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Chapter 1

Introduction

CVODES [34] is part of a software family called SUNDIALS: SUite of Nonlinear and DIfferential/AL-
gebraic equation Solvers [20]. This suite consists of CVODE, ARKODE, KINSOL and IDA, and variants
of these with sensitivity analysis capabilities. CVODES is a solver for stiff and nonstiff initial value
problems (IVPs) for systems of ordinary differential equation (ODEs). In addition to solving stiff and
nonstiff ODE systems, CVODES has sensitivity analysis capabilities, using either the forward or the
adjoint methods.

1.1 Historical Background

FORTRAN solvers for ODE initial value problems are widespread and heavily used. Two solvers that
have been written at LLNL in the past are VODE [3] and VODPK [5]. VODE is a general purpose solver
that includes methods for both stiff and nonstiff systems, and in the stiff case uses direct methods
(full or banded) for the solution of the linear systems that arise at each implicit step. Externally,
VODE is very similar to the well known solver LSODE [30]. VODPK is a variant of VODE that uses
a preconditioned Krylov (iterative) method, namely GMRES, for the solution of the linear systems.
VODPK is a powerful tool for large stiff systems because it combines established methods for stiff
integration, nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment of
the dominant source of stiffness, in the form of the user-supplied preconditioner matrix [4]. The
capabilities of both VODE and VODPK have been combined in the C-language package CvODE [10].

At present, CVODE may utilize a variety of Krylov methods provided in SUNDIALS that can be used
in conjuction with Newton iteration: these include the GMRES (Generalized Minimal RESidual) [33],
FGMRES (Flexible Generalized Minimum RESidual) [32], Bi-CGStab (Bi-Conjugate Gradient Stabi-
lized) [36], TFQMR (Transpose-Free Quasi-Minimal Residual) [14], and PCG (Preconditioned Con-
jugate Gradient) [15] linear iterative methods. As Krylov methods, these require almost no matrix
storage for solving the Newton equations as compared to direct methods. However, the algorithms
allow for a user-supplied preconditioner matrix, and for most problems preconditioning is essential for
an efficient solution. For very large stiff ODE systems, the Krylov methods are preferable over direct
linear solver methods, and are often the only feasible choice. Among the Krylov methods in SUNDIALS,
we recommend GMRES as the best overall choice. However, users are encouraged to compare all op-
tions, especially if encountering convergence failures with GMRES. Bi-CGStab and TFQMR, have an
advantage in storage requirements, in that the number of workspace vectors they require is fixed, while
that number for GMRES depends on the desired Krylov subspace size. FGMRES has an advantage
in that it is designed to support preconditioners that vary between iterations (e.g. iterative methods).
PCG exhibits rapid convergence and minimal workspace vectors, but only works for symmetric linear
systems.

In the process of translating the VODE and VODPK algorithms into C, the overall CVODE organi-
zation has been changed considerably. One key feature of the CVODE organization is that the linear
system solvers comprise a layer of code modules that is separated from the integration algorithm,
allowing for easy modification and expansion of the linear solver array. A second key feature is a
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separate module devoted to vector operations; this facilitated the extension to multiprosessor envi-
ronments with minimal impacts on the rest of the solver, resulting in PVODE [7], the parallel variant
of CVODE.

CVODES is written with a functionality that is a superset of that of the pair CVODE/PVODE.
Sensitivity analysis capabilities, both forward and adjoint, have been added to the main integrator.
Enabling forward sensititivity computations in CVODES will result in the code integrating the so-
called sensitivity equations simultaneously with the original IVP, yielding both the solution and its
sensitivity with respect to parameters in the model. Adjoint sensitivity analysis, most useful when
the gradients of relatively few functionals of the solution with respect to many parameters are sought,
involves integration of the original IVP forward in time followed by the integration of the so-called
adjoint equations backward in time. CVODES provides the infrastructure needed to integrate any
final-condition ODE dependent on the solution of the original IVP (in particular the adjoint system).

Development of CVODES was concurrent with a redesign of the vector operations module across
the SUNDIALS suite. The key feature of the NVECTOR module is that it is written in terms of abstract
vector operations with the actual vector functions attached by a particular implementation (such as
serial or parallel) of NVECTOR. This allows writing the SUNDIALS solvers in a manner independent of
the actual NVECTOR implementation (which can be user-supplied), as well as allowing more than one
NVECTOR module to be linked into an executable file. SUNDIALS (and thus CVODES) is supplied with
serial, MPI-parallel, and both openMP and Pthreads thread-parallel NVECTOR implementations.

There were several motivations for choosing the C language for ¢VODE, and later for CVODES.
First, a general movement away from FORTRAN and toward C in scientific computing was apparent.
Second, the pointer, structure, and dynamic memory allocation features in C are extremely useful in
software of this complexity. Finally, we prefer C over C++ for CVODES because of the wider availability
of C compilers, the potentially greater efficiency of C, and the greater ease of interfacing the solver
to applications written in extended FORTRAN.

1.2 Changes from previous versions

Changes in v3.2.1
The changes in this minor release include the following:

e Fixed a bug in the CUDA NVECTOR where the N_VInvTest operation could write beyond the
allocated vector data.

e Fixed library installation path for multiarch systems. This fix changes the default library instal-
lation path to CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR from CMAKE_INSTALL_PREFIX/1ib.
CMAKE_INSTALL_LIBDIR is automatically set, but is available as a CMake option that can modi-
fied.

Changes in v3.2.0

Support for optional inequality constraints on individual components of the solution vector has been
added to cvODE and CVODES. See Chapter 2 and the description of CVodeSetConstraints in §4.5.6.1
for more details. Use of CVodeSetConstraints requires the NVECTOR operations N_MinQuotient,
N_VConstrMask, and N_VCompare that were not previously required by CVODE and CVODES.

Fixed a thread-safety issue when using ajdoint sensitivity analysis.

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. arm-
clang) that did not define __STDC_VERSION_..

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when
using a GPU system. The vectors assume one GPU device per MPI rank.
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Changed the name of the RAJA NVECTOR library to libsundials_nveccudaraja.lib from
libsundials nvecraja.lib to better reflect that we only support CUDA as a backend for RAJA cur-
rently.

Several changes were made to the build system:

CMake 3.1.3 is now the minimum required CMake version.

Deprecate the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the
SUNDIALS_INDEX_SIZE CMake option to select the sunindextype integer size.

The native CMake FindMPI module is now used to locate an MPI installation.

If MPI is enabled and MPI compiler wrappers are not set, the build system will check if
CMAKE <language> COMPILER can compile MPI programs before trying to locate and use an
MPI installation.

The previous options for setting MPI compiler wrappers and the executable for running MPI
programs have been have been depreated. The new options that align with those used in native
CMake FindMPI module are MPI_C_COMPILER, MPI_CXX_COMPILER, MPI _Fortran COMPILER, and
MPIEXEC_EXECUTABLE.

When a Fortran name-mangling scheme is needed (e.g., LAPACK_ENABLE is ON) the build system
will infer the scheme from the Fortran compiler. If a Fortran compiler is not available or the in-
ferred or default scheme needs to be overridden, the advanced options SUNDIALS_F77_FUNC_CASE
and SUNDIALS_F77 _FUNC_UNDERSCORES can be used to manually set the name-mangling scheme
and bypass trying to infer the scheme.

Parts of the main CMakeLists.txt file were moved to new files in the src and example directories
to make the CMake configuration file structure more modular.

Changes in v3.1.2

The changes in this minor release include the following:

Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default
to locate shared libraries on OSX.

Fixed Windows specific problem where sunindextype was not correctly defined when using
64-bit integers for the SUNDIALS index type. On Windows sunindextype is now defined as the
MSVC basic type __int64.

Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.

Updated the KLU SUNLinearSolver module to set constants for the two reinitialization types,
and fixed a bug in the full reinitialization approach where the sparse SUNMatrix pointer would
go out of scope on some architectures.

Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module
to more optimally handle the case where the target matrix contained sufficient storage for the
sum, but had the wrong sparsity pattern. The sum now occurs in-place, by performing the sum
backwards in the existing storage. However, it is still more efficient if the user-supplied Jacobian
routine allocates storage for the sum I 4+ vJ manually (with zero entries if needed).

Added new example, cvRoberts FSA dns Switch.c, which demonstrates switching on/off for-
ward sensitivity computations. This example came from the usage notes page of the SUNDIALS
website.
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e The misnamed function CVSpilsSetJacTimesSetupFnBS has been deprecated and replaced by
CVSpilsSetJacTimesBS. The deprecated function CVSpilsSetJacTimesSetupFnBS will be re-
moved in the next major release.

e Changed the LICENSE install path to instdir/include/sundials.

Changes in v3.1.1

The changes in this minor release include the following:

e Fixed a minor bug in the cvSLdet routine, where a return was missing in the error check for
three inconsistent roots.

e Fixed a potential memory leak in the SPGMR and SPFGMR linear solvers: if “Initialize” was
called multiple times then the solver memory was reallocated (without being freed).

e Updated KLU SUNLinearSolver module to use a typedef for the precision-specific solve function
to be used (to avoid compiler warnings).

e Added missing typecasts for some (void#*) pointers (again, to avoid compiler warnings).
e Bugfix in sunmatrix_sparse.c where we had used int instead of sunindextype in one location.
e Added missing #include <stdio.h> in NVECTOR and SUNMATRIX header files.

e Fixed an indexing bug in the CUDA NVECTOR implementation of N_VWrmsNormMask and revised
the RAJA NVECTOR implementation of N_VWrmsNormMask to work with mask arrays using values
other than zero or one. Replaced double with realtype in the RAJA vector test functions.

In addition to the changes above, minor corrections were also made to the example programs, build
system, and user documentation.

Changes in v3.1.0

Added NVECTOR print functions that write vector data to a specified file (e.g., N.VPrintFile_Serial).
Added make test and make test_install options to the build system for testing SUNDIALS after
building with make and installing with make install respectively.

Changes in v3.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs
have been updated. The goal of the redesign of these interfaces was to provide more encapsulation
and ease in interfacing custom linear solvers and interoperability with linear solver libraries. Specific
changes include:

e Added generic SUNMATRIX module with three provided implementations: dense, banded and
sparse. These replicate previous SUNDIALS Dls and Sls matrix structures in a single object-
oriented APIL.

e Added example problems demonstrating use of generic SUNMATRIX modules.

e Added generic SUNLINEARSOLVER module with eleven provided implementations: dense,
banded, LAPACK dense, LAPACK band, KLU, SuperLU_MT, SPGMR, SPBCGS, SPTFQMR,
SPFGMR, PCG. These replicate previous SUNDIALS generic linear solvers in a single object-
oriented API.

e Added example problems demonstrating use of generic SUNLINEARSOLVER modules.
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e Expanded package-provided direct linear solver (DIs) interfaces and scaled, preconditioned, iter-
ative linear solver (Spils) interfaces to utilize generic SUNMATRIX and SUNLINEARSOLVER
objects.

e Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND,
IDAKLU, ARKSPGMR) since their functionality is entirely replicated by the generic Dls/Spils
interfaces and SUNLINEARSOLVER/SUNMATRIX modules. The exception is CVDIAG, a
diagonal approximate Jacobian solver available to CVODE and CVODES.

e Converted all SUNDIALS example problems to utilize new generic SUNMATRIX and SUNLIN-
EARSOLVER objects, along with updated Dls and Spils linear solver interfaces.

e Added Spils interface routines to ARKode, CVODE, CVODES, IDA and IDAS to allow spec-
ification of a user-provided ”JTSetup” routine. This change supports users who wish to set
up data structures for the user-provided Jacobian-times-vector (”JTimes”) routine, and where
the cost of one JTSetup setup per Newton iteration can be amortized between multiple JTimes
calls.

Two additional NVECTOR implementations were added — one for CUDA and one for RAJA vectors.
These vectors are supplied to provide very basic support for running on GPU architectures. Users are
advised that these vectors both move all data to the GPU device upon construction, and speedup will
only be realized if the user also conducts the right-hand-side function evaluation on the device. In
addition, these vectors assume the problem fits on one GPU. Further information about RAJA, users
are referred to th web site, https://software.llnl.gov/RAJA/. These additions are accompanied by
additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to
be a 32- or 64-bit integer data index type. sunindextype is defined to be int32_t or int64_t when
portable types are supported, otherwise it is defined as int or long int. The Fortran interfaces
continue to use long int for indices, except for their sparse matrix interface that now uses the new
sunindextype. This new flexible capability for index types includes interfaces to PETSc, hypre,
SuperLU_MT, and KLU with either 32-bit or 64-bit capabilities depending how the user configures
SUNDIALS.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE
have been changed to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It
is assumed that all necessary data for user-provided preconditioner operations will be allocated and
stored in user-provided data structures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information
for use in Fortran programs.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get SUNDIALS release
version information at runtime.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is
a movement in scientific software to provide a foundation for the rapid and efficient production of
high-quality, sustainable extreme-scale scientific applications. More information can be found at,
https://xsdk.info.

In addition, numerous changes were made to the build system. These include the addition of
separate BLAS_ENABLE and BLAS_LIBRARIES CMake variables, additional error checking during CMake
configuration, minor bug fixes, and renaming CMake options to enable/disable examples for greater
clarity and an added option to enable/disable Fortran 77 examples. These changes included changing
EXAMPLES_ENABLE to EXAMPLES_ENABLE C, changing CXX_ENABLE to EXAMPLES ENABLE_CXX, changing
F90_ENABLE to EXAMPLES ENABLE F90, and adding an EXAMPLES ENABLE_F77 option.

A bug fix was made in CVodeFree to call 1free unconditionally (if non-NULL).

Corrections and additions were made to the examples, to installation-related files, and to the user
documentation.
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Changes in v2.9.0

Two additional NVECTOR implementations were added — one for Hypre (parallel) ParVector vectors,
and one for PETSc vectors. These additions are accompanied by additions to various interface functions
and to user documentation.

Each NVECTOR module now includes a function, N_VGetVectorID, that returns the NVECTOR
module name.

A bug was fixed in the interpolation functions used in solving backward problems for adjoint
sensitivity analysis.

For each linear solver, the various solver performance counters are now initialized to 0 in both the
solver specification function and in solver 1init function. This ensures that these solver counters are
initialized upon linear solver instantiation as well as at the beginning of the problem solution.

A memory leak was fixed in the banded preconditioner interface. In addition, updates were done
to return integers from linear solver and preconditioner ’free’ functions.

The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various
additions and corrections were made to the interfaces to the sparse solvers KLU and SuperLU_MT,
including support for CSR format when using KLU.

In interpolation routines for backward problems, added logic to bypass sensitivity interpolation if
input sensitivity argument is NULL.

New examples were added for use of sparse direct solvers within sensitivity integrations and for
use of openMP.

Minor corrections and additions were made to the CVODES solver, to the examples, to installation-
related files, and to the user documentation.

Changes in v2.8.0

Two major additions were made to the linear system solvers that are available for use with the CVODES
solver. First, in the serial case, an interface to the sparse direct solver KLU was added. Second, an
interface to SuperLU_MT, the multi-threaded version of SuperLU, was added as a thread-parallel
sparse direct solver option, to be used with the serial version of the NVECTOR module. As part of
these additions, a sparse matrix (CSC format) structure was added to CVODES.

Otherwise, only relatively minor modifications were made to the CVODES solver:

In cvRootfind, a minor bug was corrected, where the input array rootdir was ignored, and a line
was added to break out of root-search loop if the initial interval size is below the tolerance ttol.

In CVLapackBand, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml to correct an
illegal input error for DGBTRF/DGBTRS.

Some minor changes were made in order to minimize the differences between the sources for private
functions in CVODES and CVODE.

An option was added in the case of Adjoint Sensitivity Analysis with dense or banded Jacobian:
With a call to CVD1sSetDenseJacFnBS or CVD1sSetBandJacFnBS, the user can specify a user-supplied
Jacobian function of type CVDls***JacFnBS, for the case where the backward problem depends on
the forward sensitivities.

In CVodeQuadSensInit, the line cv.mem->cv_fQS_data = ... was corrected (missing Q).

In the User Guide, a paragraph was added in Section 6.2.1 on CVodeAdjReInit, and a paragraph
was added in Section 6.2.9 on CVodeGetAdjY. In the example cvsRoberts_ASAi_dns, the output was
revised to include the use of CVodeGetAdjY.

Two minor bugs were fixed regarding the testing of input on the first call to CVode — one involving
tstop and one involving the initialization of *tret.

For the Adjoint Sensitivity Analysis case in which the backward problem depends on the forward
sensitivities, options have been added to allow for user-supplied pset, psolve, and jtimes functions.

In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX,
SQR, RAbs, RSqrt, RExp, RPowerI, and RPowerR were changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs,
SUNRsqrt, SUNRexp, SRpowerI, and SUNRpowerR, respectively. These names occur in both the solver
and example programs.
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In the example cvsHessian ASA_FSA, an error was corrected in the function £B2: y2 in place of
y3 in the third term of Ith(yBdot,6).

Two new NVECTOR modules have been added for thread-parallel computing environments — one
for openMP, denoted NVECTOR_OPENMP, and one for Pthreads, denoted NVECTOR_PTHREADS.

With this version of SUNDIALS, support and documentation of the Autotools mode of installation
is being dropped, in favor of the CMake mode, which is considered more widely portable.

Changes in v2.7.0

One significant design change was made with this release: The problem size and its relatives, band-
width parameters, related internal indices, pivot arrays, and the optional output lsflag have all
been changed from type int to type long int, except for the problem size and bandwidths in user
calls to routines specifying BLAS/LAPACK routines for the dense/band linear solvers. The function
NewIntArray is replaced by a pair NewIntArray/NewLintArray, for int and long int arrays, respec-
tively. In a minor change to the user interface, the type of the index which in CVODES was changed
from long int to int.

Errors in the logic for the integration of backward problems were identified and fixed.

A large number of minor errors have been fixed. Among these are the following: In CVSetTqBDF,
the logic was changed to avoid a divide by zero. After the solver memory is created, it is set to zero
before being filled. In each linear solver interface function, the linear solver memory is freed on an error
return, and the **Free function now includes a line setting to NULL the main memory pointer to the
linear solver memory. In the rootfinding functions CVRcheck1/CVRcheck2, when an exact zero is found,
the array glo of g values at the left endpoint is adjusted, instead of shifting the ¢ location tlo slightly.
In the installation files, we modified the treatment of the macro SUNDIALS USE_GENERIC_MATH,
so that the parameter GENERIC_MATH_LIB is either defined (with no value) or not defined.

Changes in v2.6.0

Two new features related to the integration of ODE IVP problems were added in this release: (a) a
new linear solver module, based on Blas and Lapack for both dense and banded matrices, and (b) an
option to specify which direction of zero-crossing is to be monitored while performing rootfinding.

This version also includes several new features related to sensitivity analysis, among which are: (a)
support for integration of quadrature equations depending on both the states and forward sensitivity
(and thus support for forward sensitivity analysis of quadrature equations), (b) support for simulta-
neous integration of multiple backward problems based on the same underlying ODE (e.g., for use in
an forward-over-adjoint method for computing second order derivative information), (c) support for
backward integration of ODEs and quadratures depending on both forward states and sensitivities
(e.g., for use in computing second-order derivative information), and (d) support for reinitialization
of the adjoint module.

The user interface has been further refined. Some of the API changes involve: (a) a reorganization
of all linear solver modules into two families (besides the existing family of scaled preconditioned
iterative linear solvers, the direct solvers, including the new Lapack-based ones, were also organized
into a direct family); (b) maintaining a single pointer to user data, optionally specified through a
Set-type function; and (c) a general streamlining of the preconditioner modules distributed with the
solver. Moreover, the prototypes of all functions related to integration of backward problems were
modified to support the simultaneous integration of multiple problems. All backward problems defined
by the user are internally managed through a linked list and identified in the user interface through
a unique identifier.

Changes in v2.5.0

The main changes in this release involve a rearrangement of the entire SUNDIALS source tree (see §3.1).
At the user interface level, the main impact is in the mechanism of including SUNDIALS header files
which must now include the relative path (e.g. #include <cvode/cvode.h>). Additional changes
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were made to the build system: all exported header files are now installed in separate subdirectories
of the instaltion include directory.

In the adjoint solver module, the following two bugs were fixed: in CVodeF the solver was sometimes
incorrectly taking an additional step before returning control to the user (in CV_NORMAL mode) thus
leading to a failure in the interpolated output function; in CVodeB, while searching for the current check
point, the solver was sometimes reaching outside the integration interval resulting in a segmentation
fault.

The functions in the generic dense linear solver (sundials _dense and sundials_smalldense) were
modified to work for rectangular m xn matrices (m < n), while the factorization and solution functions
were renamed to DenseGETRF/denGETRF and DenseGETRS/denGETRS, respectively. The factorization
and solution functions in the generic band linear solver were renamed BandGBTRF and BandGBTRS,
respectively.

Changes in v2.4.0

cvsPBCG and CVSPTFQMR modules have been added to interface with the Scaled Preconditioned
Bi-CGstab (spBcGs) and Scaled Preconditioned Transpose-Free Quasi-Minimal Residual (SPTFQMR)
linear solver modules, respectively (for details see Chapter 4). At the same time, function type names
for Scaled Preconditioned Iterative Linear Solvers were added for the user-supplied Jacobian-times-
vector and preconditioner setup and solve functions.

A new interpolation method was added to the CVODES adjoint module. The function CVadjMalloc
has an additional argument which can be used to select the desired interpolation scheme.

The deallocation functions now take as arguments the address of the respective memory block
pointer.

To reduce the possibility of conflicts, the names of all header files have been changed by adding
unique prefixes (cvodes_ and sundials_). When using the default installation procedure, the header
files are exported under various subdirectories of the target include directory. For more details see
Appendix A.

Changes in v2.3.0

A minor bug was fixed in the interpolation functions of the adjoint CVODES module.

Changes in v2.2.0

The user interface has been further refined. Several functions used for setting optional inputs were
combined into a single one. An optional user-supplied routine for setting the error weight vector was
added. Additionally, to resolve potential variable scope issues, all SUNDIALS solvers release user
data right after its use. The build systems has been further improved to make it more robust.

Changes in v2.1.2

A bug was fixed in the CVode function that was potentially leading to erroneous behaviour of the
rootfinding procedure on the integration first step.

Changes in v2.1.1

This ¢vODES release includes bug fixes related to forward sensitivity computations (possible loss of
accuray on a BDF order increase and incorrect logic in testing user-supplied absolute tolerances). In
addition, we have added the option of activating and deactivating forward sensitivity calculations on
successive CVODES runs without memory allocation/deallocation.

Other changes in this minor SUNDIALS release affect the build system.
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Changes in v2.1.0

The major changes from the previous version involve a redesign of the user interface across the entire
SUNDIALS suite. We have eliminated the mechanism of providing optional inputs and extracting
optional statistics from the solver through the iopt and ropt arrays. Instead, CVODES now provides
a set of routines (with prefix CVodeSet) to change the default values for various quantities controlling
the solver and a set of extraction routines (with prefix CVodeGet) to extract statistics after return
from the main solver routine. Similarly, each linear solver module provides its own set of Set- and
Get-type routines. For more details see §4.5.6 and §4.5.8.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobians,
preconditioner information, and sensitivity right hand sides) were simplified by reducing the number
of arguments. The same information that was previously accessible through such arguments can now
be obtained through Get-type functions.

The rootfinding feature was added, whereby the roots of a set of given functions may be computed
during the integration of the ODE system.

Installation of CVODES (and all of SUNDIALS) has been completely redesigned and is now based on
configure scripts.

1.3 Reading this User Guide

This user guide is a combination of general usage instructions. Specific example programs are provided
as a separate document. We expect that some readers will want to concentrate on the general instruc-
tions, while others will refer mostly to the examples, and the organization is intended to accommodate
both styles.

There are different possible levels of usage of cVODES. The most casual user, with a small IVP
problem only, can get by with reading §2.1, then Chapter 4 through §4.5.5 only, and looking at
examples in [35]. In addition, to solve a forward sensitivity problem the user should read §2.6,
followed by Chapter 5 through §5.2.4 only, and look at examples in [35].

In a different direction, a more expert user with an IVP problem may want to (a) use a package
preconditioner (§4.8), (b) supply his/her own Jacobian or preconditioner routines (§4.6), (c¢) do multi-
ple runs of problems of the same size (§4.5.9), (d) supply a new NVECTOR module (Chapter 7), or even
(e) supply new SUNLINSOL and/or SUNMATRIX modules (Chapters 8 and 9). An advanced user with a
forward sensitivity problem may also want to (a) provide his/her own sensitivity equations right-hand
side routine (§5.3), (b) perform multiple runs with the same number of sensitivity parameters (§5.2.1),
or (c) extract additional diagnostic information (§5.2.4). A user with an adjoint sensitivity problem
needs to understand the IVP solution approach at the desired level and also go through §2.7 for a
short mathematical description of the adjoint approach, Chapter 6 for the usage of the adjoint module
in CVODES, and the examples in [35].

The structure of this document is as follows:

e In Chapter 2, we give short descriptions of the numerical methods implemented by ¢VODES for
the solution of initial value problems for systems of ODEs, continue with short descriptions of
preconditioning (§2.2), stability limit detection (§2.3), and rootfinding (§2.4), and conclude with
an overview of the mathematical aspects of sensitivity analysis, both forward (§2.6) and adjoint

(52.7).

e The following chapter describes the structure of the SUNDIALS suite of solvers (§3.1) and the
software organization of the CVODES solver (§3.2).

e Chapter 4 is the main usage document for CVODES for simulation applications. It includes a
complete description of the user interface for the integration of ODE initial value problems.
Readers that are not interested in using CVODES for sensitivity analysis can then skip the next
two chapters.

e Chapter 5 describes the usage of CVODES for forward sensitivity analysis as an extension of its
IVP integration capabilities. We begin with a skeleton of the user main program, with emphasis
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on the steps that are required in addition to those already described in Chapter 4. Following
that we provide detailed descriptions of the user-callable interface routines specific to forward
sensitivity analysis and of the additonal optional user-defined routines.

e Chapter 6 describes the usage of CVODES for adjoint sensitivity analysis. We begin by describing
the CVODES checkpointing implementation for interpolation of the original IVP solution during
integration of the adjoint system backward in time, and with an overview of a user’s main
program. Following that we provide complete descriptions of the user-callable interface routines
for adjoint sensitivity analysis as well as descriptions of the required additional user-defined
routines.

e Chapter 7 gives a brief overview of the generic NVECTOR module shared among the various
components of SUNDIALS, and details on the NVECTOR implementations provided with SUNDIALS.

e Chapter 8 gives a brief overview of the generic SUNMATRIX module shared among the vari-
ous components of SUNDIALS, and details on the SUNMATRIX implementations provided with
SUNDIALS: a dense implementation (§8.1), a banded implementation (§8.2) and a sparse imple-
mentation (§8.3).

e Chapter 9 gives a brief overview of the generic SUNLINSOL module shared among the various
components of SUNDIALS. This chapter contains details on the SUNLINSOL implementations
provided with SUNDIALS. The chapter also contains details on the SUNLINSOL implementations
provided with SUNDIALS that interface with external linear solver libraries.

e Finally, in the appendices, we provide detailed instructions for the installation of CVODES, within
the structure of SUNDIALS (Appendix A), as well as a list of all the constants used for input to
and output from CVODES functions (Appendix B).

Finally, the reader should be aware of the following notational conventions in this user guide:
program listings and identifiers (such as CVodeInit) within textual explanations appear in typewriter
type style; fields in C structures (such as content) appear in italics; and packages or modules, such
as CVDLS, are written in all capitals. Usage and installation instructions that constitute important
warnings are marked with a triangular symbol in the margin.

1.4 SUNDIALS Release License

The SUNDIALS packages are released open source, under a BSD license. The only requirements of
the BSD license are preservation of copyright and a standard disclaimer of liability. Our Copyright
notice is below along with the license.

**PLEASE NOTE** If you are using SUNDIALS with any third party libraries linked in (e.g.,
LaPACK, KLU, SuperLU_MT, PETSc, or hypre), be sure to review the respective license of the package
as that license may have more restrictive terms than the SUNDIALS license. For example, if someone
builds SUNDIALS with a statically linked KLU, the build is subject to terms of the LGPL license
(which is what KLU is released with) and *not* the SUNDIALS BSD license anymore.

1.4.1 Copyright Notices
All SUNDIALS packages except ARKode are subject to the following Copyright notice.

1.4.1.1 SUNDIALS Copyright

Copyright (¢) 2002-2016, Lawrence Livermore National Security. Produced at the Lawrence Livermore
National Laboratory. Written by A.C. Hindmarsh, D.R. Reynolds, R. Serban, C.S. Woodward, S.D.
Cohen, A.G. Taylor, S. Peles, L.E. Banks, and D. Shumaker.

UCRL-CODE-155951 (CVODE)

UCRL-CODE-155950 (CVODES)
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UCRL-CODE-155952 (IDA)
UCRL-CODE-237203 (IDAS)
LLNL-CODE-665877 (KINSOL)
All rights reserved.

1.4.1.2 ARKode Copyright

ARKode is subject to the following joint Copyright notice. Copyright (¢) 2015-2016, Southern
Methodist University and Lawrence Livermore National Security Written by D.R. Reynolds, D.J.
Gardner, A.C. Hindmarsh, C.S. Woodward, and J.M. Sexton.

LLNL-CODE-667205 (ARKODE)

All rights reserved.

1.4.2 BSD License

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the disclaimer below.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the disclaimer (as noted below) in the documentation and/or other materials provided with the
distribution.

3. Neither the name of the LLNS/LLNL nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LAWRENCE LIVERMORE NA-
TIONAL SECURITY, LLC, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CON-
SEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS IN-
TERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Additional BSD Notice

1. This notice is required to be provided under our contract with the U.S. Department of Energy
(DOE). This work was produced at Lawrence Livermore National Laboratory under Contract
No. DE-AC52-07TNA27344 with the DOE.

2. Neither the United States Government nor Lawrence Livermore National Security, LLC nor any
of their employees, makes any warranty, express or implied, or assumes any liability or respon-
sibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately-owned rights.

3. Also, reference herein to any specific commercial products, process, or services by trade name,
trademark, manufacturer or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or Lawrence Livermore National
Security, LLC. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or Lawrence Livermore National Security, LLC,
and shall not be used for advertising or product endorsement purposes.






Chapter 2

Mathematical Considerations

CVODES solves ODE initial value problems (IVPs) in real N-space, which we write in the abstract
form

Y= f(t’y) ) y(t()) =Yo, (21)

where y € RY. Here we use § to denote dy/dt. While we use t to denote the independent variable,
and usually this is time, it certainly need not be. CVODES solves both stiff and non-stiff systems.
Roughly speaking, stiffness is characterized by the presence of at least one rapidly damped mode,
whose time constant is small compared to the time scale of the solution itself.

Additionally, if (2.1) depends on some parameters p € R™7_ i.e.

y=f(t, v, p)

y(to) = (), (22)

CVODES can also compute first order derivative information, performing either forward sensitivity
analysis or adjoint sensitivity analysis. In the first case, CVODES computes the sensitivities of the
solution with respect to the parameters p, while in the second case, CVODES computes the gradient of
a derived function with respect to the parameters p.

2.1 1IVP solution

The methods used in CVODES are variable-order, variable-step multistep methods, based on formulas
of the form

Kl K2
>y Y B =0, (2.3)
1=0 =0

Here the y™ are computed approximations to y(¢,), and h, = t, — t,—1 is the step size. The user
of CVODE must choose appropriately one of two multistep methods. For nonstiff problems, CVODE
includes the Adams-Moulton formulas, characterized by K; = 1 and Ky = q above, where the order ¢
varies between 1 and 12. For stiff problems, CVODES includes the Backward Differentiation Formulas
(BDF) in so-called fixed-leading coefficient (FLC) form, given by K; = ¢ and K5 = 0, with order ¢
varying between 1 and 5. The coefficients are uniquely determined by the method type, its order, the

recent history of the step sizes, and the normalization a,, o = —1. See [6] and [25].
For either choice of formula, the nonlinear system
G(yn) =y" - hnﬁn,(]f(tna yn) —ap =0, (24)

where a,, = Zi>0(an7iy”_i + hnBn,iy" "), must be solved (approximately) at each integration step.
For this, cVODES offers the choice of either functional iteration, suitable only for nonstiff systems, and
various versions of Newton iteration. Functional iteration, given by

y" ) = b B 0 f (tn, ™) + ay
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involves evaluations of f only. In contrast, Newton iteration requires the solution of linear systems

Myt —ytm)] — —G(yn ™), (2.5)
in which
M~I—-~J, J=0f/0y, and 7 =h,bno. (2.6)
n(0)

The initial guess for the iteration is a predicted value y
history data.

For the solution of the linear systems within the Newton corrections, CVODES provides several
choices, including the option of an user-supplied linear solver module. The linear solver modules
distributed with SUNDIALS are organized in two families, a direct family comprising direct linear
solvers for dense, banded or sparse matrices, and a spils family comprising scaled preconditioned
iterative (Krylov) linear solvers. The methods offered through these modules are as follows:

computed explicitly from the available

e dense direct solvers, using either an internal implementation or a Blas/Lapack implementation
(serial or threaded vector modules only),

e band direct solvers, using either an internal implementation or a Blas/Lapack implementation
(serial or threaded vector modules only),

e sparse direct solver interfaces, using either the KLU sparse solver library [11, 1], or the thread-
enabled SuperLU_MT sparse solver library [27, 12, 2] (serial or threaded vector modules only)
[Note that users will need to download and install the KLU or SUPERLUMT packages independent
of CVODES],

e SPGMR, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver,

e SPFGMR, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method)
solver,

e SPBCGS, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver,

e SPTFQMR, a scaled preconditioned TFQMR, (Transpose-Free Quasi-Minimal Residual method)
solver, or

e PCG, a scaled preconditioned CG (Conjugate Gradient method) solver.

For large stiff systems, where direct methods are not feasible, the combination of a BDF integrator and
a preconditioned Krylov method yields a powerful tool because it combines established methods for
stiff integration, nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment
of the dominant source of stiffness, in the form of the user-supplied preconditioner matrix [4].

In addition, CVODE also provides a linear solver module which only uses a diagonal approximation
of the Jacobian matrix.

Note that the dense, band and sparse direct linear solvers can only be used with the serial and
threaded vector representations. The diagonal solver can be used with any vector representation.

In the process of controlling errors at various levels, CVODES uses a weighted root-mean-square
norm, denoted | - ||wrwms, for all error-like quantities. The multiplicative weights used are based on
the current solution and on the relative and absolute tolerances input by the user, namely

W; = 1/[RTOL - |y;| + ATOL,] . (2.7)

Because 1/W; represents a tolerance in the component y;, a vector whose norm is 1 is regarded as
“small.” For brevity, we will usually drop the subscript WRMS on norms in what follows.

In the cases of a direct solver (dense, band, sparse, or diagonal), the iteration is a Modified Newton
iteration, in that the iteration matrix M is fixed throughout the nonlinear iterations. However, for
any of the Krylov methods, it is an Inexact Newton iteration, in which M is applied in a matrix-free
manner, with matrix-vector products Jv obtained by either difference quotients or a user-supplied
routine. The matrix M (direct cases) or preconditioner matrix P (Krylov cases) is updated as infre-
quently as possible to balance the high costs of matrix operations against other costs. Specifically,
this matrix update occurs when:
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starting the problem,

more than 20 steps have been taken since the last update,

the value 4 of v at the last update satisfies |y/5 — 1| > 0.3,

a non-fatal convergence failure just occurred, or
e an error test failure just occurred.

When forced by a convergence failure, an update of M or P may or may not involve a reevaluation
of J (in M) or of Jacobian data (in P), depending on whether Jacobian error was the likely cause of
the failure. More generally, the decision is made to reevaluate J (or instruct the user to reevaluate
Jacobian data in P) when:

e starting the problem,
e more than 50 steps have been taken since the last evaluation,

e a convergence failure occurred with an outdated matrix, and the value % of v at the last update
satisfies |y/7 — 1| < 0.2, or

e a convergence failure occurred that forced a step size reduction.

The stopping test for the Newton iteration is related to the subsequent local error test, with the
goal of keeping the nonlinear iteration errors from interfering with local error control. As described
below, the final computed value (™) will have to satisfy a local error test [|y™(™) —y™(9)|| < e. Letting
y™ denote the exact solution of (2.4), we want to ensure that the iteration error y" — y™(™) is small
relative to €, specifically that it is less than 0.1e. (The safety factor 0.1 can be changed by the user.)
For this, we also estimate the linear convergence rate constant R as follows. We initialize R to 1, and
reset R =1 when M or P is updated. After computing a correction 6,, = y™(™ —y™("m=1 we update
Rifm>1as

R + max{0.3R, [|6m]/||6m-1]} -

Now we use the estimate
ly™ =y ™| & gD — g & Ry — gD | = RSl -
Therefore the convergence (stopping) test is
R|[6,|| < 0.1€.

We allow at most 3 iterations (but this limit can be changed by the user). We also declare the iteration
diverged if any ||0,,]|/]|0m—1]| > 2 with m > 1. If convergence fails with J or P current, we are forced
to reduce the step size, and we replace h,, by h, /4. The integration is halted after a preset number
of convergence failures; the default value of this limit is 10, but this can be changed by the user.

When a Krylov method is used to solve the linear system, its errors must also be controlled, and
this also involves the local error test constant. The linear iteration error in the solution vector 6,, is
approximated by the preconditioned residual vector. Thus to ensure (or attempt to ensure) that the
linear iteration errors do not interfere with the nonlinear error and local integration error controls, we
require that the norm of the preconditioned residual be less than 0.05 - (0.1¢€).

With the direct dense and band methods, the Jacobian may be supplied by a user routine, or
approximated by difference quotients, at the user’s option. In the latter case, we use the usual
approximation

Jij = [filt,y + o5e5) — fi(t,y)]/o; -

The increments o; are given by

o; = max{\m |yj|,ao/Wj} ,
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where U is the unit roundoff, oy is a dimensionless value, and W is the error weight defined in (2.7).
In the dense case, this scheme requires N evaluations of f, one for each column of J. In the band case,
the columns of J are computed in groups, by the Curtis-Powell-Reid algorithm, with the number of
f evaluations equal to the bandwidth.

We note that with the sparse direct solvers, the Jacobian must be supplied by a user routine.

In the case of a Krylov method, preconditioning may be used on the left, on the right, or both,
with user-supplied routines for the preconditioning setup and solve operations, and optionally also
for the required matrix-vector products Jv. If a routine for Jv is not supplied, these products are
computed as

Ju=[f(t,y+ov) — f(t,y)]/o. (2.8)

The increment o is 1/||v||, so that ov has norm 1.

A critical part of CVODES — making it an ODE “solver” rather than just an ODE method, is its
control of local error. At every step, the local error is estimated and required to satisfy tolerance
conditions, and the step is redone with reduced step size whenever that error test fails. As with
any linear multistep method, the local truncation error LTE, at order g and step size h, satisfies an
asymptotic relation

LTE = Chq-l-ly(q-i-l) + O(hq+2)

for some constant C', under mild assumptions on the step sizes. A similar relation holds for the error
in the predictor y™(9). These are combined to get a relation

LTE = C'[y" — y" O] + O(h1+?).

The local error test is simply ||LTE|| < 1. Using the above, it is performed on the predictor-corrector
difference A,, = y™™) — ™) (with y™(™) the final iterate computed), and takes the form

1Al < e=1/]C7].

If this test passes, the step is considered successful. If it fails, the step is rejected and a new step size
h' is computed based on the asymptotic behavior of the local error, namely by the equation

(B /h)T [ Al = €/6.

Here 1/6 is a safety factor. A new attempt at the step is made, and the error test repeated. If it fails
three times, the order ¢ is reset to 1 (if ¢ > 1), or the step is restarted from scratch (if ¢ = 1). The
ratio h’/h is limited above to 0.2 after two error test failures, and limited below to 0.1 after three.
After seven failures, CVODES returns to the user with a give-up message.

In addition to adjusting the step size to meet the local error test, CVODE periodically adjusts the
order, with the goal of maximizing the step size. The integration starts out at order 1 and varies the
order dynamically after that. The basic idea is to pick the order ¢ for which a polynomial of order ¢
best fits the discrete data involved in the multistep method. However, if either a convergence failure
or an error test failure occurred on the step just completed, no change in step size or order is done.
At the current order ¢, selecting a new step size is done exactly as when the error test fails, giving a
tentative step size ratio

W Jh = (/6] Anll)/ D) = .

We consider changing order only after taking ¢+ 1 steps at order ¢, and then we consider only orders
¢ =q—1(@Gfg>1)orq¢ =qg+1 (if ¢ < 5). The local truncation error at order ¢’ is estimated using
the history data. Then a tentative step size ratio is computed on the basis that this error, LTE(q’),
behaves asymptotically as R+ With safety factors of 1/6 and 1/10 respectively, these ratios are:

W' /h = [1/6]LTE(g — 1)|]V/* = 13-,

and
K [h = [1/10|[LTE(q + D[]/ = g4y .
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The new order and step size are then set according to

n= ma‘X{nq—la 7]q777q+1} B} h/ = nh7

with ¢’ set to the index achieving the above maximum. However, if we find that n < 1.5, we do not
bother with the change. Also, h'/h is always limited to 10, except on the first step, when it is limited
to 10%.

The various algorithmic features of CVODES described above, as inherited from VODE and VODPK,
are documented in [3, 5, 19]. They are also summarized in [20].

CVODES permits the user to impose optional inequality constraints on individual components of
the solution vector y. Any of the following four constraints can be imposed: y; > 0, y; < 0, y; > 0,
or y; < 0. The constraint satisfaction is tested after a successful nonlinear system solution. If any
constraint fails, we declare a convergence failure of the Newton iteration and reduce the step size.
Rather than cutting the step size by some arbitrary factor, CVODES estimates a new step size h’ using
a linear approximation ofthe components in y that failed the constraint test (including a afety factor
of 0.9 to cover the strict inequality case).

Normally, CVODES takes steps until a user-defined output value t = t,y is overtaken, and then
it computes y(tout) by interpolation. However, a “one step” mode option is available, where control
returns to the calling program after each step. There are also options to force CVODES not to integrate
past a given stopping point ¢ = tstop-

2.2 Preconditioning

When using a Newton method to solve the nonlinear system (2.4), CVODES makes repeated use
of a linear solver to solve linear systems of the form Mz = —r, where z is a correction vector
and r is a residual vector. If this linear system solve is done with one of the scaled preconditioned
iterative linear solvers, these solvers are rarely successful if used without preconditioning; it is generally
necessary to precondition the system in order to obtain acceptable efficiency. A system Ax = b can be
preconditioned on the left, as (P~!A)z = P~'b; on the right, as (AP~1)Px = b; or on both sides, as
(PglAP}gl)PRm = Pglb. The Krylov method is then applied to a system with the matrix P~ A, or
AP~ or Py 1APIQ ! instead of A. In order to improve the convergence of the Krylov iteration, the
preconditioner matrix P, or the product Py Pr in the last case, should in some sense approximate the
system matrix A. Yet at the same time, in order to be cost-effective, the matrix P, or matrices P, and
Pr, should be reasonably efficient to evaluate and solve. Finding a good point in this tradeoff between
rapid convergence and low cost can be very difficult. Good choices are often problem-dependent (for
example, see [4] for an extensive study of preconditioners for reaction-transport systems).

Most of the iterative linear solvers supplied with SUNDIALS allow for preconditioning either side,
or on both sides, although we know of no situation where preconditioning on both sides is clearly
superior to preconditioning on one side only (with the product P Pgr). Moreover, for a given precon-
ditioner matrix, the merits of left vs. right preconditioning are unclear in general, and the user should
experiment with both choices. Performance will differ because the inverse of the left preconditioner is
included in the linear system residual whose norm is being tested in the Krylov algorithm. As a rule,
however, if the preconditioner is the product of two matrices, we recommend that preconditioning be
done either on the left only or the right only, rather than using one factor on each side.

Typical preconditioners used with CVODES are based on approximations to the system Jacobian,
J = 0f/dy. Since the Newton iteration matrix involved is M = I — ~.J, any approximation J to
J yields a matrix that is of potential use as a preconditioner, namely P = I — ~.J. Because the
Krylov iteration occurs within a Newton iteration and further also within a time integration, and
since each of these iterations has its own test for convergence, the preconditioner may use a very
crude approximation, as long as it captures the dominant numerical feature(s) of the system. We
have found that the combination of a preconditioner with the Newton-Krylov iteration, using even
a fairly poor approximation to the Jacobian, can be surprisingly superior to using the same matrix
without Krylov acceleration (i.e., a modified Newton iteration), as well as to using the Newton-Krylov
method with no preconditioning.
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2.3 BDF stability limit detection

CVODES includes an algorithm, STALD (STAbility Limit Detection), which provides protection against
potentially unstable behavior of the BDF multistep integration methods in certain situations, as
described below.

When the BDF option is selected, CVODES uses Backward Differentiation Formula methods of
orders 1 to 5. At order 1 or 2, the BDF method is A-stable, meaning that for any complex constant
A in the open left half-plane, the method is unconditionally stable (for any step size) for the standard
scalar model problem y = Ay. For an ODE system, this means that, roughly speaking, as long as all
modes in the system are stable, the method is also stable for any choice of step size, at least in the
sense of a local linear stability analysis.

At orders 3 to 5, the BDF methods are not A-stable, although they are stiffly stable. In each case,
in order for the method to be stable at step size h on the scalar model problem, the product hAA must
lie within a region of absolute stability. That region excludes a portion of the left half-plane that is
concentrated near the imaginary axis. The size of that region of instability grows as the order increases
from 3 to 5. What this means is that, when running BDF at any of these orders, if an eigenvalue A of
the system lies close enough to the imaginary axis, the step sizes h for which the method is stable are
limited (at least according to the linear stability theory) to a set that prevents h\ from leaving the
stability region. The meaning of close enough depends on the order. At order 3, the unstable region
is much narrower than at order 5, so the potential for unstable behavior grows with order.

System eigenvalues that are likely to run into this instability are ones that correspond to weakly
damped oscillations. A pure undamped oscillation corresponds to an eigenvalue on the imaginary axis.
Problems with modes of that kind call for different considerations, since the oscillation generally must
be followed by the solver, and this requires step sizes (h ~ 1/v, where v is the frequency) that are
stable for BDF anyway. But for a weakly damped oscillatory mode, the oscillation in the solution is
eventually damped to the noise level, and at that time it is important that the solver not be restricted
to step sizes on the order of 1/v. It is in this situation that the new option may be of great value.

In terms of partial differential equations, the typical problems for which the stability limit detection
option is appropriate are ODE systems resulting from semi-discretized PDEs (i.e., PDEs discretized
in space) with advection and diffusion, but with advection dominating over diffusion. Diffusion alone
produces pure decay modes, while advection tends to produce undamped oscillatory modes. A mix of
the two with advection dominant will have weakly damped oscillatory modes.

The STALD algorithm attempts to detect, in a direct manner, the presence of a stability region
boundary that is limiting the step sizes in the presence of a weakly damped oscillation [17]. The
algorithm supplements (but differs greatly from) the existing algorithms in CVODES for choosing step
size and order based on estimated local truncation errors. The STALD algorithm works directly with
history data that is readily available in cvODES. If it concludes that the step size is in fact stability-
limited, it dictates a reduction in the method order, regardless of the outcome of the error-based
algorithm. The STALD algorithm has been tested in combination with the VODE solver on linear
advection-dominated advection-diffusion problems [18], where it works well. The implementation in
CVODES has been successfully tested on linear and nonlinear advection-diffusion problems, among
others.

