples

The following examples will help demonstrate usage of the CMake configure options.

To configure SUNDIALS using the default C and Fortran compilers, and default mpicc and mpi£f77 parallel com-
pilers, enable compilation of examples, and install libraries, headers, and example sources under subdirectories of
/home/myname/sundials/, use:

% cmake \

> —-DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> —-DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DMPI_ENABLE=ON \

> —-DFCMIX_ENABLE=ON \

> /home/myname/sundials/srcdir

o°

make install

To disable installation of the examples, use:

o°

cmake \

-DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
-DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
-DMPI_ENABLE=ON \

-DFCMIX_ENABLE=ON \

-DEXAMPLES_INSTALL=OFF \

vV V. V V V

252 Chapter 9. ARKode Installation Procedure

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

> /home/myname/sundials/srcdir

)

% make install

9.1.4 Working with external Libraries

The SUNDIALS suite contains many options to enable implementation flexibility when developing solutions. The
following are some notes addressing specific configurations when using the supported third party libraries.

Building with BLAS

SUNDIALS does not utilize BLAS directly but it may be needed by other external libraries that SUNDIALS can be
build with (e.g. LAPACK, PETSc, SuperLU_MT, etc.). To enable BLAS, set the BLAS_ENABLE option to ON. If
the directory containing the BLAS library is in the LD_LIBRARY_PATH environment variable, CMake will set the
BLAS_LIBRARIES variable accordingly, otherwise CMake will attempt to find the BLAS library in standard system
locations. To explicitly tell CMake what libraries to use, the BLAS_LIBRARIES variable can be set to the desired
library. Example:

o\

cmake \

-DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
-DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
-DBLAS_ENABLE=ON \

-DBLAS_LIBRARIES=/myblaspath/lib/libblas.so \
-DSUPERLUMT_ENABLE=0ON \
-DSUPERLUMT_INCLUDE_DIR=/mysuperlumtpath/SRC
~-DSUPERLUMT_LIBRARY_DIR=/mysuperlumtpath/lib
/home/myname/sundials/srcdir

V V.V V V V V V

o°

make install

Note: If enabling LAPACK and allowing CMake to automatically locate the LAPACK library, it is not necessary to
also enable BLAS as CMake will find the corresponding BLAS library and include it when searching for LAPACK.

Building with LAPACK

To enable LAPACK, set the LAPACK_ENABLE option to ON. If the directory containing the LAPACK library is in
the LD_LIBRARY_PATH environment variable, CMake will set the LAPACK_LIBRARIES variable accordingly,
otherwise CMake will attempt to find the LAPACK library in standard system locations. To explicitly tell CMake
what library to use, the LAPACK_LIBRARIES variable can be set to the desired libraries.

Note: When setting the LAPACK location explicitly the location of the corresponding BLAS library will also need
to be set. Example:

o°

cmake \

-DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
-DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
-DBLAS_ENABLE=ON \

-DBLAS_LIBRARIES=/mylapackpath/lib/libblas.so \
-DLAPACK_ENABLE=ON \
-DLAPACK_LIBRARIES=/mylapackpath/lib/liblapack.so \
/home/myname/sundials/srcdir

vV V. V V V VvV V

9.1. CMake-based installation 253

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

)

% make install

Note: If enabling LAPACK and allowing CMake to automatically locate the LAPACK library, it is not necessary to
also enable BLAS as CMake will find the corresponding BLAS library and include it when searching for LAPACK.

Building with KLU

The KLU libraries are part of SuiteSparse, a suite of sparse matrix software, available from the Texas A&M University
website: http://faculty.cse.tamu.edu/davis/suitesparse.html .

SUNDIALS has been tested with SuiteSparse version 4.5.3. To enable KLU, set KLU_ENABLE to ON, set
KLU_INCLUDE_DIR to the include path of the KLU installation and set KLU_LIBRARY_DIR to the 1ib path
of the KLU installation. The CMake configure will result in populating the following variables: AMD_LIBRARY,
AMD_LIBRARY_DIR, BTF_LIBRARY, BTF_LIBRARY_DIR, COLAMD_LIBRARY, COLAMD_LIBRARY_DIR,
and KLU_LIBRARY.

Building with SuperLU_MT

The SuperLU_MT libraries are available for download from the Lawrence Berkeley National Laboratory website:
http://crd-legacy.Ibl.gov/simxiaoye/SuperLU/#superlu_mt .

SUNDIALS has been tested with SuperLU_MT version 3.1. To enable SuperLU_MT, set SUPERLUMT_ENABLE
to ON, set SUPERLUMT_INCLUDE_DIR to the SRC path of the SuperLU_MT installation, and set the variable
SUPERLUMT_LIBRARY_DIR to the 1ib path of the SuperLU_MT installation. At the same time, the variable
SUPERLUMT_THREAD_TYPE must be set to either Pthread or OpenMP.

Do not mix thread types when building SUNDIALS solvers. If threading is enabled for SUNDIALS by having either
OPENMP_ENABLE or PTHREAD_ENABLE set to ON then SuperLU_MT should be set to use the same threading type.

Building with PETSc

The PETSc libraries are available for download from the Argonne National Laboratory website:
http://www.mcs.anl.gov/petsc .

SUNDIALS has been tested with PETSc version 3.7.2. To enable PETSc, set PETSC_ENABLE to
ON, set PETSC_INCLUDE_DIR to the include path of the PETSc installation, and set the variable
PETSC_LIBRARY_DIRto the 1ib path of the PETSc installation.

Building with hypre

The hypre libraries are available for download from the Lawrence Livermore National Laboratory website:
http://computation.lInl.gov/projects/hypre. SUNDIALS has been tested with hypre version 2.11.1. To enable hypre,
set HYPRE_ENABLE to ON, set HYPRE_INCLUDE_DIR to the include path of the hypre installation, and set the
variable HYPRE_LIBRARY_DIR to the 1ib path of the hypre installation.

Building with CUDA

SUNDIALS CUDA modules and examples are tested with version 8.0 of the CUDA toolkit. To build them, you
need to install the Toolkit and compatible NVIDIA drivers. Both are available for download from NVIDIA website:
https://developer.nvidia.com/cuda-downloads. To enable CUDA, set CUDA_ENABLE to ON. If you installed CUDA

254 Chapter 9. ARKode Installation Procedure

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://crd-legacy.lbl.gov/\protect \T1\textdollar sim\protect \T1\textdollar xiaoye/SuperLU/
http://www.mcs.anl.gov/petsc
http://computation.llnl.gov/projects/hypre
https://developer.nvidia.com/cuda-downloads

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

in a nonstandard location, you may be prompted to set the variable CUDA_TOOLKIT_ROOT_DIR with your CUDA
Toolkit installation path. To enable CUDA examples, set EXAMPLES_ENABLE_CUDA to ON.

Building with RAJA

To build SUNDIALS RAJA modules you need to enable SUNDIALS CUDA support, first. You also need a CUDA-
enabled RAJA installation on your system. RAJA is free software, developed by Lawrence Livermore National Lab-
oratory, and can be obtained from https://github.com/LLNL/RAJA. Next you need to set RAJA_ENABLE to ON, to
enable building the RAJA vector module, and EXAMPLES_ENABLE_RAUJA to ON to build the RAJA examples. If
you installed RAJA to a nonstandard location you will be prompted to set the variable RAJA_DIR with the path to the
RAJA CMake configuration file. SUNDIALS was tested with RAJA version 0.3.

9.1.5 Testing the build and installation

If SUNDIALS was configured with EXAMPLES_ENABLE_ <language> options to ON, then a set of regression tests
can be run after building with the make command by running:

o

% make test

Additionally, if EXAMPLES_INSTALL was also set to ON, then a set of smoke tests can be run after installing with
the make install command by running:

)

% make test_install

9.1.6 Building and Running Examples

Each of the SUNDIALS solvers is distributed with a set of examples demonstrating basic usage. To build and install
the examples, set at least of the EXAMPLES_ENABLE_ <language> options to ON, and set EXAMPLES_INSTALL
to ON. Specify the installation path for the examples with the variable EXAMPLES_INSTALL_PATH. CMake will
generate CMakeLists.txt configuration files (and Makefile files if on Linux/Unix) that reference the installed
SUNDIALS headers and libraries.

Either the CMakeLists.txt file or the traditional Makefile may be used to build the examples as well as serve
as a template for creating user developed solutions. To use the supplied Makefile simply run make to compile
and generate the executables. To use CMake from within the installed example directory, run cmake (or ccmake or
cmake—gui to use the GUI) followed by make to compile the example code. Note that if CMake is used, it will
overwrite the traditional Makefile with a new CMake-generated Makefile.

The resulting output from running the examples can be compared with example output bundled in the SUNDIALS
distribution.

NOTE: There will potentially be differences in the output due to machine architecture, compiler versions, use of third
party libraries etc.

9.1.7 Configuring, building, and installing on Windows
CMake can also be used to build SUNDIALS on Windows. To build SUNDIALS for use with Visual Studio the
following steps should be performed:

1. Unzip the downloaded tar file(s) into a directory. This will be the SRCDIR

2. Create a separate BUILDDIR

3. Open a Visual Studio Command Prompt and cd to BUILDDIR

9.1. CMake-based installation 255

https://github.com/LLNL/RAJA

User Documentation for ARKode v2.1.1

(SUNDIALS v3.1.1),

4. Run cmake-gui ../SRCDIR

(a) Hit Configure

(b) Check/Uncheck solvers to be built

(c) Change CMAKE_INSTALL_PREFIX to INSTDIR

(d) Set other options as desired

(e) Hit Generate

5. Back in the VS Command Window:

(a) Runmsbuild ALL_BUILD.vCXpProj

(b) Runmsbuild INSTALL.vCXproj

The resulting libraries will be in the INSTDIR.

The SUNDIALS project can also now be opened in Visual Studio. Double click on the ALL, BUILD.vcxpro] file
to open the project. Build the whole solution to create the SUNDIALS libraries. To use the SUNDIALS libraries in
your own projects, you must set the include directories for your project, add the SUNDIALS libraries to your project
solution, and set the SUNDIALS libraries as dependencies for your project.

9.2 Installed libraries and exported header files

Using the CMake SUNDIALS build system, the command

E

make install

will install the libraries under LIBDIR and the public header files under INCLUDEDIR. The values for these directo-
ries are INSTDIR/1ib and INSTDIR/include, respectively. The location can be changed by setting the CMake
variable CMAKE_INSTALL_PREFIX. Although all installed libraries reside under LIBDIR/11ib, the public header
files are further organized into subdirectories under INCLUDEDIR/include.

The installed libraries and exported header files are listed for reference in the Table: SUNDIALS libraries and header
files. The file extension . LIB is typically . so for shared libraries and . a for static libraries. Note that, in this table
names are relative to LIBDIR for libraries and to INCLUDED IR for header files.

A typical user program need not explicitly include any of the shared SUNDIALS header files from under the
INCLUDEDIR/include/sundials directory since they are explicitly included by the appropriate solver header
files (e.g., cvode_dense.hincludes sundials_dense.h). However, it is both legal and safe to do so, and would
be useful, for example, if the functions declared in sundials_dense.h are to be used in building a preconditioner.

