Modular forms for Hecke triangle groups

AUTHORS:

  • Jonas Jermann (2013): initial version
sage.modular.modform_hecketriangle.space.CuspForms

Module of (Hecke) cusp forms for the given group, base ring, weight and multiplier

sage.modular.modform_hecketriangle.space.MeromorphicModularForms

Module of (Hecke) meromorphic modular forms for the given group, base ring, weight and multiplier

sage.modular.modform_hecketriangle.space.ModularForms

Module of (Hecke) modular forms for the given group, base ring, weight and multiplier

sage.modular.modform_hecketriangle.space.QuasiCuspForms

Module of (Hecke) quasi cusp forms for the given group, base ring, weight and multiplier

sage.modular.modform_hecketriangle.space.QuasiMeromorphicModularForms

Module of (Hecke) quasi meromorphic modular forms for the given group, base ring, weight and multiplier

sage.modular.modform_hecketriangle.space.QuasiModularForms

Module of (Hecke) quasi modular forms for the given group, base ring, weight and multiplier

sage.modular.modform_hecketriangle.space.QuasiWeakModularForms

Module of (Hecke) quasi weakly holomorphic modular forms for the given group, base ring, weight and multiplier

sage.modular.modform_hecketriangle.space.WeakModularForms

Module of (Hecke) weakly holomorphic modular forms for the given group, base ring, weight and multiplier

sage.modular.modform_hecketriangle.space.ZeroForm

Zero Module for the zero form for the given group, base ring weight and multiplier

sage.modular.modform_hecketriangle.space.canonical_parameters(group, base_ring, k, ep, n=None)

Return a canonical version of the parameters.

EXAMPLES:

sage: from sage.modular.modform_hecketriangle.space import canonical_parameters
sage: canonical_parameters(5, ZZ, 20/3, int(1))
(Hecke triangle group for n = 5, Integer Ring, 20/3, 1, 5)

sage: canonical_parameters(infinity, ZZ, 2, int(-1))
(Hecke triangle group for n = +Infinity, Integer Ring, 2, -1, +Infinity)