This stability limit detection option adds some computational overhead to the CVODES solution.
(In timing tests, these overhead costs have ranged from 2% to 7% of the total, depending on the size
and complexity of the problem, with lower relative costs for larger problems.) Therefore, it should
be activated only when there is reasonable expectation of modes in the user’s system for which it
is appropriate. In particular, if a CVODE solution with this option turned off appears to take an
inordinately large number of steps at orders 3-5 for no apparent reason in terms of the solution time
scale, then there is a good chance that step sizes are being limited by stability, and that turning on
the option will improve the efficiency of the solution.
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2.4 Rootfinding

The CcVODES solver has been augmented to include a rootfinding feature. This means that, while
integrating the Initial Value Problem (2.1), CVODES can also find the roots of a set of user-defined
functions g¢;(¢,y) that depend both on ¢ and on the solution vector y = y(¢). The number of these root
functions is arbitrary, and if more than one g; is found to have a root in any given interval, the various
root locations are found and reported in the order that they occur on the ¢ axis, in the direction of
integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes
in sign of g;(t,y(t)), denoted g;(t) for short. If a user root function has a root of even multiplicity
(no sign change), it will probably be missed by CVODES. If such a root is desired, the user should
reformulate the root function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any g;(t) over each time step taken, and
then (when a sign change is found) to hone in on the root(s) with a modified secant method [16]. In
addition, each time g is computed, CVODES checks to see if g;(t) = 0 exactly, and if so it reports this
as a root. However, if an exact zero of any g; is found at a point ¢, CVODES computes g at ¢t + ¢ for a
small increment §, slightly further in the direction of integration, and if any g;(t+0) = 0 also, CVODES
stops and reports an error. This way, each time CVODES takes a time step, it is guaranteed that the
values of all g; are nonzero at some past value of ¢, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has
been done, CVODES has an interval (., ;] in which roots of the g;(t) are to be sought, such that
tp; is further ahead in the direction of integration, and all g;(¢;,) # 0. The endpoint t; is either ¢,
the end of the time step last taken, or the next requested output time tqy if this comes sooner. The
endpoint t;, is either ¢,,_1, the last output time t,,¢ (if this occurred within the last step), or the last
root location (if a root was just located within this step), possibly adjusted slightly toward ¢, if an
exact zero was found. The algorithm checks g; at tp; for zeros and for sign changes in (¢;,,tp;). If
no sign changes were found, then either a root is reported (if some g;(t5;) = 0) or we proceed to the
next time interval (starting at ¢y;). If one or more sign changes were found, then a loop is entered to
locate the root to within a rather tight tolerance, given by

T =100%U * (|t,| + |h]) (U = unit roundoff) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have
its root occur first is the one with the largest value of |g;(th:)|/|gi(thi) — gi(t10)|, corresponding to the
closest to t;, of the secant method values. At each pass through the loop, a new value t,,;4 is set,
strictly within the search interval, and the values of g;(¢miq) are checked. Then either ¢, or tp; is
reset to t,,;q according to which subinterval is found to include the sign change. If there is none in
(tio, tmiqa) but some g;(tmiq) = 0, then that root is reported. The loop continues until |¢tp; — 10| < T,
and then the reported root location is tp;.

In the loop to locate the root of g;(t), the formula for ¢,,;q4 is

tmid = thi — (thi — t10)9i(thi)/[9i(thi) — agi(tio)]

where « is a weight parameter. On the first two passes through the loop, « is set to 1, making ¢,,iq
the secant method value. Thereafter, « is reset according to the side of the subinterval (low vs. high,
i.e., toward t;, vs. toward tp;) in which the sign change was found in the previous two passes. If
the two sides were opposite, « is set to 1. If the two sides were the same, « is halved (if on the low
side) or doubled (if on the high side). The value of t,,;q is closer to t;, when « < 1 and closer to tp;
when « > 1. If the above value of t,,;4 is within 7/2 of #;, or tz;, it is adjusted inward, such that its
fractional distance from the endpoint (relative to the interval size) is between .1 and .5 (.5 being the
midpoint), and the actual distance from the endpoint is at least 7/2.
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2.5 Pure quadrature integration

In many applications, and most notably during the backward integration phase of an adjoint sensitivity
analysis run (see §2.7) it is of interest to compute integral quantities of the form

t

)= [ alru(r.p)dr. (29)
to

The most effective approach to compute z(t) is to extend the original problem with the additional

ODEs (obtained by applying Leibnitz’s differentiation rule):

z=q(t,y,p), Z(tO) =0. (2.10)

Note that this is equivalent to using a quadrature method based on the underlying linear multistep
polynomial representation for y(t).

This can be done at the “user level” by simply exposing to CVODES the extended ODE system
(2.2)+(2.9). However, in the context of an implicit integration solver, this approach is not desirable
since the nonlinear solver module will require the Jacobian (or Jacobian-vector product) of this ex-
tended ODE. Moreover, since the additional states z do not enter the right-hand side of the ODE
(2.9) and therefore the right-hand side of the extended ODE system, it is much more efficient to treat
the ODE system (2.9) separately from the original system (2.2) by “taking out” the additional states
z from the nonlinear system (2.4) that must be solved in the correction step of the LMM. Instead,
“corrected” values z™ are computed explicitly as

1 Ko K1
Zn - — (hnﬁn,oq(tna ynvp) + hn Zﬂn,izn_l + Z an,izn_l> )
i=1 =1

Qn .0

once the new approximation y™ is available.
The quadrature variables z can be optionally included in the error test, in which case corresponding
relative and absolute tolerances must be provided.

2.6 Forward sensitivity analysis

Typically, the governing equations of complex, large-scale models depend on various parameters,
through the right-hand side vector and/or through the vector of initial conditions, as in (2.2). In
addition to numerically solving the ODEs, it may be desirable to determine the sensitivity of the results
with respect to the model parameters. Such sensitivity information can be used to estimate which
parameters are most influential in affecting the behavior of the simulation or to evaluate optimization
gradients (in the setting of dynamic optimization, parameter estimation, optimal control, etc.).

The solution sensitivity with respect to the model parameter p; is defined as the vector s;(t) =
0y(t)/0p; and satisfies the following forward sensitivity equations (or sensitivity equations for short):

L _of L Of L 9w)
S; = ay si + 3}%‘ , Sz(tO) = ) (211)

Op;
obtained by applying the chain rule of differentiation to the original ODEs (2.2).

When performing forward sensitivity analysis, CVODES carries out the time integration of the
combined system, (2.2) and (2.11), by viewing it as an ODE system of size N(Ng + 1), where N,
is the number of model parameters p;, with respect to which sensitivities are desired (N, < N,,).
However, major improvements in efficiency can be made by taking advantage of the special form of
the sensitivity equations as linearizations of the original ODEs. In particular, for stiff systems, for
which cVODES employs a Newton iteration, the original ODE system and all sensitivity systems share
the same Jacobian matrix, and therefore the same iteration matrix M in (2.6).

The sensitivity equations are solved with the same linear multistep formula that was selected for
the original ODEs and, if Newton iteration was selected, the same linear solver is used in the correction
phase for both state and sensitivity variables. In addition, CVODES offers the option of including (full
error control) or excluding (partial error control) the sensitivity variables from the local error test.
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2.6.1 Forward sensitivity methods

In what follows we briefly describe three methods that have been proposed for the solution of the
combined ODE and sensitivity system for the vector § = [y, s1,...,Sn.]-

e Staggered Direct

In this approach [9], the nonlinear system (2.4) is first solved and, once an acceptable numerical
solution is obtained, the sensitivity variables at the new step are found by directly solving (2.11)
after the (BDF or Adams) discretization is used to eliminate $;. Although the system matrix
of the above linear system is based on exactly the same information as the matrix M in (2.6),
it must be updated and factored at every step of the integration, in contrast to an evalutaion
of M which is updated only occasionally. For problems with many parameters (relative to the
problem size), the staggered direct method can outperform the methods described below [26].
However, the computational cost associated with matrix updates and factorizations makes this
method unattractive for problems with many more states than parameters (such as those arising
from semidiscretization of PDEs) and is therefore not implemented in CVODES.

o Simultaneous Corrector

In this method [28], the discretization is applied simultaneously to both the original equations
(2.2) and the sensitivity systems (2.11) resulting in the following nonlinear system

G(gn) = gn - hnﬂn,OfA(tn; gn) - dn - 07

where f = [f(tu yap>7 teey (af/ay)(tv y7p)8i + (af/apz)(t7 yvp)v e °]7 and &n is Comprised of the
terms in the discretization that depend on the solution at previous integration steps. This

combined nonlinear system can be solved using a modified Newton method as in (2.5) by solving
the corrector equation

M[Qn(m+1) - Qn(m)] = 7G(gn(m)) (212)
at each iteration, where
M
—’}/Jl M
M — —’}/Jg 0 M ,
_'VJNS 0 ces 0 M

M is defined as in (2.6), and J; = (8/9y) [(Of/0y)s; + (Of/Op;)]. Tt can be shown that 2-step
quadratic convergence can be retained by using only the block-diagonal portion of M in the
corrector equation (2.12). This results in a decoupling that allows the reuse of M without
additional matrix factorizations. However, the products (0 f/dy)s; and the vectors 9 f/0p; must
still be reevaluated at each step of the iterative process (2.12) to update the sensitivity portions
of the residual G.

e Staggered corrector
In this approach [13], as in the staggered direct method, the nonlinear system (2.4) is solved
first using the Newton iteration (2.5). Then a separate Newton iteration is used to solve the
sensitivity system (2.11):
M[s@(m-i-l) _ S@(m)] _
7

K

ey (Of nyon(m) , OF n — 2.1
5 (Fr s S ) e e13)

where a;, = Zj>0(an7js?_j + hnBnjét 7). In other words, a modified Newton iteration is
used to solve a linear system. In this approach, the vectors df/dp; need be updated only
once per integration step, after the state correction phase (2.5) has converged. Note also that

Jacobian-related data can be reused at all iterations (2.13) to evaluate the products (9f/0y)s;.
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CVODES implements the simultaneous corrector method and two flavors of the staggered corrector
method which differ only if the sensitivity variables are included in the error control test. In the
full error control case, the first variant of the staggered corrector method requires the convergence of
the iterations (2.13) for all Ny sensitivity systems and then performs the error test on the sensitivity
variables. The second variant of the method will perform the error test for each sensitivity vector
si, (1 = 1,2,..., Ng) individually, as they pass the convergence test. Differences in performance
between the two variants may therefore be noticed whenever one of the sensitivity vectors s; fails a
convergence or error test.

An important observation is that the staggered corrector method, combined with a Krylov linear
solver, effectively results in a staggered direct method. Indeed, the Krylov solver requires only the
action of the matrix M on a vector and this can be provided with the current Jacobian information.
Therefore, the modified Newton procedure (2.13) will theoretically converge after one iteration.

2.6.2 Selection of the absolute tolerances for sensitivity variables

If the sensitivities are included in the error test, CVODES provides an automated estimation of absolute
tolerances for the sensitivity variables based on the absolute tolerance for the corresponding state
variable. The relative tolerance for sensitivity variables is set to be the same as for the state variables.
The selection of absolute tolerances for the sensitivity variables is based on the observation that
the sensitivity vector s; will have units of [y]/[p;]. With this, the absolute tolerance for the j-th
component of the sensitivity vector s; is set to ATOL,/|p;|, where ATOL; are the absolute tolerances for
the state variables and p is a vector of scaling factors that are dimensionally consistent with the model
parameters p and give an indication of their order of magnitude. This choice of relative and absolute
tolerances is equivalent to requiring that the weighted root-mean-square norm of the sensitivity vector
s; with weights based on s; be the same as the weighted root-mean-square norm of the vector of scaled
sensitivities §; = |p;|s; with weights based on the state variables (the scaled sensitivities §; being
dimensionally consistent with the state variables). However, this choice of tolerances for the s; may
be a poor one, and the user of CVODES can provide different values as an option.

2.6.3 Evaluation of the sensitivity right-hand side

There are several methods for evaluating the right-hand side of the sensitivity systems (2.11): an-
alytic evaluation, automatic differentiation, complex-step approximation, and finite differences (or
directional derivatives). CVODES provides all the software hooks for implementing interfaces to au-
tomatic differentiation (AD) or complex-step approximation; future versions will include a generic
interface to AD-generated functions. At the present time, besides the option for analytical sen-
sitivity right-hand sides (user-provided), CVODES can evaluate these quantities using various finite
difference-based approximations to evaluate the terms (0f/dy)s; and (0f/0p;), or using directional
derivatives to evaluate [(0f/0y)s; + (0f /Op;)]. As is typical for finite differences, the proper choice of
perturbations is a delicate matter. CVODES takes into account several problem-related features: the
relative ODE error tolerance RTOL, the machine unit roundoff U, the scale factor p;, and the weighted
root-mean-square norm of the sensitivity vector s;.

Using central finite differences as an example, the two terms (9f/0y)s; and 0f/0p; in the right-
hand side of (2.11) can be evaluated either separately:

8f f(t7y+ay8i7p)_f(tﬂy_gysiup)

of . o 7 2.14

o, = (2.14)
of _ f(t.y,p+oiei) = f(t.y.p — ciei) (2.14)
Op; 20; 7 .

1

max(1/0, ||si|lwrms/[Pi])

o; = |pi|v/max(rRTOL,U), 0y =
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or simultaneously:
of  Of _ fty+osiptoe) — [ty - osip—oe)
oy " Op; 20 ’

o = min(o;,0y),

(2.15)

or by adaptively switching between (2.14)4(2.14’) and (2.15), depending on the relative size of the
finite difference increments o; and o,. In the adaptive scheme, if p = max(c;/0y,0,/0;), We use
separate evaluations if p > ppax (an input value), and simultaneous evaluations otherwise.

These procedures for choosing the perturbations (o, oy, o) and switching between finite difference
and directional derivative formulas have also been implemented for one-sided difference formulas.
Forward finite differences can be applied to (0f/dy)s; and Jf/0p; separately, or the single directional
derivative formula

ais, 8f ~ f(t,y+0$i,p+oei)*f(t,y,p)
oyt op o

can be used. In CVODES, the default value of pyax = 0 indicates the use of the second-order centered
directional derivative formula (2.15) exclusively. Otherwise, the magnitude of py.x and its sign (pos-
itive or negative) indicates whether this switching is done with regard to (centered or forward) finite
differences, respectively.

2.6.4 Quadratures depending on forward sensitivities

If pure quadrature variables are also included in the problem definition (see §2.5), CVODES does
not carry their sensitivities automatically. Instead, we provide a more general feature through which
integrals depending on both the states y of (2.2) and the state sensitivities s; of (2.11) can be evaluated.
In other words, CVODES provides support for computing integrals of the form:

z(t):/ Gy (7),51(7)s- . s, (1), p) dr .

to

If the sensitivities of the quadrature variables z of (2.9) are desired, these can then be computed
by using:
QiZQySi"_qpiv Z.:]-w"vav

as integrands for z, where ¢, and ¢, are the partial derivatives of the integrand function g of (2.9).
As with the quadrature variables z, the new variables Z are also excluded from any nonlinear solver
phase and “corrected” values z" are obtained through explicit formulas.

2.7 Adjoint sensitivity analysis

In the forward semsitivity approach described in the previous section, obtaining sensitivities with
respect to Ny parameters is roughly equivalent to solving an ODE system of size (1 + Ng)N. This
can become prohibitively expensive, especially for large-scale problems, if sensitivities with respect
to many parameters are desired. In this situation, the adjoint sensitivity method is a very attractive
alternative, provided that we do not need the solution sensitivities s;, but rather the gradients with
respect to model parameters of a relatively few derived functionals of the solution. In other words, if
y(t) is the solution of (2.2), we wish to evaluate the gradient dG/dp of

G(p) = /t g(t,y, p)dt, (2.16)

or, alternatively, the gradient dg/dp of the function g(t¢,y,p) at the final time T'. The function g must
be smooth enough that dg/dy and dg/0p exist and are bounded.
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In what follows, we only sketch the analysis for the sensitivity problem for both G and g. For
details on the derivation see [8]. Introducing a Lagrange multiplier A, we form the augmented objective
function

T
I6)=Go)~ [ N (- Sy, (217)
to
where * denotes the conjugate transpose. The gradient of G with respect to p is
dG  dI /T r
— === g+gsdt—/ AN (8= fys— fp)dt, 2.18
B ap ) e [ X G gy (215)
where subscripts on functions f or g are used to denote partial derivatives and s = [s1,...,sy,] is the

matrix of solution sensitivities. Applying integration by parts to the term A*$, and by requiring that

A satisfy
A=—==) A—| =
() - (&) a1

the gradient of G with respect to p is nothing but

G, g ;
5 =N (to)s(to) + [ (gp + A" fp)dt. (2.20)
74 to

The gradient of ¢(T,y,p) with respect to p can be then obtained by using the Leibnitz differentiation
rule. Indeed, from (2.16),

dg d dG

A

dp dT’ dp

and therefore, taking into account that dG/dp in (2.20) depends on T both through the upper inte-
gration limit and through A, and that A\(T") = 0,

%(T) = u*(to)s(to) + gp(T) + /to w* fpdt, (2.21)

where p is the sensitivity of A with respect to the final integration limit 7. Thus p satisfies the
following equation, obtained by taking the total derivative with respect to T of (2.19):

o arY
o (ay) g
ag\”
wT) (3y) t=T
The final condition on u(T") follows from (O\/t) + (OX/OT) = 0 at T, and therefore, pu(T) = —A(T).
The first thing to notice about the adjoint system (2.19) is that there is no explicit specification
of the parameters p; this implies that, once the solution A is found, the formula (2.20) can then be
used to find the gradient of G with respect to any of the parameters p. The same holds true for the
system (2.22) and the formula (2.21) for gradients of g(T,y,p). The second important remark is that
the adjoint systems (2.19) and (2.22) are terminal value problems which depend on the solution y(t)
of the original IVP (2.2). Therefore, a procedure is needed for providing the states y obtained during

a forward integration phase of (2.2) to cvODES during the backward integration phase of (2.19) or
(2.22). The approach adopted in CVODES, based on checkpointing, is described below.

(2.22)
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Figure 2.1: Illustration of the checkpointing algorithm for generation of the forward solution during
the integration of the adjoint system.

2.7.1 Checkpointing scheme

During the backward integration, the evaluation of the right-hand side of the adjoint system requires,
at the current time, the states y which were computed during the forward integration phase. Since
CVODES implements variable-step integration formulas, it is unlikely that the states will be available
at the desired time and so some form of interpolation is needed. The CVODES implementation being
also variable-order, it is possible that during the forward integration phase the order may be reduced
as low as first order, which means that there may be points in time where only y and y are available.
These requirements therefore limit the choices for possible interpolation schemes. CVODES implements
two interpolation methods: a cubic Hermite interpolation algorithm and a variable-degree polynomial
interpolation method which attempts to mimic the BDF interpolant for the forward integration.

However, especially for large-scale problems and long integration intervals, the number and size
of the vectors y and ¢ that would need to be stored make this approach computationally intractable.
Thus, CVODES settles for a compromise between storage space and execution time by implementing
a so-called checkpointing scheme. At the cost of at most one additional forward integration, this
approach offers the best possible estimate of memory requirements for adjoint sensitivity analysis. To
begin with, based on the problem size IV and the available memory, the user decides on the number
Ny of data pairs (y, ) if cubic Hermite interpolation is selected, or on the number Ny of y vectors
in the case of variable-degree polynomial interpolation, that can be kept in memory for the purpose
of interpolation. Then, during the first forward integration stage, after every N, integration steps a
checkpoint is formed by saving enough information (either in memory or on disk) to allow for a hot
restart, that is a restart which will exactly reproduce the forward integration. In order to avoid storing
Jacobian-related data at each checkpoint, a reevaluation of the iteration matrix is forced before each
checkpoint. At the end of this stage, we are left with N, checkpoints, including one at ty. During the
backward integration stage, the adjoint variables are integrated from T to ty going from one checkpoint
to the previous one. The backward integration from checkpoint ¢ + 1 to checkpoint 7 is preceded by a
forward integration from ¢ to 7 + 1 during which the N4 vectors y (and, if necessary ¢) are generated
and stored in memory for interpolation® (see Fig. 2.1).

This approach transfers the uncertainty in the number of integration steps in the forward inte-
gration phase to uncertainty in the final number of checkpoints. However, N, is much smaller than
the number of steps taken during the forward integration, and there is no major penalty for writ-
ing/reading the checkpoint data to/from a temporary file. Note that, at the end of the first forward
integration stage, interpolation data are available from the last checkpoint to the end of the interval of
integration. If no checkpoints are necessary (Ny is larger than the number of integration steps taken
in the solution of (2.2)), the total cost of an adjoint sensitivity computation can be as low as one

1The degree of the interpolation polynomial is always that of the current BDF order for the forward interpolation at
the first point to the right of the time at which the interpolated value is sought (unless too close to the i-th checkpoint, in
which case it uses the BDF order at the right-most relevant point). However, because of the FLC BDF implementation
(see §2.1), the resulting interpolation polynomial is only an approximation to the underlying BDF interpolant.

The Hermite cubic interpolation option is present because it was implemented chronologically first and it is also used
by other adjoint solvers (e.g. DASPKADJOINT). The variable-degree polynomial is more memory-efficient (it requires
only half of the memory storage of the cubic Hermite interpolation) and is more accurate. The accuracy differences
are minor when using BDF (since the maximum method order cannot exceed 5), but can be significant for the Adams
method for which the order can reach 12.
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forward plus one backward integration. In addition, CVODES provides the capability of reusing a set
of checkpoints for multiple backward integrations, thus allowing for efficient computation of gradients
of several functionals (2.16).

Finally, we note that the adjoint sensitivity module in CVODES provides the necessary infrastructure
to integrate backwards in time any ODE terminal value problem dependent on the solution of the
IVP (2.2), including adjoint systems (2.19) or (2.22), as well as any other quadrature ODEs that may
be needed in evaluating the integrals in (2.20) or (2.21). In particular, for ODE systems arising from
semi-discretization of time-dependent PDEs; this feature allows for integration of either the discretized
adjoint PDE system or the adjoint of the discretized PDE.

2.8 Second-order sensitivity analysis

In some applications (e.g., dynamically-constrained optimization) it may be desirable to compute
second-order derivative information. Considering the ODE problem (2.2) and some model output
functional,? g(y) then the Hessian d?g/dp? can be obtained in a forward sensitivity analysis setting as

d?g T
TPQ = (gy ® INp) Ypp + yp 9yyYp »

where ® is the Kronecker product. The second-order sensitivities are solution of the matrix ODE
system:

Ypp = (fy ®1Np) “Ypp + (IN ®y,?) 'fyyyp
82y0

Ypp(to) = szv

where y,, is the first-order sensitivity matrix, the solution of N, systems (2.11), and y,, is a third-order
tensor. It is easy to see that, except for situations in which the number of parameters IV, is very small,
the computational cost of this so-called forward-over-forward approach is exorbitant as it requires the
solution of N, + Ng additional ODE systems of the same dimension N as (2.2).

A much more efficient alternative is to compute Hessian-vector products using a so-called forward-
over-adjoint approach. This method is based on using the same “trick” as the one used in computing
gradients of pointwise functionals with the adjoint method, namely applying a formal directional
forward derivation to one of the gradients of (2.20) or (2.21). With that, the cost of computing
a full Hessian is roughly equivalent to the cost of computing the gradient with forward sensitivity
analysis. However, Hessian-vector products can be cheaply computed with one additional adjoint
solve. Consider for example, G(p) = fttof g(t,y)dt. It can be shown that the product between the
Hessian of G (with respect to the parameters p) and some vector v can be computed as

u= [(AT ® In, ) Ypptt + yz?“} t=to *
where A\, u, and s are solutions of
—ji=fut (O L) fyys + gyys; plty) =0
—A=fIA+gl Aty =0 (2.23)
5= fys; s(to) = yopu

In the above equation, s = y,u is a linear combination of the columns of the sensitivity matrix y,.
The forward-over-adjoint approach hinges crucially on the fact that s can be computed at the cost of

2For the sake of simplifity in presentation, we do not include explicit dependencies of g on time ¢ or parameters p.
Moreover, we only consider the case in which the dependency of the original ODE (2.2) on the parameters p is through
its initial conditions only. For details on the derivation in the general case, see [29].
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a forward sensitivity analysis with respect to a single parameter (the last ODE problem above) which
is possible due to the linearity of the forward sensitivity equations (2.11).

Therefore, the cost of computing the Hessian-vector product is roughly that of two forward and two
backward integrations of a system of ODEs of size N. For more details, including the corresponding
formulas for a pointwise model functional output, see [29].

To allow the foward-over-adjoint approach described above, CVODES provides support for:

e the integration of multiple backward problems depending on the same underlying forward prob-
lem (2.2), and

e the integration of backward problems and computation of backward quadratures depending on
both the states y and forward sensitivities (for this particular application, s) of the original
problem (2.2).






Chapter 3

Code Organization

3.1 SUNDIALS organization

The family of solvers referred to as SUNDIALS consists of the solvers CVODE and ARKODE (for ODE
systems), KINSOL (for nonlinear algebraic systems), and 1DA (for differential-algebraic systems). In
addition, SUNDIALS also includes variants of CVODE and IDA with sensitivity analysis capabilities
(using either forward or adjoint methods), called CVODES and IDAS, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized
as a family, with a directory structure that exploits that sharing (see Figs. 3.1 and 3.2). The following
is a list of the solver packages presently available, and the basic functionality of each:

e CVODE, a solver for stiff and nonstiff ODE systems dy/dt = f(t,y) based on Adams and BDF
methods;

e CVODES, a solver for stiff and nonstiff ODE systems with sensitivity analysis capabilities;

e ARKODE, a solver for ODE systems Mdy/dt = fg(t,y)+ f1(t,y) based on additive Runge-Kutta
methods;

e IDA, a solver for differential-algebraic systems F'(¢,y, ) = 0 based on BDF methods;
e IDAS, a solver for differential-algebraic systems with sensitivity analysis capabilities;

e KINSOL, a solver for nonlinear algebraic systems F(u) = 0.

3.2 CVODES organization

The cvODES package is written in ANSI C. The following summarizes the basic structure of the
package, although knowledge of this structure is not necessary for its use.

The overall organization of the CVODES package is shown in Figure 3.3. The basic elements of
the structure are a module for the basic integration algorithm (including forward sensitivity analysis),
a module for adjoint sensitivity analysis, and support for the solution of linear systems that arise
in the case of a stiff system. The central integration module, implemented in the files cvode.h,
cvode_impl.h, and cvode.c, deals with the evaluation of integration coefficients, the functional or
Newton iteration process, estimation of local error, selection of stepsize and order, and interpolation
to user output points, among other issues. Although this module contains logic for the basic Newton
iteration algorithm, it has no knowledge of the method being used to solve the linear systems that
arise. For any given user problem, one of the linear system solver interfaces is specified, and is then
invoked as needed during the integration.

In addition, if forward sensitivity analysis is turned on, the main module will integrate the forward
sensitivity equations simultaneously with the original IVP. The sensitivity variables may be included
in the local error control mechanism of the main integrator. CVODES provides three different strategies
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Figure 3.1: High-level diagram of the SUNDIALS suite

for dealing with the correction stage for the sensitivity variables: CV_SIMULTANEQUS, CV_STAGGERED
and CV_STAGGERED1 (see §2.6 and §5.2.1). The CVODES package includes an algorithm for the ap-
proximation of the sensitivity equations right-hand sides by difference quotients, but the user has the
option of supplying these right-hand sides directly.

The adjoint sensitivity module (file cvodea. c) provides the infrastructure needed for the backward
integration of any system of ODEs which depends on the solution of the original IVP, in particular the
adjoint system and any quadratures required in evaluating the gradient of the objective functional.
This module deals with the setup of the checkpoints, the interpolation of the forward solution during
the backward integration, and the backward integration of the adjoint equations.

At present, the package includes two linear solver interfaces. The direct linear solver interface,
CVDLS, supports SUNLINSOL implementations with type SUNLINSOL_DIRECT (see Chapter 9). These
linear solvers utilize direct methods for the solution of linear systems stored using one of the SUNDIALS
generic SUNMATRIX implementations (dense, banded or sparse; see Chapter 8). It is assumed that
the dominant cost for such solvers occurs in factorization of the linear system matrix M, so CVODE
utilizes these solvers within its modified Newton nonlinear solve. The spils linear solver interface,
CVSPILS, supports SUNLINSOL implementations with type SUNLINSOL_ITERATIVE (see Chapter 9).
These linear solvers utilize scaled preconditioned iterative methods. It is assumed that these methods
are implemented in a “matrix-free” manner, wherein only the action of the matrix-vector product Mv
is required. Since CVODE can operate on any valid SUNLINSOL implementation of SUNLINSOL_DIRECT
or SUNLINSOL_ITERATIVE types, the set of linear solver modules available to CVODES will expand as
new SUNLINSOL modules are developed.

Additionally, cvODES includes the diagonal linear solver interface, CVDIAG, that creates an inter-
nally generated diagonal approximation to the Jacobian.

Within the cvDLS interface, the package includes algorithms for the approximation of dense or
banded Jacobians through difference quotients, but the user also has the option of supplying the
Jacobian (or an approximation to it) directly. This user-supplied routine is required when using sparse
Jacobian matrices, since standard difference quotient approximations do not leverage the inherent
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Figure 3.3: Overall structure of the CVODES package. Modules specific to CVODES begin with “CV”
(CVDLS, CVDIAG, CVSPILS, CVBBDPRE and CVBANDPRE), all other items correspond to generic solver
and auxiliary modules. Note also that the LAPACK, KLU and SUPERLUMT support is through inter-
faces to external packages. Users will need to download and compile those packages independently.
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sparsity of the problem.

Within the cvsPiLS interface, the package includes an algorithm for the approximation by difference
quotients of the product Mwv. Again, the user has the option of providing routines for this operation,
in two phases: setup (preprocessing of Jacobian data) and multiplication. For preconditioned iterative
methods, the preconditioning must be supplied by the user, again in two phases: setup and solve.
While there is no default choice of preconditioner analogous to the difference-quotient approximation in
the direct case, the references [4, 5], together with the example and demonstration programs included
with CVODES, offer considerable assistance in building preconditioners.

Each CVODE linear solver interface consists of four primary phases, devoted to (1) memory allo-
cation and initialization, (2) setup of the matrix data involved, (3) solution of the system, and (4)
freeing of memory. The setup and solution phases are separate because the evaluation of Jacobians
and preconditioners is done only periodically during the integration, and only as required to achieve
convergence.

CVODES also provides two preconditioner modules, for use with any of the Krylov iterative linear
solvers. The first one, CVBANDPRE, is intended to be used with NVECTOR_SERIAL, NVECTOR_OPENMP
or NVECTOR_PTHREADS and provides a banded difference-quotient Jacobian-based preconditioner,
with corresponding setup and solve routines. The second preconditioner module, CVBBDPRE, works
in conjunction with NVECTOR_PARALLEL and generates a preconditioner that is a block-diagonal
matrix with each block being a banded matrix.

All state information used by CVODES to solve a given problem is saved in a structure, and a
pointer to that structure is returned to the user. There is no global data in the CVODES package, and
so, in this respect, it is reentrant. State information specific to the linear solver is saved in a separate
structure, a pointer to which resides in the CVODES memory structure. The reentrancy of CVODES was
motivated by the anticipated multicomputer extension, but is also essential in a uniprocessor setting
where two or more problems are solved by intermixed calls to the package from within a single user
program.






Chapter 4

Using CVODES for IVP Solution

This chapter is concerned with the use of CVODES for the solution of initial value problems (IVPs).
The following sections treat the header files and the layout of the user’s main program, and provide de-
scriptions of the CVODES user-callable functions and user-supplied functions. This usage is essentially
equivalent to using CVODE [21].

The sample programs described in the companion document [35] may also be helpful. Those codes
may be used as templates (with the removal of some lines used in testing) and are included in the
CVODES package.

The user should be aware that not all SUNLINSOL and SUNMATRIX modules are compatible with
all NVECTOR implementations. Details on compatability are given in the documentation for each
SUNMATRIX module (Chapter 8) and each SUNLINSOL module (Chapter 9). For example, NVEC-
TOR_PARALLEL is not compatible with the dense, banded, or sparse SUNMATRIX types, or with the
corresponding dense, banded, or sparse SUNLINSOL modules. Please check Chapters 8 and 9 to verify
compatability between these modules. In addition to that documentation, we note that the CVBAND-
PRE preconditioning module is only compatible with the NVECTOR_SERIAL, NVECTOR_OPENMP, and
NVECTOR_PTHREADS vector implementations, and the preconditioner module CVBBDPRE can only
be used with NVECTOR_PARALLEL. It is not recommended to use a threaded vector module with
SuperLU_MT wunless it is the NVECTOR_OPENMP module, and SuperLU_MT is also compiled with
openMP.

CVODES uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Appendix B.

4.1 Access to library and header files

At this point, it is assumed that the installation of CVODES, following the procedure described in
Appendix A, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load
commands must make reference to the appropriate locations for the library and header files required
by cvODES. The relevant library files are

e [ibdir/1libsundials_cvodes. lib,
e [ibdir/libsundials_nvec*.[ib (one to four files),

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant
header files are located in the subdirectories

e incdir/include/cvodes
e incdir/include/sundials

e incdir/include/nvector
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e incdir/include/sunmatrix
e incdir/include/sunlinsol

The directories libdir and incdir are the install library and include directories, respectively. For
a default installation, these are instdir/1ib and instdir/include, respectively, where instdir is the
directory where SUNDIALS was installed (see Appendix A).

Note that an application cannot link to both the cvODE and CVODES libraries because both
contain user-callable functions with the same names (to ensure that CVODES is backward compatible
with ¢vODE). Therefore, applications that contain both ODE problems and ODEs with sensitivity
analysis, should use CVODES.

4.2 Data Types

The sundials_types.h file contains the definition of the type realtype, which is used by the SUNDIALS
solvers for all floating-point data, the definition of the integer type sunindextype, which is used
for vector and matrix indices, and booleantype, which is used for certain logic operations within
SUNDIALS.

4.2.1 Floating point types

The type realtype can be float, double, or long double, with the default being double. The user
can change the precision of the SUNDIALS solvers arithmetic at the configuration stage (see §A.1.2).

Additionally, based on the current precision, sundials_types.h defines BIG_REAL to be the largest
value representable as a realtype, SMALL _REAL to be the smallest value representable as a realtype,
and UNIT_ROUNDOFF to be the difference between 1.0 and the minimum realtype greater than 1.0.

Within SUNDIALS, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant with no
suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a
float, whereas using the suffix “I.” makes it a long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be
a long double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if
realtype is double, to 1.0F if realtype is float, or to 1.0L if realtype is long double. SUNDIALS
uses the RCONST macro internally to declare all of its floating-point constants.

A user program which uses the type realtype and the RCONST macro to handle floating-point
constants is precision-independent except for any calls to precision-specific standard math library
functions. (Our example programs use both realtype and RCONST.) Users can, however, use the type
double, float, or long double in their code (assuming that this usage is consistent with the typedef
for realtype). Thus, a previously existing piece of ANSI C code can use SUNDIALS without modifying
the code to use realtype, so long as the SUNDIALS libraries use the correct precision (for details see
8A.1.2).

4.2.2 Integer types used for vector and matrix indices

The type sunindextype can be either a 32- or 64-bit signed integer. The default is the portable
int64_t type, and the user can change it to int32_t at the configuration stage. The configuration
system will detect if the compiler does not support portable types, and will replace int32_t and
int64_t with int and long int, respectively, to ensure use of the desired sizes on Linux, Mac OS X,
and Windows platforms. SUNDIALS currently does not support unsigned integer types for vector and
matrix indices, although these could be added in the future if there is sufficient demand.
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A user program which uses sunindextype to handle vector and matrix indices will work with both
index storage types except for any calls to index storage-specific external libraries. (Our C and C++
example programs use sunindextype.) Users can, however, use any one of int, long int, int32_t,
int64_t or long long int in their code, assuming that this usage is consistent with the typedef
for sunindextype on their architecture). Thus, a previously existing piece of ANSI C code can use
SUNDIALS without modifying the code to use sunindextype, so long as the SUNDIALS libraries use the
appropriate index storage type (for details see §A.1.2).

4.3 Header files

The calling program must include several header files so that various macros and data types can be
used. The header file that is always required is:

e cvodes.h, the main header file for CVODES, which defines the several types and various constants,
and includes function prototypes.

Note that cvodes.h includes sundials_types.h, which defines the types realtype, sunindextype,
and booleantype and the constants SUNFALSE and SUNTRUE.

The calling program must also include an NVECTOR implementation header file, of the form
nvector/nvector_x**.h. See Chapter 7 for the appropriate name. This file in turn includes the
header file sundials nvector.h which defines the abstract N_Vector data type.

If the user chooses Newton iteration for the solution of the nonlinear systems, then a linear solver
module header file will be required. The header files corresponding to the various linear solver inter-
faces and linear solver modules available for use with CVODES are:

e cvodes/cvodes_direct.h, which is used with the CvDLS direct linear solver interface to access
direct solvers with the following header files:

— sunlinsol/sunlinsol dense.h, which is used with the dense linear solver module, SUN-
LINSOL_DENSE;

— sunlinsol/sunlinsol_band.h, which is used with the banded linear solver module, SUN-
LINSOL_BAND;

— sunlinsol/sunlinsol_lapackdense.h, which is used with the LAPACK dense linear solver
interface module, SUNLINSOL_LAPACKDENSE;

— sunlinsol/sunlinsol_lapackband.h, which is used with the LAPACK banded linear
solver interface module, SUNLINSOL_LAPACKBAND;

— sunlinsol/sunlinsol klu.h, which is used with the KLU sparse linear solver interface
module, SUNLINSOL_KLU;

— sunlinsol/sunlinsol_superlumt.h, which is used with the SUPERLUMT sparse linear

solver interface module, SUNLINSOL_SUPERLUMT;

e cvodes/cvodes_spils.h, which is used with the CVSPILS iterative linear solver interface to
access iterative solvers with the following header files:

— sunlinsol/sunlinsol_spgmr.h, which is used with the scaled, preconditioned GMRES
Krylov linear solver module, SUNLINSOL_SPGMR;

— sunlinsol/sunlinsol_spfgmr.h, which is used with the scaled, preconditioned FGMRES
Krylov linear solver module, SUNLINSOL_SPFGMR;

— sunlinsol/sunlinsol_spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab
Krylov linear solver module, SUNLINSOL_SPBCGS;

— sunlinsol/sunlinsol_sptfqmr.h, which is used with the scaled, preconditioned TFQMR,
Krylov linear solver module, SUNLINSOL_SPTFQMR;
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— sunlinsol/sunlinsol_pcg.h, which is used with the scaled, preconditioned CG Krylov
linear solver module, SUNLINSOL_PCG;

e cvodes/cvodes_diag.h, which is used with the cvDIAG diagonal linear solver interface.

The header files for the SUNLINSOL_DENSE and SUNLINSOL_LAPACKDENSE linear solver modules
include the file sunmatrix/sunmatrix_dense.h, which defines the SUNMATRIX_DENSE matrix module,
as as well as various functions and macros acting on such matrices.

The header files for the SUNLINSOL_BAND and SUNLINSOL_LAPACKBAND linear solver modules in-
clude the file sunmatrix/sunmatrix_band.h, which defines the SUNMATRIX_BAND matrix module, as
as well as various functions and macros acting on such matrices.

The header files for the SUNLINSOL_KLU and SUNLINSOL_SUPERLUMT sparse linear solvers include
the file sunmatrix/sunmatrix_sparse.h, which defines the SUNMATRIX_SPARSE matrix module, as
well as various functions and macros acting on such matrices.

The header files for the Krylov iterative solvers include the file sundials/sundials_iterative.h,
which enumerates the kind of preconditioning, and (for the SPGMR and SPFGMR solvers) the choices
for the Gram-Schmidt process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the
cvsDiurnal kry_p example (see [35]), preconditioning is done with a block-diagonal matrix. For this,
even though the SUNLINSOL_SPGMR linear solver is used, the header sundials/sundials_dense.h is
included for access to the underlying generic dense matrix arithmetic routines.

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an
ODE IVP. Most of the steps are independent of the NVECTOR, SUNMATRIX, and SUNLINSOL imple-
mentations used. For the steps that are not, refer to Chapters 7, 8, and 9 for the specific name of the
function to be called or macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate

For example, call MPI_Init to initialize MPT if used, or set num_threads, the number of threads
to use within the threaded vector functions, if used.

2. Set problem dimensions etc.
This generally includes the problem size N, and may include the local vector length Nlocal.

Note: The variables N and Nlocal should be of type sunindextype.

3. Set vector of initial values

To set the vector yO of initial values, use the appropriate functions defined by the particular
NVECTOR implementation.

For native SUNDIALS vector implementations (except the CUDA and RAJA-based ones), use a call
of the form y0 = N_VMake *x* (..., ydata) if the realtype array ydata containing the initial
values of y already exists. Otherwise, create a new vector by making a call of the form y0 =
N_VNew_x**(...), and then set its elements by accessing the underlying data with a call of the
form ydata = N_VGetArrayPointer(y0). See §7.1-7.4 for details.

For the hypre and PETSc vector wrappers, first create and initialize the underlying vector, and
then create an NVECTOR wrapper with a call of the form y0 = N_VMake_***(yvec), where yvec
is a hypre or PETSc vector. Note that calls like N_-VNew_***(...) and N_VGetArrayPointer(...)
are not available for these vector wrappers. See §7.5 and §7.6 for details.

If using either the CUDA- or RAJA-based vector implementations use a call of the form y0 =
N_VMake *** (..., c) where c is a pointer to a suncudavec or sunrajavec vector class if this class
already exists. Otherwise, create a new vector by making a call of the form y0 = N_VNew_x**(...),
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10.

11.

12.

and then set its elements by accessing the underlying data where it is located with a call of the
form N_VGetDeviceArrayPointer_*** or N_VGetHostArrayPointer_***. Note that the vector
class will allocate memory on both the host and device when instantiated. See §7.7-7.8 for details.

. Create CVODES object

Call cvode mem = CVodeCreate(lmm, iter) to create the CVODES memory block and to specify
the solution method (linear multistep method and nonlinear solver iteration type). CVodeCreate
returns a pointer to the CVODES memory structure. See §4.5.1 for details.

Initialize CVODES solver

Call CVodeInit(...) to provide required problem specifications, allocate internal memory for
CVODES, and initialize CVODES. CVodeInit returns a flag, the value of which indicates either
success or an illegal argument value. See §4.5.1 for details.

Specify integration tolerances

Call CVodeSStolerances(...) or CVodeSVtolerances(...) to specify either a scalar relative
tolerance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute
tolerances, respectively. Alternatively, call CVodeWFtolerances to specify a function which sets
directly the weights used in evaluating WRMS vector norms. See §4.5.2 for details.

Set optional inputs

Call CVodeSet* functions to change any optional inputs that control the behavior of CVODES from
their default values. See §4.5.6.1 for details.

Create matrix object

If a direct linear solver is to be used within a Newton iteration then a template Jacobian ma-
trix must be created by using the appropriate functions defined by the particular SUNMATRIX
implementation.

NOTE: The dense, banded, and sparse matrix objects are usable only in a serial or threaded
environment.

Create linear solver object

If a Newton iteration is chosen, then the desired linear solver object must be created by using the
appropriate functions defined by the particular SUNLINSOL implementation.

Set linear solver optional inputs

Call *Set* functions from the selected linear solver module to change optional inputs specific to
that linear solver. See the documentation for each SUNLINSOL module in Chapter 9 for details.
Attach linear solver module

If a Newton iteration is chosen, initialize the CVDLS or CVSPILS linear solver interface by attaching
the linear solver object (and matrix object, if applicable) with one of the following calls (for details
see §4.5.3):

ier = CVDlsSetLinearSolver(...);

ier = CVSpilsSetLinearSolver(...);

Alternately, if the CVODES-specific diagonal linear solver module, CVDIAG, is desired, initialize the
linear solver module and attach it to CVODES with the call

ier = CVDiag(...);

Set linear solver interface optional inputs
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Call CVD1sSet* or CVSpilsSet* functions to change optional inputs specific to that linear solver
interface. See §4.5.6 for details.

13. Specify rootfinding problem
Optionally, call CVodeRootInit to initialize a rootfinding problem to be solved during the inte-
gration of the ODE system. See §4.5.4, and see §4.5.6.4 for relevant optional input calls.

14. Advance solution in time

For each point at which output is desired, call ier = CVode(cvode_mem, tout, yout, &tret,
itask). Here itask specifies the return mode. The vector yout (which can be the same as the
vector yO above) will contain y(t). See §4.5.5 for details.

15. Get optional outputs
Call CV*Get* functions to obtain optional output. See §4.5.8 for details.

16. Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y (or yout) by calling the
appropriate destructor function defined by the NVECTOR implementation:

N_VDestroy(y);

17. Free solver memory

Call CVodeFree (&cvode mem) to free the memory allocated by CVODES.

18. Free linear solver and matrix memory

Call SUNLinSolFree and SUNMatDestroy to free any memory allocated for the linear solver and
matrix objects created above.

19. Finalize MPI, if used
Call MPI Finalize() to terminate MPI.

SUNDIALS provides some linear solvers only as a means for users to get problems running and not as
highly efficient solvers. For example, if solving a dense system, we suggest using the Lapack solvers if
the size of the linear system is > 50,000. (Thanks to A. Nicolai for his testing and recommendation.)
Table 4.1 shows the linear solver interfaces available as SUNLINSOL modules and the vector imple-
mentations required for use. As an example, one cannot use the dense direct solver interfaces with
the MPI-based vector implementation. However, as discussed in Chapter 9 the SUNDIALS packages
operate on generic SUNLINSOL objects, allowing a user to develop their own solvers should they so
desire.

4.5 User-callable functions

This section describes the CVODES functions that are called by the user to setup and then solve an
IVP. Some of these are required. However, starting with §4.5.6, the functions listed involve optional
inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of CVODES. In
any case, refer to §4.4 for the correct order of these calls.

On an error, each user-callable function returns a negative value and sends an error message to
the error handler routine, which prints the message on stderr by default. However, the user can set
a file as error output or can provide his own error handler function (see §4.5.6.1).

4.5.1 CVODES initialization and deallocation functions

The following three functions must be called in the order listed. The last one is to be called only after
the IVP solution is complete, as it frees the CVODES memory block created and allocated by the first
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Table 4.1: SUNDIALS linear solver interfaces and vector implementations that can be used for each.
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CVodeCreate

Call

Description

Arguments

Return value

CVodelnit

Call

Description

Arguments

Return value

cvode_mem = CVodeCreate(lmm, iter);

The function CVodeCreate instantiates a CVODES solver object and specifies the solution
method.

lmm (int) specifies the linear multistep method and may be one of two possible values:

CV_ADAMS or CV_BDF.
iter (int) specifies the type of nonlinear solver iteration and may be either CV_NEWTON
or CV_FUNCTIONAL.

The recommended choices for (1mm, iter) are (CV_ADAMS, CV_FUNCTIONAL) for nonstiff
problems and (CV_BDF, CV_NEWTON) for stiff problems.

If successful, CVodeCreate returns a pointer to the newly created CVODES memory block
(of type void *). Otherwise, it returns NULL.

flag = CVodeInit(cvode mem, f, tO, y0);

The function CVodeInit provides required problem and solution specifications, allocates
internal memory, and initializes CVODES.
cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.

f (CVRhsFn) is the C function which computes the right-hand side function
f in the ODE. This function has the form £(t, y, ydot, user_data) (for
full details see §4.6.1).

t0 (realtype) is the initial value of t.

yO

The return value flag (of type int) will be one of the following:

CV_SUCCESS The call to CVodeInit was successful.

CV_MEM_NULL The cVODES memory block was not initialized through a previous call
to CVodeCreate.

(N_Vector) is the initial value of y.
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CV_MEM FAIL A memory allocation request has failed.
CV_ILL_INPUT An input argument to CVodeInit has an illegal value.

Notes If an error occurred, CVodeInit also sends an error message to the error handler func-

CVodeFree

Call
Description
Arguments

Return value

tion.

CVodeFree(&cvode_mem) ;
The function CVodeFree frees the memory allocated by a previous call to CVodeCreate.
The argument is the pointer to the CVODES memory block (of type void *).

The function CVodeFree has no return value.

4.5.2 CVODES tolerance specification functions

One of the following three functions must be called to specify the integration tolerances (or directly
specify the weights used in evaluating WRMS vector norms). Note that this call must be made after
the call to CVodeInit.