9.2.1 Table: SUNDIALS libraries and header files

Shared Header files | sundials/sundials_band.h, sundials/sundials_config.h, sunc
NVECTOR_SERIAL Libraries libsundials_nvecserial.LIB, libsundials_fnvecserial.a
NVECTOR_SERIAL Header files | nvector/nvector_serial.h

NVECTOR_PARALLEL Libraries libsundials_nvecparallel.LIB, libsundials_fnvecparallel.:
NVECTOR_PARALLEL Header files | nvector/nvector_parallel.h

NVECTOR_OPENMP Libraries libsundials_nvecopenmp.LIB, libsundials_fnvecopenmp.a
NVECTOR_OPENMP Header files | nvector/nvector_openmp.h

NVECTOR_PTHREADS Libraries libsundials_nvecpthreads.LIB, libsundials_fnvecpthreads.:
NVECTOR_PTHREADS Header files | nvector/nvector_pthreads.h

256

Chapter 9. ARKode Installation Procedure

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

SUNMATRIX_BAND Libraries libsundials_sunmatrixband.LIB, libsundials_fsunmatrixbancd
SUNMATRIX_BAND Header files | sunmatrix/sunmatrix_band.h

SUNMATRIX_DENSE Libraries libsundials_sunmatrixdense.LIB, libsundials_fsunmatrixder
SUNMATRIX_DENSE Header files | sunmatrix/sunmatrix_dense.h

SUNMATRIX_SPARSE Libraries libsundials_sunmatrixsparse.LIB, libsundials_fsunmatrixs;j
SUNMATRIX_SPARSE Header files | sunmatrix/sunmatrix_sparse.h

SUNLINSOL_BAND Libraries libsundials_sunlinsolband.LIB, libsundials_fsunlinsolbanc
SUNLINSOL_BAND Header files | sunlinsol/sunlinsol_band.h

SUNLINSOL_DENSE Libraries libsundials_sunlinsoldense.LIB, libsundials_fsunlinsolder
SUNLINSOL_DENSE Header files | sunlinsol/sunlinsol_dense.h

SUNLINSOL_KLU Libraries libsundials_sunlinsolklu.LIB, libsundials_fsunlinsolklu.:
SUNLINSOL_KLU Header files | sunlinsol/sunlinsol_klu.h

SUNLINSOL_LAPACKBAND Libraries libsundials_sunlinsollapackband.LIB, libsundials_fsunlin:
SUNLINSOL_LAPACKBAND Header files | sunlinsol/sunlinsol_lapackband.h

SUNLINSOL_LAPACKDENSE | Libraries libsundials_sunlinsollapackdense.LIB, libsundials_fsunlir
SUNLINSOL_LAPACKDENSE | Header files | sunlinsol/sunlinsol_lapackdense.h

SUNLINSOL_PCG Libraries libsundials_sunlinsolpcg.LIB, libsundials_fsunlinsolpcg.:
SUNLINSOL_PCG Header files | sunlinsol/sunlinsol_pcg.h

SUNLINSOL_SPBCGS Libraries libsundials_sunlinsolspbcgs.LIB, libsundials_fsunlinsolsy
SUNLINSOL_SPBCGS Header files | sunlinsol/sunlinsol_spbcgs.h

SUNLINSOL_SPFGMR Libraries libsundials_sunlinsolspfgmr.LIB, libsundials_fsunlinsols;j
SUNLINSOL_SPFGMR Header files | sunlinsol/sunlinsol_spfgmr.h

SUNLINSOL_SPGMR Libraries libsundials_sunlinsolspgmr.LIB, libsundials_fsunlinsolsps
SUNLINSOL_SPGMR Header files | sunlinsol/sunlinsol_spgmr.h

SUNLINSOL_SPTFQMR Libraries libsundials_sunlinsolsptfgmr.LIB, libsundials_fsunlinsol:
SUNLINSOL_SPTFQMR Header files | sunlinsol/sunlinsol_sptfgmr.h

SUNLINSOL_SUPERLUMT Libraries libsundials_sunlinsolsuperlumt.LIB, libsundials_fsunlins:
SUNLINSOL_SUPERLUMT Header files | sunlinsol/sunlinsol_superlumt.h

CVODE Libraries libsundials_cvode.LIB, libsundials_fcvode.a

CVODE Header files | cvode/cvode.h, cvode/cvode_bandpre.h, cvode/cvode_bbdpre.t
CVODES Libraries libsundials_cvodes.LIB

CVODES Header files | cvodes/cvodes.h, cvodes/cvodes_bandpre.h, cvodes/cvodes_bk
ARKODE Libraries libsundials_arkode.LIB, libsundials_farkode.a

ARKODE Header files | arkode/arkode.h, arkode/arkode_bandpre.h, arkode/arkode_bk
IDA Libraries libsundials_ida.LIB, libsundials_fida.a

IDA Header files | ida/ida.h, ida/ida_bbdpre.h, ida/ida_direct.h, ida/ida_impl
IDAS Libraries libsundials_idas.LIB

IDAS Header files | idas/idas.h, idas/idas_bbdpre.h idas/idas_direct.h, idas/i
KINSOL Libraries libsundials_kinsol.LIB, libsundials_fkinsol.a

KINSOL Header files | kinsol/kinsol.h, kinsol/kinsol_bbdpre.h,kinsol/kinsol_diz

9.2. Installed libraries and exported header files 257

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

258 Chapter 9. ARKode Installation Procedure

CHAPTER
TEN

APPENDIX: ARKODE CONSTANTS

Below we list all input and output constants used by the main solver and linear solver modules, together with their

numerical values and a short description of their meaning.

10.1 ARKode input constants

10.1.1 ARKode main solver module

ARK_NORMAL (1): Solver returns at a specified output time.
ARK_ONE_STEP (2): Solver returns after each successful step.

10.1.2 Explicit Butcher table specification

HEUN_EULER_2_1_2 (0): Use the Heun-Euler-2-1-2 ERK method
BOGACKI_SHAMPINE 4 2 3 (1): Use the Bogacki-Shampine-4-2-3 ERK method

ARK324L2SA_ERK_4_2_3 (2): Use the ARK-4-2-3 ERK method
ZONNEVELD_5_3_4 (3): Use the Zonneveld-5-3-4 ERK method

ARK436L2SA_ERK 6_3 4 (4): Use the ARK-6-3-4 ERK method

SAYFY_ABURUB_6_3_4 (5): Use the Sayfy-Aburub-6-3-4 ERK method
CASH_KARP_6_4_5 (6): Use the Cash-Karp-6-4-5 ERK method
FEHLBERG_6_4_5 (7): Use the Fehlberg-6-4-5 ERK method
DORMAND_PRINCE_7_4_5 (8): Use the Dormand-Prince-7-4-5 ERK method
ARKS48L2SA_ERK 8 4 5(9): Use the ARK-8-4-5 ERK method
VERNER_8_5_6 (10): Use the Verner-8-5-6 ERK method

FEHLBERG_13_7_8 (11): Use the Fehlberg-13-7-8 ERK method

DEFAULT_ERK_2 (HEUN_EULER_2_1_2): Use the default second-order ERK method

DEFAULT_ERK_3 (BOGACKI_SHAMPINE_4 2 _3): Use the default third-order ERK method

DEFAULT_ERK_4 (ZONNEVELD_5_3_4): Use the default fourth-order ERK method

DEFAULT_ERK_5 (CASH_KARP_6_4_5): Use the default fifth-order ERK method

DEFAULT_ERK_6 (VERNER_8_5_6): Use the default sixth-order ERK method

259

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

DEFAULT_ERK_8 (FEHLBERG_13_7_8): Use the default eighth-order ERK method

10.1.3 Implicit Butcher table specification

SDIRK _2_1_2 (12): Use the SDIRK-2-1-2 SDIRK method
BILLINGTON_3_3_2 (13): Use the Billington-3-3-2 SDIRK method
TRBDF2_3 3 2 (14): Use the TRBDF2-3-3-2 ESDIRK method
KVAERNO_4_2_3 (15): Use the Kvaerno-4-2-3 ESDIRK method

ARK3241.2SA_DIRK 4 2 3 (16): Use the ARK-4-2-3 ESDIRK method
CASH_5_2 4 (17): Use the Cash-5-2-4 SDIRK method

CASH_5_3_4 (18): Use the Cash-5-3-4 SDIRK method

SDIRK _5_3_4 (19): Use the SDIRK-5-3-4 SDIRK method
KVAERNO_5_3_4 (20): Use the Kvaerno-5-3-4 ESDIRK method
ARK436L2SA_DIRK 6_3 4 (21): Use the ARK-6-3-4 ESDIRK method
KVAERNO_7_4_5 (22): Use the Kvaerno-7-4-5 ESDIRK method

ARKS548L2SA_DIRK _8_4 5 (23): Use the ARK-8-4-5 ESDIRK method

DEFAULT_DIRK_2 (SDIRK_2_1_2): Use the default second-order DIRK method
DEFAULT_DIRK_3 (ARK324L2SA_DIRK_4_2 3): Use the default third-order DIRK method
DEFAULT_DIRK_4 (SDIRK_5_3_4): Use the default fourth-order DIRK method

DEFAULT_DIRK_5 (ARK548L2SA_DIRK_8_4_5): Use the default fifth-order DIRK method

10.1.4 ImEx Butcher table specification

ARK3241.2SA_ERK 4 2 3 and ARK324L2SA_DIRK 4 2 3 (2 and 16): Use the ARK-4-2-3 ARK method
ARKA436L2SA_ERK _6_3_4 and ARK436L.2SA_DIRK_6_3_4 (4 and 21): Use the ARK-6-3-4 ARK method
ARKS548L2SA_ERK_8_4_5 and ARK548L2SA_DIRK _8_4 5 (9 and 23): Use the ARK-8-4-5 ARK method

DEFAULT_ARK_ETABLE_3 and DEFAULT_ARK_ITABLE_3 (ARK324L2SA_[ERK,DIRK] 4 _2_3): Use
the default third-order ARK method

DEFAULT_ARK_ETABLE_4 and DEFAULT_ARK_ITABLE_4 (ARK436L2SA_[ERK,DIRK]_6_3_4): Use
the default fourth-order ARK method

DEFAULT_ARK_ETABLE_5 and DEFAULT_ARK_ITABLE_5 (ARK548L2SA_[ERK,DIRK]_8 4_5): Use
the default fifth-order ARK method

10.2 ARKode output constants

10.2.1 ARKode main solver module

ARK_SUCCESS (0): Successful function return.
ARK_TSTOP_RETURN (1): ARKode succeeded by reachign the specified stopping point.

260 Chapter 10. Appendix: ARKode Constants

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

ARK_ROOT_RETURN (2): ARKode succeeded and found one more more roots.
ARK_WARNING (99): ARKode succeeded but an unusual situation occurred.
ARK_TOO_MUCH_WORK (-1): The solver took mxstep internal steps but could not reach tout.

ARK_TOO_MUCH_ACC (-2): The solver could not satisfy the accuracy demanded by the user for some internal
step.

ARK_ERR_FAILURE (-3): Error test failures occurred too many times during one internal time step, or the mini-
mum step size was reached.

ARK_CONV_FAILURE (-4): Convergence test failures occurred too many times during one internal time step, or
the minimum step size was reached.

ARK_LINIT_FAIL (-5): The linear solver’s initialization function failed.

ARK_LSETUP_FAIL (-6): The linear solver’s setup function failed in an unrecoverable manner.
ARK_LSOLVE_FAIL (-7): The linear solver’s solve function failed in an unrecoverable manner.
ARK_RHSFUNC_FAIL (-8): The right-hand side function failed in an unrecoverable manner.
ARK_FIRST_RHSFUNC_ERR (-9): The right-hand side function failed at the first call.
ARK_REPTD_RHSFUNC_ERR (-10): The right-hand side function had repeated recoverable errors.

ARK_UNREC_RHSFUNC_ERR (-11): The right-hand side function had a recoverable error, but no recovery is
possible.

ARK_RTFUNC_FAIL (-12): The rootfinding function failed in an unrecoverable manner.

ARK_LFREE_FAIL (-13): The linear solver’s memory deallocation function failed.

ARK_MASSINIT_FAIL (-14): The mass matrix linear solver’s initialization function failed.
ARK_MASSSETUP_FAIL (-15): The mass matrix linear solver’s setup function failed in an unrecoverable manner.
ARK_MASSSOLVE_FAIL (-16): The mass matrix linear solver’s solve function failed in an unrecoverable manner.
ARK_MASSFREE_FAIL (-17): The mass matrix linear solver’s memory deallocation function failed.
ARK_MASSMULT_FAIL (-17): The mass matrix-vector product function failed.

ARK_MEM_FAIL (-20): A memory allocation failed.

ARK_MEM_NULL (-21): The arkode_mem argument was NULL.

ARK_ILL_INPUT (-22): One of the function inputs is illegal.

ARK_NO_MALLOC (-23): The ARKode memory block was not allocated by a call to ARKodeMalloc ().
ARK_BAD_K (-24): The derivative order k is larger than allowed.

ARK_BAD_T (-25): The time ¢ is outside the last step taken.

ARK_BAD_DKY (-26): The output derivative vector is NULL.

ARK_TOO_CLOSE (-27): The output and initial times are too close to each other.

10.2.2 ARKDLS linear solver modules

ARKDLS_SUCCESS (0): Successful function return.
ARKDLS_MEM_NULL (-1): The arkode_mem argument was NULL.
ARKDLS_LMEM_NULL (-2): The ARKDLS linear solver has not been initialized.

10.2. ARKode output constants 261

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

ARKDLS_ILL_INPUT (-3): The ARKDLS solver is not compatible with the current NVECTOR module.
ARKDLS_MEM_FAIL (-4): A memory allocation request failed.

