We randomly choose an r × n matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.
i1 : setRandomSeed "nice example 2"; |
i2 : r=10,n=20 o2 = (10, 20) o2 : Sequence |
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) o3 = ({5, 2.91596e52, 9}, .00188978, .00097545) o3 : Sequence |
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) o4 = ({50, 2.30853e454, 98}, .00537866, .0454326) o4 : Sequence |
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) o5 = {{.00568312, .014785}, {.0126498, .00507901}, {.006571, .00893097}, ------------------------------------------------------------------------ {.0152599, .0119326}, {.00566277, .0168026}, {.00665171, .0157597}, ------------------------------------------------------------------------ {.00577271, .00959369}, {.00667983, .00881729}, {.00488023, .00640181}, ------------------------------------------------------------------------ {.015064, .0105027}} o5 : List |
i6 : 1/10*sum(L,t->t_0) o6 = .00848749910000001 o6 : RR (of precision 53) |
i7 : 1/10*sum(L,t->t_1) o7 = .010860538 o7 : RR (of precision 53) |