Graded rings of modular forms for Hecke triangle groups

AUTHORS:

  • Jonas Jermann (2013): initial version
sage.modular.modform_hecketriangle.graded_ring.CuspFormsRing

Graded ring of (Hecke) cusp forms for the given group and base ring

sage.modular.modform_hecketriangle.graded_ring.MeromorphicModularFormsRing

Graded ring of (Hecke) meromorphic modular forms for the given group and base ring

sage.modular.modform_hecketriangle.graded_ring.ModularFormsRing

Graded ring of (Hecke) modular forms for the given group and base ring

sage.modular.modform_hecketriangle.graded_ring.QuasiCuspFormsRing

Graded ring of (Hecke) quasi cusp forms for the given group and base ring.

sage.modular.modform_hecketriangle.graded_ring.QuasiMeromorphicModularFormsRing

Graded ring of (Hecke) quasi meromorphic modular forms for the given group and base ring.

sage.modular.modform_hecketriangle.graded_ring.QuasiModularFormsRing

Graded ring of (Hecke) quasi modular forms for the given group and base ring

sage.modular.modform_hecketriangle.graded_ring.QuasiWeakModularFormsRing

Graded ring of (Hecke) quasi weakly holomorphic modular forms for the given group and base ring.

sage.modular.modform_hecketriangle.graded_ring.WeakModularFormsRing

Graded ring of (Hecke) weakly holomorphic modular forms for the given group and base ring

sage.modular.modform_hecketriangle.graded_ring.canonical_parameters(group, base_ring, red_hom, n=None)

Return a canonical version of the parameters.

EXAMPLES:

sage: from sage.modular.modform_hecketriangle.graded_ring import canonical_parameters
sage: canonical_parameters(4, ZZ, 1)
(Hecke triangle group for n = 4, Integer Ring, True, 4)
sage: canonical_parameters(infinity, RR, 0)
(Hecke triangle group for n = +Infinity, Real Field with 53 bits of precision, False, +Infinity)