ARKDLS_MASSMEM_FAIL (-5): A memory allocation request failed for the mass matrix solver.
ARKDLS_JACFUNC_UNRECYVR (-6): The Jacobian function failed in an unrecoverable manner.
ARKDLS_JACFUNC_RECVR (-7): The Jacobian function had a recoverable error.
ARKDLS_MASSFUNC_UNRECVR (-8): The mass matrix function failed in an unrecoverable manner.
ARKDLS_MASSFUNC_RECVR (-9): The mass matrix function had a recoverable error.
ARKDLS_SUNMAT_FAIL (-10): An error occurred with the current SUNMATRIX module.

10.2.3 ARKSPILS linear solver modules

ARKSPILS_SUCCESS (0): Successful function return.
ARKSPILS_MEM_NULL (-1): The arkode_mem argument was NULL.
ARKSPILS_LMEM_NULL (-2): The ARKSPILS linear solver has not been initialized.

AKRSPILS_ILL_INPUT (-3): The ARKSPILS solver is not compatible with the current NVECTOR module, or an
input value was illegal.

ARKSPILS_MEM_FAIL (-4): A memory allocation request failed.

ARKSPILS_PMEM_FAIL (-5): The preconditioner module has not been initialized.
ARKSPILS_MASSMEM_FAIL (-6): A memory allocation request failed in the mass matrix solver.
ARKSPILS_SUNLS_FAIL (-10): An error occurred with the current SUNLINSOL module.

262 Chapter 10. Appendix: ARKode Constants

CHAPTER
ELEVEN

APPENDIX: BUTCHER TABLES

Here we catalog the full set of Butcher tables included in ARKode. We group these into three categories: explicit, im-
plicit and additive. However, since the methods that comprise an additive Runge Kutta method are themselves explicit
and implicit, their component Butcher tables are listed within their separate sections, but are referenced together in the
additive section.

In each of the following tables, we use the following notation (shown for a 3-stage method):

Ci1 | a1 G2 a3
C2 | 2,1 G22 0A23
C3 | as1 as2 as3s
q| bp by b
p| b b2 b3

where here the method and embedding share stage A and c values, but use their stages z; differently through the
coefficients b and b to generate methods of orders ¢ (the main method) and p (the embedding, typically ¢ = p + 1,
though sometimes this is reversed).

Method authors often use different naming conventions to categorize their methods. For each of the methods below,
we follow a uniform naming convention:

NAME-S—-P-Q

where here
e NAME is the author or the name provided by the author (if applicable),
* S is the number of stages in the method,
* P is the global order of accuracy for the embedding,
* Qis the global order of accuracy for the method.

In the code, unique integer IDs are defined inside arkode . h for each method, which may be used by calling routines
to specify the desired method. These names are specified in fixed width font at the start of each method’s
section below.

Additionally, for each method we provide a plot of the linear stability region in the complex plane. These have been
computed via the following approach. For any Runge Kutta method as defined above, we may define the stability
function

R(n) = 1+nb[I —nA] e,

where e € R?® is a column vector of all ones, = h\ and K is the time step size. If the stability function satisfies
|R(n)| < 1 for all eigenvalues, A, of % f(t,y) for a given IVP, then the method will be linearly stable for that problem
and step size. The stability region

S={neC: |R(n|<1}

263

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

is typically given by an enclosed region of the complex plane, so it is standard to search for the border of that region in
order to understand the method. Since all complex numbers with unit magnitude may be written as ¢*? for some value
of A, we perform the following algorithm to trace out this boundary.

1. Define an array of values Theta. Since we wish for a smooth curve, and since we wish to trace out the
entire boundary, we choose 10,000 linearly-spaced points from O to 167. Since some angles will correspond
to multiple locations on the stability boundary, by going beyond 27 we ensure that all boundary locations are
plotted, and by using such a fine discretization the Newton method (next step) is more likely to converge to the
root closest to the previous boundary point, ensuring a smooth plot.

2. For each value 6 € Theta, we solve the nonlinear equation

0= f(n) = R(n) —e”
using a finite-difference Newton iteration, using tolerance 10~7, and differencing parameter /z (=~ 10~%).

In this iteration, we use as initial guess the solution from the previous value of 6, starting with an initial-initial
guess of n = 0 for § = 0.

3. We then plot the resulting 7 values that trace the stability region boundary.

We note that for any stable IVP method, the value 1y = —e + 01 is always within the stability region. So in each of the
following pictures, the interior of the stability region is the connected region that includes 79. Resultingly, methods
whose linear stability boundary is located entirely in the right half-plane indicate an A-stable method.

11.1 Explicit Butcher tables

In the category of explicit Runge-Kutta methods, ARKode includes methods that have orders 2 through 6, with em-
beddings that are of orders 1 through 5.

11.1.1 Heun-Euler-2-1-2

HEUN_EULER_2_1_2 for ARKodeSetERKTableNum (). This is the default 2nd order explicit method.

0]0 O
111 0
2 2 2
111 0

11.1.2 Bogacki-Shampine-4-2-3

BOGACKI_SHAMPINE_4_2_3 for ARKodeSetERKTableNum (). This is the default 3rd order explicit method
(from [BS1989]).

00 0 0 0
1| 1

L1l 0 0 0
2

%0%00
2 4
l]lg 5 3 0
372 1 1
o 21 1 1
24 4 3 8

264 Chapter 11. Appendix: Butcher tables

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Stability boundary for Heun-Euler-ERK method
T T T T T

method
embedding

0.5

Im(z)
°

-0.5F

Fig. 11.1: Linear stability region for the Heun-Euler method. The method’s region is outlined in blue; the embedding’s
region is in red.

y for i ine-ERK method
T T T T T

method
embedding

Im(z)
°

\ . , . \ . i
35 3 2.5 2 15 1 0.5 0 0.5
Re(2)

Fig. 11.2: Linear stability region for the Bogacki-Shampine method. The method’s region is outlined in blue; the
embedding’s region is in red.

11.1. Explicit Butcher tables 265

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

11.1.3 ARK-4-2-3 (explicit)

ARK324L2SA_ERK_4_2_3for ARKodeSetERKTableNum (). This is the explicit portion of the default 3rd order
additive method (from /KC2003]).

0 0 0 0 0
1767732205903 1767732205903 0 0 0
2027836641118 28%5%%2%%? 788022342437 0 0

i 48952 9689 91278703662397 ! 04?28 6236468854?790%0 1 07 o5448449292 0

3

9 5%‘852%%?3% _ 10572?1755552%67636597% R 627625%84271 ‘2‘98295863%3?

12835298489170 22201958757719 10645013368117 5459859503100

Stability boundary for ARK3(2)4L[2]SA-ERK method
T T T T T T T T

method
embedding

Im(z)
°

Fig. 11.3: Linear stability region for the explicit ARK-4-2-3 method. The method’s region is outlined in blue; the
embedding’s region is in red.

11.1.4 Zonneveld-5-3-4

ZONNEVELD_5_3_4 for ARKodeSetERKTableNum (). This is the default 4th order explicit method (from
[Z1963]).

ojo o o 0 0
% i 0.0 0 0
310 2 0 o0 0
110 0 1 0 0
3| 5 7 1 _1

R/ H S e e
T S S ST

2 3 3 6 3

266 Chapter 11. Appendix: Butcher tables

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

y for Z 4-3-ERK method
T T

method
embedding

Im(z)
°

0.5

Fig. 11.4: Linear stability region for the Zonneveld method. The method’s region is outlined in blue; the embedding’s

region is in red.

11.1.5 ARK-6-3-4 (explicit)

ARK436L2SA_ERK_6_3_4 for ARKodeSet ERKTableNum (). This is the explicit portion of the default 4th order

additive method (from [KC2003]).

0 0 0 0 0 0 0
1 1 0 0 0 0 0
8732 13%61 6889 0 0 0 0
2@ _ 1166922%03016275 _ 273%%267317 9408046702089 0 0 0
ﬂ _2! 130688643()468]’%8688 _]25638628304482?902]58;21 B%‘Sé%égé};}%gg 3355817975965 0 0
2‘1 GIZRS00 T358799685597 149904021485%° RPN 4040 0
1 3216%2%2 82151 838253094845;33 '54547%%%3%6233 83 (3%8%?24513 _127%1 T
3 1588580809 0 17889475 STAA s _ 3ftlesr eiter
29645900160 945068544 1159782912 11593932 225920

Stability boundary for ARK4(3)6L[2]SA-ERK method
T T T T T

method
embedding | _|

Im(z)
°

Fig.
embedding’s region is in red.

Re(2)

11.5: Linear stability region for the explicit ARK-6-3-4 method. The method’s region is outlined in blue; the

11.1. Explicit Butcher tables

267

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

11.1.6 Sayfy-Aburub-6-3-4

SAYFY_ABURUB_6_3_4 for ARKodeSetERKTableNum () (from [SA2002]).

0 0 0 0 0 0 O

1 1

14 0 0 00 0

1) -1 2 0 0 0 0
1 2 1

1] & 2 00 0

% 0.137 0226 0137 0 0 O

110452 —-0.904 -0.548 0 2 0

1 I T I I L
? % 112 3 12

3| 1 2 T 00 0

25 S‘tability b(‘mndary for Sayfy-Ah‘urub-A-S-E‘RK metho‘d
g o

Fig. 11.6: Linear stability region for the Sayfy-Aburub-6-3-4 method. The method’s region is outlined in blue; the
embedding’s region is in red.

11.1.7 Cash-Karp-6-4-5

CASH_KARP_6_4_5 for ARKodeSetERKTableNum (). This is the default Sth order explicit method (from
[CK1990]).

o 0 0 0 0 0 0

1 1

E I

I L T

5| 19, ~10 3 0 o 0

12 2% o s 0 0

7| 163t 1% sA adhs 253 0

8 2 12 13824 11 2 4

) S N B S R

o 2B o a8 38 T
27648 48384 55296 14336 4

268 Chapter 11. Appendix: Butcher tables

User Documentation for ARKode v2.1.1

(SUNDIALS v3.1.1),

Im(z)

Stability boundary for Cash-Karp-ERK method
T T T T T

method
embedding

Re-(Z)

Fig. 11.7: Linear stability region for the Cash-Karp method. The method’s region is outlined in blue; the embedding’s

region is in red.

11.1.8 Fehlberg-6-4-5

FEHLBERG_6_4_5 for ARKodeSetERKTableNum () (from [F1969])

Im(z)

»—-‘»—A
ROl = wlboooluas i~ O

= Ot

0 0 0 0 0
é 0 0 0 0
2 2 0 0 0
1832 oo 7206 0 0
WO OB _ss

N B O
216 2565 4104 5

y for Fehlberg-ERK meth
T T T T T

method

embedding

, . . . L . . i
35 3 25 2 15 1 0.5 o
Re(2)

L
0.5

1

Fig. 11.8: Linear stability region for the Fehlberg method. The method’s region is outlined in blue; the embedding’s

region is in red.

11.1. Explicit Butcher tables

269

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

11.1.9 Dormand-Prince-7-4-5

DORMAND_PRINCE_7_4_5 for ARKodeSetERKTableNum () (from [DP1980])

0 0 0 0 0 0 0 0

:| 3 0 0 0 0 0 0

iS E 2 0 0 0 0 0
12 ﬁ _4&6 32 0 0 0 0
g 19%572 _ 2&3560 64248 212 0 0 0

D W W % B awm Lo

Ll TS mrom we n |

5 %%4 0 111% 182 g‘§4 %4 0

4| 2 0 s S &y 1

57600 16695 640 339200 2100 40

4 Ssability b y for Dor d-Pr inﬁe-ERK

Fig.
embedding’s region is in red.

11.1.10 ARK-8-4-5 (explicit)

11.9: Linear stability region for the Dormand-Prince method. The method’s region is outlined in blue; the

ARK548L2SA_ERK_8_4_5for ARKodeSetERKTableNum (). This is the explicit portion of the default 5th order

additive method (from /KC2003]).

0 0 0
AL Al 0
29353473106]'}19 36790120944464 677623207551
149857050708 | POEROBUSMAA0E S2AIAR0000
7190638502457 %22‘6‘8%%586@2%
0 | 0
1 1% 0
o ummmmE |
"~ 9796059967033

0 0 0 0 (

0 0 0 0 (

0 0 0 0 (
1029933939417

BN susaorsesao X i |

5 94?101%8595048?3 14824§611o 2546527 _ 281667163811 0 (

BRI REmmen onopeso |

249047?945 57?667% 0154 17739%2%2%%%5%% 7826722805425 695630181059811 735662

8 AL, SANAGEY SORE R

32432590147079 T 3424219808633 15594753105479 465618,

270

Chapter 11. Appendix: Butcher tables

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

y for ARK5(4)8L[2]SA-ERK method
T T T

method
embedding

Im(z)
°

Re-(Z)

Fig. 11.10: Linear stability region for the explicit ARK-8-4-5 method. The method’s region is outlined in blue; the
embedding’s region is in red.