’CVodeSStolerances‘

Call
Description

Arguments

Return value

flag = CVodeSStolerances(cvodemem, reltol, abstol);

The function CVodeSStolerances specifies scalar relative and absolute tolerances.
cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.
reltol (realtype) is the scalar relative error tolerance.

abstol (realtype) is the scalar absolute error tolerance.

The return value flag (of type int) will be one of the following:

CV_SUCCESS  The call to CVodeSStolerances was successful.

CV_MEM NULL The cVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_NO_MALLOC The allocation function CVodeInit has not been called.
CV_ILL_INPUT One of the input tolerances was negative.

’CVodeSVtolerances‘

Call
Description

Arguments

Return value

Notes

flag = CVodeSVtolerances(cvode mem, reltol, abstol);

The function CVodeSVtolerances specifies scalar relative tolerance and vector absolute
tolerances.

cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.
reltol (realtype) is the scalar relative error tolerance.

abstol (N_Vector) is the vector of absolute error tolerances.

The return value flag (of type int) will be one of the following:

CV_SUCCESS The call to CVodeSVtolerances was successful.

CV_MEM_NULL The CcVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_NO_MALLOC The allocation function CVodeInit has not been called.
CV_ILL_INPUT The relative error tolerance was negative or the absolute tolerance had
a negative component.

This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of the state vector y.
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’CVodeWFtolerances

Call flag = CVodeWFtolerances(cvodemem, efun);

Description  The function CVodeWFtolerances specifies a user-supplied function efun that sets the
multiplicative error weights W; for use in the weighted RMS norm, which are normally
defined by Eq. (2.7).

Arguments cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.
efun (CVEwtFn) is the C function which defines the ewt vector (see §4.6.3).

Return value The return value flag (of type int) will be one of the following;:

CV_SUCCESS The call to CVodeWFtolerances was successful.

CV_MEM_NULL The cVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_NO_MALLOC The allocation function CVodeInit has not been called.

General advice on choice of tolerances. For many users, the appropriate choices for tolerance
values in reltol and abstol are a concern. The following pieces of advice are relevant.

(1) The scalar relative tolerance reltol is to be set to control relative errors. So reltol = 1074
means that errors are controlled to .01%. We do not recommend using reltol larger than 1073,
On the other hand, reltol should not be so small that it is comparable to the unit roundoff of the
machine arithmetic (generally around 1.0E-15).

(2) The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute
errors when any components of the solution vector y may be so small that pure relative error control
is meaningless. For example, if y[i] starts at some nonzero value, but in time decays to zero, then
pure relative error control on y[i] makes no sense (and is overly costly) after y[i] is below some
noise level. Then abstol (if scalar) or abstol[i] (if a vector) needs to be set to that noise level. If
the different components have different noise levels, then abstol should be a vector. See the example
cvsRoberts_dns in the CVODES package, and the discussion of it in the cVODES Examples document
[35]. In that problem, the three components vary betwen 0 and 1, and have different noise levels;
hence the abstol vector. It is impossible to give any general advice on abstol values, because the
appropriate noise levels are completely problem-dependent. The user or modeler hopefully has some
idea as to what those noise levels are.

(3) Finally, it is important to pick all the tolerance values conservatively, because they control the
error committed on each individual time step. The final (global) errors are some sort of accumulation
of those per-step errors. A good rule of thumb is to reduce the tolerances by a factor of .01 from
the actual desired limits on errors. So if you want .01% accuracy (globally), a good choice is reltol
= 1075. But in any case, it is a good idea to do a few experiments with the tolerances to see how the
computed solution values vary as tolerances are reduced.

Advice on controlling unphysical negative values. In many applications, some components
in the true solution are always positive or non-negative, though at times very small. In the numerical
solution, however, small negative (hence unphysical) values can then occur. In most cases, these values
are harmless, and simply need to be controlled, not eliminated. The following pieces of advice are
relevant.

(1) The way to control the size of unwanted negative computed values is with tighter absolute
tolerances. Again this requires some knowledge of the noise level of these components, which may or
may not be different for different components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative
numbers appear there (for the sake of avoiding a long explanation of them, if nothing else), then
eliminate them, but only in the context of the output medium. Then the internal values carried by
the solver are unaffected. Remember that a small negative value in y returned by CVODES, with
magnitude comparable to abstol or less, is equivalent to zero as far as the computation is concerned.

(3) The user’s right-hand side routine £ should never change a negative value in the solution vector
y to a non-negative value, as a ”solution” to this problem. This can cause instability. If the £ routine
cannot tolerate a zero or negative value (e.g. because there is a square root or log of it), then the
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offending value should be changed to zero or a tiny positive number in a temporary variable (not in
the input y vector) for the purposes of computing f(¢,y).

(4) Positivity and non-negativity constraints on components can be enforced by use of the recover-
able error return feature in the user-supplied right-hand side function. However, because this option
involves some extra overhead cost, it should only be exercised if the use of absolute tolerances to
control the computed values is unsuccessful.

4.5.3 Linear solver interface functions

As previously explained, a Newton iteration requires the solution of linear systems of the form (2.5).
There are three CVODES linear solver interfaces currently available for this task: CVDLS, CVDIAG and
CVSPILS.

The first corresponds to the use of Direct Linear Solvers, and utilizes SUNMATRIX objects to store
the Jacobian J = 9f /0y, the Newton matrix M = I — vJ, and factorizations used throughout the
solution process.

The CVDIAG linear solver is also a direct linear solver, but it only uses a diagonal approximation
to J.

The third corresponds to the use of Scaled, Preconditioned, Iterative Linear Solvers, utilizing
matrix-free Krylov methods to solve the Newton linear systems of equations. With most of these
methods, preconditioning can be done on the left only, on the right only, on both the left and the
right, or not at all. The exceptions to this rule are SPFGMR that supports right preconditioning only
and PCG that performs symmetric preconditioning. For the specification of a preconditioner, see the
iterative linear solver sections in §4.5.6 and §4.6.

If preconditioning is done, user-supplied functions define left and right preconditioner matrices P;
and P» (either of which could be the identity matrix), such that the product P P, approximates the
Newton matrix M = I —~J of (2.6).

To specify a generic linear solver to CVODES, after the call to CVodeCreate but before any calls
to CVodes, the user’s program must create the appropriate SUNLINSOL object and call either of the
functions CVDlsSetLinearSolver or CVSpilsSetLinearSolver, as documented below. The first
argument passed to these functions is the CVODES memory pointer returned by CVodeCreate; the
second argument passed to these functions is the desired SUNLINSOL object to use for solving Newton
systems. A call to one of these functions initializes the appropriate CVODES linear solver interface,
linking this to the main CVODES integrator, and allows the user to specify parameters which are specific
to a particular solver interface. The use of each of the generic linear solvers involves certain constants
and possibly some macros, that are likely to be needed in the user code. These are available in the
corresponding header file associated with the specific SUNMATRIX or SUNLINSOL module in question,
as described in Chapters 8 and 9.

To instead specify the CVODES-specific diagonal linear solver interface, the user’s program must
call CVDiag, as documented below. The first argument passed to this function is the CVODES memory
pointer returned by CVodeCreate.

’CVDlsSetLinearSolver‘
Call flag = CVDlsSetLinearSolver(cvodemem, LS, J);

Description The function CVD1sSetLinearSolver attaches a direct SUNLINSOL object LS and cor-
responding template Jacobian SUNMATRIX object J to CVODES, initializing the cvDLS
direct linear solver interface.

The user’s main program must include the cvodes_direct.h header file.

Arguments cvodemem (void *) pointer to the CVODES memory block.

LS (SUNLinearSolver) SUNLINSOL object to use for solving Newton linear sys-
tems.
J (SUNMatrix) SUNMATRIX object for used as a template for the Jacobian

(must have a type compatible with the linear solver object).
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Return value

Notes

The return value flag (of type int) is one of

CVDLS_SUCCESS The CVDLS initialization was successful.

CVDLS_MEM_NULL The cvode_mem pointer is NULL.

CVDLS_ILL_INPUT The CVDLS solver is not compatible with the LS or J input objects
or is incompatible with the current NVECTOR module.

CVDLS_MEM_FAIL A memory allocation request failed.

The ¢vDLS linear solver interface is not compatible with all implementations of the SUN-
LINSOL and NVECTOR modules. Specifically, CVDLS requires use of a direct SUNLINSOL
object and a serial or theaded NVECTOR module. Additional compatibility limitations
for each SUNLINSOL object (i.e. SUNMATRIX and NVECTOR object compatibility) are
described in Chapter 9.

CVSpilsSetLinearSolver

Call

Description

Arguments

Return value

Notes

Call

Description

Arguments

Return value

Notes

flag = CVSpilsSetLinearSolver (cvode_mem, LS);

The function CVSpilsSetLinearSolver attaches an iterative SUNLINSOL object LS to
CVODES, initializing the CVSPILS scaled, preconditioned, iterative linear solver interface.

The user’s main program must include the cvodes_spils.h header file.

cvode mem (void *) pointer to the CVODES memory block.
LS (SUNLinearSolver) SUNLINSOL object to use for solving Newton linear sys-
tems.

The return value flag (of type int) is one of

CVSPILS_SUCCESS The CVSPILS initialization was successful.
CVSPILS_MEM NULL The cvode_mem pointer is NULL.

CVSPILS_ILL_INPUT The CVSPILS solver is not compatible with the LS object or is in-
compatible with the current NVECTOR module.

CVSPILS_MEM_FAIL A memory allocation request failed.

CVSPILS_SUNLS_FAIL A call to the LS object failed.

The CVSPILS linear solver interface is not compatible with all implementations of the

SUNLINSOL and NVECTOR modules. Specifically, CVSPILS requires use of an iterative

SUNLINSOL object. Additional compatibility limitations for each SUNLINSOL object

(i.e. required NVECTOR routines) are described in Chapter 9.

flag = CVDiag(cvode_mem) ;

The function CVDiag selects the CVDIAG linear solver.

The user’s main program must include the cvodes_diag.h header file.
cvode mem (void *) pointer to the CVODES memory block.

The return value flag (of type int) is one of:

CVDIAG_SUCCESS The CVDIAG initialization was successful.

CVDIAG_MEM NULL The cvode mem pointer is NULL.

CVDIAG_ILL_INPUT The CVDIAG solver is not compatible with the current NVECTOR
module.

CVDIAG_MEM FAIL A memory allocation request failed.

The CVDIAG solver is the simplest of all of the current CVODES linear solver interfaces.
The CVDIAG solver uses an approximate diagonal Jacobian formed by way of a difference
quotient. The user does not have the option of supplying a function to compute an
approximate diagonal Jacobian.
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4.5.4 Rootfinding initialization function

While solving the IVP, cVODES has the capability to find the roots of a set of user-defined functions.
To activate the root finding algorithm, call the following function. This is normally called only once,
prior to the first call to CVode, but if the rootfinding problem is to be changed during the solution,
CVodeRootInit can also be called prior to a continuation call to CVode.

| CVodeRootInit |

Call flag = CVodeRootInit(cvode mem, nrtfn, g);

Description  The function CVodeRootInit specifies that the roots of a set of functions g;(¢,y) are to
be found while the IVP is being solved.
Arguments cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.
nrtfn (int) is the number of root functions g;.
g (CVRootFn) is the C function which defines the nrtfn functions g;(t,y)
whose roots are sought. See §4.6.4 for details.
Return value The return value flag (of type int) is one of

CV_SUCCESS  The call to CVodeRootInit was successful.
CV_MEM_NULL The cvode mem argument was NULL.
CV_MEM_FAIL A memory allocation failed.

CV_ILL_INPUT The function g is NULL, but nrtfn > 0.

Notes If a new IVP is to be solved with a call to CVodeReInit, where the new IVP has no
rootfinding problem but the prior one did, then call CVodeRootInit with nrtfn= 0.

4.5.5 CVODES solver function

This is the central step in the solution process — the call to perform the integration of the IVP. One
of the input arguments (itask) specifies one of two modes as to where CVODES is to return a solution.
But these modes are modified if the user has set a stop time (with CVodeSetStopTime) or requested
rootfinding.

Call flag = CVode(cvode mem, tout, yout, &tret, itask);
Description  The function CVode integrates the ODE over an interval in ¢.

Arguments cvodemem (void *) pointer to the CVODES memory block.

tout (realtype) the next time at which a computed solution is desired.

yout (N_Vector) the computed solution vector.

tret (realtype) the time reached by the solver (output).

itask (int) a flag indicating the job of the solver for the next user step. The

CV_NORMAL option causes the solver to take internal steps until it has reached
or just passed the user-specified tout parameter. The solver then interpo-
lates in order to return an approximate value of y(tout). The CV_ONE_STEP
option tells the solver to take just one internal step and then return the
solution at the point reached by that step.

Return value CVode returns a vector yout and a corresponding independent variable value ¢t = tret,
such that yout is the computed value of y(t).

In CV_NORMAL mode (with no errors), tret will be equal to tout and yout = y(tout).
The return value flag (of type int) will be one of the following:
CV_SUCCESS CVode succeeded and no roots were found.
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Notes

CV_TSTOP_RETURN

CV_ROOT_RETURN

CV_MEM_NULL

CV_NO_MALLOC
CV_ILL_INPUT

CV_TOO0_CLOSE

CV_TOO_-MUCH_WORK

CV_TOO_MUCH_ACC

CV_ERR_FAILURE

CV_CONV_FAILURE

CV_LINIT_FAIL

CV_LSETUP_FAIL
CV_LSOLVE_FAIL
CV_CONSTR_FAIL

CV_RHSFUNC_FAIL

CVode succeeded by reaching the stopping point specified through
the optional input function CVodeSetStopTime (see §4.5.6.1).

CVode succeeded and found one or more roots. In this case, tret is
the location of the root. If nrtfn > 1, call CVodeGetRootInfo to
see which g; were found to have a root.

The cvode_mem argument was NULL.

The CVODES memory was not allocated by a call to CVodeInit.
One of the inputs to CVode was illegal, or some other input to the
solver was either illegal or missing. The latter category includes the
following situations: (a) The tolerances have not been set. (b) A
component of the error weight vector became zero during internal
time-stepping. (c) The linear solver initialization function (called by
the user after calling CVodeCreate) failed to set the linear solver-
specific 1solve field in cvode mem. (d) A root of one of the root
functions was found both at a point ¢ and also very near ¢. In any
case, the user should see the error message for details.

The initial time to and the final time ¢, are too close to each other
and the user did not specify an initial step size.

The solver took mxstep internal steps but still could not reach tout.
The default value for mxstep is MXSTEP_DEFAULT = 500.

The solver could not satisfy the accuracy demanded by the user for
some internal step.

Either error test failures occurred too many times (MXNEF = 7) dur-
ing one internal time step, or with |h| = hpin.

Either convergence test failures occurred too many times (MXNCF =
10) during one internal time step, or with |h| = hpin.

The linear solver’s initialization function failed.

The linear solver’s setup function failed in an unrecoverable manner.
The linear solver’s solve function failed in an unrecoverable manner.

The inequality constraints were violated and the solver was unable
to recover.

The right-hand side function failed in an unrecoverable manner.

CV_FIRST_RHSFUNC_FAIL The right-hand side function had a recoverable error at the

first call.

CV_REPTD_RHSFUNC_ERR Convergence test failures occurred too many times due to re-

peated recoverable errors in the right-hand side function. This flag
will also be returned if the right-hand side function had repeated
recoverable errors during the estimation of an initial step size.

CV_UNREC_RHSFUNC_ERR The right-hand function had a recoverable error, but no recov-

CV_RTFUNC_FAIL

ery was possible. This failure mode is rare, as it can occur only if the
right-hand side function fails recoverably after an error test failed
while at order one.

The rootfinding function failed.

The vector yout can occupy the same space as the vector yO of initial conditions that
was passed to CVodeInit.

In the CV_ONE_STEP mode, tout is used only on the first call, and only to get the direction
and a rough scale of the independent variable.

All failure return values are negative and so the test flag < 0 will trap all CVode

failures.
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Table 4.2: Optional inputs for CVODES, CVDLS, and CVSPILS

Optional input \ Function name \ Default
CVODES main solver
Pointer to an error file CVodeSetErrFile stderr
Error handler function CVodeSetErrHandlerFn internal fn.
User data CVodeSetUserData NULL
Maximum order for BDF method CVodeSetMax0rd )
Maximum order for Adams method CVodeSetMaxOrd 12
Maximum no. of internal steps before oyt CVodeSetMaxNumSteps 500
Maximum no. of warnings for t, + h =t, CVodeSetMaxHnilWarns 10
Flag to activate stability limit detection CVodeSetStabLimDet SUNFALSE
Initial step size CVodeSetInitStep estimated
Minimum absolute step size CVodeSetMinStep 0.0
Maximum absolute step size CVodeSetMaxStep 00
Value of ts¢0p CVodeSetStopTime undefined
Maximum no. of error test failures CVodeSetMaxErrTestFails 7
Maximum no. of nonlinear iterations CVodeSetMaxNonlinIters 3
Maximum no. of convergence failures CVodeSetMaxConvFails 10
Coefficient in the nonlinear convergence test CVodeSetNonlinConvCoef 0.1
Nonlinear iteration type CVodeSetIterType none
Inequality constraints on solution CVodeSetConstraints NULL
Direction of zero-crossing CVodeSetRootDirection both
Disable rootfinding warnings CVodeSetNoInactiveRootWarn | none
CVDLS linear solver interface
Jacobian function \ CVDlsSetJacFn \ DQ
CVSPILS linear solver interface
Preconditioner functions CVSpilsSetPreconditioner NULL, NULL
Jacobian-times-vector functions CVSpilsSetJacTimes NULL, DQ
Ratio between linear and nonlinear tolerances | CVSpilsSetEpsLin 0.05

On any error return in which one or more internal steps were taken by CVode, the
returned values of tret and yout correspond to the farthest point reached in the inte-
gration. On all other error returns, tret and yout are left unchanged from the previous
CVode return.

4.5.6 Optional input functions

There are numerous optional input parameters that control the behavior of the CVODES solver. CVODES
provides functions that can be used to change these optional input parameters from their default
values. Table 4.2 lists all optional input functions in CVODES which are then described in detail in the
remainder of this section, begining with those for the main CVODES solver and continuing with those
for the linear solver interfaces. Note that the diagonal linear solver module has no optional inputs.
For the most casual use of CVODES, the reader can skip to §4.6.

We note that, on an error return, all of the optional input functions send an error message to the
error handler function. We also note that all error return values are negative, so the test flag < 0
will catch all errors.

4.5.6.1 Main solver optional input functions

The calls listed here can be executed in any order. However, if either of the functions CVodeSetErrFile
or CVodeSetErrHandlerFn is to be called, that call should be first, in order to take effect for any later
error message.
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’CVodeSetErrFile‘

Call

Description

Arguments

Return value

flag = CVodeSetErrFile(cvode mem, errfp);

The function CVodeSetErrFile specifies a pointer to the file where all CVODES messages
should be directed when the default CVODES error handler function is used.

cvode mem (void *) pointer to the CVODES memory block.

errfp (FILE *) pointer to output file.
The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes The default value for errfp is stderr.
Passing a value of NULL disables all future error message output (except for the case in
which the CVODES memory pointer is NULL). This use of CVodeSetErrFile is strongly
discouraged.
If CVodeSetErrFile is to be called, it should be called before any other optional input
functions, in order to take effect for any later error message.

| CVodeSetErrHandlerFn |

Call flag = CVodeSetErrHandlerFn(cvode mem, ehfun, eh_data);

Description  The function CVodeSetErrHandlerFn specifies the optional user-defined function to be
used in handling error messages.

Arguments cvode mem (void *) pointer to the CVODES memory block.

Return value

ehfun (CVErrHandlerFn) is the C error handler function (see §4.6.2).

eh data (void *) pointer to user data passed to ehfun every time it is called.
The return value flag (of type int) is one of

CV_SUCCESS The function ehfun and data pointer eh_data have been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes Error messages indicating that the CVODES solver memory is NULL will always be directed
to stderr.

]CVodeSetUserData

Call flag = CVodeSetUserData(cvode mem, user_data);

Description  The function CVodeSetUserData specifies the user data block user_data and attaches
it to the main CVODES memory block.

Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

Notes

user_data (void *) pointer to the user data.
The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

If specified, the pointer to user_data is passed to all user-supplied functions that have
it as an argument. Otherwise, a NULL pointer is passed.

If user_data is needed in user linear solver or preconditioner functions, the call to
CVodeSetUserData must be made before the call to specify the linear solver.
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’CVodeSetMaXOrd‘

Call flag = CVodeSetMaxOrd(cvode mem, maxord);

Description The function CVodeSetMaxOrd specifies the maximum order of the linear multistep
method.

Arguments cvode mem (void *) pointer to the CVODES memory block.

Return value

maxord (int) value of the maximum method order. This must be positive.
The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM NULL The cvode mem pointer is NULL.
CV_ILL_INPUT The specified value maxord is < 0, or larger than its previous value.

Notes The default value is ADAMS_Q_MAX = 12 for the Adams-Moulton method and BDF_Q_MAX
= 5 for the BDF method. Since maxord affects the memory requirements for the internal
CVODES memory block, its value cannot be increased past its previous value.
An input value greater than the default will result in the default value.

CVodeSetMaxNumSteps

Call flag = CVodeSetMaxNumSteps(cvode mem, mxsteps);

Description  The function CVodeSetMaxNumSteps specifies the maximum number of steps to be taken
by the solver in its attempt to reach the next output time.

Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

mxsteps (long int) maximum allowed number of steps.
The return value flag (of type int) is one of

CV_SUCCESS  The optional value has been successfully set.
CV_MEM_NULL The cvode mem pointer is NULL.

Notes Passing mxsteps = 0 results in CVODES using the default value (500).
Passing mxsteps < 0 disables the test (not recommended).

’ CVodeSetMaxHnilWarns

Call flag = CVodeSetMaxHnilWarns(cvode mem, mxhnil);

Description  The function CVodeSetMaxHnilWarns specifies the maximum number of messages issued
by the solver warning that ¢ + h =t on the next internal step.

Arguments cvode mem (void *) pointer to the CVODES memory block.

Return value

mxhnil (int) maximum number of warning messages (> 0).
The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes The default value is 10. A negative value for mxhnil indicates that no warning messages
should be issued.

’ CVodeSetStabLimDet ‘

Call flag = CVodeSetstabLimDet(cvode mem, stldet);

Description The function CVodeSetStabLimDet indicates if the BDF stability limit detection algo-
rithm should be used. See §2.3 for further details.

Arguments cvodemem (void *) pointer to the CVODES memory block.
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stldet (booleantype) flag controlling stability limit detection (SUNTRUE = on;
SUNFALSE = off).

Return value The return value flag (of type int) is one of
CV_SUCCESS  The optional value has been successfully set.
CV_MEM NULL The cvode mem pointer is NULL.
CV_ILL_INPUT The linear multistep method is not set to CV_BDF.

Notes The default value is SUNFALSE. If st1det = SUNTRUE when BDF is used and the method
order is greater than or equal to 3, then an internal function, CVsldet, is called to detect
a possible stability limit. If such a limit is detected, then the order is reduced.

CVodeSetInitStep‘

Call flag = CVodeSetInitStep(cvode mem, hin);
Description  The function CVodeSetInitStep specifies the initial step size.
Arguments cvodemem (void *) pointer to the CVODES memory block.
hin (realtype) value of the initial step size to be attempted. Pass 0.0 to use
the default value.
Return value The return value flag (of type int) is one of
CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes By default, CVODES estimates the initial step size to be the solution h of the equation
10.5R23j||lwrms = 1, where §j is an estimated second derivative of the solution at t0.

CVodeSetMinStep‘

Call flag = CVodeSetMinStep(cvode mem, hmin);

Description The function CVodeSetMinStep specifies a lower bound on the magnitude of the step
size.

Arguments cvode mem (void *) pointer to the CVODES memory block.
hmin (realtype) minimum absolute value of the step size (> 0.0).
Return value The return value flag (of type int) is one of
CV_SUCCESS  The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
CV_ILL_INPUT Either hmin is nonpositive or it exceeds the maximum allowable step size.

Notes The default value is 0.0.

CVodeSetMaxStep

Call flag = CVodeSetMaxStep(cvode mem, hmax);

Description  The function CVodeSetMaxStep specifies an upper bound on the magnitude of the step
size.

Arguments cvode mem (void *) pointer to the CVODES memory block.
hmax (realtype) maximum absolute value of the step size (> 0.0).
Return value The return value flag (of type int) is one of
CV_SUCCESS  The optional value has been successfully set.
CV_MEM NULL The cvode mem pointer is NULL.
CV_ILL_INPUT Either hmax is nonpositive or it is smaller than the minimum allowable
step size.
Notes Pass hmax = 0.0 to obtain the default value oo.
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CVodeSetStopTime

Call flag = CVodeSetStopTime(cvode mem, tstop);

Description  The function CVodeSetStopTime specifies the value of the independent variable ¢ past
which the solution is not to proceed.

Arguments cvodemem (void *) pointer to the CVODES memory block.

tstop (realtype) value of the independent variable past which the solution should
not proceed.

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
CV_ILL_INPUT The value of tstop is not beyond the current ¢ value, t,.

Notes The default, if this routine is not called, is that no stop time is imposed.

’CVodeSetMaxErrTestFails

Call flag = CVodeSetMaxErrTestFails(cvode_mem, maxnef);

Description The function CVodeSetMaxErrTestFails specifies the maximum number of error test
failures permitted in attempting one step.

Arguments cvode mem (void *) pointer to the CVODES memory block.
maxnef (int) maximum number of error test failures allowed on one step (> 0).

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM NULL The cvode_mem pointer is NULL.

Notes The default value is 7.

’CVodeSetMaxNonlinIters

Call flag = CVodeSetMaxNonlinIters(cvode_mem, maxcor) ;

Description  The function CVodeSetMaxNonlinIters specifies the maximum number of nonlinear
solver iterations permitted per step.

Arguments cvodemem (void *) pointer to the CVODES memory block.
maxcor (int) maximum number of nonlinear solver iterations allowed per step (> 0).

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes The default value is 3.
| CVodeSetMaxConvFails |
Call flag = CVodeSetMaxConvFails(cvode mem, maxncf);

Description  The function CVodeSetMaxConvFails specifies the maximum number of nonlinear solver
convergence failures permitted during one step.

Arguments cvodemem (void *) pointer to the CVODES memory block.

maxncf (int) maximum number of allowable nonlinear solver convergence failures
per step (> 0).

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
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Notes

CV_MEM_NULL The cvode_mem pointer is NULL.
The default value is 10.

’CVodeSetNonlinConvCoef‘

Call

Description

Arguments

Return value

flag = CVodeSetNonlinConvCoef (cvode mem, nlscoef);

The function CVodeSetNonlinConvCoef specifies the safety factor used in the nonlinear
convergence test (see §2.1).

cvode mem (void *) pointer to the CVODES memory block.
nlscoef (realtype) coefficient in nonlinear convergence test (> 0.0).

The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes The default value is 0.1.

CVodeSetIterType‘

Call flag = CVodeSetIterType(cvode mem, iter);

Description  The function CVodeSetIterType resets the nonlinear solver iteration type to iter.
Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

iter (int) specifies the type of nonlinear solver iteration and may be either
CV_NEWTON or CV_FUNCTIONAL.

The return value flag (of type int) is one of

CV_SUCCESS  The optional value has been successfully set.
CV_MEM NULL The cvode mem pointer is NULL.
CV_ILL_INPUT The iter value passed is neither CV_.NEWTON nor CV_FUNCTIONAL.

Notes The nonlinear solver iteration type is initially specified in the call to CVodeCreate (see
84.5.1). This function call is needed only if iter is being changed from its value in the
prior call to CVodeCreate.

’ CVodeSetConstraints ‘

Call flag = CVodeSetConstraints(cvode mem, constraints);

Description The function CVodeSetConstraints specifies a vector defining inequality constraints
for each component of the solution vector y.

Arguments cvode mem (void *) pointer to the CVODES memory block.

Return value

constraints (N_Vector) vector of constraint flags. If constraints[i] is
0.0 then no constraint is imposed on y;.
1.0 then y; will be constrained to be y; > 0.0.
—1.0 then y; will be constrained to be y; < 0.0.
2.0 then y; will be constrained to be y; > 0.0.
—2.0 then y; will be constrained to be y; < 0.0.

The return value of flag (of type int) is one of

CV_SUCCESS  The optional value has been successfully set.
CV_MEM_NULL The cvode _mem pointer is NULL.

CV_ILL_INPUT The constraints vector contains illegal values or the simultaneous correc-
tor option has been selected when doing forward sensitivity analysis.
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Notes The presence of a non-NULL constraints vector that is not 0.0 in all components will
cause constraint checking to be performed. However, a call with 0.0 in all components
of constraints will result in an illegal input return. A NULL constraints vector will
disable constraint checking.

Constraint checking when doing forward sensitivity analysis with the simultaneous cor-
rector option is currently disallowed and will result in an illegal input return.

4.5.6.2 Direct linear solver interface optional input functions

The cvDLS solver interface needs a function to compute an approximation to the Jacobian matrix
J(t,y). This function must be of type CVD1lsJacFn. The user can supply a Jacobian function, or if
using a dense or banded matrix J can use the default internal difference quotient approximation that
comes with the cvDLS solver. To specify a user-supplied Jacobian function jac, CVDLS provides the
function CVD1sSetJacFn. The CVDLS interface passes the pointer user_data to the Jacobian function.
This allows the user to create an arbitrary structure with relevant problem data and access it during
the execution of the user-supplied Jacobian function, without using global data in the program. The
pointer user_data may be specified through CVodeSetUserData.

’ CVDlsSetJacFn
Call flag = CVDlsSetJacFn(cvodemem, jac);

Description  The function CVD1sSetJacFn specifies the Jacobian approximation function to be used.

Arguments cvodemem (void *) pointer to the CVODES memory block.
jac (CVD1lsJacFn) user-defined Jacobian approximation function.

Return value The return value flag (of type int) is one of

CVDLS_SUCCESS The optional value has been successfully set.
CVDLS_MEM NULL The cvode_mem pointer is NULL.
CVDLS_LMEM_NULL The cVDLS linear solver interface has not been initialized.

Notes By default, cvDLS uses an internal difference quotient function for dense and band
matrices. If NULL is passed to jac, this default function is used. An error will occur if
no jac is supplied when using a sparse matrix.

The function type CVDlsJacFn is described in §4.6.5.

4.5.6.3 Iterative linear solver interface optional input functions

If preconditioning is utilized with the CvVSPILS linear solver interface, then the user must supply a
preconditioner solve function psolve and specify its name in a call to CVSpilsSetPreconditioner.
The evaluation and preprocessing of any Jacobian-related data needed by the user’s preconditioner
solve function is done in the optional user-supplied function psetup. Both of these functions are fully
specified in §4.6. If used, the psetup function should also be specified in the call to
CVSpilsSetPreconditioner.

The pointer user_data received through CVodeSetUserData (or a pointer to NULL if user_data
was not specified) is passed to the preconditioner psetup and psolve functions. This allows the user
to create an arbitrary structure with relevant problem data and access it during the execution of the
user-supplied preconditioner functions without using global data in the program.

The cvsPILS solver interface requires a function to compute an approximation to the product
between the Jacobian matrix J(t,y) and a vector v. The user can supply a Jacobian-times-vector
approximation function or use the default internal difference quotient function that comes with the
CVSPILS interface. A user-defined Jacobian-vector function must be of type CVSpilsJacTimesVecFn
and can be specified through a call to CVSpilsSetJacTimes (see §4.6.6 for specification details).
As with the user-supplied preconditioner functions, the evaluation and processing of any Jacobian-
related data needed by the user’s Jacobian-times-vector function is done in the optional user-supplied
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function jtsetup (see §4.6.7 for specification details). As with the preconditioner functions, a pointer
to the user-defined data structure, user_data, specified through CVodeSetUserData (or a NULL pointer
otherwise) is passed to the Jacobian-times-vector setup and product functions, jtsetup and jtimes,
each time they are called.

Finally, as described in Section 2.1, the CVSPILS interface requires that iterative linear solvers stop
when the norm of the preconditioned residual is less than 0.05 - (0.1€), where € is the nonlinear solver
tolerance. The user may adjust this linear solver tolerance by calling the function CVSpilsSetEpsLin.

CVSpilsSetPreconditioner

Call flag = CVSpilsSetPreconditioner(cvode mem, psetup, psolve);

Description  The function CVSpilsSetPreconditioner specifies the preconditioner setup and solve
functions.
Arguments cvodemem (void *) pointer to the CVODES memory block.

psetup (CVSpilsPrecSetupFn) user-defined preconditioner setup function. Pass
NULL if no setup is necessary.

psolve (CVSpilsPrecSolveFn) user-defined preconditioner solve function.
Return value The return value flag (of type int) is one of

CVSPILS_SUCCESS The optional values have been successfully set.

CVSPILS_MEM NULL The cvode mem pointer is NULL.

CVSPILS_LMEM NULL The CVSPILS linear solver has not been initialized.

CVSPILS_SUNLS_FAIL An error occurred when setting up preconditioning in the SUN-
LINSOL object used by the cVSPILS interface.

Notes The function type CVSpilsPrecSolveFn is described in §4.6.8. The function type
CVSpilsPrecSetupFn is described in §4.6.9.

CVSpilsSetJacTimes

Call flag = CVSpilsSetJacTimes(cvode mem, jtsetup, jtimes);

Description The function CVSpilsSetJacTimes specifies the Jacobian-vector setup and product
functions.
Arguments cvode mem (void *) pointer to the CVODES memory block.
jtsetup (CVSpilsJacTimesSetupFn) user-defined Jacobian-vector setup function. Pass
NULL if no setup is necessary.
jtimes (CvSpilsJacTimesVecFn) user-defined Jacobian-vector product function.

Return value The return value flag (of type int) is one of

CVSPILS_SUCCESS The optional value has been successfully set.
CVSPILS_MEM NULL The cvode _mem pointer is NULL.
CVSPILS_LMEM_NULL The CVSPILS linear solver has not been initialized.

CVSPILS_SUNLS_FAIL An error occurred when setting up the system matrix-times-vector
routines in the SUNLINSOL object used by the CVSPILS interface.

Notes By default, the cvsPILS linear solvers use an internal difference quotient function. If
NULL is passed to jtimes, this default function is used.

The function type CVSpilsJacTimesSetupFn is described in §4.6.7.
The function type CVSpilsJacTimesVecFn is described in §4.6.6.
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CVSpilsSetEpsLin

Call flag = CVSpilsSetEpsLin(cvode mem, eplifac);

Description  The function CVSpilsSetEpsLin specifies the factor by which the Krylov linear solver’s
convergence test constant is reduced from the Newton iteration test constant.

Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

Notes

eplifac (realtype) linear convergence safety factor (> 0.0).

The return value flag (of type int) is one of

CVSPILS_SUCCESS The optional value has been successfully set.
CVSPILS_MEM NULL The cvode mem pointer is NULL.
CVSPILS_LMEM_NULL The CVSPILS linear solver has not been initialized.
CVSPILS_ILL_INPUT The factor eplifac is negative.

The default value is 0.05.

If eplifac= 0.0 is passed, the default value is used.

4.5.6.4 Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm.

’ CVodeSetRootDirection ‘

Call

Description

Arguments

Return value

Notes

flag = CVodeSetRootDirection(cvode mem, rootdir);

The function CVodeSetRootDirection specifies the direction of zero-crossings to be

located and returned.

cvode mem (void *) pointer to the CVODES memory block.

rootdir (int *) state array of length nrtfn, the number of root functions g;, as spec-
ified in the call to the function CVodeRootInit. A value of O for rootdir[i]
indicates that crossing in either direction for g; should be reported. A value
of +1 or —1 indicates that the solver should report only zero-crossings where
g; is increasing or decreasing, respectively.

The return value flag (of type int) is one of

CV_SUCCESS  The optional value has been successfully set.
CV_MEM_NULL The cvode mem pointer is NULL.
CV_ILL_INPUT rootfinding has not been activated through a call to CVodeRootInit.

The default behavior is to monitor for both zero-crossing directions.

’ CVodeSetNoInactiveRootWarn ‘

Call

Description

Arguments

Return value

Notes

flag = CVodeSetNoInactiveRootWarn(cvode mem) ;

The function CVodeSetNoInactiveRootWarn disables issuing a warning if some root
function appears to be identically zero at the beginning of the integration.

cvode mem (void *) pointer to the CVODES memory block.

The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.

CV_MEM_NULL The cvode_mem pointer is NULL.

CVODES will not report the initial conditions as a possible zero-crossing (assuming that
one or more components g; are zero at the initial time). However, if it appears that
some g; is identically zero at the initial time (i.e., g; is zero at the initial time and after

the first step), CVODES will issue a warning which can be disabled with this optional
input function.
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4.5.7 Interpolated output function

An optional function CVodeGetDky is available to obtain additional output values. This function
should only be called after a successful return from CVode as it provides interpolated values either of
y or of its derivatives (up to the current order of the integration method) interpolated to any value of
t in the last internal step taken by CVODES.

The call to the CVodeGetDky function has the following form:

CVodeGetDky

Call flag = CVodeGetDky(cvodemem, t, k, dky);

Description  The function CVodeGetDky computes the k-th derivative of the function y at time t, i.e.
d®)y /dt®)(t), where t, —h, <t < t,, t, denotes the current internal time reached, and
h. is the last internal step size successfully used by the solver. The user may request k

=0,1,...,qu, where g, is the current order (optional output qlast).
Arguments cvodemem (void *) pointer to the CVODES memory block.
t (realtype) the value of the independent variable at which the derivative is
to be evaluated.
k (int) the derivative order requested.
dky (N_Vector) vector containing the derivative. This vector must be allocated
by the user.

Return value The return value flag (of type int) is one of

CV_SUCCESS CVodeGetDky succeeded.

CV_BAD K k is not in the range 0,1,...,q,.
CV_BAD_T t is not in the interval [t, — hy, t,].
CV_BAD_DKY The dky argument was NULL.
CV_MEM_NULL The cvode_mem argument was NULL.

Notes It is only legal to call the function CVodeGetDky after a successful return from CVode.
See CVodeGetCurrentTime, CVodeGetLastOrder, and CVodeGetLastStep in the next
section for access to t,, qu, and h,, respectively.

4.5.8 Optional output functions

CVODES provides an extensive set of functions that can be used to obtain solver performance infor-
mation. Table 4.3 lists all optional output functions in ¢vODES, which are then described in detail in
the remainder of this section.

Some of the optional outputs, especially the various counters, can be very useful in determining
how successful the CVODES solver is in doing its job. For example, the counters nsteps and nfevals
provide a rough measure of the overall cost of a given run, and can be compared among runs with
differing input options to suggest which set of options is most efficient. The ratio nniters/nsteps
measures the performance of the Newton iteration in solving the nonlinear systems at each time step;
typical values for this range from 1.1 to 1.8. The ratio njevals/nniters (in the case of a direct
linear solver), and the ratio npevals/nniters (in the case of an iterative linear solver) measure the
overall degree of nonlinearity in these systems, and also the quality of the approximate Jacobian
or preconditioner being used. Thus, for example, njevals/nniters can indicate if a user-supplied
Jacobian is inaccurate, if this ratio is larger than for the case of the corresponding internal Jacobian.
The ratio nliters/nniters measures the performance of the Krylov iterative linear solver, and thus
(indirectly) the quality of the preconditioner.

4.5.8.1 SUNDIALS version information

The following functions provide a way to get SUNDIALS version information at runtime.
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Table 4.3: Optional outputs from CVODES, CVDLS, CVDIAG, and CVSPILS

Optional output \ Function name

CVODES main solver

Size of CVODES real and integer workspaces
Cumulative number of internal steps

No. of calls to r.h.s. function

No. of calls to linear solver setup function

No. of local error test failures that have occurred
Order used during the last step

Order to be attempted on the next step

No. of order reductions due to stability limit detection
Actual initial step size used

Step size used for the last step

Step size to be attempted on the next step
Current internal time reached by the solver
Suggested factor for tolerance scaling

Error weight vector for state variables
Estimated local error vector

No. of nonlinear solver iterations

No. of nonlinear convergence failures

All CVODES integrator statistics

CVODES nonlinear solver statistics

Array showing roots found

No. of calls to user root function

Name of constant associated with a return flag

CVodeGetWorkSpace
CVodeGetNumSteps
CVodeGetNumRhsEvals
CVodeGetNumLinSolvSetups
CVodeGetNumErrTestFails
CVodeGetLastOrder
CVodeGetCurrentOrder
CVodeGetNumStabLimOrderReds
CVodeGetActualInitStep
CVodeGetLastStep
CVodeGetCurrentStep
CVodeGetCurrentTime
CVodeGetTolScaleFactor
CVodeGetErrWeights
CVodeGetEstLocalErrors
CVodeGetNumNonlinSolvIters
CVodeGetNumNonlinSolvConvFails
CVodeGetIntegratorStats
CVodeGetNonlinSolvStats
CvodeGetRootInfo
CVodeGetNumGEvals
CVodeGetReturnFlagName

CVDLS linear solver interface

Size of real and integer workspaces CVDlsGetWorkSpace

No. of Jacobian evaluations CVDlsGetNumJacEvals

No. of r.h.s. calls for finite diff. Jacobian evals. CVD1lsGetNumRhsEvals

Last return from a linear solver function CVD1lsGetLastFlag

Name of constant associated with a return flag CVD1sGetReturnFlagName
CVDIAG linear solver interface

Size of CVDIAG real and integer workspaces CVDiagGetWorkSpace

No. of r.h.s. calls for finite diff. Jacobian evals. CVDiagGetNumRhsEvals

Last return from a cvDIAG function CVDiagGetLastFlag

Name of constant associated with a return flag

CVDiagGetReturnFlagName

CVSPILS linear solver interface

Size of real and integer workspaces

No. of linear iterations

No. of linear convergence failures

No. of preconditioner evaluations

No. of preconditioner solves

No. of Jacobian-vector setup evaluations

No. of Jacobian-vector product evaluations

No. of r.h.s. calls for finite diff. Jacobian-vector evals.
Last return from a linear solver function

Name of constant associated with a return flag

CVSpilsGetWorkSpace
CVSpilsGetNumLinIters
CVSpilsGetNumConvFails
CVSpilsGetNumPrecEvals
CVSpilsGetNumPrecSolves
CVSpilsGetNumJTSetupEvals
CVSpilsGetNumJtimesEvals
CVSpilsGetNumRhsEvals
CVSpilsGetLastFlag
CVSpilsGetReturnFlagName




4.5 User-callable functions 59

’ SUNDIALSGetVersion
Call flag = SUNDIALSGetVersion(version, len);

Description The function SUNDIALSGetVersion fills a character array with SUNDIALS version infor-
mation.

Arguments version (char *) character array to hold the SUNDIALS version information.
len (int) allocated length of the version character array.

Return value If successful, SUNDIALSGetVersion returns 0 and version contains the SUNDIALS ver-

sion information. Otherwise, it returns —1 and version is not set (the input character
array is too short).

Notes A string of 25 characters should be sufficient to hold the version information. Any
trailing characters in the version array are removed.

’ SUNDIALSGetVersionNumber
Call flag = SUNDIALSGetVersionNumber (&major, &minor, &patch, label, len);

Description  The function SUNDIALSGetVersionNumber set integers for the SUNDIALS major, minor,
and patch release numbers and fills a character array with the release label if applicable.

Arguments major (int) SUNDIALS release major version number.
minor (int) SUNDIALS release minor version number.
patch (int) SUNDIALS release patch version number.
label (char *) character array to hold the SUNDIALS release label.
len (int) allocated length of the label character array.
Return value If successful, SUNDIALSGetVersionNumber returns 0 and the major, minor, patch, and

label values are set. Otherwise, it returns —1 and the values are not set (the input
character array is too short).

Notes A string of 10 characters should be sufficient to hold the label information. If a label
is not used in the release version, no information is copied to label. Any trailing
characters in the label array are removed.

4.5.8.2 Main solver optional output functions

CVODES provides several user-callable functions that can be used to obtain different quantities that
may be of interest to the user, such as solver workspace requirements, solver performance statistics,
as well as additional data from the CVODES memory block (a suggested tolerance scaling factor,
the error weight vector, and the vector of estimated local errors). Functions are also provided to
extract statistics related to the performance of the CVODES nonlinear solver used. As a convenience,
additional information extraction functions provide the optional outputs in groups. These optional
output functions are described next.

CVodeGetWorkSpace‘

Call flag = CVodeGetWorkSpace(cvode mem, &lenrw, &leniw);
Description  The function CVodeGetWorkSpace returns the CVODES real and integer workspace sizes.
Arguments cvodemem (void *) pointer to the CVODES memory block.
lenrw (long int) the number of realtype values in the CVODES workspace.
leniw (long int) the number of integer values in the CVODES workspace.
Return value The return value flag (of type int) is one of
CV_SUCCESS The optional output values have been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
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Notes In terms of the problem size IV, the maximum method order maxord, and the number
nrtfn of root functions (see §4.5.4), the actual size of the real workspace, in realtype
words, is given by the following:

e base value: lenrw = 96 + (maxord+5) N, + 3snrtfn;
e using CVodeSVtolerances: lenrw = lenrw +1NV,;

e with constraint checking (see CVodeSetConstraints); lenrw = lenrw +N,;

where N, is the number of real words in one N_Vector (= N).
The size of the integer workspace (without distinction between int and long int words)
is given by:

e base value: leniw = 40 + (maxord+5) * V; + nrtfn;

e using CVodeSVtolerances: leniw = leniw +/N;;

e with constraint checking: lenrw = lenrw +N;;
where N; is the number of integer words in one N_Vector (= 1 for NVECTOR_SERIAL
and 2*npes for NVECTOR_PARALLEL and npes processors).
For the default value of maxord, no rootfinding, no constraints, and without using
CVodeSVtolerances, these lengths are given roughly by:

e For the Adams method: lenrw = 96 + 17N and leniw = 57

e For the BDF method: lenrw = 96 + 10N and leniw = 50

Note that additional memory is allocated if quadratures and/or forward sensitivity
integration is enabled. See §4.7.1 and §5.2.1 for more details.

CVodeGetNumSteps‘

Call flag = CVodeGetNumSteps (cvode mem, &nsteps);

Description  The function CVodeGetNumSteps returns the cumulative number of internal steps taken
by the solver (total so far).

Arguments cvodemem (void *) pointer to the CVODES memory block.
nsteps (long int) number of steps taken by CVODES.

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

| CVodeGetNumRhsEvals |
Call flag = CVodeGetNumRhsEvals(cvode mem, &nfevals);

Description  The function CVodeGetNumRhsEvals returns the number of calls to the user’s right-hand
side function.

Arguments cvodemem (void *) pointer to the CVODES memory block.
nfevals (long int) number of calls to the user’s f function.

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes The nfevals value returned by CVodeGetNumRhsEvals does not account for calls made
to £ by a linear solver or preconditioner module.
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CVodeGetNumLinSolvSetups

Call flag = CVodeGetNumLinSolvSetups(cvode mem, &nlinsetups);

Description  The function CVodeGetNumLinSolvSetups returns the number of calls made to the
linear solver’s setup function.

Arguments cvodemem (void *) pointer to the CVODES memory block.

nlinsetups (long int) number of calls made to the linear solver setup function.
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

’CVodeGetNumErrTestFails‘

Call flag = CVodeGetNumErrTestFails(cvode mem, &netfails);

Description  The function CVodeGetNumErrTestFails returns the number of local error test failures
that have occurred.

Arguments cvodemem (void *) pointer to the CVODES memory block.

netfails (long int) number of error test failures.
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

’CVodeGetLastOrder

Call flag = CVodeGetLastOrder(cvode mem, &glast);

Description  The function CVodeGetLastOrder returns the integration method order used during the
last internal step.

Arguments cvode mem (void *) pointer to the CVODES memory block.

qlast (int) method order used on the last internal step.
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

’CVodeGetCurrentOrder‘

Call flag = CVodeGetCurrentOrder (cvode mem, &qcur);

Description The function CVodeGetCurrentOrder returns the integration method order to be used
on the next internal step.

