Modular forms for Hecke triangle groups¶
AUTHORS:
- Jonas Jermann (2013): initial version
-
sage.modular.modform_hecketriangle.space.
CuspForms
¶ Module of (Hecke) cusp forms for the given group, base ring, weight and multiplier
-
sage.modular.modform_hecketriangle.space.
MeromorphicModularForms
¶ Module of (Hecke) meromorphic modular forms for the given group, base ring, weight and multiplier
-
sage.modular.modform_hecketriangle.space.
ModularForms
¶ Module of (Hecke) modular forms for the given group, base ring, weight and multiplier
-
sage.modular.modform_hecketriangle.space.
QuasiCuspForms
¶ Module of (Hecke) quasi cusp forms for the given group, base ring, weight and multiplier
-
sage.modular.modform_hecketriangle.space.
QuasiMeromorphicModularForms
¶ Module of (Hecke) quasi meromorphic modular forms for the given group, base ring, weight and multiplier
-
sage.modular.modform_hecketriangle.space.
QuasiModularForms
¶ Module of (Hecke) quasi modular forms for the given group, base ring, weight and multiplier
-
sage.modular.modform_hecketriangle.space.
QuasiWeakModularForms
¶ Module of (Hecke) quasi weakly holomorphic modular forms for the given group, base ring, weight and multiplier
-
sage.modular.modform_hecketriangle.space.
WeakModularForms
¶ Module of (Hecke) weakly holomorphic modular forms for the given group, base ring, weight and multiplier
-
sage.modular.modform_hecketriangle.space.
ZeroForm
¶ Zero Module for the zero form for the given group, base ring weight and multiplier
-
sage.modular.modform_hecketriangle.space.
canonical_parameters
(group, base_ring, k, ep, n=None)¶ Return a canonical version of the parameters.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import canonical_parameters sage: canonical_parameters(5, ZZ, 20/3, int(1)) (Hecke triangle group for n = 5, Integer Ring, 20/3, 1, 5) sage: canonical_parameters(infinity, ZZ, 2, int(-1)) (Hecke triangle group for n = +Infinity, Integer Ring, 2, -1, +Infinity)