Root system data for type C¶
-
sage.combinat.root_system.type_C.
AmbientSpace
¶ EXAMPLES:
sage: e = RootSystem(['C',2]).ambient_space(); e Ambient space of the Root system of type ['C', 2]
One cannot construct the ambient lattice because the fundamental coweights have rational coefficients:
sage: e.smallest_base_ring() Rational Field sage: RootSystem(['B',2]).ambient_space().fundamental_weights() Finite family {1: (1, 0), 2: (1/2, 1/2)}
-
class
sage.combinat.root_system.type_C.
CartanType
(n)¶ Bases:
sage.combinat.root_system.cartan_type.CartanType_standard_finite
,sage.combinat.root_system.cartan_type.CartanType_simple
,sage.combinat.root_system.cartan_type.CartanType_crystallographic
EXAMPLES:
sage: ct = CartanType(['C',4]) sage: ct ['C', 4] sage: ct._repr_(compact = True) 'C4' sage: ct.is_irreducible() True sage: ct.is_finite() True sage: ct.is_crystallographic() True sage: ct.is_simply_laced() False sage: ct.affine() ['C', 4, 1] sage: ct.dual() ['B', 4] sage: ct = CartanType(['C',1]) sage: ct.is_simply_laced() True sage: ct.affine() ['C', 1, 1]
-
AmbientSpace
¶ EXAMPLES:
sage: e = RootSystem(['C',2]).ambient_space(); e Ambient space of the Root system of type ['C', 2]
One cannot construct the ambient lattice because the fundamental coweights have rational coefficients:
sage: e.smallest_base_ring() Rational Field sage: RootSystem(['B',2]).ambient_space().fundamental_weights() Finite family {1: (1, 0), 2: (1/2, 1/2)}
-
ascii_art
(label=<function CartanType.<lambda>>, node=None)¶ Return a ascii art representation of the extended Dynkin diagram.
EXAMPLES:
sage: print(CartanType(['C',1]).ascii_art()) O 1 sage: print(CartanType(['C',2]).ascii_art()) O=<=O 1 2 sage: print(CartanType(['C',3]).ascii_art()) O---O=<=O 1 2 3 sage: print(CartanType(['C',5]).ascii_art(label = lambda x: x+2)) O---O---O---O=<=O 3 4 5 6 7
-
coxeter_number
()¶ Return the Coxeter number associated with
self
.EXAMPLES:
sage: CartanType(['C',4]).coxeter_number() 8
-
dual
()¶ Types B and C are in duality:
EXAMPLES:
sage: CartanType(["C", 3]).dual() ['B', 3]
-
dual_coxeter_number
()¶ Return the dual Coxeter number associated with
self
.EXAMPLES:
sage: CartanType(['C',4]).dual_coxeter_number() 5
-
dynkin_diagram
()¶ Returns a Dynkin diagram for type C.
EXAMPLES:
sage: c = CartanType(['C',3]).dynkin_diagram() sage: c O---O=<=O 1 2 3 C3 sage: e = c.edges(); e.sort(); e [(1, 2, 1), (2, 1, 1), (2, 3, 1), (3, 2, 2)] sage: b = CartanType(['C',1]).dynkin_diagram() sage: b O 1 C1 sage: sorted(b.edges()) []
-