Arguments cvode mem (void *) pointer to the CVODES memory block.

qcur (int) method order to be used on the next internal step.
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
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CVodeGetLastStep

Call flag = CVodeGetLastStep(cvode mem, &hlast);

Description The function CVodeGetLastStep returns the integration step size taken on the last
internal step.

Arguments cvode mem (void *) pointer to the CVODES memory block.
hlast (realtype) step size taken on the last internal step.

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CVodeGetCurrentStep

Call flag = CVodeGetCurrentStep(cvode mem, &hcur);

Description  The function CVodeGetCurrentStep returns the integration step size to be attempted
on the next internal step.

Arguments cvode mem (void *) pointer to the CVODES memory block.
hcur (realtype) step size to be attempted on the next internal step.

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CVodeGetActualInitStep

Call flag = CVodeGetActualInitStep(cvode mem, &hinused) ;

Description  The function CVodeGetActualInitStep returns the value of the integration step size
used on the first step.

Arguments cvodemem (void *) pointer to the CVODES memory block.
hinused (realtype) actual value of initial step size.

Return value The return value flag (of type int) is one of
CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes Even if the value of the initial integration step size was specified by the user through
a call to CVodeSetInitStep, this value might have been changed by CVODES to ensure
that the step size is within the prescribed bounds (hmin < ho < Amax), Or to satisfy the
local error test condition.

| CVodeGetCurrentTime

Call flag = CVodeGetCurrentTime(cvode mem, &tcur);

Description The function CVodeGetCurrentTime returns the current internal time reached by the
solver.

Arguments cvodemem (void *) pointer to the CVODES memory block.
tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
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’ CVodeGetNumStabLimOrderReds

Call

Description

Arguments

Return value

Notes

flag = CVodeGetNumStabLimOrderReds(cvode mem, &nslred);

The function CVodeGetNumStabLimOrderReds returns the number of order reductions
dictated by the BDF stability limit detection algorithm (see §2.3).

cvode mem (void *) pointer to the CVODES memory block.

nslred (long int) number of order reductions due to stability limit detection.
The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

If the stability limit detection algorithm was not initialized (CVodeSetStabLimDet was
not called), then nslred = 0.

’CVodeGetTolScaleFactor‘

Call

Description

Arguments

Return value

flag = CVodeGetTolScaleFactor(cvode mem, &tolsfac);

The function CVodeGetTolScaleFactor returns a suggested factor by which the user’s
tolerances should be scaled when too much accuracy has been requested for some internal
step.

cvode mem (void *) pointer to the CVODES memory block.

tolsfac (realtype) suggested scaling factor for user-supplied tolerances.

The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.

CV_MEM_NULL The cvode_mem pointer is NULL.

CVodeGetErrWeights

Call flag = CVodeGetErrWeights(cvode mem, eweight);

Description  The function CVodeGetErrWeights returns the solution error weights at the current
time. These are the reciprocals of the W; given by (2.7).

Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

Notes

eweight (N_Vector) solution error weights at the current time.
The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

The user must allocate memory for eweight.

’CVodeGetEstLocalErrors

Call
Description

Arguments

Return value

flag = CVodeGetEstLocalErrors(cvode mem, ele);
The function CVodeGetEstLocalErrors returns the vector of estimated local errors.

cvode mem (void *) pointer to the CVODES memory block.

ele (N_Vector) estimated local errors.
The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
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Notes The user must allocate memory for ele.
The values returned in ele are valid only if CVode returned a non-negative value.

The ele vector, togther with the eweight vector from CVodeGetErrWeights, can be
used to determine how the various components of the system contributed to the es-
timated local error test. Specifically, that error test uses the RMS norm of a vector
whose components are the products of the components of these two vectors. Thus, for
example, if there were recent error test failures, the components causing the failures are
those with largest values for the products, denoted loosely as eweight [i]*ele[i].

CVodeGetIntegratorStats

Call flag = CVodeGetIntegratorStats(cvode mem, &nsteps, &nfevals,
&nlinsetups, &netfails, &qlast, &qcur,

&hinused, &hlast, &hcur, &tcur);
Description  The function CVodeGetIntegratorStats returns the CVODES integrator statistics as a
group.
Arguments cvodemem (void *) pointer to the CVODES memory block.
nsteps long int) number of steps taken by CVODES.
nfevals long int) number of calls to the user’s £ function.

nlinsetups (long int) number of calls made to the linear solver setup function.

qlast int) method order used on the last internal step.
qcur int) method order to be used on the next internal step.
hinused realtype) actual value of initial step size.

hlast

(
(
(
(
netfails (long int) number of error test failures.
(
(
(
(realtype) step size taken on the last internal step.
(

hcur realtype) step size to be attempted on the next internal step.
tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of
CV_SUCCESS the optional output values have been successfully set.

CV_MEM_NULL the cvode_mem pointer is NULL.

’CVodeGetNumNonlinSoleters‘

Call flag = CVodeGetNumNonlinSolvIters(cvode mem, &nniters);

Description  The function CVodeGetNumNonlinSolvIters returns the number of nonlinear (func-
tional or Newton) iterations performed.

Arguments cvodemem (void *) pointer to the CVODES memory block.
nniters (long int) number of nonlinear iterations performed.

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output values have been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

’CVodeGetNumNonlinSovaonvFai1s

Call flag = CVodeGetNumNonlinSolvConvFails(cvode mem, &nncfails);

Description  The function CVodeGetNumNonlinSolvConvFails returns the number of nonlinear con-
vergence failures that have occurred.

Arguments cvodemem (void *) pointer to the CVODES memory block.
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nncfails (long int) number of nonlinear convergence failures.
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

[ CVodeGetNonlinSolvStats

Call flag = CVodeGetNonlinSolvStats(cvode mem, &nniters, &nncfails);

Description  The function CVodeGetNonlinSolvStats returns the CVODES nonlinear solver statistics
as a group.

Arguments cvode mem (void *) pointer to the CVODES memory block.
nniters (long int) number of nonlinear iterations performed.
nncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CVodeGetReturnFlagName

Call name = CVodeGetReturnFlagName(flag);

Description  The function CVodeGetReturnFlagName returns the name of the CVODES constant cor-
responding to flag.

Arguments  The only argument, of type int, is a return flag from a CvVODES function.

Return value The return value is a string containing the name of the corresponding constant.

4.5.8.3 Rootfinding optional output functions

There are two optional output functions associated with rootfinding.

| CVodeGetRootInfo |

Call flag = CVodeGetRootInfo(cvode mem, rootsfound);

Description  The function CVodeGetRootInfo returns an array showing which functions were found
to have a root.
Arguments cvodemem (void *) pointer to the CVODES memory block.

rootsfound (int *) array of length nrtfn with the indices of the user functions g;
found to have a root. For i = 0,... nrtfn—1, rootsfound[i]# 0 if g; has a
root, and = 0 if not.

Return value The return value flag (of type int) is one of:

CV_SUCCESS The optional output values have been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes Note that, for the components g; for which a root was found, the sign of rootsfound]i]
indicates the direction of zero-crossing. A value of +1 indicates that g; is increasing,
while a value of —1 indicates a decreasing g;.

The user must allocate memory for the vector rootsfound.
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’CVodeGetNumGEvals‘

Call flag = CVodeGetNumGEvals(cvode mem, &ngevals);

Description  The function CVodeGetNumGEvals returns the cumulative number of calls made to the
user-supplied root function g.
Arguments cvode mem (void *) pointer to the CVODES memory block.

ngevals (long int) number of calls made to the user’s function g thus far.
Return value The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

4.5.8.4 Direct linear solver interface optional output functions

The following optional outputs are available from the cvDLS modules: workspace requirements, num-
ber of calls to the Jacobian routine, number of calls to the right-hand side routine for finite-difference
Jacobian approximation, and last return value from a cvDLS function. Note that, where the name of
an output would otherwise conflict with the name of an optional output from the main solver, a suffix
LS (for Linear Solver) has been added (e.g. lenrwLS).

’CVDlsGetWorkSpace‘

Call flag = CVDlsGetWorkSpace(cvode mem, &lenrwLS, &leniwLS);

Description  The function CVD1sGetWorkSpace returns the sizes of the real and integer workspaces
used by the cVvDLS linear solver interface.

Arguments cvodemem (void *) pointer to the CVODES memory block.
lenrwLS (long int) the number of realtype values in the CVDLS workspace.

leniwlS (long int) the number of integer values in the cvDLS workspace.
Return value The return value flag (of type int) is one of

CVDLS_SUCCESS  The optional output values have been successfully set.
CVDLS_MEM NULL The cvode_mem pointer is NULL.
CVDLS_LMEM_NULL The cvDLS linear solver has not been initialized.
Notes The workspace requirements reported by this routine correspond only to memory allo-
cated within this interface and to memory allocated by the SUNLINSOL object attached

to it. The template Jacobian matrix allocated by the user outside of CVDLS is not
included in this report.

| CVD1sGetNumJacEvals |

Call flag = CVDlsGetNumJacEvals(cvode mem, &njevals);

Description The function CVD1sGetNumJacEvals returns the number of calls made to the CVDLS
Jacobian approximation function.
Arguments cvode mem (void *) pointer to the CVODES memory block.

njevals (long int) the number of calls to the Jacobian function.
Return value The return value flag (of type int) is one of
CVDLS_SUCCESS  The optional output value has been successfully set.

CVDLS_MEM NULL The cvode_mem pointer is NULL.
CVDLS_LMEM_NULL The cvDLS linear solver has not been initialized.
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| CVD1sGetNumRhsEvals
Call flag = CVDlsGetNumRhsEvals(cvode mem, &nfevalsLS);

Description The function CVDlsGetNumRhsEvals returns the number of calls made to the user-
supplied right-hand side function due to the finite difference Jacobian approximation.
Arguments cvode mem (void *) pointer to the CVODES memory block.
nfevalsLS (long int) the number of calls made to the user-supplied right-hand side
function.

Return value The return value flag (of type int) is one of

CVDLS_SUCCESS  The optional output value has been successfully set.
CVDLS_MEM NULL The cvode_mem pointer is NULL.
CVDLS_LMEM_NULL The CVDLS linear solver has not been initialized.

Notes The value nfevalsLS is incremented only if one of the default internal difference quotient
functions (dense or banded) is used.

CVD1sGetLastFlag |

Call flag = CVDlsGetLastFlag(cvode mem, &lsflag);
Description The function CVD1sGetLastFlag returns the last return value from a CVDLS routine.

Arguments cvode mem (void *) pointer to the CVODES memory block.

lsflag (long int) the value of the last return flag from a cvDLS function.
Return value The return value flag (of type int) is one of

CVDLS_SUCCESS  The optional output value has been successfully set.
CVDLS_MEM NULL The cvode mem pointer is NULL.
CVDLS_LMEM NULL The cvDLS linear solver has not been initialized.
Notes If the SUNLINSOL_DENSE or SUNLINSOL_BAND setup function failed (CVode returned
CV_LSETUP_FAIL), then the value of 1sflag is equal to the column index (numbered

from one) at which a zero diagonal element was encountered during the LU factorization
of the (dense or banded) Jacobian matrix.

CVDlsGetReturnFlagName ‘

Call name = CVDlsGetReturnFlagName(lsflag);

Description  The function CVD1sGetReturnFlagName returns the name of the CVDLS constant corre-
sponding to 1sflag.

Arguments  The only argument, of type long int, is a return flag from a cvDLS function.
Return value The return value is a string containing the name of the corresponding constant.

If 1 < 1sflag < N (LU factorization failed), this routine returns “NONE”.

4.5.8.5 Iterative linear solver interface optional output functions

The following optional outputs are available from the CVSPILS modules: workspace requirements,
number of linear iterations, number of linear convergence failures, number of calls to the preconditioner
setup and solve routines, number of calls to the Jacobian-vector setup and product routines, number
of calls to the right-hand side routine for finite-difference Jacobian-vector product approximation,
and last return value from a linear solver function. Note that, where the name of an output would
otherwise conflict with the name of an optional output from the main solver, a suffix LS (for Linear
Solver) has been added (e.g. lenrwLS).
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CVSpilsGetWorkSpace

Call flag = CVSpilsGetWorkSpace(cvode mem, &lenrwLS, &leniwLS);

Description The function CVSpilsGetWorkSpace returns the global sizes of the CvSPILS real and
integer workspaces.

Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

lenrwLS (long int) the number of realtype values in the CVSPILS workspace.
leniwLS (long int) the number of integer values in the CVSPILS workspace.

The return value flag (of type int) is one of
CVSPILS_SUCCESS The optional output value has been successfully set.

CVSPILS_MEM NULL The cvode mem pointer is NULL.
CVSPILS_LMEM_NULL The CVSPILS linear solver has not been initialized.

Notes The workspace requirements reported by this routine correspond only to memory allo-
cated within this interface and to memory allocated by the SUNLINSOL object attached
to it.

In a parallel setting, the above values are global (i.e., summed over all processors).
CVSpilsGetNumLinIters

Call flag = CVSpilsGetNumLinIters(cvode mem, &nliters);

Description  The function CVSpilsGetNumLinIters returns the cumulative number of linear itera-
tions.

Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

nliters (long int) the current number of linear iterations.
The return value flag (of type int) is one of
CVSPILS_SUCCESS The optional output value has been successfully set.

CVSPILS_MEM NULL The cvode _mem pointer is NULL.
CVSPILS_LMEM_NULL The cVSPILS linear solver has not been initialized.

CVSpilsGetNumConvFails

Call

Description

Arguments

Return value

flag = CVSpilsGetNumConvFails(cvode mem, &nlcfails);

The function CVSpilsGetNumConvFails returns the cumulative number of linear con-
vergence failures.

cvode mem (void *) pointer to the CVODES memory block.

nlcfails (long int) the current number of linear convergence failures.

The return value flag (of type int) is one of
CVSPILS_SUCCESS The optional output value has been successfully set.

CVSPILS_MEM NULL The cvode _mem pointer is NULL.
CVSPILS_LMEM_NULL The CcVSPILS linear solver has not been initialized.

CVSpilsGetNumPrecEvals

Call

Description

Arguments

flag = CVSpilsGetNumPrecEvals(cvode mem, &npevals);

The function CVSpilsGetNumPrecEvals returns the number of preconditioner evalua-
tions, i.e., the number of calls made to psetup with jok = SUNFALSE.

cvode mem (void *) pointer to the CVODES memory block.
npevals (long int) the current number of calls to psetup.
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Return value

The return value flag (of type int) is one of

CVSPILS_SUCCESS The optional output value has been successfully set.
CVSPILS_MEM_NULL The cvode_mem pointer is NULL.

CVSPILS_LMEM NULL The cVSPILS linear solver has not been initialized.

CVSpilsGetNumPrecSolves

Call

Description

Arguments

Return value

flag = CVSpilsGetNumPrecSolves(cvode mem, &npsolves);

The function CVSpilsGetNumPrecSolves returns the cumulative number of calls made
to the preconditioner solve function, psolve.

cvode mem (void *) pointer to the CVODES memory block.

npsolves (long int) the current number of calls to psolve.

The return value flag (of type int) is one of

CVSPILS_SUCCESS The optional output value has been successfully set.

CVSPILS_MEM NULL The cvode mem pointer is NULL.
CVSPILS_LMEM_NULL The CcVSPILS linear solver has not been initialized.

CVSpilsGetNumJTSetupEvals

Call

Description

Arguments

Return value

flag = CVSpilsGetNumJTSetupEvals(cvode mem, &njtsetup);

The function CVSpilsGetNumJTSetupEvals returns the cumulative number of calls
made to the Jacobian-vector setup function jtsetup.

cvode mem (void *) pointer to the CVODES memory block.

njtsetup (long int) the current number of calls to jtsetup.

The return value flag (of type int) is one of

CVSPILS_SUCCESS The optional output value has been successfully set.

CVSPILS_MEM NULL The cvode_mem pointer is NULL.

CVSPILS_LMEM_NULL The CVSPILS linear solver has not been initialized.

CVSpilsGetNumJtimesEvals

Call

Description

Arguments

Return value

flag = CVSpilsGetNumJtimesEvals(cvode mem, &njvevals);

The function CVSpilsGetNumJtimesEvals returns the cumulative number of calls made
to the Jacobian-vector function jtimes.

cvode mem (void *) pointer to the CVODES memory block.

njvevals (long int) the current number of calls to jtimes.

The return value flag (of type int) is one of

CVSPILS_SUCCESS The optional output value has been successfully set.
CVSPILS_MEM NULL The cvode_mem pointer is NULL.
CVSPILS_LMEM NULL The CVSPILS linear solver has not been initialized.

CVSpilsGetNumRhsEvals

Call flag = CVSpilsGetNumRhsEvals(cvode mem, &nfevalsLS);

Description The function CVSpilsGetNumRhsEvals returns the number of calls to the user right-
hand side function for finite difference Jacobian-vector product approximation.

Arguments cvode mem (void *) pointer to the CVODES memory block.

nfevalsLS (long int) the number of calls to the user right-hand side function.
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Return value The return value flag (of type int) is one of
CVSPILS_SUCCESS The optional output value has been successfully set.
CVSPILS_MEM NULL The cvode_mem pointer is NULL.
CVSPILS_LMEM_NULL The CVSPILS linear solver has not been initialized.

Notes The value nfevalsLS is incremented only if the default CVSpilsDQJtimes difference
quotient function is used.

CVSpilsGetLastFlag‘

Call flag = CVSpilsGetLastFlag(cvode mem, &lsflag);
Description  The function CVSpilsGetLastFlag returns the last return value from a CVSPILS routine.

Arguments cvode mem (void *) pointer to the CVODES memory block.
1sflag (long int) the value of the last return flag from a CvSPILS function.

Return value The return value flag (of type int) is one of

CVSPILS_SUCCESS The optional output value has been successfully set.
CVSPILS_MEM_NULL The cvode_mem pointer is NULL.
CVSPILS_LMEM NULL The cVSPILS linear solver has not been initialized.

Notes If the cVSPILS setup function failed (CVode returned CV_LSETUP_FAIL), 1sflag will be
SUNLS_PSET_FAIL_UNREC, SUNLS_ASET_FAIL_UNREC, or SUNLS_PACKAGE_FAIL_UNREC.

If the cvsPILS solve function failed (CVode returned CV_LSOLVE_FAIL), 1sflag contains
the error return flag from the SUNLINSOL object, which will be one of: SUNLS_MEM_NULL,
indicating that the SUNLINSOL memory is NULL; SUNLS_ATIMES _FAIL_UNREC, indicating

an unrecoverable failure in the J*v function; SUNLS_PSOLVE_FAIL_UNREC, indicating that
the preconditioner solve function psolve failed unrecoverably; SUNLS_GS_FAIL, indicat-
ing a failure in the Gram-Schmidt procedure (SPGMR and SPFGMR only); SUNLS_QRSOL_FAIL,
indicating that the matrix R was found to be singular during the QR solve phase (SPGMR
and SPFGMR only); or SUNLS_PACKAGE_FAIL_UNREC, indicating an unrecoverable failure

in an external iterative linear solver package.

CVSpilsGetReturnFlagName ‘

Call name = CVSpilsGetReturnFlagName(1lsflag);

Description  The function CVSpilsGetReturnFlagName returns the name of the CVSPILS constant
corresponding to lsflag.

Arguments The only argument, of type long int, is a return flag from a CVSPILS function.

Return value The return value is a string containing the name of the corresponding constant.

4.5.8.6 Diagonal linear solver interface optional output functions

The following optional outputs are available from the CVDIAG module: workspace requirements, num-
ber of calls to the right-hand side routine for finite-difference Jacobian approximation, and last return
value from a CVDIAG function. Note that, where the name of an output would otherwise conflict with
the name of an optional output from the main solver, a suffix LS (for Linear Solver) has been added
here (e.g. lenrwlS).

’CVDiagGetWorkSpace‘

Call flag = CVDiagGetWorkSpace(cvode mem, &lenrwLS, &leniwLS);
Description  The function CVDiagGetWorkSpace returns the CVDIAG real and integer workspace sizes.

Arguments cvodemem (void *) pointer to the CVODES memory block.
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Return value

lenrwLS (long int) the number of realtype values in the CVDIAG workspace.
leniwLS (long int) the number of integer values in the CVDIAG workspace.
The return value flag (of type int) is one of

CVDIAG_SUCCESS The optional output valus have been successfully set.

CVDIAG_MEM NULL The cvode_mem pointer is NULL.
CVDIAG_LMEM_NULL The CVDIAG linear solver has not been initialized.

Notes In terms of the problem size N, the actual size of the real workspace is roughly 3N
realtype words.

CVDiagGetNumRhsEvals

Call flag = CVDiagGetNumRhsEvals(cvode mem, &nfevalsLS);

Description  The function CVDiagGetNumRhsEvals returns the number of calls made to the user-
supplied right-hand side function due to the finite difference Jacobian approximation.

Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

nfevalsLS (long int) the number of calls made to the user-supplied right-hand side
function.

The return value flag (of type int) is one of
CVDIAG_SUCCESS The optional output value has been successfully set.

CVDIAG_MEM NULL The cvode mem pointer is NULL.
CVDIAG_LMEM_NULL The CVDIAG linear solver has not been initialized.

Notes The number of diagonal approximate Jacobians formed is equal to the number of calls
made to the linear solver setup function (see CVodeGetNumLinSolvSetups).

CVDiagGetLastFlag)|

Call flag = CVDiagGetLastFlag(cvode mem, &lsflag);

Description  The function CVDiagGetLastFlag returns the last return value from a CVDIAG routine.

Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

Notes

1lsflag (long int) the value of the last return flag from a CVDIAG function.
The return value flag (of type int) is one of

CVDIAG_SUCCESS The optional output value has been successfully set.

CVDIAG_MEM NULL The cvode mem pointer is NULL.

CVDIAG_LMEM NULL The CVDIAG linear solver has not been initialized.

If the CVDIAG setup function failed (CVode returned CV_LSETUP_FAIL), the value of
1sflag is equal to CVDIAG_INV_FAIL, indicating that a diagonal element with value zero

was encountered. The same value is also returned if the CVDIAG solve function failed
(CVode returned CV_LSOLVE_FAIL).

CVDiagGetReturnFlagName

Call

Description

Arguments

Return value

name = CVDiagGetReturnFlagName(1lsflag);

The function CVDiagGetReturnFlagName returns the name of the CVDIAG constant
corresponding to 1lsflag.

The only argument, of type long int, is a return flag from a cvDIAG function.

The return value is a string containing the name of the corresponding constant.
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4.5.9 CVODES reinitialization function

The function CVodeReInit reinitializes the main CVODES solver for the solution of a new problem,
where a prior call to CVodeInit been made. The new problem must have the same size as the
previous one. CVodeReInit performs the same input checking and initializations that CVodeInit
does, but does no memory allocation, as it assumes that the existing internal memory is sufficient
for the new problem. A call to CVodeReInit deletes the solution history that was stored internally
during the previous integration. Following a successful call to CVodeReInit, call CVode again for the
solution of the new problem.

The use of CVodeReInit requires that the maximum method order, denoted by maxord, be no
larger for the new problem than for the previous problem. This condition is automatically fulfilled
if the multistep method parameter 1mm is unchanged (or changed from CV_ADAMS to CV_BDF) and the
default value for maxord is specified.

If there are changes to the linear solver specifications, make the appropriate calls to either the
linear solver objects themselves, or to the CVDLS or CVSPILS interface routines, as described in §4.5.3.
Otherwise, all solver inputs set previously remain in effect.

One important use of the CVodeReInit function is in the treating of jump discontinuities in the
RHS function. Except in cases of fairly small jumps, it is usually more efficient to stop at each point
of discontinuity and restart the integrator with a readjusted ODE model, using a call to CVodeReInit.
To stop when the location of the discontinuity is known, simply make that location a value of tout. To
stop when the location of the discontinuity is determined by the solution, use the rootfinding feature.
In either case, it is critical that the RHS function not incorporate the discontinuity, but rather have
a smooth extention over the discontinuity, so that the step across it (and subsequent rootfinding, if
used) can be done efficiently. Then use a switch within the RHS function (communicated through
user_data) that can be flipped between the stopping of the integration and the restart, so that the
restarted problem uses the new values (which have jumped). Similar comments apply if there is to be
a jump in the dependent variable vector.

CVodeReInit

Call flag = CVodeRelInit(cvodemem, t0, yO);

Description The function CVodeReInit provides required problem specifications and reinitializes
CVODES.

Arguments cvode mem (void *) pointer to the CVODES memory block.
t0 (realtype) is the initial value of t.
yO (N_Vector) is the initial value of y.

Return value The return value flag (of type int) will be one of the following;:

CV_SUCCESS  The call to CVodeReInit was successful.

CV_MEM_NULL The CcVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_NO_MALLOC Memory space for the CVODES memory block was not allocated through
a previous call to CVodeInit.

CV_ILL_INPUT An input argument to CVodeReInit has an illegal value.

Notes If an error occurred, CVodeReInit also sends an error message to the error handler
function.

4.6 User-supplied functions

The user-supplied functions consist of one function defining the ODE, (optionally) a function that
handles error and warning messages, (optionally) a function that provides the error weight vector,
(optionally) one or two functions that provide Jacobian-related information for the linear solver (if
Newton iteration is chosen), and (optionally) one or two functions that define the preconditioner for
use in any of the Krylov iterative algorithms.
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4.6.1 ODE right-hand side

The user must provide a function of type CVRhsFn defined as follows:

Definition
Purpose

Arguments

Return value

Notes

typedef int (*CVRhsFn) (realtype t, N_Vector y, N_Vector ydot,
void *user_data);

This function computes the ODE right-hand side for a given value of the independent
variable ¢ and state vector y.

t is the current value of the independent variable.
y is the current value of the dependent variable vector, y(t).
ydot is the output vector f(t,y).

user_data is the user_data pointer passed to CVodeSetUserData.

A CVRhsFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case CVODES will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CV_RHSFUNC_FAIL is returned).

Allocation of memory for ydot is handled within CVODES.

A recoverable failure error return from the CVRhsFn is typically used to flag a value
of the dependent variable y that is “illegal” in some way (e.g., negative where only a
non-negative value is physically meaningful). If such a return is made, CVODES will
attempt to recover (possibly repeating the Newton iteration, or reducing the step size)
in order to avoid this recoverable error return.

For efficiency reasons, the right-hand side function is not evaluated at the converged
solution of the nonlinear solver. Therefore, in general, a recoverable error in that con-
verged value cannot be corrected. (It may be detected when the right-hand side function
is called the first time during the following integration step, but a successful step can-
not be undone.) However, if the user program also includes quadrature integration, the
state variables can be checked for legality in the call to CVQuadRhsFn, which is called
at the converged solution of the nonlinear system, and therefore CVODES can be flagged
to attempt to recover from such a situation. Also, if sensitivity analysis is performed
with one of the staggered methods, the ODE right-hand side function is called at the
converged solution of the nonlinear system, and a recoverable error at that point can
be flagged, and ¢vVODES will then try to correct it.

There are two other situations in which recovery is not possible even if the right-hand
side function returns a recoverable error flag. One is when this occurs at the very
first call to the CVRhsFn (in which case CVODES returns CV_FIRST_RHSFUNC_ERR). The
other is when a recoverable error is reported by CVRhsFn after an error test failure,
while the linear multistep method order is equal to 1 (in which case CVODES returns
CV_UNREC_RHSFUNC_ERR).

4.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed
to by errfp (see CVodeSetErrFile), the user may provide a function of type CVErrHandlerFn to
process any such messages. The function type CVErrHandlerFn is defined as follows:

| CVErrHandlerFn |

Definition

Purpose

typedef void (*xCVErrHandlerFn) (int error_code, const char *module,
const char *function, char *msg,
void *eh_data);

This function processes error and warning messages from CVODES and its sub-modules.
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Arguments error_code is the error code.

module is the name of the CVODES module reporting the error.

function is the name of the function in which the error occurred.

msg is the error message.

eh_data is a pointer to user data, the same as the eh_data parameter passed to
CVodeSetErrHandlerFn.

Return value A CVErrHandlerFn function has no return value.

Notes error_code is negative for errors and positive (CV_.WARNING) for warnings. If a function
that returns a pointer to memory encounters an error, it sets error_code to 0.

4.6.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function
of type CVEwtFn to compute a vector ewt containing the weights in the WRMS norm || v|lwrms =

\/ (1/N) ZiV(WL -v;)?. These weights will be used in place of those defined by Eq. (2.7). The function
type CVEwtFn is defined as follows:

Definition typedef int (*CVEwtFn) (N_Vector y, N_Vector ewt, void *user_data);

Purpose This function computes the WRMS error weights for the vector y.
Arguments y is the value of the dependent variable vector at which the weight vector is
to be computed.
ewt is the output vector containing the error weights.
user_data is a pointer to user data, the same as the user_data parameter passed to
CVodeSetUserData.
Return value A CVEwtFn function type must return 0 if it successfully set the error weights and —1
otherwise.
Notes Allocation of memory for ewt is handled within CVODES.

The error weight vector must have all components positive. It is the user’s responsiblity
to perform this test and return —1 if it is not satisfied.
4.6.4 Rootfinding function

If a rootfinding problem is to be solved during the integration of the ODE system, the user must
supply a C function of type CVRootFn, defined as follows:

Definition typedef int (*CVRootFn) (realtype t, N_Vector y, realtype *gout,
void *user_data);

Purpose This function implements a vector-valued function g(¢,y) such that the roots of the
nrtfn components g;(t,y) are sought.

Arguments t is the current value of the independent variable.
y is the current value of the dependent variable vector, y(t).
gout is the output array, of length nrtfn, with components g;(t, ).

user_data is a pointer to user data, the same as the user_data parameter passed to
CVodeSetUserData.

Return value A CVRootFn should return 0 if successful or a non-zero value if an error occurred (in
which case the integration is halted and CVode returns CV_RTFUNC_FAIL).

Notes Allocation of memory for gout is automatically handled within CVODES.
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4.6.5 Jacobian information (direct method Jacobian)

If the direct linear solver interface is used (i.e., CVD1sSetLinearSolver is called in the steps described
in §4.4), the user may provide a function of type CVDlsJacFn defined as follows:

CVDlsJacFn

Definition

Purpose

Arguments

Return value

Notes

typedef (*#CVDlsJacFn)(realtype t, N_Vector y, N_Vector fy,
SUNMatrix Jac, void *user_data,
N_Vector tmpl, N_Vector tmp2, N_Vector tmp3);

This function computes the Jacobian matrix J = df/dy (or an approximation to it).

t is the current value of the independent variable.

y is the current value of the dependent variable vector, namely the predicted
value of y(t).

fy is the current value of the vector f(t,y).

Jac is the output Jacobian matrix (of type SUNMatrix).

user_data is a pointer to user data, the same as the user_data parameter passed to
CVodeSetUserData.

tmpl

tmp2

tmp3 are pointers to memory allocated for variables of type N_Vector which can

be used by a CVD1lsJacFn function as temporary storage or work space.

A CVD1lsJacFn should return 0 if successful, a positive value if a recoverable error oc-
curred (in which case CVODES will attempt to correct, while CVDLS sets last_flag to
CVDLS_JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which case the
integration is halted, CVodes returns CV_LSETUP_FAIL and CVDLS sets last_flag to
CVDLS_JACFUNC_UNRECVR).

Information regarding the structure of the specific SUNMATRIX structure (e.g. number
of rows, upper/lower bandwidth, sparsity type) may be obtained through using the
implementation-specific SUNMATRIX interface functions (see Chapter 8 for details).

Prior to calling the user-supplied Jacobian function, the Jacobian matrix J(¢, y) is zeroed
out, so only nonzero elements need to be loaded into Jac.

If the user’s CVD1sJacFn function uses difference quotient approximations, then it may
need to access quantities not in the argument list. These include the current step size,
the error weights, etc. To obtain these, the user will need to add a pointer to cv_mem
to user_data and then use the CVodeGet* functions described in §4.5.8.2. The unit
roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

dense:

A user-supplied dense Jacobian function must load the N by N dense matrix Jac with
an approximation to the Jacobian matrix J(t,y) at the point (t, y). The accessor
macros SM_ELEMENT_D and SM_COLUMN_D allow the user to read and write dense matrix
elements without making explicit references to the underlying representation of the SUN-
MATRIX_DENSE type. SM_ELEMENT D(J, i, j) references the (i, j)-th element of the
dense matrix Jac (with i, j = 0...N — 1). This macro is meant for small problems
for which efficiency of access is not a major concern. Thus, in terms of the indices
m and n ranging from 1 to IV, the Jacobian element J,, , can be set using the state-
ment SM_ELEMENT D(J, m-1, n-1) = J,,,. Alternatively, SM_COLUMN_D(J, j) returns
a pointer to the first element of the j-th column of Jac (with j =0...N— 1), and the
elements of the j-th column can then be accessed using ordinary array indexing. Con-
sequently, Jp, , can be loaded using the statements coln = SM_COLUMN.D(J, n-1);
coln[m-1] = J,, . For large problems, it is more efficient to use SM_COLUMN_D than to
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use SM_ELEMENT_D. Note that both of these macros number rows and columns starting
from 0. The SUNMATRIX_DENSE type and accessor macros are documented in §8.1.

banded:

A user-supplied banded Jacobian function must load the N by N banded matrix Jac
with the elements of the Jacobian J(t,y) at the point (t,y). The accessor macros
SM_ELEMENT B, SM_COLUMN_B, and SM_COLUMN_ELEMENT _B allow the user to read and write
band matrix elements without making specific references to the underlying representa-
tion of the SUNMATRIX_BAND type. SM_ELEMENT B(J, i, j) references the (i, j)-th
element of the band matrix Jac, counting from 0. This macro is meant for use in small
problems for which efficiency of access is not a major concern. Thus, in terms of the
indices m and n ranging from 1 to N with (m,n) within the band defined by mupper and
mlower, the Jacobian element J,, ,, can be loaded using the statement SM_ELEMENT_B(J,
m-1, n-1) = J, ,. The elements within the band are those with -mupper < m-n <
mlower. Alternatively, SM_COLUMN_B(J, j) returns a pointer to the diagonal element
of the j-th column of Jac, and if we assign this address to realtype *col_j, then
the i-th element of the j-th column is given by SM_COLUMN_ELEMENT B(col_j, i, j),
counting from 0. Thus, for (m,n) within the band, J,, », can be loaded by setting col n
= SM_COLUMN_B(J, n-1); SM_COLUMN_ELEMENT B(coln, m-1, n-1) = .J,,,. The ele-
ments of the j-th column can also be accessed via ordinary array indexing, but this
approach requires knowledge of the underlying storage for a band matrix of type SUN-
MATRIX_BAND. The array col_n can be indexed from —mupper to mlower. For large
problems, it is more efficient to use SM_COLUMN_B and SM_COLUMN_ELEMENT_B than to
use the SM_ELEMENT B macro. As in the dense case, these macros all number rows and
columns starting from 0. The SUNMATRIX_BAND type and accessor macros are docu-
mented in §8.2.

sparse:
A user-supplied sparse Jacobian function must load the N by N compressed-sparse-
column or compressed-sparse-row matrix Jac with an approximation to the Jacobian
matrix J(¢,y) at the point (t, y). Storage for Jac already exists on entry to this func-
tion, although the user should ensure that sufficient space is allocated in Jac to hold the
nonzero values to be set; if the existing space is insufficient the user may reallocate the
data and index arrays as needed. The amount of allocated space in a SUNMATRIX_SPARSE
object may be accessed using the macro SM_NNZ_S or the routine SUNSparseMatrix NNZ.
The SUNMATRIX_SPARSE type and accessor macros are documented in §8.3.

4.6.6 Jacobian information (matrix-vector product)

If the cvsPILS solver interface is selected (i.e., CVSpilsSetLinearSolver is called in the steps de-
scribed in §4.4), the user may provide a function of type CVSpilsJacTimesVecFn in the following form,
to compute matrix-vector products Jv. If such a function is not supplied, the default is a difference
quotient approximation to these products.

CVSpilsJacTimesVecFn

Definition

Purpose

Arguments

typedef int (*#CVSpilsJacTimesVecFn) (N_Vector v, N_Vector Jv,
realtype t, N_Vector y, N_Vector fy,
void *user_data, N_Vector tmp);

This function computes the product Jv = (9f/0y)v (or an approximation to it).
v is the vector by which the Jacobian must be multiplied.
Jv is the output vector computed.

is the current value of the independent variable.

y is the current value of the dependent variable vector.
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fy is the current value of the vector f(¢,y).

user_data is a pointer to user data, the same as the user_data parameter passed to
CVodeSetUserData.

tmp is a pointer to memory allocated for a variable of type N_Vector which can

be used for work space.

Return value The value returned by the Jacobian-vector product function should be 0 if successful.
Any other return value will result in an unrecoverable error of the generic Krylov solver,
in which case the integration is halted.

Notes This function must return a value of .J * v that uses the current value of J, i.e. as
evaluated at the current (t,y).
If the user’s CVSpilsJacTimesVecFn function uses difference quotient approximations,
it may need to access quantities not in the argument list. These include the current
step size, the error weights, etc. To obtain these, the user will need to add a pointer to
cv_menm to user_data and then use the CVodeGet* functions described in §4.5.8.2. The
unit roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

4.6.7 Jacobian information (matrix-vector setup)

If the user’s Jacobian-times-vector requires that any Jacobian-related data be preprocessed or evalu-
ated, then this needs to be done in a user-supplied function of type CVSpilsJacTimesSetupFn, defined
as follows:

CVSpilsJacTimesSetupFn

Definition typedef int (*CVSpilsJacTimesSetupFn) (realtype t, N_Vector y,
N_Vector fy, void *user_data) ;

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the Jacobian-
times-vector routine.

Arguments t is the current value of the independent variable.
y is the current value of the dependent variable vector.
fy is the current value of the vector f(¢,y).

user_data is a pointer to user data, the same as the user_data parameter passed to
CVodeSetUserData.

Return value The value returned by the Jacobian-vector setup function should be 0 if successful,
positive for a recoverable error (in which case the step will be retried), or negative for
an unrecoverable error (in which case the integration is halted).

Notes Each call to the Jacobian-vector setup function is preceded by a call to the CVRhsFn
user function with the same (t,y) arguments. Thus, the setup function can use any
auxiliary data that is computed and saved during the evaluation of the ODE right-hand
side.

If the user’s CVSpilsJacTimesSetupFn function uses difference quotient approxima-
tions, it may need to access quantities not in the argument list. These include the cur-
rent step size, the error weights, etc. To obtain these, the user will need to add a pointer
to cv_mem to user_data and then use the CVodeGet* functions described in §4.5.8.2. The
unit roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

4.6.8 Preconditioning (linear system solution)

If preconditioning is used, then the user must provide a function to solve the linear system Pz = r,
where P may be either a left or right preconditioner matrix. Here P should approximate (at least
crudely) the Newton matrix M = I —~J, where J = 0f/0y. If preconditioning is done on both sides,
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the product of the two preconditioner matrices should approximate M. This function must be of type
CVSpilsPrecSolveFn, defined as follows:

CVSpilsPrecSolveFn

Definition typedef int (*CVSpilsPrecSolveFn) (realtype t, N_Vector y, N_Vector fy,
N_Vector r, N_Vector z, realtype gamma,
realtype delta, int lr, void *user_data);

Purpose This function solves the preconditioned system Pz = r.
Arguments t is the current value of the independent variable.
y is the current value of the dependent variable vector.
fy is the current value of the vector f(¢,y).
r is the right-hand side vector of the linear system.
z is the computed output vector.
gamma is the scalar v appearing in the Newton matrix given by M =1 —~vJ.
delta is an input tolerance to be used if an iterative method is employed in the

solution. In that case, the residual vector Res = r— Pz of the system should
be made less than delta in the weighted I norm, i.e., \/>,;(Res; - ewt;)? <
delta. To obtain the N_Vector ewt, call CVodeGetErrWeights (see §4.5.8.2).
1r is an input flag indicating whether the preconditioner solve function is to
use the left preconditioner (1r = 1) or the right preconditioner (1r = 2);

user_data is a pointer to user data, the same as the user_data parameter passed to
the function CVodeSetUserData.

Return value The value returned by the preconditioner solve function is a flag indicating whether it
was successful. This value should be 0 if successful, positive for a recoverable error (in
which case the step will be retried), or negative for an unrecoverable error (in which
case the integration is halted).

4.6.9 Preconditioning (Jacobian data)

If the user’s preconditioner requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied function of type CVSpilsPrecSetupFn, defined as follows:

CVSpilsPrecSetupFn

Definition typedef int (*CVSpilsPrecSetupFn) (realtype t, N_Vector y, N_Vector fy,
booleantype jok, booleantype *jcurPtr,
realtype gamma, void *user_data);

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the pre-
conditioner.
Arguments t is the current value of the independent variable.
y is the current value of the dependent variable vector, namely the predicted
value of y(t).
fy is the current value of the vector f(¢,y).
jok is an input flag indicating whether the Jacobian-related data needs to be

updated. The jok argument provides for the reuse of Jacobian data in the
preconditioner solve function. jok = SUNFALSE means that the Jacobian-
related data must be recomputed from scratch. jok = SUNTRUE means that
the Jacobian data, if saved from the previous call to this function, can be
reused (with the current value of gamma). A call with jok = SUNTRUE can
only occur after a call with jok = SUNFALSE.
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Return value

Notes

jcurPtr is a pointer to a flag which should be set to SUNTRUE if Jacobian data was
recomputed, or set to SUNFALSE if Jacobian data was not recomputed, but
saved data was still reused.

gamma is the scalar v appearing in the Newton matrix M =1 —~J.

user_data is a pointer to user data, the same as the user_data parameter passed to
the function CVodeSetUserData.

The value returned by the preconditioner setup function is a flag indicating whether it
was successful. This value should be 0 if successful, positive for a recoverable error (in
which case the step will be retried), or negative for an unrecoverable error (in which
case the integration is halted).

The operations performed by this function might include forming a crude approximate
Jacobian and performing an LU factorization of the resulting approximation to M =
I —~J.

Each call to the preconditioner setup function is preceded by a call to the CVRhsFn user
function with the same (t,y) arguments. Thus, the preconditioner setup function can
use any auxiliary data that is computed and saved during the evaluation of the ODE
right-hand side.

This function is not called in advance of every call to the preconditioner solve function,
but rather is called only as often as needed to achieve convergence in the Newton
iteration.

If the user’s CVSpilsPrecSetupFn function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current step size,
the error weights, etc. To obtain these, the user will need to add a pointer to cv_mem
to user_data and then use the CVodeGet* functions described in §4.5.8.2. The unit
roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

4.7 Integration of pure quadrature equations

CVODES allows the ODE system to include pure quadratures. In this case, it is more efficient to treat
the quadratures separately by excluding them from the nonlinear solution stage. To do this, begin by
excluding the quadrature variables from the vector y and excluding the quadrature equations from
within res. Thus a separate vector yQ of quadrature variables is to satisty (d/dt)yQ = fo(t,y). The
following is an overview of the sequence of calls in a user’s main program in this situation. Steps that
are unchanged from the skeleton program presented in §4.4 are grayed out.

1. Initialize parallel or multi-threaded environment, if appropriate

2. Set problem dimensions, etc.

Set the problem size N (excluding quadrature variables), and the number of quadrature variables

Ng.

If appropriate, set the local vector length Nlocal (excluding quadrature variables), and the local
number of quadrature variables Nqlocal.

3. Set vector of initial values

4. Create CVODES object

5. Allocate internal memory

6. Set optional inputs

7. Attach linear solver module
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8. Set linear solver optional inputs

9. Set vector yQO of initial values for quadrature variables
Typically, the quadrature variables should be initialized to O.

10. Initialize quadrature integration
Call CVodeQuadInit to specify the quadrature equation right-hand side function and to allocate
internal memory related to quadrature integration. See §4.7.1 for details.

11. Set optional inputs for quadrature integration
Call CVodeSetQuadErrCon to indicate whether or not quadrature variables shoule be used in the
step size control mechanism, and to specify the integration tolerances for quadrature variables.
See §4.7.4 for details.

12. Advance solution in time

13. Extract quadrature variables
Call CVodeGetQuad to obtain the values of the quadrature variables at the current time. See §4.7.3
for details.

14. Get optional outputs

15. Get quadrature optional outputs
Call CVodeGetQuad* functions to obtain optional output related to the integration of quadratures.
See §4.7.5 for details.

16. Deallocate memory for solution vector and for the vector of quadrature variables

17. Free solver memory

18. Finalize MPI, if used

CVodeQuadInit can be called and quadrature-related optional inputs (step 11 above) can be set
anywhere between steps 4 and 12.

4.7.1 Quadrature initialization and deallocation functions

The function CVodeQuadInit activates integration of quadrature equations and allocates internal
memory related to these calculations. The form of the call to this function is as follows:

CVodeQuadInit

Call flag = CVodeQuadInit(cvodemem, £Q, yQO);

Description  The function CVodeQuadInit provides required problem specifications, allocates internal

memory, and initializes quadrature integration.

Arguments cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.

£Q (CVQuadRhsFn) is the C function which computes fg, the right-hand side
of the quadrature equations. This function has the form £Q(t, y, yQdot,
fQ-data) (for full details see §4.7.6).

yQo (N_Vector) is the initial value of yQ.

Return value The return value flag (of type int) will be one of the following:

CV_SUCCESS The call to CVodeQuadInit was successful.
CV_MEM_NULL The CVODES memory was not initialized by a prior call to CVodeCreate.
CV_MEM_FAIL A memory allocation request failed.
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Notes If an error occurred, CVodeQuadInit also sends an error message to the error handler
function.

In terms of the number of quadrature variables IV, and maximum method order maxord, the size of
the real workspace is increased as follows:

e Base value: lenrw = lenrw + (maxord+5)N,

e If using CVodeSVtolerances (see CVodeSetQuadErrCon): lenrw = lenrw +N,
the size of the integer workspace is increased as follows:

e Base value: leniw = leniw + (maxord+5)N,

o If using CVodeSVtolerances: leniw = leniw 4N,

The function CVodeQuadReInit, useful during the solution of a sequence of problems of same size,
reinitializes the quadrature-related internal memory and must follow a call to CVodeQuadInit (and
maybe a call to CVodeReInit). The number Nq of quadratures is assumed to be unchanged from the
prior call to CVodeQuadInit. The call to the CVodeQuadReInit function has the following form:

CVodeQuadReInit
Call flag = CVodeQuadReInit(cvode mem, yQO);

Description The function CVodeQuadReInit provides required problem specifications and reinitial-
izes the quadrature integration.

Arguments cvodemem (void *) pointer to the CVODES memory block.
yQo (N_Vector) is the initial value of yQ.

Return value The return value flag (of type int) will be one of the following:
CV_SUCCESS The call to CVodeReInit was successful.

CV_MEM_NULL The CVODES memory was not initialized by a prior call to CVodeCreate.

CV_NO_QUAD Memory space for the quadrature integration was not allocated by a prior
call to CVodeQuadInit.

Notes If an error occurred, CVodeQuadReInit also sends an error message to the error handler
function.

CVodeQuadFree

Call CVodeQuadFree (cvode_mem) ;

Description  The function CVodeQuadFree frees the memory allocated for quadrature integration.
Arguments  The argument is the pointer to the CVODES memory block (of type void *).
Return value The function CVodeQuadFree has no return value.

Notes In general, CVodeQuadFree need not be called by the user as it is invoked automatically
by CVodeFree.

4.7.2 CVODES solver function

Even if quadrature integration was enabled, the call to the main solver function CVode is exactly the
same as in §4.5.5. However, in this case the return value flag can also be one of the following:
CV_QRHSFUNC_FAIL The quadrature right-hand side function failed in an unrecoverable manner.

CV_FIRST_QRHSFUNC_FAIL The quadrature right-hand side function failed at the first call.
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CV_REPTD_QRHSFUNC_ERR Convergence test failures occurred too many times due to repeated recov-
erable errors in the quadrature right-hand side function. This value will
also be returned if the quadrature right-hand side function had repeated
recoverable errors during the estimation of an initial step size (assuming
the quadrature variables are included in the error tests).