11.1.11 Verner-8-5-6

VERNER_8_5_6 for ARKodeSetERKTableNum (). This is the default 6th order explicit method (from [V1978])

0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0
£ 1 16 0 0 0 0 0 0
13 B &3 5

= = —5 5 0 0 0 0 0

g _ k @3 _ iﬁ 85 0 0 0 0

6 94 6 (i‘% 9?

1| % -8 2 * o= 00 0
1 _ 85263 124 _6& _ ﬁ 2245854 0 0 0
B TH0 Wy o 38 B o a0

5 1%2{) 613 529%2 2%22 84“%5 0 ?5%33

51 160 0 581 16 s m 0 0

4 . Stability bo‘undary for \‘Ierner-G-S-E‘RK method :
g 0

Re(z)

Fig. 11.11: Linear stability region for the Verner-8-5-6 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

11.1. Explicit Butcher tables 271

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

11.1.12 Fehlberg-13-7-8

FEHLBERG_13_7_8 for ARKodeSetERKTableNum (). This is the default 8th order explicit method (from
[B2008])

0o o 0 0 0 0 0 0 0o 0 0 0 0 0
227 Z 0 0 0 0 0 0 0o 0 0 0 0 O
9 = 5 0 0 0 0 0 o 0 0 0 0 0
s 0% 0 % 0 0 0 0 o 0 0 0 0 0
6 254 8
% T s B 0 0 0 o 0 0 0 0 0
2l oy 00 % i 0 0 0o 0 0 0 0 0
sl -2 0 o & - 1B 9 0o 0 0 0 0 0
g 8 G BT Y
25 0 0 0 3 o 0 0 0 0 0
§ 53 # _abr %
2 0 0 E) 30 0 0 0 0
i _ 91 0 0 23 _495776 ﬁ _ & 17 _ 1 0 0 0 0
T 288 0 o o ou® W 28 B 4 s o o)
4100 164 1025 Sg 41030 82‘3 1g4 461
0| 5 0 0 0 0 —4 a5 41 3 @7 O 0 0
1| = 0 _ 341 4496 _ 289 2193 51 33 12 0 1 0
R e L . L T
8 0 0 0 0 0 = = = 55 =5 0 w5 oe
45 35 35 230 230 i 840 840
s 0O 0 0 0 5 3% 3 =0 w0 s 0 0

Stability boundary for Fehlberg-8-7-ERK method
T T T T —T

- method
2l = » embedding | |
- \/
~

V

Im(z)
°

Fig. 11.12: Linear stability region for the Fehlberg-13-7-8 method. The method’s region is outlined in blue; the
embedding’s region is in red.

11.2 Implicit Butcher tables

In the category of diagonally implicit Runge-Kutta methods, ARKode includes methods that have orders 2 through 5,
with embeddings that are of orders 1 through 4.

272 Chapter 11. Appendix: Butcher tables

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

11.2.1 SDIRK-2-1-2

SDIRK_2_1_2 for ARKodeSet IRKTableNum (). This is the default 2nd order implicit method. Both the method
and embedding are A- and B-stable.

Stability boundary for SDIRK-2-1 method
T T T

method
embedding

Im(z)
°

-
[N

Re(z)

Fig. 11.13: Linear stability region for the SDIRK-2-1-2 method. The method’s region is outlined in blue; the
embedding’s region is in red.

11.2.2 Billington-3-3-2

BILLINGTON_3_3_2 for ARKodeSetIRKTableNum (). Here, the higher-order embedding is less stable than the
lower-order method (from /B1983])

0.292893218813 | 0.292893218813 0 0

1.091883092037 | 0.798989873223 0.292893218813 0

1.292893218813 | 0.740789228841 0.259210771159 0.292893218813
2| 0.740789228840 0.259210771159 0

31 0.691665115992 0.503597029883 —0.195262145876

11.2.3 TRBDF2-3-3-2

TRBDF2_3_3_2 for ARKodeSet IRKTableNum (). As with Billington, here the higher-order embedding is less

stable than the lower-order method (from /B/985]).

0] 0 0 0
2-v2 |32 220
1| 2 2 e
4 4 2
o] V2 2 2/
1 1 2
3| =2 241 28
3 3 6

11.2. Implicit Butcher tables 273

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Stability boundary for Billington-SDIRK method
T T T T T T

method
embedding

Im(2)
°

Fig. 11.14: Linear stability region for the Billington method. The method’s region is outlined in blue; the embedding’s
region is in red.

Stability boundary for TRBDF2-ESDIRK method
T T T T

method
embedding

Im(z)
°

8 L i L L
-10 -5 0 5 10 15

Fig. 11.15: Linear stability region for the TRBDF2 method. The method’s region is outlined in blue; the embedding’s
region is in red.

274 Chapter 11. Appendix: Butcher tables

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

11.2.4 Kvaerno-4-2-3

KVAERNO_4_2_3 for ARKodeSet IRKTableNum (). Both the method and embedding are A-stable; additionally
the method is L-stable (from [K2004]).

0 0 0 0 0
0.871733043 0.4358665215 0.4358665215 0 0

1] 0.490563388419108 0.073570090080892 0.4358665215 0

1] 0.308809969973036 1.490563388254106 —1.235239879727145 0.4358665215

3 1 0.308809969973036 1.490563388254106 —1.235239879727145 0.4358665215

2 1 0.490563388419108 0.073570090080892 0.4358665215 0

Stability boundary for Kvaerno(4,2,3)-ESDIRK method
T T T T T T T T

method
embedding | _|

O

20k

30k

a0 b

-50
0

Re(z)

Fig. 11.16: Linear stability region for the Kvaerno-4-2-3 method. The method’s region is outlined in blue; the
embedding’s region is in red.

11.2.5 ARK-4-2-3 (implicit)

ARK324L2SA_DIRK_4_2_3 for ARKodeSet IRKTableNum (). This is the default 3rd order implicit method,
and the implicit portion of the default 3rd order additive method. Both the method and embedding are A-stable;
additionally the method is L-stable (from [KC2003]).

1767732205909 176773(2)205903 1767732205903 8 8

e R e S S
t-—i 110 886668356057'})98 _ 22 ét gz?i%g %gg g 141025 66273%8628 268 1 6 7732205903
e G e A e T e
12835298489170 22201958757719 10645013368117 5459859503100

11.2. Implicit Butcher tables 275

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Stability boundary for ARK3(2)4L[2]SA-ESDIRK method
T T T T T T T T

method
embedding | _|

Im(z)
°

Fig. 11.17: Linear stability region for the implicit ARK-4-2-3 method. The method’s region is outlined in blue; the

embedding’s region is in red.

11.2.6 Cash-5-2-4

CASH_5_2_4 for ARKodeSet IRKTableNum (). Both the method and embedding are A-stable; additionally the

method is L-stable (from [C1979]).

0.435866521508 | 0.435866521508 0 0

—0.7 | —1.13586652150

0.8 1.08543330679
0.924556761814 | 0.416349501547
1] 0.896869652944

0.435866521508 0
—0.721299828287
0.190984004184
0.0182725272734

—0.0845900310706

0

0
0.435866521508 0
—0.118643265417 0.435866521508

o O O

0

—0.266418670647 0.435866521508

4| 0.896869652944

0.0182725272734

2 | 1.05646216107052 —0.0564621610705236 0

Fig. 11.18: Linear stability region for the Cash-5-2-4 method. The method’s region is outlined in blue; the embed-

ding’s region is in red.

Im(2)

O

Stability boundary for Cash(5,2,4)-SDIRK method
T T T T T T T T

—0.0845900310706

method
embedding

Re(z)

90

0

276

Chapter 11. Appendix: Butcher tables

—0.266418670647 0.435866521508

0

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

11.2.7 Cash-5-3-4

CASH_5_3_4 for ARKodeSet IRKTableNum (). Both the method and embedding are A-stable; additionally the

method is L-stable (from /C1979])

0.435866521508
-0.7

0.8
0.924556761814
1

0.435866521508
—1.13586652150
1.08543330679
0.416349501547
0.896869652944

0
0.435866521508
—0.721299828287
0.190984004184
0.0182725272734

0
0
0.435866521508
—0.118643265417
—0.0845900310706

0

0

0
0.435866521508

—0.266418670647 0.435866521508

o O O

0

4
3

0.896869652944
0.776691932910

0.0182725272734
0.0297472791484

—0.0845900310706
—0.0267440239074

—0.266418670647 0.435866521508

0.220304811849

0

Stability boundary for Cash(5,3,4)-SDIRK method
T T T T T

method
embedding | |

Im(z)
°

6
Re(2)

Fig. 11.19: Linear stability region for the Cash-5-3-4 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

11.2.8 SDIRK-5-3-4

SDIRK_5_3_4 for ARKodeSet IRKTableNum (). This is the default 4th order implicit method. Here, the method
is both A- and L-stable, although the embedding has reduced stability (from [HW1996]).

Lyl 0 0 0 0
i1 3 0 0 0
4

ﬁ ﬁ _ 1 1 0 0

22 3591 _ 12357 1 1 0

2100 TR0 M L

1 231 4 10 13 4
g8 B 4 &8 3
48 96 2 12

11.2. Implicit Butcher tables 277

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Stability boundary for SDIRK-5-4 method
T T T T T

method

embedding

Im(2)
°

Re(z)

Fig. 11.20: Linear stability region for the SDIRK-5-3-4 method. The method’s region is outlined in blue; the
embedding’s region is in red.

11.2.9 Kvaerno-5-3-4

KVAERNO_5_3_4 for ARKodeSetIRKTableNum (). Both the method and embedding are A-stable (from
[K2004]).

0 0 0 0 0 0

0.871733043 0.4358665215 0.4358665215 0 0 0
0.468238744853136 | 0.140737774731968 —0.108365551378832 0.4358665215 0 0
1] 0.102399400616089 —0.376878452267324 0.838612530151233 0.4358665215 0

1] 0.157024897860995 0.117330441357768 0.61667803039168 —0.326899891110444 0.4358665215
41 0.157024897860995 0.117330441357768 0.61667803039168 —0.326899891110444 0.4358665215
31 0.102399400616089 —0.376878452267324 0.838612530151233 0.4358665215 0

Stability boundary for Kvaerno(5,3,4)-ESDIRK method
T T T T T T

method

embedding

Im(2)

. . N
5 10 15 20 25 30 35 40
Re(z)

Fig. 11.21: Linear stability region for the Kvaerno-5-3-4 method. The method’s region is outlined in blue; the
embedding’s region is in red.

278 Chapter 11. Appendix: Butcher tables

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

11.2.10 ARK-6-3-4 (implicit)

ARK436L2SA_DIRK_6_3_4 for ARKodeSet IRKTableNum (). This is the implicit portion of the default 4th

order additive method. Both the method and embedding are A-stable; additionally the method is L-stable (from

[KC2003]).

[oe}
Shol= o

1\

D—‘Cﬂ‘m
~O—=O

()
W | —=O

BB

29645900160

0 0 0 0

1 1 0 0

8611 B iras 1 0

5613039 . usl 174375 1
15560385800 B AL 7t 2288305
15537265600 120774400 902184768 8079912

8 11402%607222 5

178308875

N, © o ©
—o OO0 oo

60

61%27

_ a7l

945068544

Stability boundary for ARK4(3)6L[2]SA-ESDIRK method
T T T T T

1159782912

11593932 225920

Im(z)
°

method
embedding

. . . .
10 15 20 25
Re(2)

Fig. 11.22: Linear stability region for the implicit ARK-6-3-4 method. The method’s region is outlined in blue; the

embedding’s region is i

11.2.11 Kvaerno

n red.

-7-4-5

KVAERNO_7_4_5 for ARKodeSet IRKTableNum (). Both the method and embedding are A-stable; additionally
the method is L-stable (from [K2004]).

