The columns are referring to the degree, indexed from 1, and the rows are referring to the homological degree, indexed from 0. If the second argument s is zero (one), the dimensions of the even (odd) elements are displayed.
i1 : L=lieAlgebra({a,b,c,r3,r4},{},genWeights => {{1,0},{1,0},{2,0},{3,1},{4,1}}, genDiffs=>{[],[],[],{{1,-1},{[b,c],[a,c]}}, {{1,-2},{[a,a,c],[b,b,b,a]}}}, genSigns=>{1,1,0,0,1}) o1 = L o1 : LieAlgebra |
i2 : dimTableLie 5 o2 = | 2 4 4 7 16 | | 0 0 1 3 7 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | 6 5 o2 : Matrix ZZ <--- ZZ |
i3 : dimTableLie(5,0) o3 = | 0 4 0 7 0 | | 0 0 1 0 7 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | 6 5 o3 : Matrix ZZ <--- ZZ |
i4 : dimTableLie(5,1) o4 = | 2 0 4 0 16 | | 0 0 0 3 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | 6 5 o4 : Matrix ZZ <--- ZZ |