CV_UNREC_RHSFUNC_ERR  The quadrature right-hand function had a recoverable error, but no recov-
ery was possible. This failure mode is rare, as it can occur only if the
quadrature right-hand side function fails recoverably after an error test
failed while at order one.

4.7.3 Quadrature extraction functions

If quadrature integration has been initialized by a call to CVodeQuadInit, or reinitialized by a call
to CVodeQuadReInit, then CVODES computes both a solution and quadratures at time t. However,
CVode will still return only the solution y in yout. Solution quadratures can be obtained using the
following function:

CVodeGetQuad

Call flag = CVodeGetQuad(cvode mem, &tret, yQ);
Description The function CVodeGetQuad returns the quadrature solution vector after a successful
return from CVode.
Arguments cvodemem (void *) pointer to the memory previously allocated by CVodeInit.
tret (realtype) the time reached by the solver (output).
yQ (N_Vector) the computed quadrature vector.
Return value The return value flag of CVodeGetQuad is one of:
CV_SUCCESS CVodeGetQuad was successful.
CV_MEM_NULL cvode_mem was NULL.
CV_NO_QUAD Quadrature integration was not initialized.
CV_BAD_DKY yQ is NULL.
Notes In case of an error return, an error message is also sent to the error handler function.

The function CVodeGetQuadDky computes the k-th derivatives of the interpolating polynomials for the
quadrature variables at time t. This function is called by CVodeGetQuad with k = 0 and with the
current time at which CVode has returned, but may also be called directly by the user.

CVodeGetQuadDky

Call flag = CVodeGetQuadDky(cvode mem, t, k, dkyQ);

Description  The function CVodeGetQuadDky returns derivatives of the quadrature solution vector
after a successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

t (realtype) the time at which quadrature information is requested. The
time t must fall within the interval defined by the last successful step taken
by CVODES.

k (int) order of the requested derivative. This must be < qlast.

dkyQ (N_Vector) the vector containing the derivative. This vector must be allo-

cated by the user.
Return value The return value flag of CVodeGetQuadDky is one of:

CV_SUCCESS CVodeGetQuadDky succeeded.
CV_MEM_NULL The pointer to cvode_mem was NULL.
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Notes

CV_NO_QUAD Quadrature integration was not initialized.
CV_BAD_DKY The vector dkyQ is NULL.

CV_BAD K k is not in the range 0,1,..., qlast.
CV_BAD_T The time t is not in the allowed range.

In case of an error return, an error message is also sent to the error handler function.

4.7.4 Optional inputs for quadrature integration

CVODES provides the following optional input functions to control the integration of quadrature equa-

tions.
CVodeSetQuadErrCon |

Call flag = CVodeSetQuadErrCon(cvode mem, errconQ);

Description The function CVodeSetQuadErrCon specifies whether or not the quadrature variables are
to be used in the step size control mechanism within cvODES. If they are, the user must
call CVodeQuadSStolerances or CVodeQuadSVtolerances to specify the integration
tolerances for the quadrature variables.

Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

Notes

errcon (booleantype) specifies whether quadrature variables are included (SUNTRUE)
or not (SUNFALSE) in the error control mechanism.

The return value flag (of type int) is one of:

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
CV_NO_QUAD Quadrature integration has not been initialized.

By default, errconQ is set to SUNFALSE.
It is illegal to call CVodeSetQuadErrCon before a call to CVodeQuadInit.

If the quadrature variables are part of the step size control mechanism, one of the following
functions must be called to specify the integration tolerances for quadrature variables.

’CVodeQuadSStolerances‘

Call flag = CVodeQuadSVtolerances(cvode mem, reltolQ, abstolQ);

Description  The function CVodeQuadSStolerances specifies scalar relative and absolute tolerances.
Arguments cvode mem (void *) pointer to the CVODES memory block.

Return value

reltolQ (realtype) is the scalar relative error tolerance.
abstolQ (realtype) is the scalar absolute error tolerance.
The return value flag (of type int) is one of:

CV_SUCCESS  The optional value has been successfully set.
CV_NO_QUAD Quadrature integration was not initialized.
CV_MEM NULL The cvode_mem pointer is NULL.
CV_ILL_INPUT One of the input tolerances was negative.

’CVodeQuadSVtolerances‘

Call

Description

Arguments

flag = CVodeQuadSVtolerances(cvode mem, reltolQ, abstolQ);

The function CVodeQuadSVtolerances specifies scalar relative and vector absolute tol-
erances.

cvode mem (void *) pointer to the CVODES memory block.
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reltolQ (realtype) is the scalar relative error tolerance.
abstolQ (N_Vector) is the vector absolute error tolerance.
Return value The return value flag (of type int) is one of:

CV_SUCCESS  The optional value has been successfully set.
CV_NO_QUAD  Quadrature integration was not initialized.
CV_MEM_NULL The cvode _mem pointer is NULL.
CV_ILL_INPUT One of the input tolerances was negative.

4.7.5 Optional outputs for quadrature integration

CVODES provides the following functions that can be used to obtain solver performance information
related to quadrature integration.

CVodeGetQuadNumRhsEvals
Call flag = CVodeGetQuadNumRhsEvals(cvode mem, &nfQevals);

Description  The function CVodeGetQuadNumRhsEvals returns the number of calls made to the user’s
quadrature right-hand side function.

Arguments cvodemem (void *) pointer to the CVODES memory block.
nfQevals (long int) number of calls made to the user’s £Q function.
Return value The return value flag (of type int) is one of:
CV_SUCCESS The optional output value has been successfully set.
CV_MEM NULL The cvode_mem pointer is NULL.
CV_NO_QUAD Quadrature integration has not been initialized.

CVodeGetQuadNumErrTestFails ‘
Call flag = CVodeGetQuadNumErrTestFails(cvode mem, &nQetfails);

Description The function CVodeGetQuadNumErrTestFails returns the number of local error test
failures due to quadrature variables.

Arguments cvodemem (void *) pointer to the CVODES memory block.
nQetfails (long int) number of error test failures due to quadrature variables.
Return value The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
CV_NO_QUAD Quadrature integration has not been initialized.

CVodeGetQuadErrWeights‘

Call flag = CVodeGetQuadErrWeights(cvode mem, eQweight);

Description  The function CVodeGetQuadErrWeights returns the quadrature error weights at the
current time.

Arguments cvodemem (void *) pointer to the CVODES memory block.
eQueight (N_Vector) quadrature error weights at the current time.
Return value The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
CV_NO_QUAD Quadrature integration has not been initialized.



4.7 Integration of pure quadrature equations 85

Notes The user must allocate memory for eQweight.
If quadratures were not included in the error control mechanism (through a call to
CVodeSetQuadErrCon with errcon = SUNTRUE), CVodeGetQuadErrWeights does not
set the eQueight vector.

CVodeGetQuadStats |

Call flag = CVodeGetQuadStats(cvodemem, &nfQevals, &nQetfails);

Description The function CVodeGetQuadStats returns the CVODES integrator statistics as a group.

Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

nfQevals (long int) number of calls to the user’s £Q function.
nQetfails (long int) number of error test failures due to quadrature variables.

The return value flag (of type int) is one of

CV_SUCCESS the optional output values have been successfully set.
CV_MEM_NULL the cvode_mem pointer is NULL.
CV_NO_QUAD Quadrature integration has not been initialized.

4.7.6 User-supplied function for quadrature integration

For integration of quadrature equations, the user must provide a function that defines the right-hand
side of the quadrature equations (in other words, the integrand function of the integral that must be
evaluated). This function must be of type CVQuadRhsFn defined as follows:

CVQuadRhsFn

Definition

Purpose

Arguments

Return value

Notes

typedef int (*CVQuadRhsFn) (realtype t, N_Vector y,
N_Vector yQdot, void *user_data);

This function computes the quadrature equation right-hand side for a given value of the
independent variable ¢t and state vector y.

t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).
yQdot is the output vector fo(t,y).

user_data is the user_data pointer passed to CVodeSetUserData.

A CVQuadRhsFn should return 0 if successful, a positive value if a recoverable error oc-
curred (in which case CVODES will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and CV_QRHSFUNC_FAIL is re-
turned).

Allocation of memory for yQdot is automatically handled within CVODES.

Both y and yQdot are of type N_Vector, but they typically have different internal
representations. It is the user’s responsibility to access the vector data consistently
(including the use of the correct accessor macros from each NVECTOR implementation).
For the sake of computational efficiency, the vector functions in the two NVECTOR
implementations provided with CVODES do not perform any consistency checks with
respect to their N_Vector arguments (see §7.1 and §7.2).

There are two situations in which recovery is not possible even if CVQuadRhsFn func-
tion returns a recoverable error flag. One is when this occurs at the very first call to
the CVQuadRhsFn (in which case CVODES returns CV_FIRST_QRHSFUNC_ERR). The other
is when a recoverable error is reported by CVQuadRhsFn after an error test failure,
while the linear multistep method order is equal to 1 (in which case CVODES returns
CV_UNREC_QRHSFUNC_ERR).
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4.8 Preconditioner modules

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced
through preconditioning. For problems in which the user cannot define a more effective, problem-
specific preconditioner, CVODES provides a banded preconditioner in the module CVBANDPRE and a
band-block-diagonal preconditioner module CVBBDPRE.

4.8.1 A serial banded preconditioner module

This preconditioner provides a band matrix preconditioner for use with the CVSPILS iterative linear
solver interface, in a serial setting. It uses difference quotients of the ODE right-hand side function £
to generate a band matrix of bandwidth m; + m,, + 1, where the number of super-diagonals (m,,, the
upper half-bandwidth) and sub-diagonals (m;, the lower half-bandwidth) are specified by the user,
and uses this to form a preconditioner for use with the Krylov linear solver. Although this matrix
is intended to approximate the Jacobian df /0y, it may be a very crude approximation. The true
Jacobian need not be banded, or its true bandwidth may be larger than m; + m,, + 1, as long as the
banded approximation generated here is sufficiently accurate to speed convergence as a preconditioner.

In order to use the CVBANDPRE module, the user need not define any additional functions. Aside
from the header files required for the integration of the ODE problem (see §4.3), to use the CVBANDPRE
module, the main program must include the header file cvodes_bandpre.h which declares the needed
function prototypes. The following is a summary of the usage of this module. Steps that are unchanged
from the skeleton program presented in §4.4 are grayed out.

1. Initialize multi-threaded environment, if appropriate
2. Set problem dimensions

3. Set vector of initial values

4. Create CVODES object

5. Initialize CVODES solver

6. Specify integration tolerances

7. Set optional inputs

8. Create linear solver object
When creating the iterative linear solver object, specify the type of preconditioning (PREC_LEFT
or PREC_RIGHT) to use.

9. Set linear solver optional inputs

10. Attach linear solver module

11. Initialize the CVBANDPRE preconditioner module
Specify the upper and lower half-bandwidths (mu and m1, respectively) and call
flag = CVBandPrecInit(cvode mem, N, mu, ml);

to allocate memory and initialize the internal preconditioner data.

12. Set linear solver interface optional inputs

Note that the user should not overwrite the preconditioner setup function or solve function through
calls to the CVSpilsSetPreconditioner optional input function.

13. Specify rootfinding problem
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14. Advance solution in time

15. Get optional outputs

Additional optional outputs associated with CVBANDPRE are available by way of two routines
described below, CVBandPrecGetWorkSpace and CVBandPrecGetNumRhsEvals.

16. Deallocate memory for solution vector

17. Free solver memory

18. Free linear solver memory

The CVBANDPRE preconditioner module is initialized and attached by calling the following function:

| CVBandPrecInit |

Call

Description

Arguments

Return value

Notes

flag = CVBandPrecInit(cvodemem, N, mu, ml);

The function CVBandPrecInit initializes the CVBANDPRE preconditioner and allocates
required (internal) memory for it.

cvode mem (void *) pointer to the CVODES memory block.

N (sunindextype) problem dimension.
mu (sunindextype) upper half-bandwidth of the Jacobian approximation.
ml (sunindextype) lower half-bandwidth of the Jacobian approximation.

The return value flag (of type int) is one of

CVSPILS_SUCCESS The call to CVBandPrecInit was successful.

CVSPILS MEM NULL The cvode_mem pointer was NULL.

CVSPILS_MEM_FAIL A memory allocation request has failed.

CVSPILS_LMEM NULL A CVSPILS linear solver memory was not attached.

CVSPILS_ILL_INPUT The supplied vector implementation was not compatible with block
band preconditioner.

The banded approximate Jacobian will have nonzero elements only in locations (i, j)
with —ml < j — ¢ < mu.

The following three optional output functions are available for use with the CVBANDPRE module:

CVBandPrecGetWorkSpace

Call
Description

Arguments

Return value

Notes

flag = CVBandPrecGetWorkSpace(cvode mem, &lenrwBP, &leniwBP);

The function CVBandPrecGetWorkSpace returns the sizes of the CVBANDPRE real and
integer workspaces.

cvode mem (void *) pointer to the CVODES memory block.

lenrwBP (long int) the number of realtype values in the CVBANDPRE workspace.
leniwBP  (long int) the number of integer values in the CVBANDPRE workspace.
The return value flag (of type int) is one of:

CVSPILS_SUCCESS The optional output values have been successfully set.
CVSPILS_PMEM NULL The CVBANDPRE preconditioner has not been initialized.

The workspace requirements reported by this routine correspond only to memory al-

located within the CVBANDPRE module (the banded matrix approximation, banded
SUNLINSOL object, and temporary vectors).

The workspaces referred to here exist in addition to those given by the corresponding
function CVSpilsGetWorkSpace.
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’CVBandPrecGetNumRhsEvals
Call flag = CVBandPrecGetNumRhsEvals(cvode mem, &nfevalsBP);

Description The function CVBandPrecGetNumRhsEvals returns the number of calls made to the
user-supplied right-hand side function for the finite difference banded Jacobian approx-
imation used within the preconditioner setup function.

Arguments cvodemem (void *) pointer to the CVODES memory block.
nfevalsBP (long int) the number of calls to the user right-hand side function.

Return value The return value flag (of type int) is one of:

CVSPILS_SUCCESS The optional output value has been successfully set.
CVSPILS_PMEM NULL The CVBANDPRE preconditioner has not been initialized.

Notes The counter nfevalsBP is distinct from the counter nfevalsLS returned by the corre-
sponding function CVSpilsGetNumRhsEvals and nfevals returned by CVodeGetNumRhsEvals.
The total number of right-hand side function evaluations is the sum of all three of these
counters.

4.8.2 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel ODE solver such as CVODES lies in the solution of partial
differential equations (PDEs). Moreover, the use of a Krylov iterative method for the solution of many
such problems is motivated by the nature of the underlying linear system of equations (2.5) that must
be solved at each time step. The linear algebraic system is large, sparse, and structured. However, if
a Krylov iterative method is to be effective in this setting, then a nontrivial preconditioner needs to
be used. Otherwise, the rate of convergence of the Krylov iterative method is usually unacceptably
slow. Unfortunately, an effective preconditioner tends to be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-
based problems. It has been successfully used for several realistic, large-scale problems [24] and is
included in a software module within the CVvODES package. This module works with the parallel vector
module NVECTOR_PARALLEL and is usable with any of the Krylov iterative linear solvers through the
CVSPILS interface. It generates a preconditioner that is a block-diagonal matrix with each block being
a band matrix. The blocks need not have the same number of super- and sub-diagonals and these
numbers may vary from block to block. This Band-Block-Diagonal Preconditioner module is called
CVBBDPRE.

One way to envision these preconditioners is to think of the domain of the computational PDE
problem as being subdivided into M non-overlapping subdomains. Each of these subdomains is then
assigned to one of the M processes to be used to solve the ODE system. The basic idea is to isolate the
preconditioning so that it is local to each process, and also to use a (possibly cheaper) approximate
right-hand side function. This requires the definition of a new function ¢(t,y) which approximates
the function f(t,y) in the definition of the ODE system (2.1). However, the user may set g = f.
Corresponding to the domain decomposition, there is a decomposition of the solution vector y into
M disjoint blocks y,,, and a decomposition of g into blocks g,,. The block g,, depends both on y,,
and on components of blocks y,,,» associated with neighboring subdomains (so-called ghost-cell data).
Let 4,, denote y,, augmented with those other components on which g,, depends. Then we have

g(tvy) = [gl(t>gl)392(ta g2)7 ce agM(tng)]T (41)

and each of the blocks gy, (¢, ) is uncoupled from the others.
The preconditioner associated with this decomposition has the form

P:diag[Pl,Pg,...,PM} (42)

where
Pn~I—~Jpy (4.3)
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and J,, is a difference quotient approximation to 8¢, /3y, This matrix is taken to be banded, with
upper and lower half-bandwidths mudq and mldq defined as the number of non-zero diagonals above
and below the main diagonal, respectively. The difference quotient approximation is computed using
mudq + mldq +2 evaluations of g,,, but only a matrix of bandwidth mukeep + mlkeep +1 is retained.
Neither pair of parameters need be the true half-bandwidths of the Jacobian of the local block of g,
if smaller values provide a more efficient preconditioner. The solution of the complete linear system

Px=1b (4.4)

reduces to solving each of the equations
Pz = by (4.5)

and this is done by banded LU factorization of P,, followed by a banded backsolve.

Similar block-diagonal preconditioners could be considered with different treatments of the blocks
P,,. For example, incomplete LU factorization or an iterative method could be used instead of banded
LU factorization.

The cvBBDPRE module calls two user-provided functions to construct P: a required function gloc
(of type CVLocalFn) which approximates the right-hand side function g(¢,y) ~ f(¢,y) and which is
computed locally, and an optional function cfn (of type CVCommFn) which performs all interprocess
communication necessary to evaluate the approximate right-hand side g. These are in addition to the
user-supplied right-hand side function f. Both functions take as input the same pointer user_data
that is passed by the user to CVodeSetUserData and that was passed to the user’s function £f. The
user is responsible for providing space (presumably within user_data) for components of y that are
communicated between processes by cfn, and that are then used by gloc, which should not do any
communication.

CVLocalFn

Definition typedef int (*CVLocalFn) (sunindextype Nlocal, realtype t, N_Vector y,
N_Vector glocal, void xuser_data) ;

Purpose This gloc function computes g(t,y). It loads the vector glocal as a function of t and
y.

Arguments Nlocal is the local vector length.
t is the value of the independent variable.
y is the dependent variable.

glocal is the output vector.
user_data is a pointer to user data, the same as the user_data parameter passed to
CVodeSetUserData.

Return value A CVLocalFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case CVODES will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CVode returns CV_LSETUP_FAIL).

Notes This function must assume that all interprocess communication of data needed to cal-
culate glocal has already been done, and that this data is accessible within user_data.

The case where g is mathematically identical to f is allowed.

Definition typedef int (*CVCommFn) (sunindextype Nlocal, realtype t,
N_Vector y, void *user_data);

Purpose This cfn function performs all interprocess communication necessary for the execution
of the gloc function above, using the input vector y.

Arguments Nlocal is the local vector length.
t is the value of the independent variable.
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y is the dependent variable.

user_data is a pointer to user data, the same as the user_data parameter passed to
CVodeSetUserData.

Return value A CVCommFn should return 0 if successful, a positive value if a recoverable error occurred

(in which case CVODES will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CVode returns CV_LSETUP_FAIL).

Notes The cfn function is expected to save communicated data in space defined within the

data structure user_data.

Each call to the cfn function is preceded by a call to the right-hand side function £
with the same (t, y) arguments. Thus, cfn can omit any communication done by f
if relevant to the evaluation of glocal. If all necessary communication was done in f,
then cfn = NULL can be passed in the call to CVBBDPrecInit (see below).

Besides the header files required for the integration of the ODE problem (see §4.3), to use the

CVBBDPRE module, the main program must include the header file cvodes_bbdpre.h which declares
the needed function prototypes.

The following is a summary of the proper usage of this module. Steps that are unchanged from

the skeleton program presented in §4.4 are grayed out.

1

2.

10.

11.

12.

13.

. Initialize MPI environment
Set problem dimensions

Set vector of initial values
Create CVODES object
Initialize CVODES solver
Specify integration tolerances
Set optional inputs

Create linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (PREC_LEFT
or PREC_RIGHT) to use.

Set linear solver optional inputs

Attach linear solver module

Initialize the CVBBDPRE preconditioner module
Specify the upper and lower half-bandwidths mudq and mldq, and mukeep and mlkeep, and call

flag = CVBBDPrecInit(cvode mem, local N, mudq, mldq,
mukeep, mlkeep, dqrely, gloc, cfn);

to allocate memory and initialize the internal preconditioner data. The last two arguments of
CVBBDPrecInit are the two user-supplied functions described above.

Set linear solver interface optional inputs

Note that the user should not overwrite the preconditioner setup function or solve function through

calls to the CVSpilsSetPreconditioner optional input function.

Advance solution in time
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14. Get optional outputs

Additional optional outputs associated with CVBBDPRE are available by way of two routines de-
scribed below, CVBBDPrecGetWorkSpace and CVBBDPrecGetNumGfnEvals.

15. Deallocate memory for solution vector

16. Free solver memory

17. Free linear solver memory

18. Finalize MPI

The user-callable functions that initialize (step 11 above) or re-initialize the CVBBDPRE preconditioner
module are described next.

| CVBBDPrecInit |

Call
Description

Arguments

Return value

Notes

flag = CVBBDPrecInit(cvode mem, local N, mudq, mldq,
mukeep, mlkeep, dqrely, gloc, cfn) ;

The function CVBBDPrecInit initializes and allocates (internal) memory for the CVBB-
DPRE preconditioner.

cvode mem (void *) pointer to the CVODES memory block.

local N  (sunindextype) local vector length.

mudq (sunindextype) upper half-bandwidth to be used in the difference quotient
Jacobian approximation.
mldq (sunindextype) lower half-bandwidth to be used in the difference quotient

Jacobian approximation.

mukeep (sunindextype) upper half-bandwidth of the retained banded approximate
Jacobian block.

mlkeep (sunindextype) lower half-bandwidth of the retained banded approximate
Jacobian block.

dqrely (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dqrely= +/unit roundoff, which
can be specified by passing dqrely = 0.0.

gloc (CVLocalFn) the C function which computes the approximation g(t¢,y) =
f(ty).
cfn (CVCommFn) the optional C function which performs all interprocess commu-

nication required for the computation of g(t,y).
The return value flag (of type int) is one of
CVSPILS_SUCCESS The call to CVBBDPrecInit was successful.
CVSPILS_MEM_NULL The cvode_mem pointer was NULL.
CVSPILS_MEM_FAIL A memory allocation request has failed.
CVSPILS_LMEM_NULL A CVSPILS linear solver was not attached.
CVSPILS_ILL_INPUT The supplied vector implementation was not compatible with block
band preconditioner.
If one of the half-bandwidths mudq or mldq to be used in the difference quotient cal-

culation of the approximate Jacobian is negative or exceeds the value local N—1, it is
replaced by 0 or local N—1 accordingly.

The half-bandwidths mudq and m1dq need not be the true half-bandwidths of the Jaco-
bian of the local block of g when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate
Jacobian block may be even smaller, to reduce storage and computational costs further.

For all four half-bandwidths, the values need not be the same on every processor.
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The cvBBDPRE module also provides a reinitialization function to allow solving a sequence of
problems of the same size, with the same linear solver choice, provided there is no change in local N,
mukeep, or mlkeep. After solving one problem, and after calling CVodeReInit to re-initialize CVODES
for a subsequent problem, a call to CVBBDPrecReInit can be made to change any of the following: the
half-bandwidths mudq and m1dq used in the difference-quotient Jacobian approximations, the relative
increment dqrely, or one of the user-supplied functions gloc and cfn. If there is a change in any of
the linear solver inputs, an additional call to the “Set” routines provided by the SUNLINSOL module,
and/or one or more of the corresponding CVSpilsSet*#** functions, must also be made (in the proper
order).

| CVBBDPrecRelInit |

Call flag = CVBBDPrecReInit(cvode mem, mudq, mldq, dqrely);
Description The function CVBBDPrecReInit re-initializes the CVBBDPRE preconditioner.

Arguments cvode mem (void *) pointer to the CVODES memory block.

mudq (sunindextype) upper half-bandwidth to be used in the difference quotient
Jacobian approximation.

mldq (sunindextype) lower half-bandwidth to be used in the difference quotient
Jacobian approximation.

dqrely (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dqrely = +/unit roundoff, which
can be specified by passing dgrely = 0.0.

Return value The return value flag (of type int) is one of
CVSPILS_SUCCESS The call to CVBBDPrecReInit was successful.
CVSPILS MEM NULL The cvode mem pointer was NULL.
CVSPILS_LMEM_NULL A CVSPILS linear solver memory was not attached.
CVSPILS_PMEM NULL The function CVBBDPrecInit was not previously called.

Notes If one of the half-bandwidths mudq or m1dq is negative or exceeds the value local N—1,
it is replaced by 0 or local N—1 accordingly.

The following two optional output functions are available for use with the CVBBDPRE module:

CVBBDPrecGetWorkSpace

Call flag = CVBBDPrecGetWorkSpace(cvode mem, &lenrwBBDP, &leniwBBDP) ;

Description  The function CVBBDPrecGetWorkSpace returns the local CVBBDPRE real and integer
workspace sizes.

Arguments cvode mem (void *) pointer to the CVODES memory block.
lenrwBBDP (long int) local number of realtype values in the CVBBDPRE workspace.
leniwBBDP (long int) local number of integer values in the CVBBDPRE workspace.

Return value The return value flag (of type int) is one of

CVSPILS_SUCCESS The optional output value has been successfully set.
CVSPILS MEM NULL The cvode mem pointer was NULL.
CVSPILS_PMEM NULL The CVBBDPRE preconditioner has not been initialized.

Notes The workspace requirements reported by this routine correspond only to memory allo-

cated within the cVBBDPRE module (the banded matrix approximation, banded SUN-
LINSOL object, temporary vectors). These values are local to each process.

The workspaces referred to here exist in addition to those given by the corresponding
function CVSpilsGetWorkSpace.
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’ CVBBDPrecGetNumGfnEvals ‘

Call

Description

Arguments

Return value

flag = CVBBDPrecGetNumGfnEvals(cvode mem, &ngevalsBBDP);

The function CVBBDPrecGetNumGfnEvals returns the number of calls made to the user-
supplied gloc function due to the finite difference approximation of the Jacobian blocks
used within the preconditioner setup function.

cvodemem  (void *) pointer to the CVODES memory block.

ngevalsBBDP (long int) the number of calls made to the user-supplied gloc function.

The return value flag (of type int) is one of
CVSPILS_SUCCESS The optional output value has been successfully set.

CVSPILS_ MEM NULL The cvode_mem pointer was NULL.
CVSPILS_PMEM NULL The CVBBDPRE preconditioner has not been initialized.

In addition to the ngevalsBBDP gloc evaluations, the costs associated with CVBBDPRE also in-
clude nlinsetups LU factorizations, nlinsetups calls to cfn, npsolves banded backsolve calls, and
nfevalsLS right-hand side function evaluations, where nlinsetups is an optional CVODES output and
npsolves and nfevalsLS are linear solver optional outputs (see §4.5.8).






Chapter 5

Using CVODES for Forward
Sensitivity Analysis

This chapter describes the use of CVODES to compute solution sensitivities using forward sensitivity
analysis. One of our main guiding principles was to design the CVODES user interface for forward
sensitivity analysis as an extension of that for IVP integration. Assuming a user main program and
user-defined support routines for IVP integration have already been defined, in order to perform
forward sensitivity analysis the user only has to insert a few more calls into the main program and
(optionally) define an additional routine which computes the right-hand side of the sensitivity systems
(2.11). The only departure from this philosophy is due to the CVRhsFn type definition (§4.6.1).
Without changing the definition of this type, the only way to pass values of the problem parameters
to the ODE right-hand side function is to require the user data structure f_data to contain a pointer
to the array of real parameters p.

CVODES uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Appendix B.

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed
descriptions of the interface to the various user-callable routines and of the user-supplied routines that
were not already described in Chapter 4.

5.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) as an application of
CVODES. The user program is to have these steps in the order indicated, unless otherwise noted. For
the sake of brevity, we defer many of the details to the later sections. As in §4.4, most steps are
independent of the NVECTOR implementation used; where this is not the case, refer to Chapter 7 for
specifics. Differences between the user main program in §4.4 and the one below start only at step
(13). Steps that are unchanged from the skeleton program presented in §4.4 are grayed out.

First, note that no additional header files need be included for forward sensitivity analysis beyond
those for IVP solution (§4.4).

1. Initialize parallel or multi-threaded environment, if appropriate
2. Set problem dimensions etc.

3. Set vector of initial values

4. Create CVODES object

5. Initialize CVODES

6. Specify integration tolerances
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7. Set optional inputs
8. Create matrix object
9. Create linear solver object
10. Set linear solver optional inputs
11. Attach linear solver module
12. Initialize quadrature problem, if not sensitivity-dependent
13. Define the sensitivity problem
eNumber of sensitivities (required)
Set Ns = N, the number of parameters with respect to which sensitivities are to be computed.
eProblem parameters (optional)
If cVODES is to evaluate the right-hand sides of the sensitivity systems, set p, an array of
Np real parameters upon which the IVP depends. Only parameters with respect to which
sensitivities are (potentially) desired need to be included. Attach p to the user data structure
user_data. For example, user_data->p = p;
If the user provides a function to evaluate the sensitivity right-hand side, p need not be
specified.
eParameter list (optional)
If cvODES is to evaluate the right-hand sides of the sensitivity systems, set plist, an array
of Ns integers to specify the parameters p with respect to which solution sensitivities are to
be computed. If sensitivities with respect to the j-th parameter p[j] are desired (0 < j <
Np), set plist, = j, for some i = 0,..., N — 1.
If plist is not specified, CVODES will compute sensitivities with respect to the first Ns
parameters; i.e., plist; =4 (1 =0,...,N; — 1).
If the user provides a function to evaluate the sensitivity right-hand side, plist need not be
specified.
eParameter scaling factors (optional)
If CVODES is to estimate tolerances for the sensitivity solution vectors (based on tolerances
for the state solution vector) or if CVODES is to evaluate the right-hand sides of the sensitivity
systems using the internal difference-quotient function, the results will be more accurate if
order of magnitude information is provided.
Set pbar, an array of Ns positive scaling factors. Typically, if p; # 0, the value p; = |pplist, |
can be used.
If pbar is not specified, CVODES will use p; = 1.0.
If the user provides a function to evaluate the sensitivity right-hand side and specifies toler-
ances for the sensitivity variables, pbar need not be specified.
Note that the names for p, pbar, plist, as well as the field p of user_data are arbitrary, but they
must agree with the arguments passed to CVodeSetSensParams below.
14. Set sensitivity initial conditions

Set the Ns vectors ySO[i] of initial values for sensitivities (for ¢ = 0,..., Ns —1), using the
appropriate functions defined by the particular NVECTOR implementation chosen.

First, create an array of Ns vectors by making the appropriate call
ySO = N_VCloneVectorArray **x(Ns, yO);

or
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28

ySO = N_VCloneVectorArrayEmpty ***(Ns, yO);
Here the argument yO0 serves only to provide the N_Vector type for cloning.

Then, for each i =0,... Ns —1, load initial values for the i-th sensitivity vector ySO[i].

Activate sensitivity calculations

Call flag = CVodeSensInit or CVodeSensInit1l to activate forward sensitivity computations and
allocate internal memory for CVODES related to sensitivity calculations (see §5.2.1).

Set sensitivity tolerances

Call CVodeSensSStolerances, CVodeSensSVtolerances or CVodeEEtolerances. (See §5.2.2).

Set sensitivity analysis optional inputs

Call CVodeSetSens* routines to change from their default values any optional inputs that control
the behavior of CVODES in computing forward sensitivities. (See §5.2.5.)

Specify rootfinding
Advance solution in time

Extract sensitivity solution

After each successful return from CVode, the solution of the original IVP is available in the y
argument of CVode, while the sensitivity solution can be extracted into yS (which can be the
same as yS0) by calling one of the routines CVodeGetSens,CVodeGetSens1, CVodeGetSensDky, or
CVodeGetSensDky1l (see §5.2.4).

Get optional outputs
Deallocate memory for solution vector

Deallocate memory for sensitivity vectors

Upon completion of the integration, deallocate memory for the vectors ySO using the appropriate
destructor:

N_VDestroyVectorArray ***(ySO, Ns);

If yS was created from realtype arrays yS_i, it is the user’s responsibility to also free the space
for the arrays yS0_1.

Free user data structure

Free solver memory

Free vector specification memory
Free linear solver and matrix memory

Finalize MPI, if used

5.2 User-callable routines for forward sensitivity analysis

This section describes the ¢VODES functions, in addition to those presented in §4.5, that are called by
the user to setup and solve a forward sensitivity problem.
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5.2.1 Forward sensitivity initialization and deallocation functions

Activation of forward sensitivity computation is done by calling CVodeSensInit or CVodeSensInit1,
depending on whether the sensitivity right-hand side function returns all sensitivities at once or one
by one, respectively. The form of the call to each of these routines is as follows:

’ CVodeSensInit

Call flag = CVodeSensInit(cvode mem, Ns, ism, fS, yS0);

Description The routine CVodeSensInit activates forward sensitivity computations and allocates
internal memory related to sensitivity calculations.

Arguments cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.

Return value

Ns (int) the number of sensitivities to be computed.
ism (int) a flag used to select the sensitivity solution method. Its value can be
CV_SIMULTANEQUS or CV_STAGGERED:

e In the CV_SIMULTANEQUS approach, the state and sensitivity variables
are corrected at the same time. If CV.NEWTON was selected as the non-
linear system solution method, this amounts to performing a modified
Newton iteration on the combined nonlinear system;

e In the CV_STAGGERED approach, the correction step for the sensitivity
variables takes place at the same time for all sensitivity equations, but
only after the correction of the state variables has converged and the
state variables have passed the local error test;

£S (CVSensRhsFn) is the C function which computes all sensitivity ODE right-
hand sides at the same time. For full details see §5.3.

yS0 (N_Vector *) a pointer to an array of Ns vectors containing the initial values
of the sensitivities.

The return value flag (of type int) will be one of the following:

CV_SUCCESS The call to CVodeSensInit was successful.

CV_MEM_NULL The cVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_MEM_FAIL A memory allocation request has failed.
CV_ILL_INPUT An input argument to CVodeSensInit has an illegal value.

Notes Passing £S=NULL indicates using the default internal difference quotient sensitivity right-
hand side routine.
If an error occurred, CVodeSensInit also sends an error message to the error handler
function.
It is illegal here to use ism = CV_STAGGERED1. This option requires a different type for
£S and can therefore only be used with CVodeSensInitl (see below).

’CVodeSensInitl

Call flag = CVodeSensInitl(cvode mem, Ns, ism, £S1, yS0);

Description  The routine CVodeSensInitl activates forward sensitivity computations and allocates
internal memory related to sensitivity calculations.

Arguments cvodemem (void *) pointer to the CVODES memory block returned by CVodeCreate.

Ns (int) the number of sensitivities to be computed.

ism (int) a flag used to select the sensitivity solution method. Its value can be
CV_SIMULTANEQOUS, CV_STAGGERED, or CV_STAGGERED1:
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Return value

Notes

e In the CV_SIMULTANEQUS approach, the state and sensitivity variables
are corrected at the same time. If CV.NEWTON was selected as the non-
linear system solution method, this amounts to performing a modified
Newton iteration on the combined nonlinear system;

e In the CV_STAGGERED approach, the correction step for the sensitivity
variables takes place at the same time for all sensitivity equations, but
only after the correction of the state variables has converged and the
state variables have passed the local error test;

e In the CV_.STAGGERED1 approach, all corrections are done sequentially,
first for the state variables and then for the sensitivity variables, one
parameter at a time. If the sensitivity variables are not included in
the error control, this approach is equivalent to CV_STAGGERED. Note
that the CV_STAGGERED1 approach can be used only if the user-provided
sensitivity right-hand side function is of type CVSensRhs1Fn (see §5.3).

fs1 (CVSensRhs1Fn) is the C function which computes the right-hand sides of
the sensitivity ODE, one at a time. For full details see §5.3.
ySO (N_Vector *) a pointer to an array of Ns vectors containing the initial values

of the sensitivities.
The return value flag (of type int) will be one of the following:

CV_SUCCESS The call to CVodeSensInitl was successful.

CV_MEM_NULL The CcVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_MEM_FAIL A memory allocation request has failed.

CV_ILL_INPUT An input argument to CVodeSensInitl has an illegal value.

Passing £S1=NULL indicates using the default internal difference quotient sensitivity
right-hand side routine.

If an error occurred, CVodeSensInitl also sends an error message to the error handler
funciton.

In terms of the problem size N, number of sensitivity vectors Ny, and maximum method order maxord,
the size of the real workspace is increased as follows:

e Base value: lenrw = lenrw + (maxord+5)N N

e With CVodeSensSVtolerances: lenrw = lenrw +N;N

the size of the integer workspace is increased as follows:

e Base value: leniw = leniw + (maxord+5)N N;

e With CVodeSensSVtolerances: leniw = leniw +N,N;

where N; is the number of integers in one N_Vector.

The routine CVodeSensReInit, useful during the solution of a sequence of problems of same size,
reinitializes the sensitivity-related internal memory. The call to it must follow a call to CVodeSensInit
or CVodeSensInitl (and maybe a call to CVodeReInit). The number Ns of sensitivities is assumed to
be unchanged since the call to the initialization function. The call to the CVodeSensReInit function

has the form:

’CVodeSensReInit

Call
Description

Arguments

flag = CVodeSensReInit(cvode mem, ism, ySO);
The routine CVodeSensReInit reinitializes forward sensitivity computations.

cvodemem (void *) pointer to the CVODES memory block returned by CVodeCreate.
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ism (int) a flag used to select the sensitivity solution method. Its value can be
CV_SIMULTANEQUS, CV_STAGGERED, or CV_STAGGERED1.
ySO (N_Vector *) a pointer to an array of Ns variables of type N_Vector con-

taining the initial values of the sensitivities.
Return value The return value flag (of type int) will be one of the following;:

CV_SUCCESS The call to CVodeReInit was successful.

CV_.MEM_NULL The CcVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_NO_SENS  Memory space for sensitivity integration was not allocated through a
previous call to CVodeSensInit.

CV_ILL_INPUT An input argument to CVodeSensReInit has an illegal value.
CV_MEM _FAIL A memory allocation request has failed.

Notes All arguments of CVodeSensReInit are the same as those of the functions CVodeSensInit
and CVodeSensInitl.

If an error occurred, CVodeSensReInit also sends a message to the error handler func-
tion.

The value of the input argument ism must be compatible with the type of the sensitivity
ODE right-hand side function. Thus if the sensitivity module was initialized using
CVodeSensInit, then it is illegal to pass ism = CV_STAGGERED1 to CVodeSensReInit.

To deallocate all forward sensitivity-related memory (allocated in a prior call to CVodeSensInit or
CVodeSensInitl), the user must call

’CVodeSensFree‘

Call CVodeSensFree(cvode_mem) ;

Description The function CVodeSensFree frees the memory allocated for forward sensitivity com-
putations by a previous call to CVodeSensInit or CVodeSensInitl.

Arguments  The argument is the pointer to the CVODES memory block (of type void *).
Return value The function CVodeSensFree has no return value.

Notes In general, CVodeSensFree need not be called by the user, as it is invoked automatically
by CVodeFree.

After a call to CVodeSensFree, forward sensitivity computations can be reactivated only
by calling CVodeSensInit or CVodeSensInitl again.

To activate and deactivate forward sensitivity calculations for successive CVODES runs, without having
to allocate and deallocate memory, the following function is provided:

CVodeSensToggleOff

Call CVodeSensToggleOff (cvode mem) ;

Description The function CVodeSensToggle0ff deactivates forward sensitivity calculations. It does
not deallocate sensitivity-related memory.

Arguments cvode mem (void *) pointer to the memory previously returned by CVodeCreate.
Return value The return value flag of CVodeSensToggle is one of:

CV_SUCCESS CVodeSensToggleOff was successful.
CV_MEM_NULL cvode_mem was NULL.

Notes Since sensitivity-related memory is not deallocated, sensitivities can be reactivated at
a later time (using CVodeSensReInit).
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5.2.2 Forward sensitivity tolerance specification functions

One of the following three functions must be called to specify the integration tolerances for sensitivities.
Note that this call must be made after the call to CVodeSensInit/CVodeSensInitl.

’CVodeSensSStolerances‘

Call
Description

Arguments

Return value

flag = CVodeSensSStolerances(cvode mem, reltolS, abstolS);

The function CVodeSensSStolerances specifies scalar relative and absolute tolerances.

cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.

reltolS (realtype) is the scalar relative error tolerance.

abstolS (realtype*) is a pointer to an array of length Ns containing the scalar
absolute error tolerances, one for each parameter.

The return flag flag (of type int) will be one of the following:

CV_SUCCESS The call to CVodeSStolerances was successful.

CV_MEM_NULL The cVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_NO_SENS  The sensitivity allocation function (CVodeSensInit or CVodeSensInitl)
has not been called.

CV_ILL_INPUT One of the input tolerances was negative.

’CVodeSensSVtolerances‘

Call

Description

Arguments

Return value

Notes

flag = CVodeSensSVtolerances(cvode mem, reltolS, abstolS);

The function CVodeSensSVtolerances specifies scalar relative tolerance and vector ab-

solute tolerances.

cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.

reltolS (realtype) is the scalar relative error tolerance.

abstolS (N_Vector*) is an array of Ns variables of type N_Vector. The N_Vector
from abstolS[is] specifies the vector tolerances for is-th sensitivity.

The return flag flag (of type int) will be one of the following:

CV_SUCCESS The call to CVodeSVtolerances was successful.

CV_MEM_NULL The cVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_NO_SENS  The allocation function for sensitivities has not been called.

CV_ILL_INPUT The relative error tolerance was negative or an absolute tolerance vector
had a negative component.

This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of any vector yS[i].

’CVodeSensEEtolerances

Call

Description

Arguments

Return value

flag = CVodeSensEEtolerances(cvode mem) ;

When CVodeSensEEtolerances is called, CVODES will estimate tolerances for sensitivity
variables based on the tolerances supplied for states variables and the scaling factors p.

cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.
The return flag flag (of type int) will be one of the following:

CV_SUCCESS The call to CVodeSensEEtolerances was successful.

CV_MEM_NULL The cVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_NO_SENS  The sensitivity allocation function has not been called.
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5.2.3 CVODES solver function

Even if forward sensitivity analysis was enabled, the call to the main solver function CVode is exactly
the same as in §4.5.5. However, in this case the return value flag can also be one of the following:
CV_SRHSFUNC_FAIL The sensitivity right-hand side function failed in an unrecoverable manner.

CV_FIRST_SRHSFUNC_ERR The sensitivity right-hand side function failed at the first call.

CV_REPTD_SRHSFUNC_ERR Convergence tests occurred too many times due to repeated recoverable
errors in the sensitivity right-hand side function. This flag will also be
returned if the sensitivity right-hand side function had repeated recoverable
errors during the estimation of an initial step size.

CV_UNREC_SRHSFUNC_ERR The sensitivity right-hand function had a recoverable error, but no recovery
was possible. This failure mode is rare, as it can occur only if the sensitivity
right-hand side function fails recoverably after an error test failed while at
order one.

5.2.4 Forward sensitivity extraction functions

If forward sensitivity computations have been initialized by a call to CVodeSensInit/CVodeSensInit1,
or reinitialized by a call to CVSensReInit, then CVODES computes both a solution and sensitivities
at time t. However, CVode will still return only the solution y in yout. Solution sensitivities can be
obtained through one of the following functions:

CVodeGetSens

Call flag = CVodeGetSens(cvode mem, &tret, yS);

Description The function CVodeGetSens returns the sensitivity solution vectors after a successful
return from CVode.
Arguments cvodemem (void *) pointer to the memory previously allocated by CVodeInit.
tret (realtype *) the time reached by the solver (output).
yS (N_Vector *) array of computed forward sensitivity vectors.
Return value The return value flag of CVodeGetSens is one of:
CV_SUCCESS CVodeGetSens was successful.
CV_MEM_NULL cvode_mem was NULL.
CV_NO_SENS Forward sensitivity analysis was not initialized.
CV_BAD_DKY yS is NULL.
Notes Note that the argument tret is an output for this function. Its value will be the same
as that returned at the last CVode call.

The function CVodeGetSensDky computes the k-th derivatives of the interpolating polynomials for the
sensitivity variables at time t. This function is called by CVodeGetSens with k = 0, but may also be
called directly by the user.

CVodeGetSensDky

Call flag = CVodeGetSensDky(cvode mem, t, k, dkyS);

Description  The function CVodeGetSensDky returns derivatives of the sensitivity solution vectors
after a successful return from CVode.
Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by CVODES.

k (int) order of derivatives.
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Return value

dkyS (N_Vector #) array of Ns vectors containing the derivatives on output. The
space for dkyS must be allocated by the user.

The return value flag of CVodeGetSensDky is one of:

CV_SUCCESS CVodeGetSensDky succeeded.

CV_MEM_NULL cvode_mem was NULL.

CV_NO_SENS Forward sensitivity analysis was not initialized.
CV_BAD_DKY One of the vectors dkyS is NULL.

CV_BAD K k is not in the range 0,1, ..., qlast.

CV_BAD_T The time t is not in the allowed range.

Forward sensitivity solution vectors can also be extracted separately for each parameter in turn
through the functions CVodeGetSens1 and CVodeGetSensDky1, defined as follows:

’CVodeGetSensl‘

Call

Description

Arguments

Return value

flag = CVodeGetSensl(cvode mem, &tret, is, yS);

The function CVodeGetSens1 returns the is-th sensitivity solution vector after a suc-
cessful return from CVode.

cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

tret (realtype *) the time reached by the solver (output).
is (int) specifies which sensitivity vector is to be returned (0 <is< Nj).
yS (N_Vector) the computed forward sensitivity vector.

The return value flag of CVodeGetSens1 is one of:

CV_SUCCESS CVodeGetSens1 was successful.

CV_MEM_NULL cvode_mem was NULL.

CV_NO_SENS Forward sensitivity analysis was not initialized.
CV_BAD_IS The index is is not in the allowed range.
CV_BAD_DKY yS is NULL.

CV_BAD_T The time t is not in the allowed range.

Notes Note that the argument tret is an output for this function. Its value will be the same
as that returned at the last CVode call.

CVodeGetSensDky1l

Call flag = CVodeGetSensDkyl(cvodemem, t, k, is, dkyS);

Description  The function CVodeGetSensDkyl returns the k-th derivative of the is-th sensitivity
solution vector after a successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

Return value

t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by CVODES.

k (int) order of derivative.
is (int) specifies the sensitivity derivative vector to be returned (0 <is< Nj).
dkyS (N_Vector) the vector containing the derivative. The space for dkyS must

be allocated by the user.
The return value flag of CVodeGetSensDky1 is one of:

CV_SUCCESS CVodeGetQuadDky1l succeeded.
CV_MEM_NULL The pointer to cvode _mem was NULL.
CV_NO_SENS Forward sensitivity analysis was not initialized.
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CV_BAD_DKY dkyS or one of the vectors dkyS[i] is NULL.
CV_BAD_IS The index is is not in the allowed range.
CV_BAD K k is not in the range 0,1, ..., qlast.
CV_BAD_T The time t is not in the allowed range.

5.2.5 Optional inputs for forward sensitivity analysis

Optional input variables that control the computation of sensitivities can be changed from their default
values through calls to CVodeSetSens* functions. Table 5.1 lists all forward sensitivity optional input
functions in ¢CVODES which are described in detail in the remainder of this section.

’ CVodeSetSensParams

Call

Description

Arguments

Return value

flag = CVodeSetSensParams(cvodemem, p, pbar, plist);

The function CVodeSetSensParams specifies problem parameter information for sensi-
tivity calculations.
cvode mem (void *) pointer to the CVODES memory block.