0

0.52
1.230333209967908
0.895765984350076
0.436393609858648
1

0
0.26
0.13
0.22371961478320505
0.16648564323248321
0.13855640231268224
0.13659751177640291

0
0.26
0.84033320996790809
0.47675532319799699
0.10450018841591720
0

0
0
0.26
—0.06470895363112615
0.03631482272098715
—0.04245337201752043
—0.05496908796538376

0
0
0
0.26
—0.13090704451073998
0.02446657898003141
—0.04118626728321046

0.61
0.62

0.13659751177640291

1
5
4

0.13855640231268224

0
0
0

—0.05496908796538376
—0.04245337201752043

—0.04118626728321046
0.02446657898003141

11.2. Implicit Butcher tables

279

0.62
0.61

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Stability boundary for Kvaerno(7,4,5)-ESDIRK method
T T T T T

method
embedding

40 -

20

Im(2)
°

20+

40 b

-60
0

.
20 40 60 80 100 120
Re(z)

Fig. 11.23: Linear stability region for the Kvaerno-7-4-5 method. The method’s region is outlined in blue; the
embedding’s region is in red.

11.2.12 ARK-8-4-5 (implicit)

ARK548L2SA_DIRK_8_4_5 for ARKodeSet IRKTableNum (). This is the default Sth order implicit method,
and the implicit portion of the default S5th order additive method. Both the method and embedding are A-stable;
additionally the method is L-stable (from [KC2003]).

0 0 0 0 0 0 0
41 41 41

29353473106]'99 ﬂ _ 567620030406766 401 8 8 8
1%388%%858%%8% 68378%]6036431 119318057230679 1103?8%)047103 41 0 0
Tioves0zy] | paaaanieny : S aredaosss a1 X
W | TRE 0 T e Y 5

tof | A 0 e T

;| 0 e e

o | e 8 8 T

7 9796059967033 32432590147079 3424219808633 15594753105479 46561

11.3 Additive Butcher tables

In the category of additive Runge-Kutta methods for split implicit and explicit calculations, ARKode includes methods
that have orders 3 through 5, with embeddings that are of orders 2 through 4. These Butcher table pairs are as follows:

e 3rd-order pair: ARK-4-2-3 (explicit) with ARK-4-2-3 (implicit), corresponding to Butcher tables
ARK324L2SA_ERK_4_2_3 and ARK324L2SA_DIRK_4_2_3 for ARKodeSetARKTableNum /().

¢ 4th-order pair: ARK-6-3-4 (explicit) with ARK-6-3-4 (implicit), corresponding to Butcher tables
ARK436L2SA_ERK_6_3_4 and ARK436L2SA_DIRK_6_3_4 for ARKodeSetARKTableNum/().

e Sth-order pair: ARK-8-4-5 (explicit) with ARK-8-4-5 (implicit), corresponding to Butcher tables
ARK548L2SA_ERK_8_4_5 and ARK548L2SA_ERK_8_4_5 for ARKodeSetARKTableNum ().

280 Chapter 11. Appendix: Butcher tables

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

Stability boundary for ARK5(4)8L[2]SA-ESDIRK method
T T T T T T T

method
20k embedding | |
151
10}
5
g,
£
5
S0
sk
20
25 \ . , . \ . .
0 5 10 15 20 25 30 35 40
Re(2)

Fig. 11.24: Linear stability region for the implicit ARK-8-4-5 method. The method’s region is outlined in blue; the
embedding’s region is in red.

11.3. Additive Butcher tables 281

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

282 Chapter 11. Appendix: Butcher tables

BIBLIOGRAPHY

[B1985] Bank et al., Transient Simulation of Silicon Devices and Circuits, IEEE Trans. CAD, 4:436-451, 1985.

[B1983] S.R. Billington, Type-Insensitive Codes for the Solution of Stiff and Nonstiff Systems of Ordinary Differen-
tial Equations, in: Master Thesis, University of Manchester, United Kingdom, 1983.

[BS1989] P. Bogacki and L.F. Shampine. A 3(2) pair of Runge—Kutta formulas, Appl. Math. Lett., 2:321-325, 1989.

[BH1989] P.N. Brown and A.C. Hindmarsh. Reduced Storage Matrix Methods in Stiff ODE Systems. J. Appl. Math.
& Comp., 31:49-91, 1989.

[B2008] J.C. Butcher, Numerical Methods for Ordinary Differential Equations. Wiley, 2nd edition, Chicester, Eng-
land, 2008.

[B1992] G.D. Byrne. Pragmatic Experiments with Krylov Methods in the Stiff ODE Setting. In J.R. Cash and I.
Gladwell, editors, Computational Ordinary Differential Equations, pp. 323-356, Oxford University Press, 1992.

[C1979] J.R. Cash. Diagonally Implicit Runge-Kutta Formulae with Error Estimates. IMA J Appl Math, 24:293-301,
1979.

[CK1990] J.R. Cash and A.H. Karp. A variable order Runge-Kutta method for initial value problems with rapidly
varying right-hand sides, ACM Trans. Math. Soft., 16:201-222, 1990.

[CGM2014] J. CHeng, M. Grossman and T. McKercher. Professional Cuda C Programming. John Wiley & Sons,
2014.

[DP1980] J.R. Dormand and PJ. Prince. A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math.
6:19-26, 1980.

[DP2010] T. Davis and E. Palamadai Natarajan. Algortithm 907: KLU, a direct sparse solver for circuit simulation
problems. ACM Trans. Math. Soft., 37, 2010.

[DGL1999] J.W. Demmel, J.R. Gilbert and X.S. Li. An Asynchronous Parallel Supernodal Algorithm for Sparse
Gaussian Elimination. SIAM J. Matrix Analysis and Applications, 20:915-952, 1999.

[F2015] R. Falgout and U.M. Yang. Hypre user’s manual. LLNL Technical Report, 2015.

[F1969] E. Fehlberg. Low-order classical Runge-Kutta formulas with step size control and their application to some
heat transfer problems. NASA Technical Report 315, 1969.

[F1993] R.W. Freund. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems.
SIAM J. Sci. Comp., 14:470-482, 1993.

[G1991] K. Gustafsson. Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods. ACM
Trans. Math. Soft., 17:533-554, 1991.

[G1994] K. Gustafsson. Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods. ACM
Trans. Math. Soft. 20:496-512, 1994.

283

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

[HW1993] E. Hairer, S. Norsett and G. Wanner. Solving Ordinary Differential Equations 1. Springer Series in Com-
putational Mathematics, vol. 8, 1993.

[HW1996] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Springer Series in Computational
Mathematics, vol. 14, 1996.

[HS1952] M.R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for Solving Linear Systems. J. Research of
the National Bureau of Standards, 49:409-436, 1952.

[HS1980] K.L. Hiebert and L.F. Shampine. Implicitly Defined Output Points for Solutions of ODEs. Technical Report
SANDS80-0180, Sandia National Laboratories, February 1980.

[HS2017] A.C. Hindmarsh and R. Serban. User Documentation for CVODE v3.0.0. Technical Report UCRL-SM-
208108, LLNL, 2017.

[HSR2017] A.C. Hindmarsh, R. Serban and D.R. Reynolds. Example Programs for CVODE v3.0.0. Technical Report
UCRL-SM-208110, LLNL, 2017.

[HT1998] A.C. Hindmarsh and A.G. Taylor. PVODE and KINSOL.: Parallel Software for Differential and Nonlinear
Systems. Technical Report UCRL-IL-129739, LLNL, February 1998.

[HK2014] R.D. Hornung and J.A. Keasler. The RAJA Portability Layer: Overview and Status. Technical Report
LLNL-TR-661403, LLNL, September 2014.

[KC2003] C.A.Kennedy and M.H. Carpenter. Additive Runge-Kutta schemes for convection-diffusion-reaction equa-
tions. Appl. Numer. Math., 44:139-181, 2003.

[KLU] KLU Sparse Matrix Factorization Library.

[K2004] A. Kv{ae}rno. Singly Diagonally Implicit Runge-Kutta Methods with an Explicit First Stage. BIT Numer.
Math., 44:489-502, 2004.

[L2005] X.S.Li. An Overview of SuperLU: Algorithms, Implementation, and User Interface. ACM Trans. Math. Soft.,
31:302-325, 2005.

[R2013] D.R. Reynolds. ARKode Example Documentation. Technical Report, Southern Methodist University Center
for Scientific Computation, 2013.

[SS1986] Y. Saad and M.H. Schultz. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric
Linear Systems. SIAM J. Sci. Stat. Comp., 7:856-869, 1986.

[S1993] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput., 14:461-469, 1993.

[SA2002] A. Sayfy and A. Aburub. Embedded Additive Runge-Kutta Methods. Intern. J. Computer Math., 79:945-
953, 2002.

[S1998] G. Soderlind. The automatic control of numerical integration. CWI Quarterly, 11:55-74, 1998.
[S2003] G. Soderlind. Digital filters in adaptive time-stepping. ACM Trans. Math. Soft., 29:1-26, 2003.

[S2006] G. Soderlind. Time-step selection algorithms: Adaptivity, control and signal processing. Appl. Numer. Math.,
56:488-502, 2006.

[SuperLUMT] SuperLU_MT Threaded Sparse Matrix Factorization Library.

[V1992] H.A. Van Der Vorst. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of
Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comp., 13:631-644, 1992.

[V1978] J.H. Verner. Explicit Runge-Kutta methods with estimates of the local truncation error. SIAM J. Numer. Anal.,
15:772-790, 1978.

[WN2011] H.F. Walker and P. Ni. Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal., 49:1715-
1735, 2011.

284 Bibliography

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

[21963] J.A. Zonneveld. Automatic integration of ordinary differential equations. Report R743, Mathematisch Cen-
trum, Postbus 4079, 1009AB Amsterdam, 1963.

Bibliography 285

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

286 Bibliography

additive Runge-Kutta methods, 10
AKRSPILS_ILL_INPUT, 262
Anderson-accelerated fixed point iteration, 11
ARK-4-2-3 ARK method, 260, 280
ARK-4-2-3 ERK method, 259, 266
ARK-4-2-3 ESDIRK method, 260, 275
ARK-6-3-4 ARK method, 260, 280
ARK-6-3-4 ERK method, 259, 267
ARK-6-3-4 ESDIRK method, 260, 279
ARK-8-4-5 ARK method, 260, 280
ARK-8-4-5 ERK method, 259, 270
ARK-8-4-5 ESDIRK method, 260, 280
ARK_BAD_DKY, 261
ARK_BAD_K, 261

ARK_BAD_T, 261
ARK_CONV_FAILURE, 261
ARK_ERR_FAILURE, 261
ARK_FIRST_RHSFUNC_ERR, 261
ARK_ILL_INPUT, 261
ARK_LFREE_FAIL, 261
ARK_LINIT_FAIL, 261
ARK_LSETUP_FAIL, 261
ARK_LSOLVE_FAIL, 261
ARK_MASSFREE_FAIL, 261
ARK_MASSINIT_FAIL, 261
ARK_MASSMULT_FAIL, 261
ARK_MASSSETUP_FAIL, 261
ARK_MASSSOLVE_FAIL, 261
ARK_MEM_FAIL, 261
ARK_MEM_NULL, 261
ARK_NO_MALLOC, 261
ARK_NORMAL, 259
ARK_ONE_STEP, 259
ARK_REPTD_RHSFUNC_ERR, 261
ARK_RHSFUNC_FAIL, 261
ARK_ROOT_RETURN, 261
ARK_RTFUNC_FAIL, 261
ARK_SUCCESS, 260
ARK_TOO_CLOSE, 261
ARK_TOO_MUCH_ACC, 261
ARK_TOO_MUCH_WORK, 261
ARK_TSTOP_RETURN, 260

INDEX

ARK_UNREC_RHSFUNC_ERR, 261
ARK_WARNING, 261

ARKAdaptFn (C type), 97
ARKBandPrecGetNumRhsEvals (C function), 108
ARKBandPrecGetWorkSpace (C function), 108
ARKBandPreclnit (C function), 107
ARKBBDPrecGetNumGfnEvals (C function), 114
ARKBBDPrecGetWorkSpace (C function), 113
ARKBBDPreclnit (C function), 112
ARKBBDPrecRelnit (C function), 113
ARKCommFn (C function), 110
ARKDLS_ILL_INPUT, 262
ARKDLS_JACFUNC_RECVR, 262
ARKDLS_JACFUNC_UNRECVR, 262
ARKDLS_LMEM_NULL, 261
ARKDLS_MASSFUNC_RECVR, 262
ARKDLS_MASSFUNC_UNRECVR, 262
ARKDLS_MASSMEM_FAIL, 262
ARKDLS_MEM_FAIL, 262
ARKDLS_MEM_NULL, 261
ARKDLS_SUCCESS, 261
ARKDLS_SUNMAT_FAIL, 262
ARKDIsGetLastFlag (C function), 84
ARKDIsGetLastMassFlag (C function), 84
ARKDIsGetMassWorkSpace (C function), 82
ARKDIsGetNumlJacEvals (C function), 82
ARKDIsGetNumMassMult (C function), 83
ARKDIsGetNumMassSetups (C function), 83
ARKDIsGetNumMassSolves (C function), 83
ARKDIsGetNumRhsEvals (C function), 83
ARKDIsGetReturnFlagName (C function), 84
ARKDIsGetWorkSpace (C function), 82
ARKDIsJacFn (C type), 99

