ZZ/2[t]; |
isPrime(t^2+t+1) |
isPrime(t^2+1) |
isPrime 101 |
isPrime 158174196546819165468118574681196546811856748118567481185669501856749 |
isPrime 158174196546819165468118574681196546811856748118567481185669501856749^2 |
Since factor returns factors guaranteed only to be pseudoprimes, it may be useful to check their primality, as follows.
f = factor 28752093487520394720397634653456 |
peek'_2 f |
first \ toList f |
isPrime \ oo |
This function can be used also to determine whether an ideal in a polynomial ring is prime.
R = QQ[a..d]; |
I = monomialCurveIdeal(R,{1,5,8}) |
isPrime I |
Primality testing for integers is handled by pari.