P (realtype *) a pointer to the array of real problem parameters used to
evaluate f(t,y,p). If non-NULL, p must point to a field in the user’s data
structure user_data passed to the right-hand side function. (See §5.1).

pbar (realtype *) an array of Ns positive scaling factors. If non-NULL, pbar must
have all its components > 0.0. (See §5.1).

plist (int *) an array of Ns non-negative indices to specify which components
pli] to use in estimating the sensitivity equations. If non-NULL, plist
must have all components > 0. (See §5.1).

The return value flag (of type int) is one of:
CV_SUCCESS  The optional value has been successfully set.
CV_MEM NULL The cvode mem pointer is NULL.

CV_NO_SENS  Forward sensitivity analysis was not initialized.
CV_ILL_INPUT An argument has an illegal value.

Notes This function must be preceded by a call to CVodeSensInit or CVodeSensInitl.

| CVodeSetSensDQMethod

Call flag = CVodeSetSensDQMethod(cvode mem, DQtype, DQrhomax);

Description The function CVodeSetSensDQMethod specifies the difference quotient strategy in the
case in which the right-hand side of the sensitivity equations are to be computed by
CVODES.

Arguments cvode mem (void *) pointer to the CVODES memory block.

DQtype (int) specifies the difference quotient type. Its value can be CV_CENTERED
or CV_FORWARD.

Table 5.1: Forward sensitivity optional inputs

Optional input Routine name Default
Sensitivity scaling factors CVodeSetSensParams NULL

DQ approximation method CVodeSetSensDQMethod centered /0.0
Error control strategy CVodeSetSensErrCon SUNFALSE
Maximum no. of nonlinear iterations | CVodeSetSensMaxNonlinIters | 3
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Return value

DQrhomax (realtype) positive value of the selection parameter used in deciding switch-
ing between a simultaneous or separate approximation of the two terms in
the sensitivity right-hand side.

The return value flag (of type int) is one of:

CV_SUCCESS  The optional value has been successfully set.
CV_MEM NULL The cvode mem pointer is NULL.
CV_ILL_INPUT An argument has an illegal value.

Notes If DQrhomax = 0.0, then no switching is performed. The approximation is done simul-
taneously using either centered or forward finite differences, depending on the value of
DQtype. For values of DQrhomax > 1.0, the simultaneous approximation is used when-
ever the estimated finite difference perturbations for states and parameters are within
a factor of DQrhomax, and the separate approximation is used otherwise. Note that a
value DQrhomax < 1.0 will effectively disable switching. See §2.6 for more details.
The default value are DQtype=CV_CENTERED and DQrhomax= 0.0.

’ CVodeSetSensErrCon ‘

Call flag = CVodeSetSensErrCon(cvode mem, errconS);

Description The function CVodeSetSensErrCon specifies the error control strategy for sensitivity
variables.

Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

Notes

errconS (booleantype) specifies whether sensitivity variables are to be included
(SUNTRUE) or not (SUNFALSE) in the error control mechanism.

The return value flag (of type int) is one of:
CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

By default, errconsS is set to SUNFALSE. If errconS=SUNTRUE then both state variables
and sensitivity variables are included in the error tests. If errconS=SUNFALSE then
the sensitivity variables are excluded from the error tests. Note that, in any event, all
variables are considered in the convergence tests.

’CVodeSetSensMaxNonlinIters

Call

Description

Arguments

Return value

Notes

flag = CVodeSetSensMaxNonlinIters(cvode mem, maxcorS);

The function CVodeSetSensMaxNonlinIters specifies the maximum number of nonlin-
ear solver iterations for sensitivity variables per step.

cvode mem (void *) pointer to the CVODES memory block.

maxcorS  (int) maximum number of nonlinear solver iterations allowed per step (> 0).
The return value flag (of type int) is one of:

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

The default value is 3.

5.2.6 Optional outputs for forward sensitivity analysis

Optional output functions that return statistics and solver performance information related to forward
sensitivity computations are listed in Table 5.2 and described in detail in the remainder of this section.
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’ CVodeGetSensNumRhsEvals ‘

Call

Description

Arguments

Return value

Notes

flag = CVodeGetSensNumRhsEvals(cvode mem, &nfSevals);

The function CVodeGetSensNumRhsEvals returns the number of calls to the sensitivity
right-hand side function.
cvode mem (void *) pointer to the CVODES memory block.

nfSevals (long int) number of calls to the sensitivity right-hand side function.
The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CV_NO_SENS Forward sensitivity analysis was not initialized.

In order to accommodate any of the three possible sensitivity solution methods, the
default internal finite difference quotient functions evaluate the sensitivity right-hand
sides one at a time. Therefore, nfSevals will always be a multiple of the number of
sensitivity parameters (the same as the case in which the user supplies a routine of type
CVSensRhs1Fn).

| CVodeGetNumRhsEvalsSens |

Call

Description

Arguments

Return value

Notes

flag = CVodeGetNumRhsEvalsSens(cvode mem, &nfevalsS);

The function CVodeGetNumRhsEvalsSEns returns the number of calls to the user’s right-

hand side function due to the internal finite difference approximation of the sensitivity

right-hand sides.

cvode mem (void *) pointer to the CVODES memory block.

nfevalsS (long int) number of calls to the user’s ODE right-hand side function for
the evaluation of sensitivity right-hand sides.

The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
CV_NO_SENS Forward sensitivity analysis was not initialized.

This counter is incremented only if the internal finite difference approximation routines
are used for the evaluation of the sensitivity right-hand sides.

’ CVodeGetSensNumErrTestFails

Call flag = CVodeGetSensNumErrTestFails(cvode mem, &nSetfails);
Table 5.2: Forward sensitivity optional outputs
Optional output Routine name
No. of calls to sensitivity r.h.s. function CVodeGetSensNumRhsEvals
No. of calls to r.h.s. function for sensitivity CVodeGetNumRhsEvalsSens
No. of sensitivity local error test failures CVodeGetSensNumErrTestFails
No. of calls to lin. solv. setup routine for sens. | CVodeGetSensNumLinSolvSetups
Error weight vector for sensitivity variables CVodeGetSensErrWeights
No. of sens. nonlinear solver iterations CVodeGetSensNumNonlinSolvIters
No. of sens. convergence failures CVodeGetSensNumNonlinSolvConvFails
No. of staggered nonlinear solver iterations CVodeGetStgrSensNumNonlinSolvIters
No. of staggered convergence failures CVodeGetStgrSensNumNonlinSolvConvFails
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Description

Arguments

Return value

Notes

The function CVodeGetSensNumErrTestFails returns the number of local error test
failures for the sensitivity variables that have occurred.

cvode mem (void *) pointer to the CVODES memory block.

nSetfails (long int) number of error test failures.

The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CV_NO_SENS Forward sensitivity analysis was not initialized.
This counter is incremented only if the sensitivity variables have been included in the

error test (see CVodeSetSensErrCon in §5.2.5). Even in that case, this counter is not
incremented if the ism=CV_SIMULTANEQUS sensitivity solution method has been used.

CVodeGetSensNumLinSolvSetups ‘

Call

Description

Arguments

Return value

flag = CVodeGetSensNumLinSolvSetups(cvode mem, &nlinsetupsS);

The function CVodeGetSensNumLinSolvSetups returns the number of calls to the linear
solver setup function due to forward sensitivity calculations.

cvode mem (void *) pointer to the CVODES memory block.

nlinsetupsS (long int) number of calls to the linear solver setup function.
The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CV_NO_SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if Newton iteration has been used and if either the
ism = CV_STAGGERED or the ism = CV_STAGGERED1 sensitivity solution method has been
specified (see §5.2.1).

’CVodeGetSensStats‘

Call flag = CVodeGetSensStats(cvode mem, &nfSevals, &nfevalsS, &nSetfails,

&nSetfails, &nlinsetupsS);

Description The function CVodeGetSensStats returns all of the above sensitivity-related solver
statistics as a group.

Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

(
nfSevals (long int) number of calls to the sensitivity right-hand side function.
nfevalsS (

long int) number of calls to the ODE right-hand side function for sensi-
tivity evaluations.

nSetfails (long int) number of error test failures.

nlinsetupsS (long int) number of calls to the linear solver setup function.
The return value flag (of type int) is one of:

CV_SUCCESS The optional output values have been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CV_NO_SENS Forward sensitivity analysis was not initialized.
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CVodeGetSensErrWeights

Call

Description

Arguments

Return value

Notes

flag = CVodeGetSensErrWeights(cvode mem, eSweight);

The function CVodeGetSensErrWeights returns the sensitivity error weight vectors at
the current time. These are the reciprocals of the W; of (2.7) for the sensitivity variables.

cvode mem (void *) pointer to the CVODES memory block.
eSweight (N_Vector *) pointer to the array of error weight vectors.

The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.
CV_MEM _NULL The cvode_mem pointer is NULL.
CV_NO_SENS Forward sensitivity analysis was not initialized.

The user must allocate memory for eweights.

’ CVodeGetSensNumNonlinSolvIters ‘

Call

Description

Arguments

Return value

Notes

flag = CVodeGetSensNumNonlinSolvIters(cvode mem, &nSniters);

The function CVodeGetSensNumNonlinSolvIters returns the number of nonlinear iter-
ations performed for sensitivity calculations.

cvode mem (void *) pointer to the CVODES memory block.

nSniters (long int) number of nonlinear iterations performed.

The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.

CV_MEM_NULL The cvode_mem pointer is NULL.

CV_NO_SENS Forward sensitivity analysis was not initialized.

This counter is incremented only if ism was CV_STAGGERED or CV_STAGGERED1 (see
§5.2.1).

In the CV_STAGGERED1 case, the value of nSniters is the sum of the number of nonlinear
iterations performed for each sensitivity equation. These individual counters can be
obtained through a call to CVodeGetStgrSensNumNonlinSolvIters (see below).

’ CVodeGetSensNumNonlinSolvConvFails ‘

Call

Description

Arguments

Return value

Notes

flag = CVodeGetSensNumNonlinSolvConvFails(cvode mem, &nSncfails);

The function CVodeGetSensNumNonlinSolvConvFails returns the number of nonlinear
convergence failures that have occurred for sensitivity calculations.

cvode mem (void *) pointer to the CVODES memory block.

nSncfails (long int) number of nonlinear convergence failures.

The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.

CV_MEM_NULL The cvode_mem pointer is NULL.

CV_NO_SENS Forward sensitivity analysis was not initialized.

This counter is incremented only if ism was CV_STAGGERED or CV_STAGGERED1 (see
§5.2.1).

In the CV_STAGGERED1 case, the value of nSncfails is the sum of the number of non-
linear convergence failures that occurred for each sensitivity equation. These individual
counters can be obtained through a call to CVodeGetStgrSensNumNonlinConvFails
(see below).
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’ CVodeGetSensNonlinSolvStats

Call

Description

Arguments

Return value

flag = CVodeGetSensNonlinSolvStats(cvode_mem, &nSniters, &nSncfails);

The function CVodeGetSensNonlinSolvStats returns the sensitivity-related nonlinear
solver statistics as a group.

cvode mem (void *) pointer to the CVODES memory block.
nSniters (long int) number of nonlinear iterations performed.
nSncfails (long int) number of nonlinear convergence failures.
The return value flag (of type int) is one of:

CV_SUCCESS The optional output values have been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CV_NO_SENS Forward sensitivity analysis was not initialized.

CVodeGetStgrSensNumNonlinSolvIters ‘

Call

Description

Arguments

Return value

Notes

flag = CVodeGetStgrSensNumNonlinSolvIters(cvode mem, nSTGRlniters) ;

The function CVodeGetStgrSensNumNonlinSolvIters returns the number of nonlinear
(functional or Newton) iterations performed for each sensitivity equation separately, in
the CV_STAGGERED1 case.

cvode mem (void *) pointer to the CVODES memory block.

nSTGRiniters (long int *) an array (of dimension Ns) which will be set with the
number of nonlinear iterations performed for each sensitivity system indi-
vidually.

The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CV_NO_SENS Forward sensitivity analysis was not initialized.

The user must allocate space for nSTGR1niters.

CVodeGetStgrSensNumNonlinSolvConvFails

Call

Description

Arguments

Return value

Notes

flag = CVodeGetStgrSensNumNonlinSolvConvFails(cvode mem, nSTGRincfails);

The function CVodeGetStgrSensNumNonlinSolvConvFails returns the number of non-
linear convergence failures that have occurred for each sensitivity equation separately,
in the CV_STAGGERED1 case.

cvode mem (void *) pointer to the CVODES memory block.

nSTGR1ncfails (long int *) an array (of dimension Ns) which will be set with the
number of nonlinear convergence failures for each sensitivity system indi-
vidually.

The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CV_NO_SENS Forward sensitivity analysis was not initialized.

The user must allocate space for nSTGRincfails.
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5.3 User-supplied routines for forward sensitivity analysis

In addition to the required and optional user-supplied routines described in §4.6, when using CVODES
for forward sensitivity analysis, the user has the option of providing a routine that calculates the
right-hand side of the sensitivity equations (2.11).

By default, cvODES uses difference quotient approximation routines for the right-hand sides of the
sensitivity equations. However, CVODES allows the option for user-defined sensitivity right-hand side
routines (which also provides a mechanism for interfacing CVODES to routines generated by automatic
differentiation).

5.3.1 Sensitivity equations right-hand side (all at once)

If the CV_SIMULTANEQOUS or CV_STAGGERED approach was selected in the call to CVodeSensInit or
CVodeSensInitl, the user may provide the right-hand sides of the sensitivity equations (2.11), for all
sensitivity parameters at once, through a function of type CVSensRhsFn defined by:

CVSensRhsFn

Definition typedef int (*CVSensRhsFn) (int Ns, realtype t,
N_Vector y, N_Vector ydot,
N_Vector *yS, N_Vector *ySdot,
void *user_data,
N_Vector tmpl, N_Vector tmp2);

Purpose This function computes the sensitivity right-hand side for all sensitivity equations at
once. It must compute the vectors (9f/0y)s;(t)+ (0 f/0p;) and store them in ySdot [i].

Arguments t is the current value of the independent variable.
y is the current value of the state vector, y(t).
ydot is the current value of the right-hand side of the state equations.
yS contains the current values of the sensitivity vectors.

ySdot is the output of CVSensRhsFn. On exit it must contain the sensitivity right-
hand side vectors.

user_data is a pointer to user data, the same as the user_data parameter passed to
CVodeSetUserData.

tmpl

tmp2 are N_Vectors of length NV which can be used as temporary storage.

Return value A CVSensRhsFn should return 0 if successful, a positive value if a recoverable error oc-
curred (in which case CVODES will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and CV_SRHSFUNC_FAIL is re-
turned).

Notes A sensitivity right-hand side function of type CVSensRhsFn is not compatible with the
CV_STAGGERED1 approach.

Allocation of memory for ySdot is handled within CVODES.

There are two situations in which recovery is not possible even if CVSensRhsFn func-
tion returns a recoverable error flag. One is when this occurs at the very first call to
the CVSensRhsFn (in which case CVODES returns CV_FIRST_SRHSFUNC_ERR). The other
is when a recoverable error is reported by CVSensRhsFn after an error test failure,
while the linear multistep method order is equal to 1 (in which case CVODES returns
CV_UNREC_SRHSFUNC_ERR).
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5.3.2 Sensitivity equations right-hand side (one at a time)

Alternatively, the user may provide the sensitivity right-hand sides, one sensitivity parameter at a
time, through a function of type CVSensRhs1Fn. Note that a sensitivity right-hand side function of
type CVSensRhs1Fn is compatible with any valid value of the argument ism to CVodeSensInit and
CVodeSensInitl, and is required if ism = CV_STAGGERED1 in the call to CVodeSensInitl. The type
CVSensRhs1Fn is defined by

CVSensRhs1Fn

Definition typedef int (*#CVSensRhs1Fn) (int Ns, realtype t,
N_Vector y, N_Vector ydot,
int iS, N_Vector yS, N_Vector ySdot,
void *user_data,
N Vector tmpl, N_Vector tmp2);

Purpose This function computes the sensitivity right-hand side for one sensitivity equation at a
time. It must compute the vector (9f/0y)s;(t) + (0f/0p;) for i = iS and store it in
ySdot.

Arguments t is the current value of the independent variable.

y is the current value of the state vector, y(t).

ydot is the current value of the right-hand side of the state equations.

is is the index of the parameter for which the sensitivity right-hand side must be
computed (0 < iS < Ns).

yS contains the current value of the iS-th sensitivity vector.

ySdot is the output of CVSensRhs1Fn. On exit it must contain the iS-th sensitivity
right-hand side vector.

user_data is a pointer to user data, the same as the user_data parameter passed to
CVodeSetUserData.

tmpl

tmp2 are N_Vectors of length N which can be used as temporary storage.

Return value A CVSensRhs1Fn should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case CVODES will attempt to correct), or a negative value if it
failed unrecoverably (in which case the integration is halted and CV_SRHSFUNC_FAIL is
returned).

Notes Allocation of memory for ySdot is handled within CVODES.

There are two situations in which recovery is not possible even if CVSensRhs1Fn func-
tion returns a recoverable error flag. One is when this occurs at the very first call to
the CVSensRhs1Fn (in which case CVODES returns CV_FIRST_SRHSFUNC_ERR). The other
is when a recoverable error is reported by CVSensRhs1Fn after an error test failure,
while the linear multistep method order equal to 1 (in which case CVODES returns
CV,UNREC,SRHSFUNC,ERR) .

5.4 Integration of quadrature equations depending on forward
sensitivities

CVODES provides support for integration of quadrature equations that depends not only on the state

variables but also on forward sensitivities.

The following is an overview of the sequence of calls in a user’s main program in this situation.
Steps that are unchanged from the skeleton program presented in §5.1 are grayed out.

1. Initialize parallel or multi-threaded environment, if appropriate
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[\]

10.
11.
12.
13.
14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Set problem dimensions etc.

. Set vectors of initial values

. Create CVODES object

. Initialize CVODES

. Specify integration tolerances

. Set optional inputs

. Create matrix object

. Create linear solver object

Set linear solver optional inputs
Initialize sensitivity-independent quadrature problem
Define the sensitivity problem

Set sensitivity initial conditions
Activate sensitivity calculations

Set sensitivity analysis optional inputs

Set vector of initial values for quadrature variables

Typically, the quadrature variables should be initialized to O.

Initialize sensitivity-dependent quadrature integration

Call CVodeQuadSensInit to specify the quadrature equation right-hand side function and to
allocate internal memory related to quadrature integration. See §5.4.1 for details.

Set optional inputs for sensitivity-dependent quadrature integration

Call CVodeSetQuadSensErrCon to indicate whether or not quadrature variables should be used in
the step size control mechanism. If so, one of the CVodeQuadSens*tolerances functions must be
called to specify the integration tolerances for quadrature variables. See §5.4.4 for details.

Advance solution in time

Extract sensitivity-dependent quadrature variables

Call CVodeGetQuadSens, CVodeGetQuadSens1, CVodeGetQuadSensDky or CVodeGetQuadSensDky1
to obtain the values of the quadrature variables or their derivatives at the current time. See §5.4.3
for details.

Get optional outputs
Extract sensitivity solution

Get sensitivity-dependent quadrature optional outputs

Call CVodeGetQuadSens* functions to obtain desired optional output related to the integration of
sensitivity-dependent quadratures. See §5.4.5 for details.

Deallocate memory for solutions vector

Deallocate memory for sensitivity vectors
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26. Deallocate memory for sensitivity-dependent quadrature variables

27. Free vector specification memory

28. Free linear solver and matrix memory

29. Free solver memory

30. Finalize MPI, if used

Note: CVodeQuadSensInit (step 17 above) can be called and quadrature-related optional inputs (step
18 above) can be set anywhere between steps 12 and 19.

5.4.1 Sensitivity-dependent quadrature initialization and deallocation

The function CVodeQuadSensInit activates integration of quadrature equations depending on sensi-
tivities and allocates internal memory related to these calculations. If rhsQS is input as NULL, then
CVODES uses an internal function that computes difference quotient approximations to the functions
di = qySi + Gp,, in the notation of (2.9). The form of the call to this function is as follows:

| CVodeQuadSensInit |

Call flag = CVodeQuadSensInit(cvode mem, rhsQS, yQS0);

Description The function CVodeQuadSensInit provides required problem specifications, allocates
internal memory, and initializes quadrature integration.

Arguments cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.

Return value

Notes

rhsQS (CVQuadSensRhsFn) is the C function which computes fgs, the right-hand
side of the sensitivity-dependent quadrature equations (for full details see
85.4.6).

yQso (N_Vector *) contains the initial values of sensitivity-dependent quadra-
tures.

The return value flag (of type int) will be one of the following;:

CV_SUCCESS The call to CVodeQuadSensInit was successful.

CVODE_MEM NULL The CVODES memory was not initialized by a prior call to CVodeCreate.
CVODE_MEM_FAIL A memory allocation request failed.

CV_NO_SENS  The sensitivities were not initialized by a prior call to CVodeSensInit or
CVodeSensInitl.

CV_ILL_INPUT The parameter yQSO is NULL.

Before calling CVodeQuadSensInit, the user must enable the sensitivites by calling
CVodeSensInit or CVodeSensInitl.

If an error occurred, CVodeQuadSensInit also sends an error message to the error
handler function.

In terms of the number of quadrature variables N, and maximum method order maxord, the size of
the real workspace is increased as follows:

e Base value: lenrw = lenrw + (maxord+5)N,

o If CVodeQuadSensSVtolerances is called: lenrw = lenrw +N,N,

and the size of the integer workspace is increased as follows:

e Base value: leniw = leniw + (maxord+5)N,

e If CVodeQuadSensSVtolerances is called: leniw = leniw +V, N
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The function CVodeQuadSensReInit, useful during the solution of a sequence of problems of same
size, reinitializes quadrature-related internal memory and must follow a call to CVodeQuadSensInit.
The number Nq of quadratures as well as the number Ns of sensitivities are assumed to be unchanged
from the prior call to CVodeQuadSensInit. The call to the CVodeQuadSensReInit function has the
form:

CVodeQuadSensRelInit
Call flag = CVodeQuadSensReInit(cvode mem, yQSO);

Description The function CVodeQuadSensReInit provides required problem specifications and reini-
tializes the sensitivity-dependent quadrature integration.
Arguments cvodemem (void *) pointer to the CVODES memory block.
yQso (N_Vector #) contains the initial values of sensitivity-dependent quadra-
tures.

Return value The return value flag (of type int) will be one of the following:

CV_SUCCESS The call to CVodeQuadSensReInit was successful.
CVODE_MEM NULL The CVODES memory was not initialized by a prior call to CVodeCreate.

CV_NO_SENS Memory space for the sensitivity calculation was not allocated by a
prior call to CVodeSensInit or CVodeSensInitl.

CV_NO_QUADSENS Memory space for the sensitivity quadratures integration was not al-
located by a prior call to CVodeQuadSensInit.
CV_ILL_INPUT  The parameter yQSO is NULL.

Notes If an error occurred, CVodeQuadSensReInit also sends an error message to the error
handler function.

’CVodeQuadSensFree‘

Call CVodeQuadSensFree (cvode_mem) ;

Description  The function CVodeQuadSensFree frees the memory allocated for sensitivity quadrature
integration.

Arguments The argument is the pointer to the CVODES memory block (of type void *).
Return value The function CVodeQuadSensFree has no return value.

Notes In general, CVodeQuadSensFree need not be called by the user, as it is invoked auto-
matically by CVodeFree.

5.4.2 CVODES solver function

Even if quadrature integration was enabled, the call to the main solver function CVode is exactly the

same as in §4.5.5. However, in this case the return value flag can also be one of the following:

CV_QSRHSFUNC_ERR The sensitivity quadrature right-hand side function failed in an unrecover-
able manner.

CV_FIRST_QSRHSFUNC_ERR The sensitivity quadrature right-hand side function failed at the first call.

CV_REPTD_QSRHSFUNC_ERR Convergence test failures occurred too many times due to repeated recov-
erable errors in the quadrature right-hand side function. This flag will also
be returned if the quadrature right-hand side function had repeated recov-
erable errors during the estimation of an initial step size (assuming the
sensitivity quadrature variables are included in the error tests).
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5.4.3 Sensitivity-dependent quadrature extraction functions

If sensitivity-dependent quadratures have been initialized by a call to CVodeQuadSensInit, or reini-
tialized by a call to CVodeQuadSensReInit, then CVODES computes a solution, sensitivity vectors, and
quadratures depending on sensitivities at time t. However, CVode will still return only the solution .
Sensitivity-dependent quadratures can be obtained using one of the following functions:

CVodeGetQuadSens
Call flag = CVodeGetQuadSens(cvode mem, &tret, yQS);

Description The function CVodeGetQuadSens returns the quadrature sensitivities solution vectors
after a successful return from CVode.

Arguments cvodemem (void *) pointer to the memory previously allocated by CVodeInit.

tret (realtype) the time reached by the solver (output).
yQs (N,Vector *) array of Ns computed sensitivity-dependent quadrature vec-
tors.

Return value The return value flag of CVodeGetQuadSens is one of:

CV_SUCCESS CVodeGetQuadSens was successful.
CVODE_MEM NULL cvode_mem was NULL.
CV_NO_SENS Sensitivities were not activated.
CV_NO_QUADSENS Quadratures depending on the sensitivities were not activated.
CV_BAD_DKY yQS or one of the yQS[i] is NULL.
The function CVodeGetQuadSensDky computes the k-th derivatives of the interpolating polynomials for

the sensitivity-dependent quadrature variables at time t. This function is called by CVodeGetQuadSens
with k = 0, but may also be called directly by the user.

CVodeGetQuadSensDky

Call flag = CVodeGetQuadSensDky(cvode mem, t, k, dkyQS);

Description The function CVodeGetQuadSensDky returns derivatives of the quadrature sensitivities
solution vectors after a successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

t (realtype) the time at which information is requested. The time t must
fall within the interval defined by the last successful step taken by CVODES.

k (int) order of the requested derivative.

dkyQs (N_Vector #) array of Ns the vector containing the derivatives on output.

This vector array must be allocated by the user.

Return value The return value flag of CVodeGetQuadSensDky is one of:

CV_SUCCESS CVodeGetQuadSensDky succeeded.

CVODE_MEM NULL The pointer to cvode_mem was NULL.

CV_NO_SENS Sensitivities were not activated.

CV_NO_QUADSENS Quadratures depending on the sensitivities were not activated.
CV_BAD_DKY dkyQS or one of the vectors dkyQS[i] is NULL.

CV_BAD K k is not in the range 0,1, ..., qlast.

CV_BAD_T The time t is not in the allowed range.

Quadrature sensitivity solution vectors can also be extracted separately for each parameter in turn
through the functions CVodeGetQuadSens1 and CVodeGetQuadSensDky1, defined as follows:
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CVodeGetQuadSens1

Call flag = CVodeGetQuadSensl(cvode mem, &tret, is, yQS);

Description The function CVodeGetQuadSens1 returns the is-th sensitivity of quadratures after a
successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

Return value

tret (realtype) the time reached by the solver (output).
is (int) specifies which sensitivity vector is to be returned (0 < is < Nj).
yQs (N_Vector) the computed sensitivity-dependent quadrature vector.

The return value flag of CVodeGetQuadSens1 is one of:

CV_SUCCESS CVodeGetQuadSens1 was successful.
CVODE_MEM_NULL cvode_mem was NULL.
CV_NO_SENS Forward sensitivity analysis was not initialized.

CV_NO_QUADSENS Quadratures depending on the sensitivities were not activated.

CV_BAD_IS The index is is not in the allowed range.
CV_BAD_DKY yQS is NULL.

CVodeGetQuadSensDkyl

Call flag = CVodeGetQuadSensDkyl(cvodemem, t, k, is, dkyQS);

Description  The function CVodeGetQuadSensDky1 returns the k-th derivative of the is-th sensitivity
solution vector after a successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

Return value

t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by CVODES.

k (int) order of derivative.
is (int) specifies the sensitivity derivative vector to be returned (0 <is< Nj).
dkyQs (N_Vector) the vector containing the derivative on output. The space for

dkyQS must be allocated by the user.

The return value flag of CVodeGetQuadSensDky1 is one of:

CV_SUCCESS CVodeGetQuadDky1l succeeded.
CVODE_MEM_NULL cvode_mem was NULL.
CV_NO_SENS Forward sensitivity analysis was not initialized.

CV_NO_QUADSENS Quadratures depending on the sensitivities were not activated.

CV_BAD_DKY dkyQs is NULL.

CV_BAD_IS The index is is not in the allowed range.
CV_BAD K k is not in the range 0,1, ..., qlast.
CV_BAD_T The time t is not in the allowed range.

5.4.4 Optional inputs for sensitivity-dependent quadrature integration

CVODES provides the following optional input functions to control the integration of sensitivity-
dependent quadrature equations.
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CVodeSetQuadSensErrCon

Call

Description

Arguments

Return value

Notes

flag = CVodeSetQuadSensErrCon(cvode mem, errconQS)

The function CVodeSetQuadSensErrCon specifies whether or not the quadrature vari-
ables are to be used in the step size control mechanism. If they are, the user must call
one of the functions CVodeQuadSensSStolerances, CVodeQuadSensSVtolerances, or
CVodeQuadSensEEtolerances to specify the integration tolerances for the quadrature
variables.

cvode mem (void *) pointer to the CVODES memory block.

errconQS (booleantype) specifies whether sensitivity quadrature variables are to be
included (SUNTRUE) or not (SUNFALSE) in the error control mechanism.

The return value flag (of type int) is one of:

CV_SUCCESS The optional value has been successfully set.
CVODE_MEM_NULL cvode_mem is NULL.
CV_NO_SENS Sensitivities were not activated.

CV_NO_QUADSENS Quadratures depending on the sensitivities were not activated.
By default, errconQs is set to SUNFALSE.
It is illegal to call CVodeSetQuadSensErrCon before a call to CVodeQuadSensInit.

If the quadrature variables are part of the step size control mechanism, one of the following
functions must be called to specify the integration tolerances for quadrature variables.

‘ CVodeQuadSensSStolerances

Call

Description

Arguments

Return value

flag = CVodeQuadSensSVtolerances(cvode mem, reltolQS, abstolQS);

The function CVodeQuadSensSStolerances specifies scalar relative and absolute toler-

ances.

cvode mem (void *) pointer to the CVODES memory block.

reltolQS (realtype) is the scalar relative error tolerance.

abstolQS (realtype*) is a pointer to an array containing the Ns scalar absolute error
tolerances.

The return value flag (of type int) is one of:

CV_SUCCESS The optional value has been successfully set.
CVODE_MEM NULL The cvode_mem pointer is NULL.
CV_NO_SENS Sensitivities were not activated.

CV_NO_QUADSENS Quadratures depending on the sensitivities were not activated.
CV_ILL_INPUT  One of the input tolerances was negative.

‘ CVodeQuadSensSVtolerances ‘

Call

Description

Arguments

Return value

flag = CVodeQuadSensSVtolerances(cvode mem, reltolQS, abstolQS);

The function CVodeQuadSensSVtolerances specifies scalar relative and vector absolute

tolerances.

cvode mem (void *) pointer to the CVODES memory block.

reltolQS (realtype) is the scalar relative error tolerance.

abstolQS (N_Vector*) is an array of Ns variables of type N_Vector. The N_Vector
abstolS[is] specifies the vector tolerances for is-th quadrature sensitivity.

The return value flag (of type int) is one of:

CV_SUCCESS The optional value has been successfully set.
CV_NO_QUAD Quadrature integration was not initialized.
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CVODE_MEM NULL The cvode mem pointer is NULL.

CV_NO_SENS Sensitivities were not activated.

CV_NO_QUADSENS Quadratures depending on the sensitivities were not activated.
CV_ILL_INPUT  One of the input tolerances was negative.

CVodeQuadSensEEtolerances ‘

Call

Description

Arguments

Return value

Notes

flag = CVodeQuadSensEEtolerances(cvode mem) ;

A call to the function CVodeQuadSensEEtolerances specifies that the tolerances for the
sensitivity-dependent quadratures should be estimated from those provided for the pure
quadrature variables.

cvode mem (void *) pointer to the CVODES memory block.

The return value flag (of type int) is one of:

CV_SUCCESS The optional value has been successfully set.
CVODE_MEM NULL The cvode mem pointer is NULL.
CV_NO_SENS Sensitivities were not activated.

CV_NO_QUADSENS Quadratures depending on the sensitivities were not activated.

When CVodeQuadSensEEtolerances is used, before calling CVode, integration of pure
quadratures must be initialized (see 4.7.1) and tolerances for pure quadratures must be
also specified (see 4.7.4).

5.4.5 Optional outputs for sensitivity-dependent quadrature integration

CVODES provides the following functions that can be used to obtain solver performance information
related to quadrature integration.

CVodeGetQuadSensNumRhsEvals

Call

Description

Arguments

Return value

flag = CVodeGetQuadSensNumRhsEvals(cvode mem, &nrhsQSevals);

The function CVodeGetQuadSensNumRhsEvals returns the number of calls made to the
user’s quadrature right-hand side function.

cvodemem  (void *) pointer to the CVODES memory block.
nrhsQSevals (long int) number of calls made to the user’s rhsQS function.
The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.
CVODE_MEM NULL The cvode mem pointer is NULL.
CV_NO_QUADSENS Sensitivity-dependent quadrature integration has not been initialized.

CVodeGetQuadSensNumErrTestFails

Call

Description

Arguments

Return value

flag = CVodeGetQuadSensNumErrTestFails(cvode mem, &nQSetfails);

The function CVodeGetQuadSensNumErrTestFails returns the number of local error
test failures due to quadrature variables.

cvodemem (void *) pointer to the CVODES memory block.

nQSetfails (long int) number of error test failures due to quadrature variables.
The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.

CVODE_MEM NULL The cvode_mem pointer is NULL.

CV_NO_QUADSENS Sensitivity-dependent quadrature integration has not been initialized.
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CVodeGetQuadSensErrWeights

Call flag = CVodeGetQuadSensErrWeights(cvode mem, eQSweight);

Description The function CVodeGetQuadSensErrWeights returns the quadrature error weights at
the current time.

Arguments cvodemem (void *) pointer to the CVODES memory block.

eQSweight (N_Vector *) array of quadrature error weight vectors at the current time.
Return value The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.

CVODE_MEM NULL The cvode mem pointer is NULL.

CV_NO_QUADSENS Sensitivity-dependent quadrature integration has not been initialized.
Notes The user must allocate memory for eQSweight.

If quadratures were not included in the error control mechanism (through a call to
CVodeSetQuadSensErrCon with errconQS = SUNTRUE), then this function does not set
the eQSweight array.

CVodeGetQuadSensStats‘
Call flag = CVodeGetQuadSensStats(cvode mem, &nrhsQSevals, &nQSetfails);

Description The function CVodeGetQuadSensStats returns the CVODES integrator statistics as a
group.
Arguments cvodemem  (void *) pointer to the CVODES memory block.
nrhsQSevals (long int) number of calls to the user’s rhsQS function.
nQSetfails (long int) number of error test failures due to quadrature variables.
Return value The return value flag (of type int) is one of
CV_SUCCESS the optional output values have been successfully set.
CVODE_MEM_NULL the cvode_mem pointer is NULL.
CV_NO_QUADSENS Sensitivity-dependent quadrature integration has not been initialized.

5.4.6 User-supplied function for sensitivity-dependent quadrature integra-
tion

For the integration of sensitivity-dependent quadrature equations, the user must provide a function
that defines the right-hand side of those quadrature equations. For the sensitivities of quadratures
(2.9) with integrand ¢, the appropriate right-hand side functions are given by: §; = gys; + gp,. This
user function must be of type CVQuadSensRhsFn defined as follows:

]cvauadSensRhan\

Definition typedef int (*CVQuadSensRhsFn) (int Ns, realtype t, N_Vector y,
N_Vector yS, N_Vector yQdot,
N_Vector *rhsvalQS, void *user_data,
N_Vector tmpl, N_Vector tmp2)

Purpose This function computes the sensitivity quadrature equation right-hand side for a given
value of the independent variable ¢ and state vector y.
Arguments Ns is the number of sensitivity vectors.
is the current value of the independent variable.
is the current value of the dependent variable vector, y(t).

yS is an array of Ns variables of type N_Vector containing the dependent sen-
sitivity vectors s;.
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yQdot is the current value of the quadrature right-hand side, q.
rhsvalQS array of Ns vectors to contain the right-hand sides.
user_data is the user_data pointer passed to CVodeSetUserData.
tmpl

tmp2 are N_Vectors which can be used as temporary storage.

Return value A CVQuadSensRhsFn should return 0 if successful, a positive value if a recoverable error
occurred (in which case CVODES will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and CV_QRHS_FAIL is returned).

Notes Allocation of memory for rhsvalQS is automatically handled within CVODES.

Here y is of type N_Vector and yS is a pointer to an array containing Ns vectors of
type N_Vector. It is the user’s responsibility to access the vector data consistently
(including the use of the correct accessor macros from each NVECTOR implementation).
For the sake of computational efficiency, the vector functions in the two NVECTOR
implementations provided with CVODES do not perform any consistency checks with
respect to their N_Vector arguments (see §7.1 and §7.2).

There are two situations in which recovery is not possible even if CVQuadSensRhsFn
function returns a recoverable error flag. One is when this occurs at the very first call
to the CVQuadSensRhsFn (in which case CVODES returns CV_FIRST_QSRHSFUNC_ERR). The
other is when a recoverable error is reported by CVQuadSensRhsFn after an error test
failure, while the linear multistep method order is equal to 1 (in which case CVODES
returns CV_UNREC_QSRHSFUNC_ERR).

5.5 Note on using partial error control

For some problems, when sensitivities are excluded from the error control test, the behavior of CVODES
may appear at first glance to be erroneous. One would expect that, in such cases, the sensitivity
variables would not influence in any way the step size selection. A comparison of the solver diagnostics
reported for cvsdenx and the second run of the cvsfwddenx example in [35] indicates that this may
not always be the case.

The short explanation of this behavior is that the step size selection implemented by the er-
ror control mechanism in CVODES is based on the magnitude of the correction calculated by the
nonlinear solver. As mentioned in §5.2.1, even with partial error control selected (in the call to
CVodeSetSensErrCon), the sensitivity variables are included in the convergence tests of the nonlinear
solver.

When using the simultaneous corrector method (§2.6), the nonlinear system that is solved at
each step involves both the state and sensitivity equations. In this case, it is easy to see how the
sensitivity variables may affect the convergence rate of the nonlinear solver and therefore the step size
selection. The case of the staggered corrector approach is more subtle. After all, in this case (ism
= CV_STAGGERED or CV_STAGGERED1 in the call to CVodeSensInit/CVodeSensInitl), the sensitivity
variables at a given step are computed only once the solver for the nonlinear state equations has
converged. However, if the nonlinear system corresponding to the sensitivity equations has convergence
problems, CVODES will attempt to improve the initial guess by reducing the step size in order to provide
a better prediction of the sensitivity variables. Moreover, even if there are no convergence failures in
the solution of the sensitivity system, CVODES may trigger a call to the linear solver’s setup routine
which typically involves reevaluation of Jacobian information (Jacobian approximation in the case of
CVDENSE and CVBAND, or preconditioner data in the case of the Krylov solvers). The new Jacobian
information will be used by subsequent calls to the nonlinear solver for the state equations and, in
this way, potentially affect the step size selection.

When using the simultaneous corrector method it is not possible to decide whether nonlinear solver
convergence failures or calls to the linear solver setup routine have been triggered by convergence
problems due to the state or the sensitivity equations. When using one of the staggered corrector
methods however, these situations can be identified by carefully monitoring the diagnostic information
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provided through optional outputs. If there are no convergence failures in the sensitivity nonlinear
solver, and none of the calls to the linear solver setup routine were made by the sensitivity nonlinear
solver, then the step size selection is not affected by the sensitivity variables.

Finally, the user must be warned that the effect of appending sensitivity equations to a given
system of ODEs on the step size selection (through the mechanisms described above) is problem-
dependent and can therefore lead to either an increase or decrease of the total number of steps that
CVODES takes to complete the simulation. At first glance, one would expect that the impact of the
sensitivity variables, if any, would be in the direction of increasing the step size and therefore reducing
the total number of steps. The argument for this is that the presence of the sensitivity variables in
the convergence test of the nonlinear solver can only lead to additional iterations (and therefore a
smaller final iteration error), or to additional calls to the linear solver setup routine (and therefore
more up-to-date Jacobian information), both of which will lead to larger steps being taken by CVODES.
However, this is true only locally. Overall, a larger integration step taken at a given time may lead
to step size reductions at later times, due to either nonlinear solver convergence failures or error test
failures.






Chapter 6

Using CVODES for Adjoint
Sensitivity Analysis

This chapter describes the use of CVODES to compute sensitivities of derived functions using adjoint
sensitivity analysis. As mentioned before, the adjoint sensitivity module of CVODES provides the in-
frastructure for integrating backward in time any system of ODEs that depends on the solution of
the original IVP, by providing various interfaces to the main CVODES integrator, as well as several
supporting user-callable functions. For this reason, in the following sections we refer to the backward
problem and not to the adjoint problem when discussing details relevant to the ODEs that are inte-
grated backward in time. The backward problem can be the adjoint problem (2.19) or (2.22), and
can be augmented with some quadrature differential equations.

CVODES uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Appendix B.

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed
descriptions of the interface to the various user-callable functions and of the user-supplied functions
that were not already described in Chapter 4.

6.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program as an application of CVODES. The user program
is to have these steps in the order indicated, unless otherwise noted. For the sake of brevity, we defer
many of the details to the later sections. As in §4.4, most steps are independent of the NVECTOR
implementation used; where this is not the case, refer to Chapter 7 for specifics. Steps that are
unchanged from the skeleton programs presented in §4.4, §5.1, and §5.4, are grayed out.

1. Include necessary header files

The cvodes.h header file also defines additional types, constants, and function prototypes for the
adjoint sensitivity module user-callable functions. In addition, the main program should include
an NVECTOR implementation header file (for the particular implementation used), and, if Newton
iteration was selected, the main header file of the desired linear solver module.

2. Initialize parallel or multi-threaded environment, if appropriate

Forward problem
3. Set problem dimensions etc. for the forward problem
4. Set initial conditions for the forward problem

5. Create CVODES object for the forward problem
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6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Initial cvoDES for the forward problem

Specify integration tolerances for forward problem

Set optional inputs for the forward problem

Create matrix object for the forward problem

Create linear solver object for the forward problem

Set linear solver optional inputs for the forward problem
Attach linear solver module for the forward problem

Initialize quadrature problem or problems for forward problems, using CVodeQuadInit
and/or CVodeQuadSensInit.

Initialize forward sensitivity problem
Specify rootfinding

Allocate space for the adjoint computation

Call CVodeAdjInit () to allocate memory for the combined forward-backward problem (see §6.2.1
for details). This call requires Nd, the number of steps between two consecutive checkpoints.
CVodeAdjInit also specifies the type of interpolation used (see §2.7.1).

Integrate forward problem

Call CVodeF, a wrapper for the CVODES main integration function CVode, either in CV_NORMAL
mode to the time tout or in CV_ONE_STEP mode inside a loop (if intermediate solutions of the
forward problem are desired (see §6.2.2)). The final value of tret is then the maximum allowable
value for the endpoint T" of the backward problem.

Backward problem(s)

Set problem dimensions etc. for the backward problem

This generally includes the backward problem vector length NB, and possibly the local vector
length NBlocal.

Set initial values for the backward problem

Set the endpoint time tBO = T, and set the corresponding vector yBO at which the backward
problem starts.

Create the backward problem

Call CVodeCreateB, a wrapper for CVodeCreate, to create the CVODES memory block for the new
backward problem. Unlike CVodeCreate, the function CVodeCreateB does not return a pointer
to the newly created memory block (see §6.2.3). Instead, this pointer is attached to the internal
adjoint memory block (created by CVodeAdjInit) and returns an identifier called which that the
user must later specify in any actions on the newly created backward problem.

Allocate memory for the backward problem

Call CVodeInitB (or CVodeInitBS, when the backward problem depends on the forward sensi-
tivities). The two functions are actually wrappers for CVodeInit and allocate internal memory,
specify problem data, and initialize CVODES at tBO for the backward problem (see §6.2.3).

Specify integration tolerances for backward problem
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23.

24.

25.

26.

27.

28.

29.

30.

Call CVodeSStolerancesB(...) or CVodeSVtolerancesB(...) to specify a scalar relative tol-
erance and scalar absolute tolerance or scalar relative tolerance and a vector of absolute toler-
ances, respectively. The functions are wrappers for CVodeSStolerances and CVodeSVtolerances,
but they require an extra argument which, the identifier of the backward problem returned by
CVodeCreateB. See §6.2.4 for more information.

Set optional inputs for the backward problem

Call CVodeSet*B functions to change from their default values any optional inputs that control
the behavior of cvODES. Unlike their counterparts for the forward problem, these functions take
an extra argument which, the identifier of the backward problem returned by CVodeCreateB (see
§6.2.8).

Create matrix object for the backward problem

If a direct linear solver is to be used within a Newton iteration then a template Jacobian ma-
trix must be created by using the appropriate functions defined by the particular SUNMATRIX
implementation.

NOTE: The dense, banded, and sparse matrix objects are usable only in a serial or threaded
environment.

Note also that it is not required to use the same matrix type for both the forward and the backward
problems.
Create linear solver object for the backward problem

Create the linear solver object for the backward problem by using the appropriate functions defined
by the particular SUNLINSOL implementation desired.

Note that it is not required to use the same linear solver module for both the forward and the
backward problems; for example, the forward problem could be solved with the CVDLS linear
solver module and the backward problem with CVSPILS linear solver module.

Set linear solver interface optional inputs for the backward problem

Call CVD1sSet*B or CVSpilsSet*B functions to change optional inputs specific to that linear solver
interface. See §6.2.8 for details.

Initialize quadrature calculation

If additional quadrature equations must be evaluated, call CVodeQuadInitB or CVodeQuadInitBS
(if quadrature depends also on the forward sensitivities) as shown in §6.2.10.1. These functions are
wrappers around CVodeQuadInit and can be used to initialize and allocate memory for quadra-
ture integration. Optionally, call CVodeSetQuad#*B functions to change from their default values
optional inputs that control the integration of quadratures during the backward phase.

Integrate backward problem

Call CVodeB, a second wrapper around the CVODES main integration function CVode, to integrate
the backward problem from tBO (see §6.2.6). This function can be called either in CV_NORMAL or
CV_ONE_STEP mode. Typically, CVodeB will be called in CV_.NORMAL mode with an end time equal
to the initial time ¢y of the forward problem.

Extract quadrature variables

If applicable, call CVodeGetQuadB, a wrapper around CVodeGetQuad, to extract the values of the
quadrature variables at the time returned by the last call to CVodeB. See §6.2.10.2.

Deallocate memory

Upon completion of the backward integration, call all necessary deallocation functions. These
include appropriate destructors for the vectors y and yB, a call to CVodeFree to free the CVODES
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memory block for the forward problem. If one or more additional Adjoint Sensitivity Analyses
are to be done for this problem, a call to CVodeAdjFree (see §6.2.1) may be made to free and
deallocate memory allocated for the backward problems, followed by a call to CVodeAdjInit.

31. Free linear solver and matrix memory for the backward problem

32. Finalize MPI, if used

The above user interface to the adjoint sensitivity module in CVODES was motivated by the desire
to keep it as close as possible in look and feel to the one for ODE IVP integration. Note that if steps
(18)-(29) are not present, a program with the above structure will have the same functionality as one
described in §4.4 for integration of ODEs, albeit with some overhead due to the checkpointing scheme.

If there are multiple backward problems associated with the same forward problem, repeat steps
(18)-(29) above for each successive backward problem. In the process, each call to CVodeCreateB
creates a new value of the identifier which.

6.2 User-callable functions for adjoint sensitivity analysis

6.2.1 Adjoint sensitivity allocation and deallocation functions

After the setup phase for the forward problem, but before the call to CVodeF, memory for the combined
forward-backward problem must be allocated by a call to the function CVodeAdjInit. The form of
the call to this function is

CVodeAdjInit

Call flag = CVodeAdjInit(cvode mem, Nd, interpType);

Description The function CVodeAdjInit updates CVODES memory block by allocating the internal
memory needed for backward integration. Space is allocated for the Nd = Ny interpo-
lation data points, and a linked list of checkpoints is initialized.