ARKDIsMassFn (C type), 103
ARKDIsSetJacFn (C function), 67
ARKDIsSetLinearSolver (C function), 43
ARKDIsSetMassFn (C function), 67
ARKDIsSetMassLinearSolver (C function), 45
ARKErrHandlerFn (C type), 96

ARKEwtFn (C type), 96

ARKExpStabFn (C type), 98

ARKLocalFn (C function), 110

287

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

ARKode (C function), 47

ARKodeCreate (C function), 38

ARKodeFree (C function), 38
ARKodeGetActuallnitStep (C function), 76
ARKodeGetCurrentButcherTables (C function), 77
ARKodeGetCurrentStep (C function), 77
ARKodeGetCurrentTime (C function), 77
ARKodeGetDky (C function), 72
ARKodeGetErrWeights (C function), 78
ARKodeGetEstLocalErrors (C function), 78
ARKodeGetIntegratorStats (C function), 79
ARKodeGetLastStep (C function), 77
ARKodeGetNonlinSolvStats (C function), 80
ARKodeGetNumAccSteps (C function), 76
ARKodeGetNumErrTestFails (C function), 76
ARKodeGetNumExpSteps (C function), 75
ARKodeGetNumGEvals (C function), 81
ARKodeGetNumLinSolvSetups (C function), 80
ARKodeGetNumNonlinSolvConvFails (C function), 80
ARKodeGetNumNonlinSolvlters (C function), 80
ARKodeGetNumRhsEvals (C function), 76
ARKodeGetNumStepAttempts (C function), 76
ARKodeGetNumSteps (C function), 75
ARKodeGetReturnFlagName (C function), 79
ARKodeGetRootInfo (C function), 81
ARKodeGetTolScaleFactor (C function), 78
ARKodeGetWorkSpace (C function), 75
ARKodelnit (C function), 38
ARKodeLoadButcherTable (C function), 90
ARKodeRelnit (C function), 93
ARKodeResFtolerance (C function), 41
ARKodeResize (C function), 94
ARKodeResStolerance (C function), 40
ARKodeResVtolerance (C function), 40
ARKodeRootInit (C function), 46
ARKodeSetAdaptivityFn (C function), 58
ARKodeSetAdaptivityMethod (C function), 59
ARKodeSetARKTableNum (C function), 57
ARKodeSetARKTables (C function), 55
ARKodeSetCFLFraction (C function), 59
ARKodeSetDefaults (C function), 49
ARKodeSetDeltaGammaMax (C function), 65
ARKodeSetDenseOrder (C function), 49
ARKodeSetDiagnostics (C function), 49
ARKodeSetERKTable (C function), 56
ARKodeSetERKTableNum (C function), 57
ARKodeSetErrFile (C function), 50
ARKodeSetErrHandlerFn (C function), 50
ARKodeSetErrorBias (C function), 60
ARKodeSetExplicit (C function), 55
ARKodeSetFixedPoint (C function), 63
ARKodeSetFixedStep (C function), 51
ARKodeSetFixedStepBounds (C function), 60
ARKodeSetImEx (C function), 54

ARKodeSetImplicit (C function), 55
ARKodeSetInitStep (C function), 50
ARKodeSetIRKTable (C function), 56
ARKodeSetIRKTableNum (C function), 58
ARKodeSetLinear (C function), 63
ARKodeSetMaxCFailGrowth (C function), 60
ARKodeSetMaxConvFails (C function), 66
ARKodeSetMaxEFailGrowth (C function), 60
ARKodeSetMaxErrTestFails (C function), 52
ARKodeSetMaxFirstGrowth (C function), 61
ARKodeSetMaxGrowth (C function), 61
ARKodeSetMaxHnilWarns (C function), 51
ARKodeSetMaxNonlinlters (C function), 64
ARKodeSetMaxNumSteps (C function), 52
ARKodeSetMaxStep (C function), 52
ARKodeSetMaxStepsBetweenLSet (C function), 66
ARKodeSetMinStep (C function), 53
ARKodeSetNewton (C function), 63
ARKodeSetNolnactiveRootWarn (C function), 72
ARKodeSetNonlinConvCoef (C function), 65
ARKodeSetNonlinCRDown (C function), 65
ARKodeSetNonlinear (C function), 64
ARKodeSetNonlinRDiv (C function), 65
ARKodeSetOptimalParams (C function), 53
ARKodeSetOrder (C function), 54
ARKodeSetPredictorMethod (C function), 64
ARKodeSetRootDirection (C function), 72
ARKodeSetSafetyFactor (C function), 61
ARKodeSetSmallNumEFails (C function), 61
ARKodeSetStabilityFn (C function), 62
ARKodeSetStopTime (C function), 53
ARKodeSetUserData (C function), 53
ARKodeSStolerances (C function), 39
ARKodeSVtolerances (C function), 39
ARKodeTestButcherTable (C function), 91
ARKodeTestButcherTables (C function), 92
ARKodeWFtolerances (C function), 40
ARKodeWriteButcher (C function), 91
ARKodeWriteParameters (C function), 90
ARKRhsFn (C type), 95

ARKRootFn (C type), 98

ARKRwtFn (C type), 97
ARKSPILS_LMEM_NULL, 262
ARKSPILS_MASSMEM_FAIL, 262
ARKSPILS_MEM_FAIL, 262
ARKSPILS_MEM_NULL, 262
ARKSPILS_PMEM_FAIL, 262
ARKSPILS_SUCCESS, 262
ARKSPILS_SUNLS_FAIL, 262
ARKSpilsGetLastFlag (C function), 87
ARKSpilsGetLastMassFlag (C function), 90
ARKSpilsGetMassWorkSpace (C function), 88
ARKSpilsGetNumConvFails (C function), 86
ARKSpilsGetNumJtimesEvals (C function), 87

288

Index

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

ARKSpilsGetNumJTSetupEvals (C function), 86
ARKSpilsGetNumLinlters (C function), 86
ARKSpilsGetNumMassConvFails (C function), 89
ARKSpilsGetNumMasslIters (C function), 89
ARKSpilsGetNumMassPrecEvals (C function), 88
ARKSpilsGetNumMassPrecSolves (C function), 88
ARKSpilsGetNumMtimesEvals (C function), 89
ARKSpilsGetNumMTSetupEvals (C function), 89
ARKSpilsGetNumPrecEvals (C function), 85
ARKSpilsGetNumPrecSolves (C function), 86
ARKSpilsGetNumRhsEvals (C function), 87
ARKSpilsGetReturnFlagName (C function), 88
ARKSpilsGetWorkSpace (C function), 85
ARKSpilsJacTimesSetupFn (C type), 101
ARKSpilsJacTimesVecFn (C type), 100
ARKSpilsMassPrecSetupFn (C type), 105
ARKSpilsMassPrecSolveFn (C type), 105
ARKSpilsMassTimesSetupFn (C type), 104
ARKSpilsMassTimesVecFn (C type), 104
ARKSpilsPrecSetupFn (C type), 102
ARKSpilsPrecSolveFn (C type), 101
ARKSpilsSetEpsLin (C function), 69
ARKSpilsSetJacTimes (C function), 69
ARKSpilsSetLinearSolver (C function), 43
ARKSpilsSetMassEpsLin (C function), 71
ARKSpilsSetMassLinearSolver (C function), 45
ARKSpilsSetMassPreconditioner (C function), 71
ARKSpilsSetMassTimes (C function), 70
ARKSpilsSetPreconditioner (C function), 70
ARKVecResizeFn (C type), 106

ATimesFn (C type), 204

BIG_REAL, 32

Billington-3-3-2 SDIRK method, 260, 273
BLAS_ENABLE (CMake option), 245
BLAS_LIBRARIES (CMake option), 245
Bogacki-Shampine-4-2-3 ERK method, 259, 264
BUILD_ARKODE (CMake option), 245
BUILD_CVODE (CMake option), 245
BUILD_CVODES (CMake option), 245
BUILD_IDA (CMake option), 245
BUILD_IDAS (CMake option), 245
BUILD_KINSOL (CMake option), 245
BUILD_SHARED_LIBS (CMake option), 245
BUILD_STATIC_LIBS (CMake option), 245

Cash-5-2-4 SDIRK method, 260, 276
Cash-5-3-4 SDIRK method, 260, 277
Cash-Karp-6-4-5 ERK method, 259, 268
ccmake, 242

cmake, 243

cmake-gui, 242

CMAKE_BUILD_TYPE (CMake option), 246
CMAKE_C_COMPILER (CMake option), 246

CMAKE_C_FLAGS (CMake option), 246

CMAKE_C_FLAGS_DEBUG (CMake option), 246

CMAKE_C_FLAGS_MINSIZEREL (CMake option),
246

CMAKE_C_FLAGS_RELEASE (CMake option), 246

CMAKE_CXX_COMPILER (CMake option), 246

CMAKE_CXX_FLAGS (CMake option), 246

CMAKE_CXX_FLAGS_DEBUG (CMake option), 246

CMAKE_CXX_FLAGS_MINSIZEREL (CMake op-
tion), 246

CMAKE_CXX_FLAGS_RELEASE (CMake option),
246

CMAKE_Fortran_COMPILER (CMake option), 246

CMAKE_Fortran_FLAGS (CMake option), 246

CMAKE_Fortran_FLAGS_DEBUG (CMake option),
247

CMAKE_Fortran_FLAGS_MINSIZEREL (CMake op-
tion), 247

CMAKE_Fortran_FLAGS_RELEASE (CMake option),
247

CMAKE_INSTALL_PREFIX (CMake option), 247

CUDA_ENABLE (CMake option), 247

CXX_ENABLE (CMake option), 247

DEFAULT_ARK_ETABLE 3, 260
DEFAULT_ARK_ETABLE 4, 260
DEFAULT_ARK_ETABLE 5, 260
DEFAULT_ARK_ITABLE_3, 260
DEFAULT_ARK_ITABLE_4, 260
DEFAULT_ARK_ITABLE_5, 260
DEFAULT_DIRK 2, 260
DEFAULT_DIRK _3, 260
DEFAULT_DIRK _4, 260
DEFAULT_DIRK_5, 260
DEFAULT_ERK 2, 259

DEFAULT_ERK 3, 259

DEFAULT_ERK 4, 259

DEFAULT_ERK_5, 259

DEFAULT_ERK_6, 259

DEFAULT_ERK_8, 260

dense output, 17

diagonally-implicit Runge-Kutta methods, 10
Dormand-Prince-7-4-5 ERK method, 259, 270

error weight vector, 14

EXAMPLES_ENABLE_C (CMake option), 247
EXAMPLES_ENABLE_CUDA (CMake option), 247
EXAMPLES_ENABLE_CXX (CMake option), 247
EXAMPLES_ENABLE_F77 (CMake option), 247
EXAMPLES_ENABLE_F90 (CMake option), 247
EXAMPLES_ENABLE_RAIJA (CMake option), 247
EXAMPLES_INSTALL (CMake option), 247
EXAMPLES_INSTALL_PATH (CMake option), 248
explicit Runge-Kutta methods, 10

Index

289

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

F90_ENABLE (CMake option), 248
FARKADAPT() (fortran subroutine), 126
FARKADAPTSET() (fortran subroutine), 127
FARKBANDSETJAC() (fortran subroutine), 129
FARKBANDSETMASS() (fortran subroutine), 135
FARKBBDINIT() (fortran subroutine), 148
FARKBBDOPTY() (fortran subroutine), 148
FARKBBDREINIT() (fortran subroutine), 149
FARKBIJAC() (fortran subroutine), 129
FARKBMASS() (fortran subroutine), 135
FARKBPINIT() (fortran subroutine), 146
FARKBPOPT() (fortran subroutine), 146
FARKCOMMEFN() (fortran subroutine), 150
FARKDENSESETJAC() (fortran subroutine), 128
FARKDENSESETMASS() (fortran subroutine), 135
FARKDIJAC() (fortran subroutine), 128
FARKDKY() (fortran subroutine), 140
FARKDLSINIT() (fortran subroutine), 128
FARKDLSMASSINIT() (fortran subroutine), 134
FARKDMASS() (fortran subroutine), 134
FARKEFUN() (fortran subroutine), 119
FARKEWT() (fortran subroutine), 122
FARKEWTSET() (fortran subroutine), 123
FARKEXPSTAB() (fortran subroutine), 127
FARKEXPSTABSET() (fortran subroutine), 127
FARKFREE() (fortran subroutine), 141
FARKGETERRWEIGHTS() (fortran subroutine), 144
FARKGETESTLOCALERR() (fortran subroutine), 144
FARKGLOCEFN() (fortran subroutine), 149
FARKIFUN() (fortran subroutine), 119
FARKIJTIMES() (fortran subroutine), 132
FARKIJTSETUP() (fortran subroutine), 132
FARKMALLOC() (fortran subroutine), 122
FARKMASSPSET() (fortran subroutine), 138
FARKMASSPSOL() (fortran subroutine), 138
FARKMTIMES() (fortran subroutine), 137
FARKMTSETUP() (fortran subroutine), 137
FARKODE() (fortran subroutine), 139
FARKPSET() (fortran subroutine), 133
FARKPSOL\() (fortran subroutine), 132
FARKREINIT() (fortran subroutine), 140
FARKRESIZE() (fortran subroutine), 141
FARKROOTFNY() (fortran subroutine), 144
FARKROOTFREE() (fortran subroutine), 145
FARKROOTINFO() (fortran subroutine), 145
FARKROOTINIT() (fortran subroutine), 144
FARKSETADAPTIVITYMETHOD() (fortran subrou-
tine), 126
FARKSETARKTABLES() (fortran subroutine), 125
FARKSETDEFAULTS() (fortran subroutine), 124

FARKSETRIN() (fortran subroutine), 124
FARKSPARSESETJAC() (fortran subroutine), 130
FARKSPARSESETMASS() (fortran subroutine), 136
FARKSPILSINIT() (fortran subroutine), 130
FARKSPILSMASSINIT() (fortran subroutine), 136
FARKSPILSSETEPSLIN() (fortran subroutine), 131
FARKSPILSSETJAC() (fortran subroutine), 131
FARKSPILSSETMASS() (fortran subroutine), 138
FARKSPILSSETMASSEPSLIN() (fortran subroutine),
137
FARKSPILSSETMASSPREC() (fortran subroutine), 138
FARKSPILSSETPREC() (fortran subroutine), 131
FARKSPJAC() (fortran subroutine), 129
FARKSPMASS() (fortran subroutine), 136
FCMIX_ENABLE (CMake option), 248
Fehlberg-13-7-8 ERK method, 259, 272
Fehlberg-6-4-5 ERK method, 259, 269
FSUNBandLinSollInit() (fortran subroutine), 208
FSUNBandMassMatlnit() (fortran subroutine), 189
FSUNBandMatlnit() (fortran subroutine), 189
FSUNDenseLinSollnit() (fortran subroutine), 207
FSUNDenseMassMatlInit() (fortran subroutine), 184
FSUNDenseMatlInit() (fortran subroutine), 183
FSUNKLUInit() (fortran subroutine), 215
FSUNKLUREelnit() (fortran subroutine), 215
FSUNKLUSetOrdering() (fortran subroutine), 215
FSUNLapackBandInit() (fortran subroutine), 212
FSUNLapackDenselnit() (fortran subroutine), 210
FSUNMassBandLinSolInit() (fortran subroutine), 209
FSUNMassDenseLinSollInit() (fortran subroutine), 207
FSUNMassKLUInit() (fortran subroutine), 215
FSUNMassKLURelnit() (fortran subroutine), 215
FSUNMassKLUSetOrdering() (fortran subroutine), 216
FSUNMassLapackBandInit() (fortran subroutine), 212
FSUNMassLapackDenselnit() (fortran subroutine), 210
FSUNMassPCGlnit() (fortran subroutine), 237
FSUNMassPCGSetMaxI() (fortran subroutine), 237
FSUNMassPCGSetPrecType() (fortran subroutine), 237
FSUNMassSPBCGSInit() (fortran subroutine), 229
FSUNMassSPBCGSSetMaxl() (fortran subroutine), 230
FSUNMassSPBCGSSetPrecType() (fortran subroutine),
230
FSUNMassSPFGMRInit() (fortran subroutine), 226
FSUNMassSPFGMRSetGSType() (fortran subroutine),
226
FSUNMassSPFGMRSetMaxRS() (fortran subroutine),
227
FSUNMassSPFGMRSetPrecType() (fortran subroutine),
226
FSUNMassSPGMRInit() (fortran subroutine), 222

FARKSETERKTABLE() (fortran subroutine), 124 FSUNMassSPGMRSetGSType() (fortran subroutine),
FARKSETIIN() (fortran subroutine), 123 222
FARKSETIRKTABLE() (fortran subroutine), 125 FSUNMassSPGMRSetMaxRS() (fortran subroutine),
FARKSETRESTOLERANCE() (fortran subroutine), 125 222
290 Index

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

FSUNMassSPGMRSetPrecType() (fortran subroutine),
222
FSUNMassSPTFQMRInit() (fortran subroutine), 233
FSUNMassSPTFQMRSetMaxl() (fortran subroutine),
233
FSUNMassSPTFQMRSetPrecType() (fortran
tine), 233
FSUNMassSuperLUMTInit() (fortran subroutine), 218
FSUNMassSuperLUMTSetOrdering() (fortran subrou-
tine), 218
FSUNPCGlInit() (fortran subroutine), 236
FSUNPCGSetMaxlI() (fortran subroutine), 237
FSUNPCGSetPrecType() (fortran subroutine), 237
FSUNSparseMassMatlnit() (fortran subroutine), 195
FSUNSparseMatlnit() (fortran subroutine), 195
FSUNSPBCGSInit() (fortran subroutine), 229
FSUNSPBCGSSetMaxl() (fortran subroutine), 230
FSUNSPBCGSSetPrecType() (fortran subroutine), 230
FSUNSPFGMRInit() (fortran subroutine), 225
FSUNSPFGMRSetGSType() (fortran subroutine), 226
FSUNSPFGMRSetMaxRS() (fortran subroutine), 226
FSUNSPFGMRSetPrecType() (fortran subroutine), 226
FSUNSPGMRInit() (fortran subroutine), 221
FSUNSPGMRSetGSType() (fortran subroutine), 222
FSUNSPGMRSetMaxRS() (fortran subroutine), 222
FSUNSPGMRSetPrecType() (fortran subroutine), 222
FSUNSPTFQMRInit() (fortran subroutine), 232
FSUNSPTFQMRSetMaxl() (fortran subroutine), 233
FSUNSPTFQMRSetPrecType() (fortran subroutine), 233
FSUNSuperLUMTTInit() (fortran subroutine), 218
FSUNSuperLUMTSetOrdering() (fortran subroutine),
218

subrou-

Heun-Euler-2-1-2 ERK method, 259, 264
HYPRE_ENABLE (CMake option), 248
HYPRE_INCLUDE_DIR (CMake option), 248
HYPRE_LIBRARY (CMake option), 248

inexact Newton iteration, 13

KLU_INCLUDE_DIR (CMake option), 248
KLU_LIBRARY_DIR (CMake option), 248
Kvaerno-4-2-3 ESDIRK method, 260, 275
Kvaerno-5-3-4 ESDIRK method, 260, 278
Kvaerno-7-4-5 ESDIRK method, 260, 279

LAPACK_ENABLE (CMake option), 248
LAPACK_LIBRARIES (CMake option), 248

modified Newton iteration, 12
MPI_ENABLE (CMake option), 249
MPI_MPICC (CMake option), 249
MPI_MPICXX (CMake option), 249
MPI_MPIF77 (CMake option), 249
MPI_MPIF90 (CMake option), 249

MPI_RUN_COMMAND (CMake option), 249

N_VAbs (C function), 155
N_VAddConst (C function), 155
N_VClone (C function), 153
N_VCloneEmpty (C function), 153
N_VCloneVectorArray_Cuda (C function), 171
N_VCloneVectorArray_OpenMP (C function), 164
N_VCloneVectorArray_Parallel (C function), 161
N_VCloneVectorArray_ParHyp (C function), 168
N_VCloneVectorArray_Petsc (C function), 169
N_VCloneVectorArray_Pthreads (C function), 166
N_VCloneVectorArray_Raja (C function), 172
N_VCloneVectorArray_Serial (C function), 159
N_VCloneVectorArrayEmpty_Cuda (C function), 171
N_VCloneVectorArrayEmpty_OpenMP (C function),
164
N_VCloneVectorArrayEmpty_Parallel (C function), 161
N_VCloneVectorArrayEmpty_ParHyp (C function), 168
N_VCloneVectorArrayEmpty_Petsc (C function), 169
N_VCloneVectorArrayEmpty_Pthreads (C function), 166
N_VCloneVectorArrayEmpty_Raja (C function), 172
N_VCloneVectorArrayEmpty_Serial (C function), 159
N_VCompare (C function), 157
N_VConst (C function), 154
N_VConstrMask (C function), 157
N_VCopyFromDevice_Cuda (C function), 171
N_VCopyFromDevice_Raja (C function), 173
N_VCopyToDevice_Cuda (C function), 171
N_VCopyToDevice_Raja (C function), 173
N_VDestroy (C function), 153
N_VDestroy VectorArray_Cuda (C function), 171
N_VDestroy VectorArray_OpenMP (C function), 164
N_VDestroy VectorArray_Parallel (C function), 161
N_VDestroy VectorArray_ParHyp (C function), 168
N_VDestroy VectorArray_Petsc (C function), 169
N_VDestroy VectorArray_Pthreads (C function), 166
N_VDestroy VectorArray_Raja (C function), 172
N_VDestroy VectorArray_Serial (C function), 159
N_VDiv (C function), 155
N_VDotProd (C function), 155
N_VGetArrayPointer (C function), 154
N_VGetDeviceArrayPointer_Cuda (C function), 171
N_VGetDeviceArrayPointer_Raja (C function), 173
N_VGetHostArrayPointer_Cuda (C function), 171
N_VGetHostArrayPointer_Raja (C function), 172
N_VGetLength_Cuda (C function), 171
N_VGetLength_OpenMP (C function), 164
N_VGetLength_Parallel (C function), 161
N_VGetLength_Pthreads (C function), 166
N_VGetLength_Raja (C function), 172
N_VGetLength_Serial (C function), 159
N_VGetLocalLength_Parallel (C function), 161
N_VGetVector_ParHyp (C function), 167

Index

291

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

N_VGetVector_Petsc (C function), 169
N_VGetVectorID (C function), 153
N_VInv (C function), 155

N_VlInvTest (C function), 157
N_VLI1Norm (C function), 156
N_VLinearSum (C function), 154
N_VMake_Cuda (C function), 170
N_VMake_OpenMP (C function), 164
N_VMake_Parallel (C function), 161
N_VMake_ParHyp (C function), 167
N_VMake_Petsc (C function), 169
N_VMake_Pthreads (C function), 166
N_VMake_Raja (C function), 172
N_VMake_Serial (C function), 159
N_VMaxNorm (C function), 156
N_VMin (C function), 156
N_VMinQuotient (C function), 157
N_VNew_Cuda (C function), 170
N_VNew_OpenMP (C function), 163
N_VNew_Parallel (C function), 161
N_VNew_Pthreads (C function), 166
N_VNew_Raja (C function), 172
N_VNew_Serial (C function), 159
N_VNewEmpty_Cuda (C function), 170
N_VNewEmpty_OpenMP (C function), 164
N_VNewEmpty_Parallel (C function), 161
N_VNewEmpty_ParHyp (C function), 167
N_VNewEmpty_Petsc (C function), 169
N_VNewEmpty_Pthreads (C function), 166
N_VNewEmpty_Raja (C function), 172
N_VNewEmpty_Serial (C function), 159
N_VPrint_Cuda (C function), 171
N_VPrint_OpenMP (C function), 164
N_VPrint_Parallel (C function), 161
N_VPrint_ParHyp (C function), 168
N_VPrint_Petsc (C function), 169
N_VPrint_Pthreads (C function), 166
N_VPrint_Raja (C function), 173
N_VPrint_Serial (C function), 159
N_VPrintFile_Cuda (C function), 171
N_VPrintFile_OpenMP (C function), 164
N_VPrintFile_Parallel (C function), 161
N_VPrintFile_ParHyp (C function), 168
N_VPrintFile_Petsc (C function), 169
N_VPrintFile_Pthreads (C function), 166
N_VPrintFile_Raja (C function), 173
N_VPrintFile_Serial (C function), 159
N_VProd (C function), 154