Arguments cvodemem (void *) is the pointer to the CVODES memory block returned by a previ-
ous call to CVodeCreate.

Nd (long int) is the number of integration steps between two consecutive
checkpoints.

interpType (int) specifies the type of interpolation used and can be CV_POLYNOMIAL
or CV_HERMITE, indicating variable-degree polynomial and cubic Hermite
interpolation, respectively (see §2.7.1).

Return value The return value flag (of type int) is one of:
CV_SUCCESS CVodeAdjInit was successful.
CV_MEM_FAIL A memory allocation request has failed.

CV_MEM_NULL cvode_mem was NULL.

CV_ILL_INPUT One of the parameters was invalid: Nd was not positive or interpType
is not one of the CV_POLYNOMIAL or CV_HERMITE.

Notes The user must set Nd so that all data needed for interpolation of the forward problem
solution between two checkpoints fits in memory. CVodeAdjInit attempts to allocate
space for (2Nd+3) variables of type N_Vector.

If an error occurred, CVodeAdjInit also sends a message to the error handler function.

CVodeAdeeInit‘

Call flag = CVodeAdjReInit(cvode_mem) ;
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Description  The function CVodeAdjReInit reinitializes the CVODES memory block for ASA, assum-
ing that the number of steps between check points and the type of interpolation remain
unchanged.

Arguments cvodemem (void #) is the pointer to the CVODES memory block returned by a previous
call to CVodeCreate.

Return value The return value flag (of type int) is one of:

CV_SUCCESS CVodeAdjReInit was successful.
CV_MEM_NULL cvode mem was NULL.
CV_.NO_ADJ  The function CVodeAdjInit was not previously called.

Notes The list of check points (and associated memory) is deleted.

The list of backward problems is kept. However, new backward problems can be added
to this list by calling CVodeCreateB. If a new list of backward problems is also needed,
then free the adjoint memory (by calling CVodeAdjFree) and reinitialize ASA with
CVodeAdjInit.

The cvODES memory for the forward and backward problems can be reinitialized sep-
arately by calling CVodeReInit and CVodeReInitB, respectively.

CVodeAdjFree

Call CVodeAdjFree(cvode mem) ;

Description  The function CVodeAdjFree frees the memory related to backward integration allocated
by a previous call to CVodeAdjInit.

Arguments  The only argument is the CVODES memory block pointer returned by a previous call to
CVodeCreate.

Return value The function CVodeAdjFree has no return value.

Notes This function frees all memory allocated by CVodeAdjInit. This includes workspace
memory, the linked list of checkpoints, memory for the interpolation data, as well as
the cVODES memory for the backward integration phase. Unless one or more further
calls to CVodeAdjInit are to be made, CVodeAdjFree should not be called by the user,
as it is invoked automatically by CVodeFree.

6.2.2 Forward integration function

The function CVodeF is very similar to the CVODES function CVode (see §4.5.5) in that it integrates
the solution of the forward problem and returns the solution in y. At the same time, however, CVodeF
stores checkpoint data every Nd integration steps. CVodeF can be called repeatedly by the user. Note
that CVodeF is used only for the forward integration pass within an Adjoint Sensitivity Analysis. It
is not for use in Forward Sensitivity Analysis; for that, see Chapter 5. The call to this function has
the form

Call flag = CVodeF(cvode mem, tout, yret, &tret, itask, &ncheck);

Description The function CVodeF integrates the forward problem over an interval in ¢ and saves
checkpointing data.
Arguments cvode mem (void *) pointer to the CVODES memory block.
tout (realtype) the next time at which a computed solution is desired.
yret (N_Vector) the computed solution vector y.
(

tret realtype) the time reached by the solver (output).
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Return value

Notes

itask (int) aflagindicating the job of the solver for the next step. The CV_NORMAL
task is to have the solver take internal steps until it has reached or just passed
the user-specified tout parameter. The solver then interpolates in order to
return an approximate value of y(tout). The CV_ONE_STEP option tells the
solver to just take one internal step and return the solution at the point
reached by that step.

ncheck (int) the number of (internal) checkpoints stored so far.

On return, CVodeF returns the vector yret and a corresponding independent variable
value ¢ = tret, such that yret is the computed value of y(¢). Additionally, it returns
in ncheck the number of internal checkpoints saved; the total number of checkpoint
intervals is ncheck+1. The return value flag (of type int) will be one of the following.
For more details see §4.5.5.

CV_SUCCESS CVodeF succeeded.
CV_TSTOP_RETURN CVodeF succeeded by reaching the optional stopping point.
CV_ROOT_RETURN  CVodeF succeeded and found one or more roots. In this case, tret

is the location of the root. If nrtfn > 1, call CVodeGetRootInfo to
see which g; were found to have a root.

CV_NO_MALLOC The function CVodeInit has not been previously called.

CV_ILL_INPUT One of the inputs to CVodeF is illegal.

CV_TOO_MUCH_WORK The solver took mxstep internal steps but could not reach tout.

CV_TOO_MUCH_ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

CV_ERR_FAILURE Error test failures occurred too many times during one internal time
step or occurred with |h| = hpin.-

CV_CONV_FAILURE Convergence test failures occurred too many times during one inter-
nal time step or occurred with |h| = hypin.

CV_LSETUP_FAIL The linear solver’s setup function failed in an unrecoverable manner.

CV_LSOLVE_FAIL The linear solver’s solve function failed in an unrecoverable manner.

CV_NO_ADJ The function CVodeAdjInit has not been previously called.

CV_MEM_FAIL A memory allocation request has failed (in an attempt to allocate
space for a new checkpoint).

All failure return values are negative and therefore a test flag< 0 will trap all CVodeF

failures.

At this time, CVodeF stores checkpoint information in memory only. Future versions

will provide for a safeguard option of dumping checkpoint data into a temporary file

as needed. The data stored at each checkpoint is basically a snapshot of the CVODES

internal memory block and contains enough information to restart the integration from

that time and to proceed with the same step size and method order sequence as during

the forward integration.

In addition, CVodeF also stores interpolation data between consecutive checkpoints so
that, at the end of this first forward integration phase, interpolation information is
already available from the last checkpoint forward. In particular, if no checkpoints were
necessary, there is no need for the second forward integration phase.

It is illegal to change the integration tolerances between consecutive calls to CVodeF, as
this information is not captured in the checkpoint data.

6.2.3 Backward problem initialization functions

The functions CVodeCreateB and CVodeInitB (or CVodeInitBS) must be called in the order listed.
They instantiate a CVODES solver object, provide problem and solution specifications, and allocate
internal memory for the backward problem.
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CVodeCreateB

Call flag = CVodeCreateB(cvode mem, lmmB, iterB, &which);

Description  The function CVodeCreateB instantiates a CVODES solver object and specifies the solu-
tion method for the backward problem.

Arguments cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.

1mmB (int) specifies the linear multistep method and may be one of two possible
values: CV_ADAMS or CV_BDF.

iterB (int) specifies the type of nonlinear solver iteration and may be either
CV_NEWTON or CV_FUNCTIONAL.

which (int) contains the identifier assigned by CVODES for the newly created back-

ward problem. Any call to CVode*B functions requires such an identifier.
Return value The return value flag (of type int) is one of:

CV_SUCCESS The call to CVodeCreateB was successful.

CV_MEM_NULL cvode_mem was NULL.

CV_.NO_ADJ  The function CVodeAdjInit has not been previously called.
CV_MEM_FAIL A memory allocation request has failed.

There are two initialization functions for the backward problem — one for the case when the
backward problem does not depend on the forward sensitivities, and one for the case when it does.
These two functions are described next.

The function CVodeInitB initializes the backward problem when it does not depend on the forward
sensitivities. It is essentially a wrapper for CVodeInit with some particularization for backward
integration, as described below.

CVodeInitB

Call flag = CVodeInitB(cvodemem, which, rhsB, tBO, yBO);

Description The function CVodeInitB provides problem specification, allocates internal memory,
and initializes the backward problem.

Arguments cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.
which (int) represents the identifier of the backward problem.
rhsB (CVRhsFnB) is the C function which computes fB, the right-hand side of
the backward ODE problem. This function has the form rhsB(t, y, yB,
yBdot, user_dataB) (for full details see §6.3.1).

tBO (realtype) specifies the endpoint 7" where final conditions are provided
for the backward problem, normally equal to the endpoint of the forward
integration.

yBO (N_Vector) is the initial value (at ¢ = tB0) of the backward solution.

Return value The return value flag (of type int) will be one of the following;:

CV_SUCCESS  The call to CVodeInitB was successful.

CV_NO_MALLOC The function CVodeInit has not been previously called.

CV_MEM_NULL cvode_mem was NULL.

CV_NO_ADJ The function CVodeAdjInit has not been previously called.

CV_BAD_TBO  The final time tBO was outside the interval over which the forward prob-
lem was solved.

CV_ILL_INPUT The parameter which represented an invalid identifier, or either yBO or
rhsB was NULL.

Notes The memory allocated by CVodeInitB is deallocated by the function CVodeAdjFree.
For the case when backward problem also depends on the forward sensitivities, user must call

CVodeInitBS instead of CVodeInitB. Only the third argument of each function differs between these
two functions.
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CVodeInitBS

Call flag = CVodeInitBS(cvodemem, which, rhsBS, tBO, yBO);

Description The function CVodeInitBS provides problem specification, allocates internal memory,
and initializes the backward problem.

Arguments cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.
which (int) represents the identifier of the backward problem.

rhsBS (CVRhsFnBS) is the C function which computes fB, the right-hand side of
the backward ODE problem. This function has the form rhsBS(t, y, yS,
yB, yBdot, user_dataB) (for full details see §6.3.2).

tBO (realtype) specifies the endpoint T' where final conditions are provided for
the backward problem.
yBO (N_Vector) is the initial value (at t = tB0) of the backward solution.

Return value The return value flag (of type int) will be one of the following;:

CV_SUCCESS  The call to CVodeInitB was successful.

CV_NO_MALLOC The function CVodeInit has not been previously called.

CV_MEM_NULL cvode_mem was NULL.

CV_NO_ADJ The function CVodeAdjInit has not been previously called.

CV_BAD_TBO  The final time tBO was outside the interval over which the forward prob-
lem was solved.

CV_ILL_INPUT The parameter which represented an invalid identifier, either yBO or
rhsBS was NULL, or sensitivities were not active during the forward inte-
gration.

Notes The memory allocated by CVodeInitBS is deallocated by the function CVodeAdjFree.

The function CVodeReInitB reinitializes CVODES for the solution of a series of backward prob-
lems, each identified by a value of the parameter which. CVodeReInitB is essentially a wrapper
for CVodeReInit, and so all details given for CVodeReInit in §4.5.9 apply here. Also note that
CVodeReInitB can be called to reinitialize the backward problem even it has been initialized with the
sensitivity-dependent version CVodeInitBS. Before calling CVodeReInitB for a new backward prob-
lem, call any desired solution extraction functions CVodeGet** associated with the previous backward
problem. The call to the CVodeReInitB function has the form

CVodeReInitB

Call flag = CVodeReInitB(cvode mem, which, tBO, yBO)
Description  The function CVodeReInitB reinitializes a CVODES backward problem.

Arguments cvodemem (void *) pointer to CVODES memory block returned by CVodeCreate.

which (int) represents the identifier of the backward problem.

tBO (realtype) specifies the endpoint T where final conditions are provided for
the backward problem.

yBO (N_Vector) is the initial value (at ¢ = tBO) of the backward solution.

Return value The return value flag (of type int) will be one of the following:

CV_SUCCESS  The call to CVodeReInitB was successful.

CV_NO_MALLOC The function CVodeInit has not been previously called.
CV_MEM_NULL The cvode_mem memory block pointer was NULL.

CV_NO_ADJ The function CVodeAdjInit has not been previously called.

CV_BAD_TBO  The final time tBO is outside the interval over which the forward problem
was solved.

CV_ILL_INPUT The parameter which represented an invalid identifier, or yBO was NULL.
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6.2.4 Tolerance specification functions for backward problem

One of the following two functions must be called to specify the integration tolerances for the backward
problem. Note that this call must be made after the call to CVodeInitB or CVodeInitBS.

’CVodeSStolerancesB

Call
Description

Arguments

Return value

flag = CVodeSStolerancesB(cvode mem, which, reltolB, abstolB);
The function CVodeSStolerancesB specifies scalar relative and absolute tolerances.

cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.
which (int) represents the identifier of the backward problem.
reltolB (realtype) is the scalar relative error tolerance.

abstolB  (realtype) is the scalar absolute error tolerance.
The return value flag (of type int) will be one of the following:

CV_SUCCESS The call to CVodeSStolerancesB was successful.

CV_MEM_NULL The cVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_NO_MALLOC The allocation function CVodeInit has not been called.
CV_NO_ADJ The function CVodeAdjInit has not been previously called.
CV_ILL_INPUT One of the input tolerances was negative.

’CVodeSVtolerancesB‘

Call

Description

Arguments

Return value

Notes

flag = CVodeSVtolerancesB(cvode mem, which, reltolB, abstolB);

The function CVodeSVtolerancesB specifies scalar relative tolerance and vector absolute
tolerances.

cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.
which (int) represents the identifier of the backward problem.
reltol (realtype) is the scalar relative error tolerance.

abstol (N_Vector) is the vector of absolute error tolerances.
The return value flag (of type int) will be one of the following:

CV_SUCCESS The call to CVodeSVtolerancesB was successful.

CV_MEM NULL The cVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_NO_MALLOC The allocation function CVodeInit has not been called.
CV_NO_ADJ The function CVodeAdjInit has not been previously called.
CV_ILL_INPUT The relative error tolerance was negative or the absolute tolerance had

a negative component.

This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of the state vector y.

6.2.5 Linear solver initialization functions for backward problem

All ¢cvODES linear solver modules available for forward problems are available for the backward prob-
lem. They should be created as for the forward problem then attached to the memory structure for
the backward problem using one of the following functions.
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’CVDlsSetLinearSolverB‘

Call

Description

Arguments

Return value

Notes

flag = CVDlsSetLinearSolverB(cvode mem, which, LS, A);

The function CVD1sSetLinearSolverB attaches a direct SUNLINSOL object LS and cor-
responding template Jacobian SUNMATRIX object A to CVODES, initializing the cvDLS
direct linear solver interface for solution of the backward problem.

The user’s main program must include the cvodes_direct.h header file.

cvode mem (void *) pointer to the IDAS memory block.

which (int) represents the identifier of the backward problem returned by CVodeCreateB.
LS (SUNLinearSolver) SUNLINSOL object to use for solving Newton linear sys-
tems for the backward problem.
A (SUNMatrix) SUNMATRIX object for used as a template for the Jacobian for
the backward problem (must have a type compatible with the linear solver
object).

The return value flag (of type int) is one of

CVDLS_SUCCESS The cvDLS initialization was successful.
CVDLS_MEM_NULL The cvode_mem pointer is NULL.

CVDLS_ILL_INPUT The CcVDLS solver is not compatible with the current NVECTOR mod-
ule.

CVDLS_MEM_FAIL A memory allocation request failed.

CVDLS_NO_ADJ The function CVAdjInit has not been previously called.
CVDLS_ILL_INPUT The parameter which represented an invalid identifier.

The cvDLS linear solver is not compatible with all implementations of the SUNLINSOL
and NVECTOR modules. Specifically, CVDLS requires use of a direct SUNLINSOL object
and a serial or theaded NVECTOR module. Additional compatibility limitations for each

SUNLINSOL object (i.e. SUNMATRIX and NVECTOR object compatibility) are described
in Chapter 9.

CVSpilsSetLinearSolverB‘

Call

Description

Arguments

Return value

flag = CVSpilsSetLinearSolverB(ida mem, which, LS);

The function CVSpilsSetLinearSolver attaches an iterative SUNLINSOL object LS to
CVODES, initializing the CVSPILS scaled, preconditioned, iterative linear solver interface
to use for the backward problem.

The user’s main program must include the cvs_spils.h header file.

cvode mem (void *) pointer to the CVODES memory block.
which (int) represents the identifier of the backward problem returned by CVodeCreateB.
LS (SUNLinearSolver) SUNLINSOL object to use for solving Newton linear sys-
tems for the backward problem.
The return value flag (of type int) is one of

CVSPILS_SUCCESS The CVSPILS initialization was successful.
CVSPILS_MEM NULL The cvode_mem pointer is NULL.

CVSPILS_ILL_INPUT The CVSPILS solver is not compatible with the current NVECTOR
module.

CVSPILS_MEM FAIL A memory allocation request failed.
CVSPILS_NO_ADJ The function CVAdjInit has not been previously called.
CVSPILS_ILL_INPUT The parameter which represented an invalid identifier.
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Notes The cvSPILS linear solver interface is not compatible with all implementations of the
SUNLINSOL and NVECTOR modules. Specifically, CVSPILS requires use of an iterative
SUNLINSOL object. Additional compatibility limitations for each SUNLINSOL object
(i.e. required NVECTOR routines) are described in Chapter 9.

6.2.6 Backward integration function

The function CVodeB performs the integration of the backward problem. It is essentially a wrapper
for the CVODES main integration function CVode and, in the case in which checkpoints were needed,
it evolves the solution of the backward problem through a sequence of forward-backward integration
pairs between consecutive checkpoints. The first run of each pair integrates the original IVP forward
in time and stores interpolation data; the second run integrates the backward problem backward in
time and performs the required interpolation to provide the solution of the IVP to the backward
problem.

The function CVodeB does not return the solution yB itself. To obtain that, call the function
CVodeGetB, which is also described below.

The CVodeB function does not support rootfinding, unlike CVodeF, which supports the finding of
roots of functions of (¢,y). If rootfinding was performed by CVodeF, then for the sake of efficiency, it
should be disabled for CVodeB by first calling CVodeRootInit with nrtfn = 0.

The call to CVodeB has the form

Call flag = CVodeB(cvode mem, tBout, itaskB);
Description The function CVodeB integrates the backward ODE problem.

Arguments cvode mem (void *) pointer to the CVODES memory returned by CVodeCreate.
tBout (realtype) the next time at which a computed solution is desired.
itaskB (int) a flag indicating the job of the solver for the next step. The CV_NORMAL
task is to have the solver take internal steps until it has reached or just
passed the user-specified value tBout. The solver then interpolates in order
to return an approximate value of yB(tBout). The CV_ONE_STEP option tells
the solver to take just one internal step in the direction of tBout and return.

Return value The return value flag (of type int) will be one of the following. For more details see

84.5.5.

CV_SUCCESS CVodeB succeeded.

CV_MEM_NULL cvode _mem was NULL.

CV_NO_ADJ The function CVodeAdjInit has not been previously called.

CV_NO_BCK No backward problem has been added to the list of backward prob-
lems by a call to CVodeCreateB

CV_NO_FWD The function CVodeF has not been previously called.

CV_ILL_INPUT One of the inputs to CVodeB is illegal.

CV_BAD_ITASK The itaskB argument has an illegal value.
CV_TOO_MUCH_WORK The solver took mxstep internal steps but could not reach tBout.

CV_TOO_MUCH_ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

CV_ERR_FAILURE Error test failures occurred too many times during one internal time
step.

CV_CONV_FAILURE Convergence test failures occurred too many times during one inter-
nal time step.

CV_LSETUP FAIL  The linear solver’s setup function failed in an unrecoverable manner.
CV_SOLVE_FAIL The linear solver’s solve function failed in an unrecoverable manner.
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CV_BCKMEM_NULL  The solver memory for the backward problem was not created with
a call to CVodeCreateB.

CV_BAD_TBOUT The desired output time tBout is outside the interval over which the
forward problem was solved.

CV_REIFWD_FAIL Reinitialization of the forward problem failed at the first checkpoint
(corresponding to the initial time of the forward problem).

CV_FWD_FAIL An error occurred during the integration of the forward problem.
Notes All failure return values are negative and therefore a test flag< 0 will trap all CVodeB
failures.

In the case of multiple checkpoints and multiple backward problems, a given call to
CVodeB in CV_ONE_STEP mode may not advance every problem one step, depending on
the relative locations of the current times reached. But repeated calls will eventually
advance all problems to tBout.

To obtain the solution yB to the backward problem, call the function CVodeGetB as follows:

CVodeGetB

Call flag = CVodeGetB(cvode mem, which, &tret, yB);
Description  The function CVodeGetB provides the solution yB of the backward ODE problem.

Arguments cvode mem (void *) pointer to the CVODES memory returned by CVodeCreate.

which (int) the identifier of the backward problem.
tret (realtype) the time reached by the solver (output).
yB (N_Vector) the backward solution at time tret.

Return value The return value flag (of type int) will be one of the following.

CV_SUCCESS CVodeGetB was successful.

CV_MEM_NULL cvode_mem is NULL.

CV_NO_ADJ The function CVodeAdjInit has not been previously called.
CV_ILL_INPUT The parameter which is an invalid identifier.

Notes The user must allocate space for yB.

6.2.7 Adjoint sensitivity optional input

At any time during the integration of the forward problem, the user can disable the checkpointing of
the forward sensitivities by calling the following function:

CVodeAdjSetNoSensi

Call flag = CVodeAdjSetNoSensi(cvode mem) ;

Description  The function CVodeAdjSetNoSensi instructs CVodeF not to save checkpointing data for
forward sensitivities anymore.

Arguments cvode mem (void *) pointer to the CVODES memory block.
Return value The return value flag (of type int) is one of:

CV_SUCCESS The call to CVodeCreateB was successful.
CV_MEM_NULL cvode_mem was NULL.
CV_.NO_ADJ  The function CVodeAdjInit has not been previously called.
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6.2.8 Optional input functions for the backward problem
6.2.8.1 Main solver optional input functions

The adjoint module in CVODES provides wrappers for most of the optional input functions defined
in §4.5.6.1. The only difference is that the user must specify the identifier which of the backward
problem within the list managed by CVODES.

The optional input functions defined for the backward problem are:

flag = CVodeSetUserDataB(cvode_mem, which, user_dataB);

flag = CVodeSetIterTypeB(cvode_mem, which, iterB);

flag = CVodeSetMaxOrdB(cvode_mem, which, maxordB) ;

flag = CVodeSetMaxNumStepsB(cvode_mem, which, mxstepsB);
flag = CVodeSetInitStepB(cvode_mem, which, hinB)

flag = CVodeSetMinStepB(cvode_mem, which, hminB);

flag = CVodeSetMaxStepB(cvode_mem, which, hmaxB);

flag = CVodeSetStabLimDetB(cvode_mem, which, stldetB);

flag = CVodeSetConstraintsB(cvode_mem, which, constraintsB);

Their return value flag (of type int) can have any of the return values of their counterparts, but it
can also be CV_NO_ADJ if CVodeAdjInit has not been called, or CV_.ILL_INPUT if which was an invalid
identifier.

6.2.8.2 Direct linear solver interface optional input functions

If using a direct linear solver interface for the Jacobian of the backward problem, the linear solver will
need to be attached to the memory structure through a call to CVD1sSetLinearSolverB. The Jacobian
evaluation function can be attached through a call to either CVD1sSetJacFnB or IDACVDIsSetJacFnBS,
with the second used when the backward problem depends on the forwrad sensitivities.

| CVD1sSetJacFnB |
Call flag = CVDlsSetJacFnB(ida_mem, which, jacB);

Description  The function CVD1sSetJacFnB specifies the Jacobian approximation function to be used
for the backward problem.
Arguments cvode mem (void *) pointer to the CVODES memory returned by CVodeCreate.
which (int) represents the identifier of the backward problem.
jacB (CVDlsJacFnB) user-defined Jacobian approximation function.
Return value The return value flag (of type int) is one of:
CVDLS_SUCCESS  CVDlsSetJacFnB succeeded.

CVDLS_MEM_NULL cvode_mem was NULL.
CVDLS_NO_ADJ The function CVodeAdjInit has not been previously called.

CVDLS_LMEM_NULL The linear solver has not been initialized with a call to CVD1sSetLinearSolverB.

CVDLS_ILL_INPUT The parameter which represented an invalid identifier.

Notes The function type CVDlsJacFnB is described in §6.3.5.
| CVD1sSetJacFnBS |
Call flag = CVDlsSetJacFnBS(cvode mem, which, jacBS);

Description The function CVDlsSetJacFnBS specifies the Jacobian approximation function to be
used for the backward problem, in the case where the backward problem depends on
the forward sensitivities.

Arguments cvodemem (void *) pointer to the CVODES memory returned by CVodeCreate.
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which (int) represents the identifier of the backward problem.
jacBS (CVD1sJacFnBS) user-defined Jacobian approximation function.
Return value The return value flag (of type int) is one of:
CVDLS_SUCCESS  CVDlsSetJacFnBS succeeded.
CVDLS_MEM_NULL cvode_mem was NULL.
CVDLS_NO_ADJ The function CVodeAdjInit has not been previously called.
CVDLS_LMEM_NULL The linear solver has not been initialized with a call to CVD1sSetLinearSolverB.
CVDLS_ILL_INPUT The parameter which represented an invalid identifier.

Notes The function type CVD1lsJacFnBS is described in §6.3.5.

6.2.8.3 SPILS linear solvers

Optional inputs for the CvSPILS linear solver module can be set for the backward problem through
the following functions:

CVSpilsSetPreconditionerB

Call flag = CVSpilsSetPreconditionerB(cvode mem, which, psetupB, psolveB);

Description  The function CVSpilsSetPrecSolveFnB specifies the preconditioner setup and solve
functions for the backward integration.

Arguments cvodemem (void *) pointer to the CVODES memory block.
which  (int) the identifier of the backward problem.
psetupB (CVSpilsPrecSetupFnB) user-defined preconditioner setup function.
psolveB (CVSpilsPrecSolveFnB) user-defined preconditioner solve function.

Return value The return value flag (of type int) is one of:

CVSPILS_SUCCESS The optional value has been successfully set.
CVSPILS_MEM_NULL cvode_mem was NULL.
CVSPILS_LMEM_NULL The CVSPILS linear solver has not been initialized.
CVSPILS_NO_ADJ The function CVodeAdjInit has not been previously called.
CVSPILS_ILL_INPUT The parameter which represented an invalid identifier.

Notes The function types CVSpilsPrecSolveFnB and CVSpilsPrecSetupFnB are described in

§6.3.8 and §6.3.9, resp. The psetupB argument may be NULL if no setup operation is
involved in the preconditioner.

CVSpilsSetPreconditionerBS ‘

Call flag = CVSpilsSetPreconditionerBS(cvode mem, which, psetupBS, psolveBS);

Description The function CVSpilsSetPrecSolveFnBS specifies the preconditioner setup and solve
functions for the backward integration, in the case where the backward problem depends
on the forward sensitivities.

Arguments cvodemem (void *) pointer to the CVODES memory block.
which (int) the identifier of the backward problem.
psetupBS (CVSpilsPrecSetupFnBS) user-defined preconditioner setup function.
psolveBS (CVSpilsPrecSolveFnBS) user-defined preconditioner solve function.

Return value The return value flag (of type int) is one of:

CVSPILS_SUCCESS The optional value has been successfully set.

CVSPILS_MEM_NULL cvode_mem was NULL.
CVSPILS_LMEM_NULL The CVSPILS linear solver has not been initialized.
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CVSPILS_NO_ADJ The function CVodeAdjInit has not been previously called.
CVSPILS_ILL_INPUT The parameter which represented an invalid identifier.

Notes The function types CVSpilsPrecSolveFnBS and CVSpilsPrecSetupFnBS are described
in §6.3.8 and §6.3.9, resp. The psetupBS argument may be NULL if no setup operation
is involved in the preconditioner.

CVSpilsSetJacTimesB ‘

Call flag = CVSpilsSetJacTimesB(cvode mem, which, jsetupB, jtvB);

Description The function CVSpilsSetJacTimesB specifies the Jacobian-vector setup and product
functions to be used.

Arguments cvode mem (void *) pointer to the CVODES memory block.

Return value

which (int) the identifier of the backward problem.

jtsetupB (CVSpilsJacTimesSetupFnB) user-defined function to set up the Jacobian-
vector product. Pass NULL if no setup is necessary.

jtvB (CVSpilsJacTimesVecFnB) user-defined Jacobian-vector product function.
The return value flag (of type int) is one of:

CVSPILS_SUCCESS The optional value has been successfully set.
CVSPILS_MEM_NULL cvode_mem was NULL.

CVSPILS_LMEM NULL The CVSPILS linear solver has not been initialized.
CVSPILS_NO_ADJ The function CVodeAdjInit has not been previously called.
CVSPILS_ILL_INPUT The parameter which represented an invalid identifier.

Notes The function types CVSpilsJacTimesVecFnB and CVSpilsJacTimesSetupFnB are de-

scribed in §6.3.6.
CVSpilsSetJacTimesBS ‘

Call flag = CVSpilsSetJacTimesBS(cvode mem, which, jtvBS);

Description The function CVSpilsSetJacTimesBS specifies the Jacobian-vector setup and product
functions to be used, in the case where the backward problem depends on the forward
sensitivities.

Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

Notes

which (int) the identifier of the backward problem.

jtsetupBS (CVSpilsJacTimesSetupFnBS) user-defined function to set up the Jacobian-
vector product. Pass NULL if no setup is necessary.

jtvBS (CVSpilsJacTimesVecFnBS) user-defined Jacobian-vector product function.
The return value flag (of type int) is one of:

CVSPILS_SUCCESS The optional value has been successfully set.
CVSPILS_MEM_NULL cvode_mem was NULL.

CVSPILS_LMEM NULL The cVSPILS linear solver has not been initialized.
CVSPILS_NO_ADJ The function CVodeAdjInit has not been previously called.
CVSPILS_ILL_INPUT The parameter which represented an invalid identifier.

The function types CVSpilsJacTimesVecFnBS and CVSpilsJacTimesSetupFnBS are de-
scribed in §6.3.6.
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CVSpilsSetEpsLinB

Call flag = CVSpilsSetEpsLinB(cvode mem, which, eplifacB);

Description  The function CVSpilsSetEpsLinB specifies the factor by which the Krylov linear solver’s
convergence test constant is reduced from the Newton iteration test constant. This
routine can be used in both the cases wherethe backward problem does and does not
depend on the forward sensitvities.

Arguments cvodemem (void *) pointer to the CVODES memory block.
which (int) the identifier of the backward problem.
eplifacB (realtype) value of the convergence test constant reduction factor (> 0.0).

Return value The return value flag (of type int) is one of:

CVSPILS_SUCCESS The optional value has been successfully set.

CVSPILS_MEM NULL cvode_mem was NULL.

CVSPILS_LMEM NULL The CVSPILS linear solver has not been initialized.
CVSPILS_NO_ADJ The function CVodeAdjInit has not been previously called.
CVSPILS_ILL_INPUT The parameter which represented an invalid identifier, or eplifacB

was negative.

Notes The default value is 0.05. Passing a value eplifacB= 0.0 also indicates using the default
value.

6.2.9 Optional output functions for the backward problem

The user of the adjoint module in CVODES has access to any of the optional output functions described
in §4.5.8, both for the main solver and for the linear solver modules. The first argument of these
CVodeGet* and CVodex*Get* functions is the pointer to the CVODES memory block for the backward
problem. In order to call any of these functions, the user must first call the following function to
obtain this pointer.

CVodeGetAdjCVodeBmem

Call cvode_memB = CVodeGetAdjCVodeBmem(cvode mem, which);

Description  The function CVodeGetAdjCVodeBmem returns a pointer to the CVODES memory block
for the backward problem.

Arguments cvode mem (void *) pointer to the CVODES memory block created by CVodeCreate.
which (int) the identifier of the backward problem.

Return value The return value, cvode memB (of type void *), is a pointer to the CVODES memory for
the backward problem.

Notes The user should not modify cvode memB in any way.

Optional output calls should pass cvode memB as the first argument; for example, to get
the number of integration steps: flag = CVodeGetNumSteps(cvodes memB, &nsteps).

To get values of the forward solution during a backward integration, use the following function.
The input value of t would typically be equal to that at which the backward solution has just been
obtained with CVodeGetB. In any case, it must be within the last checkpoint interval used by CVodeB.

CVodeGetAdjY

Call flag = CVodeGetAdjY(cvode mem, t, y);

Description  The function CVodeGetAdjY returns the interpolated value of the forward solution y
during a backward integration.

Arguments cvodemem (void *) pointer to the CVODES memory block created by CVodeCreate.
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t (realtype) value of the independent variable at which y is desired (input).
y (N_Vector) forward solution y(t).
Return value The return value flag (of type int) is one of:
CV_SUCCESS CVodeGetAdjY was successful.
CV_MEM_NULL cvode_mem was NULL.
CV_GETY_BADT The value of t was outside the current checkpoint interval.

Notes The user must allocate space for y.

CVodeGetAdjCheckPointsInfo

Call flag = CVodeGetAdjCheckPointsInfo(cvode mem, CVadjCheckPointRec *ckpnt) ;

Description  The function CVodeGetAdjCheckPointsInfo loads an array of ncheck+1 records of type
CVadjCheckPointRec. The user must allocate space for the array ckpnt.

Arguments cvodemem (void *) pointer to the CVODES memory block created by CVodeCreate.

ckpnt (CVadjCheckPointRec *) array of ncheck+1 checkpoint records, each of
type CVadjCheckPointRec.

Return value The return value is CV_SUCCESS if successful, or CV_MEM_NULL if cvode mem is NULL, or
CV_NO_ADJ if ASA was not initialized.

Notes The members of each record ckpnt [i] are:

e : ckpnt[i] .my_addr (void *) address of current checkpoint in cvode_mem->cv_adj mem
e : ckpnt[i] .next_addr (void *) address of next checkpoint

e : ckpnt[i].tO (realtype) start of checkpoint interval

e : ckpnt[i].t1 (realtype) end of checkpoint interval

e : ckpnt[i] .nstep (long int) step counter at ckeckpoint t0

e : ckpnt[i].order (int) method order at checkpoint tO

e : ckpnt[i].step (realtype) step size at checkpoint t0

6.2.10 Backward integration of quadrature equations

Not only the backward problem but also the backward quadrature equations may or may not depend
on the forward sensitivities. Accordingly, either CVodeQuadInitB or CVodeQuadInitBS should be used
to allocate internal memory and to initialize backward quadratures. For any other operation (extrac-
tion, optional input/output, reinitialization, deallocation), the same function is callable regardless of
whether or not the quadratures are sensitivity-dependent.

6.2.10.1 Backward quadrature initialization functions

The function CVodeQuadInitB initializes and allocates memory for the backward integration of quadra-
ture equations that do not depend on forward sensitivities. It has the following form:

CVodeQuadInitB
Call flag = CVodeQuadInitB(cvodemem, which, rhsQB, yQBO);

Description  The function CVodeQuadInitB provides required problem specifications, allocates inter-
nal memory, and initializes backward quadrature integration.

Arguments cvodemem (void *) pointer to the CVODES memory block.
which (int) the identifier of the backward problem.
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Return value

rhsQB

yQBO
The return
CV_SUCCESS

(CVQuadRhsFnB) is the C function which computes fQ B, the right-hand side
of the backward quadrature equations. This function has the form rhsQB(t,
y, yB, gBdot, user_dataB) (see §6.3.3).

(N_Vector) is the value of the quadrature variables at tBO.
value flag (of type int) will be one of the following:

The call to CVodeQuadInitB was successful.

CV_MEM_NULL cvode_mem was NULL.

CV_NO_ADJ

The function CVodeAdjInit has not been previously called.

CV_MEM_FAIL A memory allocation request has failed.
CV_ILL_INPUT The parameter which is an invalid identifier.

The function CVodeQuadInitBS initializes and allocates memory for the backward integration of
quadrature equations that depends on the forward sensitivities.

CVodeQuadInitBS

Call

Description

Arguments

Return value

flag = CVodeQuadInitBS(cvode mem, which, rhsQBS, yQBSO);

The function CVodeQuadInitBS provides required problem specifications, allocates in-
ternal memory, and initializes backward quadrature integration.

cvode_mem
which
rhs(QBS

yQBSO0

The return

(void *) pointer to the CVODES memory block.

(int) the identifier of the backward problem.

(CVQuadRhsFnBS) is the C function which computes fQBS, the right-hand
side of the backward quadrature equations. This function has the form
ths@BS(t, y, yS, yB, gBdot, user_dataB) (see §6.3.4).

(N_Vector) is the value of the sensitivity-dependent quadrature variables at
tBO.

value flag (of type int) will be one of the following:

CV_SUCCESS The call to CVodeQuadInitBS was successful.
CV_MEM_NULL cvode_mem was NULL.

CV_NO_ADJ

The function CVodeAdjInit has not been previously called.

CV_MEM _FAIL A memory allocation request has failed.
CV_ILL_INPUT The parameter which is an invalid identifier.

The integration of quadrature equations during the backward phase can be re-initialized by calling
the following function. Before calling CVodeQuadReInitB for a new backward problem, call any desired
solution extraction functions CVodeGet** associated with the previous backward problem.

CVodeQuadReInitB‘

Call
Description

Arguments

Return value

flag = CVodeQuadReInitB(cvode mem, which, yQBO);

The function CVodeQuadReInitB re-initializes the backward quadrature integration.

cvode_mem
which
yQBO

The return

(void *) pointer to the CVODES memory block.
(int) the identifier of the backward problem.
(N_Vector) is the value of the quadrature variables at tBO.

value flag (of type int) will be one of the following:

CV_SUCCESS The call to CVodeQuadReInitB was successful.

CV_MEM_NUL
CV_NO_ADJ

CV_MEM_FAI
CV_NO_QUAD

L cvode_mem was NULL.
The function CVodeAdjInit has not been previously called.
L A memory allocation request has failed.

Quadrature integration was not activated through a previous call to
CVodeQuadInitB.
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CV_ILL_INPUT The parameter which is an invalid identifier.
Notes The function CVodeQuadReInitB can be called after a call to either CVodeQuadInitB or

CVodeQuadInitBS.
6.2.10.2 Backward quadrature extraction function

To extract the values of the quadrature variables at the last return time of CVodeB, CVODES provides
a wrapper for the function CVodeGetQuad (see §4.7.3). The call to this function has the form

CVodeGetQuadB
Call flag = CVodeGetQuadB(cvode mem, which, &tret, yQB);

Description The function CVodeGetQuadB returns the quadrature solution vector after a successful
return from CVodeB.

Arguments cvodemem (void *) pointer to the CVODES memory.
tret (realtype) the time reached by the solver (output).
yQB (N_Vector) the computed quadrature vector.

Return value The return value flag of CVodeGetQuadB is one of:

CV_SUCCESS CVodeGetQuadB was successful.

CV_MEM_NULL cvode_mem is NULL.

CV_NO_ADJ The function CVodeAdjInit has not been previously called.
CV_NO_QUAD  Quadrature integration was not initialized.

CV_BAD_DKY yQB was NULL.

CV_ILL_INPUT The parameter which is an invalid identifier.

6.2.10.3 Optional input/output functions for backward quadrature integration

Optional values controlling the backward integration of quadrature equations can be changed from
their default values through calls to one of the following functions which are wrappers for the corre-
sponding optional input functions defined in §4.7.4. The user must specify the identifier which of the
backward problem for which the optional values are specified.

flag = CVodeSetQuadErrConB(cvode_mem, which, errconQ);
flag = CVodeQuadSStolerancesB(cvode_mem, which, reltolQ, abstolQ);
flag = CVodeQuadSVtolerancesB(cvode_mem, which, reltolQ, abstolQ);

Their return value flag (of type int) can have any of the return values of its counterparts, but it
can also be CV_NO_ADJ if the function CVodeAdjInit has not been previously called or CV_ILL_INPUT
if the parameter which was an invalid identifier.

Access to optional outputs related to backward quadrature integration can be obtained by call-
ing the corresponding CVodeGetQuad* functions (see §4.7.5). A pointer cvode memB to the CVODES
memory block for the backward problem, required as the first argument of these functions, can be
obtained through a call to the functions CVodeGetAdjCVodeBmen (see §6.2.9).

6.3 User-supplied functions for adjoint sensitivity analysis

In addition to the required ODE right-hand side function and any optional functions for the forward
problem, when using the adjoint sensitivity module in CVODES, the user must supply one function
defining the backward problem ODE and, optionally, functions to supply Jacobian-related information
and one or two functions that define the preconditioner (if one of the CVSPILS solvers is selected) for
the backward problem. Type definitions for all these user-supplied functions are given below.
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6.3.1 ODE right-hand side for the backward problem

If the backward problem does not depend on the forward sensitivities, the user must provide a rhsB
function of type CVRhsFnB defined as follows:

Definition typedef int (*CVRhsFnB) (realtype t, N_Vector y,
N_Vector yB, N Vector yBdot, void *user_dataB);

Purpose This function evaluates the right-hand side fp(t,y,yp) of the backward problem ODE
system. This could be either (2.19) or (2.22).
Arguments t is the current value of the independent variable.
y is the current value of the forward solution vector.
yB is the current value of the backward dependent variable vector.
yBdot is the output vector containing the right-hand side fp of the backward

ODE problem.
user_dataB is a pointer to user data, same as passed to CVodeSetUserDataB.

Return value A CVRhsFnB should return 0 if successful, a positive value if a recoverable error occurred
(in which case CVODES will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CVodeB returns CV_RHSFUNC_FAIL).

Notes Allocation of memory for yBdot is handled within CVODES.

The y, yB, and yBdot arguments are all of type N_Vector, but yB and yBdot typically
have different internal representations from y. It is the user’s responsibility to access
the vector data consistently (including the use of the correct accessor macros from
each NVECTOR implementation). For the sake of computational efficiency, the vector
functions in the two NVECTOR implementations provided with CVODES do not perform
any consistency checks with respect to their N_Vector arguments (see §7.1 and §7.2).

The user_dataB pointer is passed to the user’s rhsB function every time it is called and
can be the same as the user_data pointer used for the forward problem.

Before calling the user’s rhsB function, CVODES needs to evaluate (through interpola-
tion) the values of the states from the forward integration. If an error occurs in the

interpolation, CVODES triggers an unrecoverable failure in the right-hand side function
which will halt the integration and CVodeB will return CV_RHSFUNC_FAIL.

6.3.2 ODE right-hand side for the backward problem depending on the
forward sensitivities

If the backward problem does depend on the forward sensitivities, the user must provide a rhsBS
function of type CVRhsFnBS defined as follows:

CVRhsFnBS

Definition typedef int (*CVRhsFnBS) (realtype t, N_Vector y, N_Vector *yS,
N_Vector yB, N_Vector yBdot, void *user_dataB);

Purpose This function evaluates the right-hand side fg(t,y,yp, s) of the backward problem ODE
system. This could be either (2.19) or (2.22).
Arguments t is the current value of the independent variable.
y is the current value of the forward solution vector.
yS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

yB is the current value of the backward dependent variable vector.
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Return value

Notes

yBdot is the output vector containing the right-hand side fp of the backward
ODE problem.

user_dataB is a pointer to user data, same as passed to CVodeSetUserDataB.

A CVRhsFnBS should return 0 if successful, a positive value if a recoverable error occurred
(in which case CVODESs will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CVodeB returns CV_RHSFUNC_FAIL).

Allocation of memory for gBdot is handled within CVODES.

The y, yB, and yBdot arguments are all of type N_Vector, but yB and yBdot typically
have different internal representations from y. Likewise for each yS[i]. It is the user’s
respounsibility to access the vector data consistently (including the use of the correct
accessor macros from each NVECTOR implementation). For the sake of computational
efficiency, the vector functions in the two NVECTOR implementations provided with
CVODES do not perform any consistency checks with respect to their N_Vector arguments
(see §7.1 and §7.2).

The user_dataB pointer is passed to the user’s rhsBS function every time it is called
and can be the same as the user_data pointer used for the forward problem.

Before calling the user’s rhsBS function, CVODES needs to evaluate (through interpo-
lation) the values of the states from the forward integration. If an error occurs in the
interpolation, CVODES triggers an unrecoverable failure in the right-hand side function
which will halt the integration and CVodeB will return CV_RHSFUNC_FAIL.

6.3.3 Quadrature right-hand side for the backward problem

The user must provide an £QB function of type CVQuadRhsFnB defined by

CVQuadRhsFnB

Definition

Purpose

Arguments

Return value

Notes

typedef int (*CVQuadRhsFnB) (realtype t, N_Vector y, N_Vector yB,
N _Vector gBdot, void *user_dataB);

This function computes the quadrature equation right-hand side for the backward prob-
lem.

t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

gBdot is the output vector containing the right-hand side £QB of the backward

quadrature equations.
user_dataB is a pointer to user data, same as passed to CVodeSetUserDataB.

A CVQuadRhsFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case CVODES will attempt to correct), or a negative value if
it failed unrecoverably (in which case the integration is halted and CVodeB returns
CV_QRHSFUNC_FAIL).

Allocation of memory for rhsvalBQ is handled within CVODES.

The y, yB, and gBdot arguments are all of type N_Vector, but they typically do not
all have the same representation. It is the user’s responsibility to access the vector
data consistently (including the use of the correct accessor macros from each NVECTOR
implementation). For the sake of computational efficiency, the vector functions in the
two NVECTOR implementations provided with CVODES do not perform any consistency
checks with repsect to their N_Vector arguments (see §7.1 and §7.2).

The user_dataB pointer is passed to the user’s £QB function every time it is called and
can be the same as the user_data pointer used for the forward problem.
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Before calling the user’s £QB function, CVODES needs to evaluate (through interpola-
tion) the values of the states from the forward integration. If an error occurs in the
interpolation, CVODES triggers an unrecoverable failure in the quadrature right-hand
side function which will halt the integration and CVodeB will return CV_QRHSFUNC_FAIL.

6.3.4 Sensitivity-dependent quadrature right-hand side for the backward
problem

The user must provide an £QBS function of type CVQuadRhsFnBS defined by

CVQuadRhanBS‘

Definition typedef int (*CVQuadRhsFnBS) (realtype t, N Vector y, N_Vector *yS,
N_Vector yB, N_Vector gBdot,
void *user_dataB);

Purpose This function computes the quadrature equation right-hand side for the backward prob-
lem.
Arguments t is the current value of the independent variable.
y is the current value of the forward solution vector.
yS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.
yB is the current value of the backward dependent variable vector.
gBdot is the output vector containing the right-hand side £QBS of the backward

quadrature equations.

user_dataB is a pointer to user data, same as passed to CVodeSetUserDataB.

Return value A CVQuadRhsFnBS should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case CvODES will attempt to correct), or a negative value if
it failed unrecoverably (in which case the integration is halted and CVodeB returns
CV_QRHSFUNC_FATL).

Notes Allocation of memory for gBdot is handled within CVODES.

The y, yS, and gBdot arguments are all of type N_Vector, but they typically do not
all have the same internal representation. Likewise for each yS[i]. It is the user’s
responsibility to access the vector data consistently (including the use of the correct
accessor macros from each NVECTOR implementation). For the sake of computational
efficiency, the vector functions in the two NVECTOR implementations provided with
CVODES do not perform any consistency checks with repsect to their N_Vector arguments
(see §7.1 and §7.2).

The user_dataB pointer is passed to the user’s £QBS function every time it is called and
can be the same as the user_data pointer used for the forward problem.

Before calling the user’s £QBS function, CVODES needs to evaluate (through interpola-
tion) the values of the states from the forward integration. If an error occurs in the
interpolation, CVODES triggers an unrecoverable failure in the quadrature right-hand
side function which will halt the integration and CVodeB will return CV_QRHSFUNC_FAIL.