N_VScale (C function), 155
N_VSetArrayPointer (C function), 154
N_VSpace (C function), 154
N_VWI2Norm (C function), 156
N_VWrmsNorm (C function), 156
N_VWrmsNormMask (C function), 156

Newton system, 11

Newton update, 11

Newton’s method, 11

NV_COMM_P (C macro), 161
NV_CONTENT_OMP (C macro), 162
NV_CONTENT_P (C macro), 160
NV_CONTENT_PT (C macro), 165
NV_CONTENT_S (C macro), 158
NV_DATA_OMP (C macro), 163
NV_DATA_P (C macro), 160
NV_DATA_PT (C macro), 165
NV_DATA_S (C macro), 158
NV_GLOBLENGTH_P (C macro), 160
NV_Ith_OMP (C macro), 163
NV_Ith_P (C macro), 161

NV_Ith_PT (C macro), 166

NV_Ith_S (C macro), 158
NV_LENGTH_OMP (C macro), 163
NV_LENGTH_PT (C macro), 165
NV_LENGTH_S (C macro), 158
NV_LOCLENGTH_P (C macro), 160
NV_NUM_THREADS_OMP (C macro), 163
NV_NUM_THREADS_PT (C macro), 165
NV_OWN_DATA_OMP (C macro), 163
NV_OWN_DATA_P (C macro), 160
NV_OWN_DATA_PT (C macro), 165
NV_OWN_DATA_S (C macro), 158

OPENMP_ENABLE (CMake option), 249

PETSC_ENABLE (CMake option), 249
PETSC_INCLUDE_DIR (CMake option), 249
PETSC_LIBRARY_DIR (CMake option), 249
PSetupFn (C type), 204

PSolveFn (C type), 204
PTHREAD_ENABLE (CMake option), 249

RAJA_ENABLE (CMake option), 250
RCONST, 32

realtype, 32

residual weight vector, 14

Sayfy-Aburub-6-3-4 ERK method, 259, 268
SDIRK-2-1-2 method, 260, 273
SDIRK-5-3-4 method, 260, 277
SM_COLS_B (C macro), 187
SM_COLS_D (C macro), 182
SM_COLUMN_B (C macro), 187
SM_COLUMN_D (C macro), 182
SM_COLUMN_ELEMENT_B (C macro), 187
SM_COLUMNS_B (C macro), 185
SM_COLUMNS_D (C macro), 181
SM_COLUMNS_S (C macro), 193
SM_CONTENT_B (C macro), 185
SM_CONTENT_D (C macro), 181

292

Index

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

SM_CONTENT_S (C macro), 191
SM_DATA_B (C macro), 187
SM_DATA_D (C macro), 182
SM_DATA_S (C macro), 193
SM_ELEMENT_B (C macro), 187
SM_ELEMENT_D (C macro), 182
SM_INDEXPTRS_S (C macro), 193
SM_INDEXVALS_S (C macro), 193
SM_LBAND_B (C macro), 185
SM_LDATA_B (C macro), 187
SM_LDATA_D (C macro), 181
SM_LDIM_B (C macro), 185
SM_NNZ_S (C macro), 193
SM_NP_S (C macro), 193
SM_ROWS_B (C macro), 185
SM_ROWS_D (C macro), 181
SM_ROWS_S (C macro), 191
SM_SPARSETYPE_S (C macro), 193
SM_SUBAND_B (C macro), 185
SM_UBAND_B (C macro), 185
SMALL_REAL, 32
SUNBandLinearSolver (C function), 208
SUNBandMatrix (C function), 188
SUNBandMatrix_Cols (C function), 188
SUNBandMatrix_Column (C function), 188
SUNBandMatrix_Columns (C function), 188
SUNBandMatrix_Data (C function), 188
SUNBandMatrix_LDim (C function), 188
SUNBandMatrix_LowerBandwidth (C function), 188
SUNBandMatrix_Print (C function), 188
SUNBandMatrix_Rows (C function), 188
SUNBandMatrix_StoredUpperBandwidth (C function),
188
SUNBandMatrix_UpperBandwidth (C function), 188
SUNDenseLinearSolver (C function), 206
SUNDenseMatrix (C function), 182
SUNDenseMatrix_Cols (C function), 183
SUNDenseMatrix_Column (C function), 183
SUNDenseMatrix_Columns (C function), 183
SUNDenseMatrix_Data (C function), 183
SUNDenseMatrix_LData (C function), 183
SUNDenseMatrix_Print (C function), 183
SUNDenseMatrix_Rows (C function), 183
SUNDIALS_INDEX_TYPE (CMake option), 250
SUNDIALS_PRECISION (CMake option), 250
SUNDIALSGetVersion (C function), 74
SUNDIALSGetVersionNumber (C function), 74
SUNKLU (C function), 214
SUNKLURelnit (C function), 214
SUNKLUSetOrdering (C function), 214
SUNLapackBand (C function), 212
SUNLapackDense (C function), 210
SUNLinSolFree (C function), 202
SUNLinSolGetType (C function), 201

SUNLinSollnitialize (C function), 202
SUNLinSolLastFlag (C function), 203
SUNLinSolNumlters (C function), 203
SUNLinSolResid (C function), 203
SUNLinSolResNorm (C function), 203
SUNLinSolSetATimes (C function), 202
SUNLinSolSetPreconditioner (C function), 203
SUNLinSolSetScalingVectors (C function), 203
SUNLinSolSetup (C function), 202
SUNLinSolSolve (C function), 202
SUNLinSolSpace (C function), 204
SUNMatClone (C function), 179

SUNMatCopy (C function), 179
SUNMatDestroy (C function), 179
SUNMatGetID (C function), 178
SUNMatMatvec (C function), 180
SUNMatScaleAdd (C function), 179
SUNMatScaleAddI (C function), 180
SUNMatSpace (C function), 179

SUNMatZero (C function), 179

SUNPCG (C function), 236

SUNPCGSetMaxl (C function), 236
SUNPCGSetPrecType (C function), 236
SUNSparseFromBandMatrix (C function), 194
SUNSparseFromDenseMatrix (C function), 194
SUNSparseMatrix (C function), 194
SUNSparseMatrix_Columns (C function), 194
SUNSparseMatrix_Data (C function), 195
SUNSparseMatrix_IndexPointers (C function), 195
SUNSparseMatrix_IndexValues (C function), 195
SUNSparseMatrix_NNZ (C function), 194
SUNSparseMatrix_NP (C function), 194
SUNSparseMatrix_Print (C function), 194
SUNSparseMatrix_Realloc (C function), 194
SUNSparseMatrix_Rows (C function), 194
SUNSparseMatrix_SparseType (C function), 194
SUNSPBCGS (C function), 228
SUNSPBCGSSetMaxl (C function), 229
SUNSPBCGSSetPrecType (C function), 229
SUNSPFGMR (C function), 225
SUNSPFGMRSetGSType (C function), 225
SUNSPFGMRSetMaxRestarts (C function), 225
SUNSPFGMRSetPrecType (C function), 225
SUNSPGMR (C function), 221
SUNSPGMRSetGSType (C function), 221
SUNSPGMRSetMaxRestarts (C function), 221
SUNSPGMRSetPrecType (C function), 221
SUNSPTFQMR (C function), 232
SUNSPTFQMRSetMaxl (C function), 232
SUNSPTFQMRSetPrecType (C function), 232
SUNSuperLUMT (C function), 217
SUNSuperLUMTSetOrdering (C function), 217
SUPERLUMT_ENABLE (CMake option), 250
SUPERLUMT_INCLUDE_DIR (CMake option), 250

Index

293

User Documentation for ARKode v2.1.1
(SUNDIALS v3.1.1),

SUPERLUMT_LIBRARY_DIR (CMake option), 250
SUPERLUMT_THREAD_TYPE (CMake option), 250

TPL_BLAS_LIBRARIES (xSDK CMake option), 250

TPL_ENABLE_BLAS (xSDK CMake option), 251

TPL_ENABLE_HYPRE (xSDK CMake option), 251

TPL_ENABLE_KLU (xSDK CMake option), 251

TPL_ENABLE_LAPACK (xSDK CMake option), 251

TPL_ENABLE_PETSC (xSDK CMake option), 251

TPL_ENABLE_SUPERLUMT (xSDK CMake option),
251

TPL_HYPRE_INCLUDE_DIRS (xSDK CMake option),
251

TPL_HYPRE_LIBRARIES (xSDK CMake option), 251

TPL_KLU_INCLUDE_DIRS (xSDK CMake option),
251

TPL_KLU_LIBRARIES (xSDK CMake option), 251

TPL_LAPACK_LIBRARIES (xSDK CMake option),
251

TPL_PETSC_INCLUDE_DIRS (xSDK CMake option),
251

TPL_PETSC_LIBRARIES (xSDK CMake option), 251

TPL_SUPERLUMT_INCLUDE_DIRS (xSDK CMake
option), 252

TPL_SUPERLUMT_LIBRARIES (xSDK CMake op-
tion), 252

TPL_SUPERLUMT_THREAD_TYPE (xSDK CMake
option), 252

TRBDF2-3-3-2 ESDIRK method, 260, 273

UNIT_ROUNDOFF, 32

USE_GENERIC_MATH (CMake option), 250
USE_XSDK_DEFAULTS (xSDK CMake option), 252
User main program, 34

Verner-8-5-6 ERK method, 259, 271
weighted root-mean-square norm, 14

XSDK_ENABLE_FORTRAN (xSDK CMake option),
252

XSDK_INDEX_SIZE (xSDK CMake option), 252

XSDK_PRECISION (xSDK CMake option), 252

Zonneveld-5-3-4 ERK method, 259, 266

294

Index

	Introduction
	Changes from previous versions
	Reading this User Guide
	SUNDIALS Release License

	Mathematical Considerations
	Additive Runge-Kutta methods
	Nonlinear solver methods
	Linear solver methods
	Iteration Error Control
	Preconditioning
	Implicit predictors
	Time step adaptivity
	Explicit stability
	Mass matrix solver
	Rootfinding

	Code Organization
	ARKode organization

	Using ARKode for C and C++ Applications
	Access to library and header files
	Data Types
	Header Files
	A skeleton of the user's main program
	User-callable functions
	User-supplied functions
	Preconditioner modules

	FARKODE, an Interface Module for FORTRAN Applications
	Important note on portability
	Fortran Data Types

	Vector Data Structures
	Description of the NVECTOR Modules
	Description of the NVECTOR operations
	The NVECTOR_SERIAL Module
	The NVECTOR_PARALLEL Module
	The NVECTOR_OPENMP Module
	The NVECTOR_PTHREADS Module
	The NVECTOR_PARHYP Module
	The NVECTOR_PETSC Module
	The NVECTOR_CUDA Module
	The NVECTOR_RAJA Module
	NVECTOR Examples
	NVECTOR functions required by ARKode

	Matrix Data Structures
	Description of the SUNMATRIX Modules
	Description of the SUNMATRIX operations
	Compatibility of SUNMATRIX types
	The SUNMATRIX_DENSE Module
	The SUNMATRIX_BAND Module
	The SUNMATRIX_SPARSE Module
	SUNMATRIX Examples
	SUNMATRIX functions required by ARKode

	Linear Solver Data Structures
	Description of the SUNLinearSolver Module
	Description of the SUNLinearSolver operations
	Description of the client-supplied SUNLinearSolver routines
	Compatibility of SUNLinearSolver modules
	Error Codes returned from SUNLinearSolver implementations
	The SUNLINSOL_DENSE Module
	The SUNLINSOL_BAND Module
	The SUNLINSOL_LAPACKDENSE Module
	The SUNLINSOL_LAPACKBAND Module
	The SUNLINSOL_KLU Module
	The SUNLINSOL_SUPERLUMT Module
	The SUNLINSOL_SPGMR Module
	The SUNLINSOL_SPFGMR Module
	The SUNLINSOL_SPBCGS Module
	The SUNLINSOL_SPTFQMR Module
	The SUNLINSOL_PCG Module
	SUNLinearSolver Examples
	SUNLinearSolver functions required by ARKode

	ARKode Installation Procedure
	CMake-based installation
	Installed libraries and exported header files

	Appendix: ARKode Constants
	ARKode input constants
	ARKode output constants

	Appendix: Butcher tables
	Explicit Butcher tables
	Implicit Butcher tables
	Additive Butcher tables

	Bibliography
	Index