6.3.5 Jacobian information for the backward problem (direct method Ja-
cobian)

If the direct linear solver interface is used for the backward problem (i.e. CVDlsSetLinearSolverB
is called in the step described in §6.1), the user may provide a function of type CVDlsJacFnB or
CVD1lsJacFnBS (see §6.2.8), defined as follows:
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CVDlsJacFnB

Definition =~ typedef int (*CVDlsJacFnB) (realtype t, N_Vector y,
N_Vector yB, N_Vector fyB,
SUNMatrix JacB, void *user_dataB,
N_Vector tmplB, N_Vector tmp2B,
N_Vector tmp3B);

Purpose This function computes the Jacobian of the backward problem (or an approximation to
it).
Arguments t is the current value of the independent variable.
y is the current value of the forward solution vector.
yB is the current value of the backward dependent variable vector.
fyB is the current value of the backward right-hand side function fp.
JacB is the output approximate Jacobian matrix.

user_dataB is a pointer to user data — the same as passed to CVodeSetUserDataB.

tmplB

tmp2B

tmp3B are pointers to memory allocated for variables of type N_Vector which can
be used by the CVD1sJacFnB function as temporary storage or work space.

Return value A CVDlsJacFnB should return 0 if successful, a positive value if a recoverable error
occurred (in which case CVODES will attempt to correct, while CVDLS sets last_flag
to CVDLS_JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which case
the integration is halted, CVodeB returns CV_LSETUP_FAIL and CVDLS sets last_flag to
CVDLS_JACFUNC_UNRECVR).

Notes A user-supplied Jacobian function must load the matrix JacB with an approximation
to the Jacobian matrix at the point (t,y,yB), where y is the solution of the original
IVP at time tt, and yB is the solution of the backward problem at the same time.
Information regarding the structure of the specific SUNMATRIX structure (e.g. number
of rows, upper/lower bandwidth, sparsity type) may be obtained through using the
implementation-specific SUNMATRIX interface functions (see Chapter 8 for details). Only
nonzero elements need to be loaded into JacB as this matrix is set to zero before the
call to the Jacobian function.

Before calling the user’s CVD1sJacFnB, CVODES needs to evaluate (through interpola-
tion) the values of the states from the forward integration. If an error occurs in the
interpolation, CVODES triggers an unrecoverable failure in the Jacobian function which
will halt the integration (CVodeB returns CV_LSETUP_FAIL and CVDLS sets last_flag to
CVDLS_JACFUNC_UNRECVR).

CVDlsJacFnBS

Definition typedef int (*CVDlsJacFnBS) (realtype t, N_Vector vy,
N_Vector *yS, N_Vector yB, N_Vector fyB,
SUNMatrix JacB, void *user_dataB,
N_Vector tmplB, N_Vector tmp2B,
N_Vector tmp3B);

Purpose This function computes the Jacobian of the backward problem (or an approximation to
it), in the case where the backward problem depends on the forward sensitivities.
Arguments t is the current value of the independent variable.
y is the current value of the forward solution vector.
yS a pointer to an array of Ns vectors containing the sensitivities of the forward

solution.
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Return value

Notes

yB is the current value of the backward dependent variable vector.
fyB is the current value of the backward right-hand side function fg.
JacB is the output approximate Jacobian matrix.

user_dataB is a pointer to user data — the same as passed to CVodeSetUserDataB.
tmp1B
tmp2B

tmp3B are pointers to memory allocated for variables of type N_Vector which can
be used by CVD1lsJacFnBS as temporary storage or work space.

A CVDlsJacFnBS should return 0 if successful, a positive value if a recoverable error
occurred (in which case CVODES will attempt to correct, while CVDLS sets last_flag
to CVDLS_JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which case
the integration is halted, CVodeB returns CV_LSETUP_FAIL and CVDLS sets last_flag to
CVDLS_JACFUNC_UNRECVR).

A user-supplied Jacobian function must load the matrix JacB with an approximation to
the Jacobian matrix at the point (t,y,yS,yB), where y is the solution of the original IVP
at time tt, yS is the vector of forward sensitivities at time tt, and yB is the solution
of the backward problem at the same time. Information regarding the structure of the
specific SUNMATRIX structure (e.g. number of rows, upper/lower bandwidth, sparsity
type) may be obtained through using the implementation-specific SUNMATRIX interface
functions (see Chapter 8 for details). Only nonzero elements need to be loaded into
JacB as this matrix is set to zero before the call to the Jacobian function.

Before calling the user’s CVD1sDenseJacFnBS, CVODES needs to evaluate (through inter-
polation) the values of the states from the forward integration. If an error occurs in the
interpolation, CVODES triggers an unrecoverable failure in the Jacobian function which
will halt the integration (CVodeB returns CV_.LSETUP_FAIL and CVDLS sets last_flag to
CVDLS_JACFUNC_UNRECVR).

6.3.6 Jacobian information for the backward problem (matrix-vector prod-
uct)

If the cvsPiLS solver interface is selected for the backward problem (i.e., CVSpilsSetLinearSolverB is
called in the steps described in §6.1), the user may provide a function of type CVSpilsJacTimesVecFnB
or CVSpilsJacTimesVecFnBS in the following form, to compute matrix-vector products Jv. If such a
function is not supplied, the default is a difference quotient approximation to these products.

CVSpilsJacTimesVecFnB ‘

Definition

Purpose

Arguments

typedef int (*CVSpilsJacTimesVecFnB) (N_Vector vB, N_Vector JvB,
realtype t, N_Vector y, N_Vector yB,
N_Vector fyB, void *user_dataB,
N_Vector tmpB);

This function computes the action of the Jacobian JB for the backward problem on a
given vector vB.

vB is the vector by which the Jacobian must be multiplied to the right.
JvB is the computed output vector JB*vB.

t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

fyB is the current value of the backward right-hand side function fg.

user_dataB is a pointer to user data — the same as passed to CVodeSetUserDataB.
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tmpB is a pointer to memory allocated for a variable of type N_Vector which can
be used by CVSpilsJacTimesVecFn as temporary storage or work space.

Return value The return value of a function of type CVSpilsJtimesVecFnB should be 0 if successful
or nonzero if an error was encountered, in which case the integration is halted.

Notes A user-supplied Jacobian-vector product function must load the vector JvB with the
product of the Jacobian of the backward problem at the point (t,y, yB) and the vector
vB. Here, y is the solution of the original IVP at time t and yB is the solution of
the backward problem at the same time. The rest of the arguments are equivalent to
those passed to a function of type CVSpilsJacTimesVecFn (see §4.6.6). If the backward
problem is the adjoint of § = f(¢,y), then this function is to compute —(9f/dy)Tvp.

CVSpilsJacTimesVecFnBS

Definition typedef int (*#CVSpilsJacTimesVecFnBS) (N_Vector vB, N_Vector JvB,
realtype t, N_Vector y, N_Vector *yS,
N_Vector yB, N_Vector fyB,
void *user_dataB, N _Vector tmpB);

Purpose This function computes the action of the Jacobian JB for the backward problem on
a given vector vB, in the case where the backward problem depends on the forward
sensitivities.

Arguments vB is the vector by which the Jacobian must be multiplied to the right.

JvB is the computed output vector JB*vB.

t is the current value of the independent variable.

y is the current value of the forward solution vector.

yS is a pointer to an array containing the forward sensitivity vectors.
yB is the current value of the backward dependent variable vector.
fyB is the current value of the backward right-hand side function fg.

user_dataB is a pointer to user data — the same as passed to CVodeSetUserDataB.

tmpB is a pointer to memory allocated for a variable of type N_Vector which can
be used by CVSpilsJacTimesVecFn as temporary storage or work space.

Return value The return value of a function of type CVSpilsJtimesVecFnBS should be 0 if successful
or nonzero if an error was encountered, in which case the integration is halted.

Notes A user-supplied Jacobian-vector product function must load the vector JvB with the
product of the Jacobian of the backward problem at the point (t,y, yB) and the vector
vB. Here, y is the solution of the original IVP at time t and yB is the solution of the
backward problem at the same time. The rest of the arguments are equivalent to those
passed to a function of type CVSpilsJacTimesVecFn (see §4.6.6).

6.3.7 Jacobian information for the backward problem (matrix-vector setup)

If the user’s Jacobian-times-vector requires that any Jacobian-related data be preprocessed or eval-
uated, then this needs to be done in a user-supplied function of type CVSpilsJacTimesSetupFnB,
defined as follows:

CVSpilsJacTimesSetupFnB

Definition = typedef int (xCVSpilsJacTimesSetupFnB) (realtype t,
N_Vector y, N_Vector yB,
N_Vector fyB, void *user_dataB);

Purpose This function preprocesses and/or evaluates Jacobian data needed by the Jacobian-
times-vector routine for the backward problem.
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Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

yB is the current value of the backward dependent variable vector.

fyB is the current value of the right-hand-side for the backward problem.

Return value

Notes

user_dataB is a pointer to user data — the same as the user_dataB parameter passed
to CVSetUserDataB.

The value returned by the Jacobian-vector setup function should be 0 if successful,
positive for a recoverable error (in which case the step will be retried), or negative for
an unrecoverable error (in which case the integration is halted).

Each call to the Jacobian-vector setup function is preceded by a call to the backward
problem residual user function with the same (t,y, yB) arguments. Thus, the setup
function can use any auxiliary data that is computed and saved during the evaluation
of the right-hand-side function.

If the user’s CVSpilsJacTimesVecFnB function uses difference quotient approximations,
it may need to access quantities not in the call list. These include the current step-
size, the error weights, etc. To obtain these, the user will need to add a pointer to
cvode mem to user_dataB and then use the CVGet* functions described in §4.5.8.2. The
unit roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

CVSpilsJacTimesSetupFnBS

Definition

Purpose

Arguments

Return value

Notes

typedef int (*CVSpilsJacTimesSetupFnBS) (realtype t,
N_Vector y, N_Vector *yS,
N_Vector yB, N_Vector fyB,
void *user_dataB);

This function preprocesses and/or evaluates Jacobian data needed by the Jacobian-
times-vector routine for the backward problem, in the case that the backward problem
depends on the forward sensitivities.

t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

yS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

yB is the current value of the backward dependent variable vector.

fyB is the current value of the right-hand-side function for the backward problem.

user_dataB is a pointer to user data — the same as the user_dataB parameter passed
to CVSetUserDataB.

The value returned by the Jacobian-vector setup function should be 0 if successful,
positive for a recoverable error (in which case the step will be retried), or negative for
an unrecoverable error (in which case the integration is halted).

Each call to the Jacobian-vector setup function is preceded by a call to the backward
problem residual user function with the same (t,y, yS, yB) arguments. Thus, the
setup function can use any auxiliary data that is computed and saved during the eval-
uation of the right-hand-side function.

If the user’s CVSpilsJacTimesVecFnB function uses difference quotient approximations,
it may need to access quantities not in the call list. These include the current step-
size, the error weights, etc. To obtain these, the user will need to add a pointer to
cvode_mem to user_dataB and then use the CVGet* functions described in §4.5.8.2. The
unit roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.
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6.3.8 Preconditioning for the backward problem (linear system solution)

If preconditioning is used during integration of the backward problem, then the user must provide a
C function to solve the linear system Pz = r, where P may be either a left or a right preconditioner
matrix. Here P should approximate (at least crudely) the Newton matrix Mg = I — ygJp, where
Jp = 0fp/0yp. If preconditioning is done on both sides, the product of the two preconditioner
matrices should approximate Mp. This function must be of one of the following two types:

’ CVSpilsPrecSolveFnB

Definition typedef int (*CVSpilsPrecSolveFnB) (realtype t, N_Vector y,
N_Vector yB, N_Vector fyB,
N_Vector rvecB, N_Vector zvecB,
realtype gammaB, realtype deltaB,
void *user_dataB);

Purpose This function solves the preconditioning system Pz = r for the backward problem.
Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

fyB is the current value of the backward right-hand side function fp.

rvecB is the right-hand side vector r of the linear system to be solved.

zvecB is the computed output vector.

gammaB is the scalar appearing in the Newton matrix, Mg = I — ygJp.

deltaB is an input tolerance to be used if an iterative method is employed in the

solution.

user_dataB is a pointer to user data — the same as the user_dataB parameter passed
to CVodeSetUserDataB.

Return value The return value of a preconditioner solve function for the backward problem should be
0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

CVSpilsPrecSolveFnBS

Definition typedef int (*CVSpilsPrecSolveFnBS) (realtype t, N_Vector y, N Vector xyS,
N_Vector yB, N_Vector fyB,
N_Vector rvecB, N_Vector zvecB,
realtype gammaB, realtype deltaB,
void *user_dataB);

Purpose This function solves the preconditioning system Pz = r for the backward problem, in
the case where the backward problem depends on the forward sensitivities.
Arguments t is the current value of the independent variable.
y is the current value of the forward solution vector.
yS is a pointer to an array containing the forward sensitivity vectors.
yB is the current value of the backward dependent variable vector.
fyB is the current value of the backward right-hand side function fg.
rvecB is the right-hand side vector r of the linear system to be solved.
zvecB is the computed output vector.
gammaB is the scalar appearing in the Newton matrix, Mg = I — ygJp.
deltaB is an input tolerance to be used if an iterative method is employed in the

solution.
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user_dataB is a pointer to user data — the same as the user_dataB parameter passed
to CVodeSetUserDataB.

Return value The return value of a preconditioner solve function for the backward problem should be
0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

6.3.9 Preconditioning for the backward problem (Jacobian data)

If the user’s preconditioner requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied C function of one of the following two types:

CVSpilsPrecSetupFnB

Definition typedef int (*CVSpilsPrecSetupFnB) (realtype t, N_Vector vy,
N_Vector yB, N_Vector fyB,
booleantype jokB, booleantype *jcurPtrB,
realtype gammaB, void *user_dataB);

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the pre-
conditioner for the backward problem.

Arguments The arguments of a CVSpilsPrecSetupFnB are as follows:

t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

fyB is the current value of the backward right-hand side function fg.

jokB is an input flag indicating whether Jacobian-related data needs to be recom-

puted (jokB=SUNFALSE) or information saved from a previous invokation
can be safely used (jokB=SUNTRUE).

jcurPtr is an output flag which must be set to SUNTRUE if Jacobian-relatd data was
recomputed or SUNFALSE otherwise.

gammaB is the scalar appearing in the Newton matrix.

user_dataB is a pointer to user data — the same as the user_dataB parameter passed
to CVodeSetUserDataB.

Return value The return value of a preconditioner setup function for the backward problem should
be 0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

CVSpilsPrecSetupFnBS

Definition typedef int (*CVSpilsPrecSetupFnBS) (realtype t, N_Vector y, N_Vector *yS,
N_Vector yB, N_Vector fyB,
booleantype jokB, booleantype *jcurPtrB,
realtype gammaB, void *user_dataB);

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the pre-
conditioner for the backward problem, in the case where the backward problem depends
on the forward sensitivities.

Arguments The arguments of a CVSpilsPrecSetupFnBS are as follows:

t is the current value of the independent variable.
y is the current value of the forward solution vector.
yS is a pointer to an array containing the forward sensitivity vectors.

yB is the current value of the backward dependent variable vector.
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fyB is the current value of the backward right-hand side function fg.

jokB is an input flag indicating whether Jacobian-related data needs to be recom-
puted (jokB=SUNFALSE) or information saved from a previous invokation
can be safely used (jokB=SUNTRUE).

jcurPtr is an output flag which must be set to SUNTRUE if Jacobian-relatd data was
recomputed or SUNFALSE otherwise.

gammaB is the scalar appearing in the Newton matrix.

user_dataB is a pointer to user data — the same as the user_dataB parameter passed
to CVodeSetUserDataB.

Return value The return value of a preconditioner setup function for the backward problem should
be 0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

6.4 Using CVODES preconditioner modules for the backward
problem

As on the forward integration phase, the efficiency of Krylov iterative methods for the solution of linear
systems can be greatly enhanced through preconditioning. Both preconditioner modules provided
with SUNDIALS, the serial banded preconditioner CVBANDPRE and the parallel band-block-diagonal
preconditioner module CVBBDPRE, provide interface functions through which they can be used on the
backward integration phase.

6.4.1 Using the banded preconditioner CVBANDPRE

The adjoint module in CVODES offers an interface to the banded preconditioner module CVBANDPRE
described in section §4.8.1. This preconditioner, usable only in a serial setting, provides a band matrix
preconditioner based on difference quotients of the backward problem right-hand side function £B. It
generates a banded approximation to the Jacobian with m;p sub-diagonals and m, g super-diagonals
to be used with one of the Krylov linear solvers.

In order to use the CVBANDPRE module in the solution of the backward problem, the user need not
define any additional functions. Instead, after one of the CVSPILS linear solvers has been specified, by
calling the appropriate function (see §6.2.5), the following call to the CVBANDPRE module initialization
function must be made.

[ CVBandPrecInitB
Call flag = CVBandPrecInitB(cvode mem, which, nB, muB, mlB);

Description The function CVBandPrecInitB initializes and allocates memory for the CVBANDPRE
preconditioner for the backward problem. It creates, allocates, and stores (internally in
the CVODES solver block) a pointer to the newly created CVBANDPRE memory block.

Arguments cvodemem (void *) pointer to the CVODES memory block.
which (int) the identifier of the backward problem.
nB (sunindextype) backward problem dimension.
muB (sunindextype) upper half-bandwidth of the backward problem Jacobian
approximation.
mlB (sunindextype) lower half-bandwidth of the backward problem Jacobian
approximation.

Return value The return value flag (of type int) is one of:

CVSPILS_SUCCESS The call to CVodeBandPrecInitB was successful.
CVSPILS_MEM_FAIL A memory allocation request has failed.
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CVSPILS_MEM_NULL The cvode mem argument was NULL.
CVSPILS_LMEM_NULL No linear solver has been attached.
CVSPILS_ILL_INPUT An invalid parameter has been passed.

For more details on CVBANDPRE see §4.8.1.

6.4.2 Using the band-block-diagonal preconditioner CVBBDPRE

The adjoint module in CVODES offers an interface to the band-block-diagonal preconditioner module
CVBBDPRE described in section §4.8.2. This generates a preconditioner that is a block-diagonal matrix
with each block being a band matrix and can be used with one of the Krylov linear solvers and with
the MPI-parallel vector module NVECTOR_PARALLEL.

In order to use the CVBBDPRE module in the solution of the backward problem, the user must
define one or two additional functions, described at the end of this section.

6.4.2.1 Initialization of CVBBDPRE

The cVBBDPRE module is initialized by calling the following function, after one of the CVSPILS linear
solvers has been specified by calling the appropriate function (see §6.2.5).

| CVBBDPrecInitB|

Call flag = CVBBDPrecInitB(cvode mem, which, NlocalB, mudgB, mldgB,
mukeepB, mlkeepB, dqrelyB, glocB, gcommB);

Description The function CVBBDPrecInitB initializes and allocates memory for the CVBBDPRE pre-
conditioner for the backward problem. It creates, allocates, and stores (internally in
the CVODES solver block) a pointer to the newly created CVBBDPRE memory block.

Arguments cvodemem (void *) pointer to the CVODES memory block.

which (int) the identifier of the backward problem.

NlocalB (sunindextype) local vector dimension for the backward problem.

mudqgB (sunindextype) upper half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mldgB (sunindextype) lower half-bandwidth to be used in the difference-quotient

Jacobian approximation.

mukeepB  (sunindextype) upper half-bandwidth of the retained banded approximate
Jacobian block.

mlkeepB (sunindextype) lower half-bandwidth of the retained banded approximate
Jacobian block.

dqrelyB (realtype) the relative increment in components of yB used in the difference
quotient approximations. The default is dqrelyB= +/unit roundoff, which
can be specified by passing dqrely= 0.0.

glocB (CVBBDLocalFnB) the C function which computes the function gp(t,y,yp)
approximating the right-hand side of the backward problem.

gcommB (CVBBDCommFnB) the optional C function which performs all interprocess
communication required for the computation of gg.

Return value The return value flag (of type int) is one of:

CVSPILS_SUCCESS The call to CVodeBBDPrecInitB was successful.
CVSPILS_MEM_FAIL A memory allocation request has failed.
CVSPILS_MEM_NULL The cvode mem argument was NULL.
CVSPILS_LMEM_NULL No linear solver has been attached.
CVSPILS_ILL_INPUT An invalid parameter has been passed.

To reinitialize the CVBBDPRE preconditioner module for the backward problem, possibly with changes
in mudgB, m1dgB, or dqrelyB, call the following function:
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| CVBBDPrecReInitB |
Call flag = CVBBDPrecReInitB(cvode mem, which, mudgqB, mldgB, dqrelyB);

Description The function CVBBDPrecReInitB reinitializes the CVBBDPRE preconditioner for the
backward problem.

Arguments cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.
which (int) the identifier of the backward problem.

mudqgB (sunindextype) upper half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mldgB (sunindextype) lower half-bandwidth to be used in the difference-quotient
Jacobian approximation.

dgrelyB (realtype) the relative increment in components of yB used in the difference
quotient approximations.
Return value The return value flag (of type int) is one of:

CVSPILS_SUCCESS The call to CVodeBBDPrecReInitB was successful.
CVSPILS_MEM FAIL A memory allocation request has failed.
CVSPILS MEM NULL The cvode mem argument was NULL.

CVSPILS_PMEM NULL The CVodeBBDPrecInitB has not been previously called.
CVSPILS_LMEM_NULL No linear solver has been attached.

CVSPILS_ILL_INPUT An invalid parameter has been passed.

For more details on CVBBDPRE see §4.8.2.

6.4.2.2 User-supplied functions for CVBBDPRE

To use the CVBBDPRE module, the user must supply one or two functions which the module calls to
construct the preconditioner: a required function glocB (of type CVBBDLocalFnB) which approximates
the right-hand side of the backward problem and which is computed locally, and an optional function
gcommB (of type CVBBDCommFnB) which performs all interprocess communication necessary to evaluate
this approximate right-hand side (see §4.8.2). The prototypes for these two functions are described
below.

[ CVBBDLocalFnB

Definition typedef int (*CVBBDLocalFnB) (sunindextype NlocalB, realtype t, N_Vector y,
N_Vector yB, N_Vector gB, void *user_dataB);

Purpose This glocB function loads the vector gB, an approximation to the right-hand side fp of
the backward problem, as a function of t, y, and yB.

Arguments NlocalB is the local vector length for the backward problem.

t is the value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.
gB is the output vector, gg(t,y,y5)-

user_dataB is a pointer to user data — the same as the user_dataB parameter passed
to CVodeSetUserDataB.

Return value An CVBBDLocalFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case CVODES will attempt to correct), or a negative value if
it failed unrecoverably (in which case the integration is halted and CVodeB returns
CV_LSETUP_FAIL).

Notes This routine must assume that all interprocess communication of data needed to calcu-
late gB has already been done, and this data is accessible within user_dataB.
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Before calling the user’s CVBBDLocalFnB, CVODES needs to evaluate (through interpo-
lation) the values of the states from the forward integration. If an error occurs in
the interpolation, CVODES triggers an unrecoverable failure in the preconditioner setup
function which will halt the integration (CVodeB returns CV_LSETUP_FAIL).

CVBBDCommFnB

Definition
Purpose

Arguments

Return value

Notes

typedef int (*CVBBDCommFnB) (sunindextype NlocalB, realtype t, N_Vector vy,
N_Vector yB, void xuser_dataB) ;

This gcommB function must perform all interprocess communications necessary for the
execution of the glocB function above, using the input vectors y and yB.

NlocalB is the local vector length.

t is the value of the independent variable.
y is the current value of the forward solution vector.
yB is the current value of the backward dependent variable vector.

user_dataB is a pointer to user data — the same as the user_dataB parameter passed
to CVodeSetUserDataB.

An CVBBDCommFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case CVODES will attempt to correct), or a negative value if
it failed unrecoverably (in which case the integration is halted and CVodeB returns
CV_LSETUP_FAIL).

The gcommB function is expected to save communicated data in space defined within
the structure user_dataB.

Each call to the gcommB function is preceded by a call to the function that evaluates the
right-hand side of the backward problem with the same t, y, and yB, arguments. If there
is no additional communication needed, then pass gcommB = NULL to CVBBDPrecInitB.



Chapter 7

Description of the NVECTOR
module

The SUNDIALS solvers are written in a data-independent manner. They all operate on generic vec-
tors (of type N_Vector) through a set of operations defined by the particular NVECTOR implemen-
tation. Users can provide their own specific implementation of the NVECTOR module, or use one of
the implementations provided with SUNDIALS. The generic operations are described below and the
implementations provided with SUNDIALS are described in the following sections.

The generic N_Vector type is a pointer to a structure that has an implementation-dependent
content field containing the description and actual data of the vector, and an ops field pointing to a
structure with generic vector operations. The type N_Vector is defined as

typedef struct _generic_N_Vector *N_Vector;

struct _generic_N_Vector {
void *content;
struct _generic_N_Vector_0Ops *ops;

};

The _generic N _Vector_Ops structure is essentially a list of pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {
N_Vector_ID (*nvgetvectorid) (N_Vector);

N_Vector (*nvclone) (N_Vector) ;

N_Vector (*nvcloneempty) (N_Vector) ;

void (*nvdestroy) (N_Vector) ;

void (*nvspace) (N_Vector, sunindextype *, sunindextype *);
realtypex  (*nvgetarraypointer) (N_Vector);

void (*nvsetarraypointer) (realtype *, N_Vector);

void (*nvlinearsum) (realtype, N_Vector, realtype, N_Vector, N_Vector);
void (*nvconst) (realtype, N_Vector);

void (*nvprod) (N_Vector, N_Vector, N_Vector);

void (¥nvdiv) (N_Vector, N_Vector, N_Vector);

void (*nvscale) (realtype, N_Vector, N_Vector);

void (*nvabs) (N_Vector, N_Vector);

void (*nvinv) (N_Vector, N_Vector);

void (*nvaddconst) (N_Vector, realtype, N_Vector);

realtype (*nvdotprod) (N_Vector, N_Vector);

realtype (*nvmaxnorm) (N_Vector) ;

realtype (*nvwrmsnorm) (N_Vector, N_Vector);
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realtype (*nvwrmsnormmask) (N_Vector, N_Vector, N_Vector);
realtype (*nvmin) (N_Vector) ;

realtype (*nvwl2norm) (N_Vector, N_Vector);

realtype (*nvlinorm) (N_Vector);

void (*nvcompare) (realtype, N_Vector, N_Vector);

booleantype (*nvinvtest) (N_Vector, N_Vector);
booleantype (*nvconstrmask) (N_Vector, N_Vector, N_Vector);
realtype (*nvminquotient) (N_Vector, N_Vector);

};

The generic NVECTOR module defines and implements the vector operations acting on N_Vector.
These routines are nothing but wrappers for the vector operations defined by a particular NVECTOR
implementation, which are accessed through the ops field of the N_Vector structure. To illustrate
this point we show below the implementation of a typical vector operation from the generic NVECTOR
module, namely N_VScale, which performs the scaling of a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z)
{
z->ops->nvscale(c, x, 2z);

}

Table 7.2 contains a complete list of all vector operations defined by the generic NVECTOR module.

Finally, note that the generic NVECTOR module defines the functions N_VCloneVectorArray and
N_VCloneVectorArrayEmpty. Both functions create (by cloning) an array of count variables of type
N_Vector, each of the same type as an existing N_Vector. Their prototypes are

N_Vector *N_VCloneVectorArray(int count, N_Vector w);
N_Vector *N_VCloneVectorArrayEmpty(int count, N_Vector w);

and their definitions are based on the implementation-specific N_-VClone and N_VCloneEmpty opera-
tions, respectively.

An array of variables of type N_Vector can be destroyed by calling N_VDestroyVectorArray, whose
prototype is

void N_VDestroyVectorArray(N_Vector *vs, int count);

and whose definition is based on the implementation-specific N.-VDestroy operation.
A particular implementation of the NVECTOR module must:

e Specify the content field of N_Vector.

e Define and implement the vector operations. Note that the names of these routines should be
unique to that implementation in order to permit using more than one NVECTOR module (each
with different N_Vector internal data representations) in the same code.

e Define and implement user-callable constructor and destructor routines to create and free an
N_Vector with the new content field and with ops pointing to the new vector operations.

e Optionally, define and implement additional user-callable routines acting on the newly defined
N_Vector (e.g., a routine to print the content for debugging purposes).

e Optionally, provide accessor macros as needed for that particular implementation to be used to
access different parts in the content field of the newly defined N_Vector.

Each NVECTOR implementation included in SUNDIALS has a unique identifier specified in enumer-
ation and shown in Table 7.1. It is recommended that a user-supplied NVECTOR implementation use
the SUNDIALS_NVEC_CUSTOM identifier.
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Table 7.1: Vector Identifications associated with vector kernels supplied with SUNDIALS.

Vector ID

Vector type ID Value

SUNDIALS NVEC_SERIAL Serial 0
SUNDIALS_NVEC_PARALLEL | Distributed memory parallel (MPI)
SUNDIALS_NVEC_OPENMP OpenMP shared memory parallel
SUNDIALS_NVEC_PTHREADS | PThreads shared memory parallel
SUNDIALS_NVEC_PARHYP hypre ParHyp parallel vector
SUNDIALS_NVEC_PETSC PETSc parallel vector

SUNDIALS_ NVEC_CUSTOM User-provided custom vector

ST W N

Table 7.2: Description of the NVECTOR, operations

Name

Usage and Description

N_VGetVectorID

N_VClone

N_VCloneEmpty

N_VDestroy

N_VSpace

id = N_VGetVectorID(w);

Returns the vector type identifier for the vector w. It is used to deter-
mine the vector implementation type (e.g. serial, parallel,...) from the
abstract N_Vector interface. Returned values are given in Table 7.1.

v = N_VClone(w);
Creates a new N_Vector of the same type as an existing vector w and sets
the ops field. It does not copy the vector, but rather allocates storage
for the new vector.

v = N_VCloneEmpty(w);
Creates a new N_Vector of the same type as an existing vector w and
sets the ops field. It does not allocate storage for data.

N_VDestroy(v) ;
Destroys the N_Vector v and frees memory allocated for its internal
data.

N_VSpace(nvSpec, &lrw, &liw);

Returns storage requirements for one N_Vector. 1lrw contains the num-
ber of realtype words and liw contains the number of integer words.
This function is advisory only, for use in determining a user’s total space
requirements; it could be a dummy function in a user-supplied NVECTOR
module if that information is not of interest.

continued on next page
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continued from last page

Name Usage and Description

N_VGetArrayPointer | vdata = N_VGetArrayPointer(v);

Returns a pointer to a realtype array from the N_Vector v. Note
that this assumes that the internal data in N_Vector is a contiguous
array of realtype. This routine is only used in the solver-specific in-
terfaces to the dense and banded (serial) linear solvers, the sparse lin-
ear solvers (serial and threaded), and in the interfaces to the banded
(serial) and band-block-diagonal (parallel) preconditioner modules pro-
vided with SUNDIALS.

N_VSetArrayPointer | N_VSetArrayPointer(vdata, v);

Overwrites the data in an N_Vector with a given array of realtype.
Note that this assumes that the internal data in N_Vector is a contigu-
ous array of realtype. This routine is only used in the interfaces to
the dense (serial) linear solver, hence need not exist in a user-supplied
NVECTOR module for a parallel environment.

N_VLinearSum N_VLinearSum(a, x, b, y, 2z);
Performs the operation z = ax + by, where a and b are realtype scalars
and x and y are of type N_Vector: z; = ax; + by;, i =0,...,n— 1.

N_VConst N_VConst(c, z);
Sets all components of the N_Vector z to realtype c: z; = ¢, i =
0,...,n—1.

N_VProd N_VProd(x, y, 2z);
Sets the N_Vector z to be the component-wise product of the N_Vector
inputs x and y: z; = z;y;, 1 =0,...,n — 1.

N_VDiv N_VDiv(x, y, 2);

Sets the N_Vector z to be the component-wise ratio of the N_Vector
inputs x and y: z; = x;/y;, i = 0,...,n — 1. The y; may not be tested
for 0 values. It should only be called with a y that is guaranteed to have
all nonzero components.

N_VScale N_VScale(c, x, z);
Scales the N_Vector x by the realtype scalar ¢ and returns the result
inz: z;=cr;,1=0,...,n—1.

N_VAbs N_VAbs(x, z);
Sets the components of the N_Vector z to be the absolute values of the
components of the N_Vector x: y; = |z;|, ¢ =0,...,n— 1.

continued on next page
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continued from last page

Name Usage and Description

N_VInv N_VInv(x, z);
Sets the components of the N_Vector z to be the inverses of the compo-
nents of the N_Vector x: z; = 1.0/z;, 9 =0,...,n— 1. This routine may

N_VAddConst

N_VDotProd

N_VMaxNorm

N_VWrmsNorm

N_VWrmsNormMask

N_VMin

N_VWL2Norm

N_VL1Norm

N_VCompare

not check for division by 0. It should be called only with an x which is
guaranteed to have all nonzero components.

N_VAddConst(x, b, z);

Adds the realtype scalar b to all components of x and returns the result
in the N.Vector z: z; =x; +b,i=0,...,n— 1.

d = N_VDotProd(x, y);

Returns the value of the ordinary dot product of x and y: d = E;:Ol TiVi-

m = N_VMaxNorm(x);
Returns the maximum norm of the N_Vector x: m = max; |z;|.

m = N_VWrmsNorm(x, w)
Returns the weighted root-mean-square norm of the N_Vector x with

realtype weight vector w: m = \/ (xzwl) ) /n.

m = N VWrmsNormMask(x, w, id);

Returns the weighted root mean square norm of the N_Vector x with
realtype weight vector w built using only the elements of x correspond-
ing to positive elements of the N_Vector id:

m = \/ o 1 (wjw;msk;)? ) /n, where msk; is 1 if id; > 0 or 0 if id; < 0.

=N VMln(x)
Returns the smallest element of the N_Vector x: m = min; z;.

m = N_VWL2Norm(x, w);
Returns the weighted Euclidean f5 norm of the N_Vector x with

realtype weight vector w: m = Z:’;Ol (z;w;)2.
m = N_VL1Norm(x) ;

Returns the ¢; norm of the N.-Vector x: m =3 ., U a).

N_VCompare(c, x, z);

Compares the components of the N_.Vector x to the realtype scalar ¢
and returns an N_Vector z such that: z; = 1.0 if |z;| > ¢ and z; = 0.0
otherwise.

continued on next page
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continued from last page

Name Usage and Description

N_VInvTest t = N_VInvTest(x, z);

Sets the components of the N_Vector z to be the inverses of the com-
ponents of the N_Vector x, with prior testing for zero values: z; =
1.0/x;, ¢ = 0,...,n — 1. This routine returns a boolean assigned to
SUNTRUE if all components of x are nonzero (successful inversion) and
returns SUNFALSE otherwise.

N_VConstrMask t = N_VConstrMask(c, x, m);
Performs the following constraint tests: x; > 0 if ¢; = 2, x; > 0 if
c; =1, z; <0if ¢ = —1, z; < 0if ¢ = —2. There is no constraint

on x; if ¢; = 0. This routine returns a boolean assigned to SUNFALSE
if any element failed the constraint test and assigned to SUNTRUE if all
passed. It also sets a mask vector m, with elements equal to 1.0 where
the constraint test failed, and 0.0 where the test passed. This routine is
used only for constraint checking.

N_VMinQuotient ming = N_VMinQuotient (num, denom);

This routine returns the minimum of the quotients obtained by term-
wise dividing num; by denom;. A zero element in denom will be skipped.
If no such quotients are found, then the large value BIG_REAL (defined
in the header file sundials_types.h) is returned.

7.1 The NVECTOR_SERIAL implementation

The serial implementation of the NVECTOR module provided with SUNDIALS, NVECTOR _SERIAL, defines
the content field of N_Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, and a boolean flag own_data which specifies the ownership of
data.

struct _N_VectorContent_Serial {
sunindextype length;
booleantype own_data;

realtype *data;

};

The header file to include when using this module is nvector_serial.h. The installed module
library to link to is libsundials nvecserial. l4b where .14b is typically .so for shared libraries
and .a for static libraries.

The following macros are provided to access the content of an NVECTOR_SERIAL vector. The suffix
_S in the names denotes the serial version.

e NV_CONTENT_S

This routine gives access to the contents of the serial vector N_Vector.

The assignment v_cont = NV_CONTENT_S(v) sets v_cont to be a pointer to the serial N_Vector
content structure.

Implementation:

#define NV_CONTENT_S(v) ( (N_VectorContent_Serial) (v->content) )

e NV_OWN_DATA_S, NV_DATA_S, NV_LENGTH_S

These macros give individual access to the parts of the content of a serial N_Vector.
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The assignment v_data = NV_DATA_S(v) sets v_data to be a pointer to the first component of
the data for the N_Vector v. The assignment NV_DATA_S(v) = v_data sets the component array
of v to be v_data by storing the pointer v_data.

The assignment v_len = NV_LENGTH_S(v) sets v_len to be the length of v. On the other hand,
the call NV_.LENGTH_S(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_OWN_DATA_S(v) ( NV_CONTENT_S(v)->own_data )
#define NV_DATA_S(v) ( NV_CONTENT_S(v)->data )
#define NV_LENGTH_S(v) ( NV_CONTENT_S(v)->length )

NV_Ith_S
This macro gives access to the individual components of the data array of an N_Vector.

The assignment r = NV_Ith S(v,i) sets r to be the value of the i-th component of v. The
assignment NV_Ith S(v,i) = r sets the value of the i-th component of v to be r.

Here ¢ ranges from 0 to n — 1 for a vector of length n.
Implementation:
#define NV_Ith_S(v,i) ( NV_DATA_S(v)[i] )

The NVECTOR_SERIAL module defines serial implementations of all vector operations listed in Ta-
ble 7.2. Their names are obtained from those in Table 7.2 by appending the suffix _Serial (e.g.
N_VDestroy_Serial). The module NVECTOR_SERIAL provides the following additional user-callable
routines:

N_VNew_Serial

This function creates and allocates memory for a serial N_Vector. Its only argument is the
vector length.

N_Vector N_VNew_Serial(sunindextype vec_length);

N_VNewEmpty_Serial
This function creates a new serial N_Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Serial(sunindextype vec_length);

N_VMake_Serial
This function creates and allocates memory for a serial vector with user-provided data array.
(This function does not allocate memory for v_data itself.)

N_Vector N_VMake_Serial(sunindextype vec_length, realtype *v_data);

N_VCloneVectorArray_Serial
This function creates (by cloning) an array of count serial vectors.

N_Vector *N_VCloneVectorArray_Serial(int count, N_Vector w);

N_VCloneVectorArrayEmpty_Serial

This function creates (by cloning) an array of count serial vectors, each with an empty (NULL)
data array.

N_Vector *N_VCloneVectorArrayEmpty_Serial(int count, N_Vector w);

N_VDestroyVectorArray Serial

This function frees memory allocated for the array of count variables of type N_Vector created
with N_VCloneVectorArray Serial or with N_VCloneVectorArrayEmpty_Serial.

void N_VDestroyVectorArray_Serial (N_Vector *vs, int count);
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e N _VGetLength Serial

This function returns the number of vector elements.

sunindextype N_VGetLength_Serial(N_Vector v);

N_VPrint_Serial
This function prints the content of a serial vector to stdout.

void N_VPrint_Serial (N_Vector v);

N_VPrintFile Serial
This function prints the content of a serial vector to outfile.

void N_VPrintFile_Serial(N_Vector v, FILE *outfile);

Notes

e When looping over the components of an N_Vector v, it is more efficient to first obtain the

component array via v_data = NV_DATA_S(v) and then access v_data[i] within the loop than
it is to use NV_Ith_S(v,i) within the loop.

N_VNewEmpty_Serial, N_VMake Serial, and N_VCloneVectorArrayEmpty_Serial set the field
own_data = SUNFALSE. N_VDestroy_Serial and N_VDestroyVectorArray Serial will not at-
tempt to free the pointer data for any N_Vector with own_data set to SUNFALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

To maximize efficiency, vector operations in the NVECTOR_SERIAL implementation that have
more than one N_Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N_Vector
arguments that were all created with the same internal representations.

For solvers that include a Fortran interface module, the NVECTOR_SERIAL module also includes
a Fortran-callable function FNVINITS (code, NER, IER), to initialize this NVECTOR_SERIAL module.
Here code is an input solver id (1 for CVODE, 2 for IDA, 3 for KINSOL, 4 for ARKODE); NEQ is the
problem size (declared so as to match C type long int); and IER is an error return flag equal 0 for
success and -1 for failure.

7.2 The NVECTOR_PARALLEL implementation

The NVECTOR_PARALLEL implementation of the NVECTOR module provided with SUNDIALS is based on
MPI. It defines the content field of N_Vector to be a structure containing the global and local lengths
of the vector, a pointer to the beginning of a contiguous local data array, an MPI communicator, and
a boolean flag own_data indicating ownership of the data array data.

struct _N_VectorContent_Parallel {
sunindextype local_length;
sunindextype global_length;
booleantype own_data;
realtype *data;
MPI_Comm comm;

};

The header file to include when using this module is nvector_parallel.h. The installed module
library to link to is 1ibsundials nvecparallel. l4b where . 14b is typically .so for shared libraries

and

.a for static libraries.

The following macros are provided to access the content of a NVECTOR_PARALLEL vector. The
suffix _P in the names denotes the distributed memory parallel version.



7.2 The NVECTOR_PARALLEL implementation 163

e NV_CONTENT_P
This macro gives access to the contents of the parallel vector N_Vector.

The assignment v_cont = NV_CONTENT_P(v) sets v_cont to be a pointer to the N_Vector content
structure of type struct _N_VectorContent Parallel.

Implementation:

#define NV_CONTENT_P(v) ( (N_VectorContent_Parallel) (v->content) )

e NV_OWN_DATA P, NV_DATA P, NV_.LOCLENGTH_P, NV_GLOBLENGTH_P
These macros give individual access to the parts of the content of a parallel N_Vector.

The assignment v_data = NV_DATA P(v) sets v_data to be a pointer to the first component of
the local data for the N_Vector v. The assignment NV_DATA P(v) = v_data sets the component
array of v to be v_data by storing the pointer v_data.

The assignment v_1len = NV_LOCLENGTH_P(v) sets v_1len to be the length of the local part of
v. The call NV_LENGTH_P(v) = llen_v sets the local length of v to be 1len_v.

The assignment v_glen = NV_GLOBLENGTH_P(v) sets v_glen to be the global length of the vector
v. The call NV_GLOBLENGTH_P(v) = glen_v sets the global length of v to be glen_v.

Implementation:
#define NV_OWN_DATA_P(v) ( NV_CONTENT_P(v)->own_data )
#define NV_DATA_P(v) ( NV_CONTENT_P(v)->data )

#define NV_LOCLENGTH_P(v) ( NV_CONTENT_P(v)->local_length )
#define NV_GLOBLENGTH_P(v) ( NV_CONTENT_P(v)->global_length )

e NV_COMM_P
This macro provides access to the MPI communicator used by the NVECTOR_PARALLEL vectors.
Implementation:

#define NV_COMM_P(v) ( NV_CONTENT_P(v)->comm )

e NV_Ith P
This macro gives access to the individual components of the local data array of an N_Vector.

The assignment r = NV_Ith P(v,i) sets r to be the value of the i-th component of the local
part of v. The assignment NV_Ith P(v,i) = r sets the value of the i-th component of the local
part of v to be r.

Here ¢ ranges from 0 to n — 1, where n is the local length.

Implementation:

#define NV_Ith_P(v,i) ( NV_DATA_P(v)[i] )
The NVECTOR_PARALLEL module defines parallel implementations of all vector operations listed in
Table 7.2 Their names are obtained from those in Table 7.2 by appending the suffix Parallel
(e.g. N_VDestroy Parallel). The module NVECTOR_PARALLEL provides the following additional
user-callable routines:

o N_VNew_Parallel

This function creates and allocates memory for a parallel vector.

N_Vector N_VNew_Parallel (MPI_Comm comm,
sunindextype local_length,
sunindextype global_length);
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N_VNewEmpty_Parallel

This function creates a new parallel N_Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Parallel(MPI_Comm comm,
sunindextype local_length,
sunindextype global_length);

N_VMake_Parallel
This function creates and allocates memory for a parallel vector with user-provided data array.

(This function does not allocate memory for v_data itself.)

N_Vector N_VMake_Parallel (MPI_Comm comm,
sunindextype local_length,
sunindextype global_length,
realtype *v_data);

N_VCloneVectorArray Parallel

This function creates (by cloning) an array of count parallel vectors.
N_Vector *N_VCloneVectorArray_Parallel(int count, N_Vector w);

N_VCloneVectorArrayEmpty_Parallel

This function creates (by cloning) an array of count parallel vectors, each with an empty (NULL)
data array.

N_Vector *N_VCloneVectorArrayEmpty_Parallel(int count, N_Vector w);

N_VDestroyVectorArray Parallel

This function frees memory allocated for the array of count variables of type N_Vector created
with N_VCloneVectorArray_Parallel or with N_.VCloneVectorArrayEmpty Parallel.

void N_VDestroyVectorArray_Parallel (N_Vector *vs, int count);

N_VGetLength Parallel
This function returns the number of vector elements (global vector length).

sunindextype N_VGetLength_Parallel(N_Vector v);

N_VGetLocallLength Parallel
This function returns the local vector length.

sunindextype N_VGetLocalLength Parallel(N_Vector v);

N_VPrint_Parallel
This function prints the local content of a parallel vector to stdout.

void N_VPrint_Parallel(N_Vector v);

N_VPrintFile Parallel
This function prints the local content of a parallel vector to outfile.

void N_VPrintFile_Parallel(N_Vector v, FILE *outfile);
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Notes

e When looping over the components of an N_Vector v, it is more efficient to first obtain the local
component array via v_data = NV_DATA P(v) and then access v_data[i] within the loop than
it is to use NV_Ith P(v,i) within the loop.

e N VNewEmpty Parallel, N_-VMake Parallel, and N_-VCloneVectorArrayEmpty Parallel set the
field own_data = SUNFALSE. N_VDestroy Parallel and N_VDestroyVectorArray Parallel will
not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE. In such
a case, it is the user’s responsibility to deallocate the data pointer.

e To maximize efficiency, vector operations in the NVECTOR_PARALLEL implementation that have
more than one N_Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N_Vector
arguments that were all created with the same internal representations.

For solvers that include a Fortran interface module, the NVECTOR_PARALLEL module also includes
a Fortran-callable function FNVINITP (COMM, code, NLOCAL, NGLOBAL, IER), to initialize this NVEC-
TOR_PARALLEL module. Here COMM is the MPI communicator, code is an input solver id (1 for CVODE,
2 for DA, 3 for KINSOL, 4 for ARKODE); NLOCAL and NGLOBAL are the local and global vector sizes,
respectively (declared so as to match C type long int); and IER is an error return flag equal 0 for suc-
cess and -1 for failure. NOTE: If the header file sundials_config.h defines SUNDIALS_MPI_COMM_F2C
to be 1 (meaning the MPT implementation used to build SUNDIALS includes the MPI_Comm f2¢ func-
tion), then COMM can be any valid MPI communicator. Otherwise, MPT_COMM_WORLD will be used, so
just pass an integer value as a placeholder.

7.3 The NVECTOR_OPENMP implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel threads
with shared memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVEC-
TOR_OPENMP, and an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown
that vectors should be of length at least 100,000 before the overhead associated with creating and
using the threads is made up by the parallelism in the vector calculations.

The OpenMP NVECTOR implementation provided with SUNDIALS, NVECTOR_OPENMP, defines the
content field of N_-Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, a boolean flag own_data which specifies the ownership of data,
and the number of threads. Operations on the vector are threaded using OpenMP.

struct _N_VectorContent_0OpenMP {
sunindextype length;
booleantype own_data;
realtype *data;
int num_threads;

};

The header file to include when using this module is nvector_openmp.h. The installed module
library to link to is 1ibsundials nvecopenmp. l4b where .1%b is typically .so for shared libraries
and .a for static libraries.

The following macros are provided to access the content of an NVECTOR_OPENMP vector. The
suffix _OMP in the names denotes the OpenMP version.

e NV_CONTENT_OMP
This routine gives access to the contents of the OpenMP vector N_Vector.

The assignment v_cont = NV_CONTENT_OMP(v) sets v_cont to be a pointer to the OpenMP
N_Vector content structure.
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Implementation:

#define NV_CONTENT_OMP(v) ( (N_VectorContent_OpenMP) (v->content) )

e NV_OWN_DATA_OMP, NV_DATA_OMP, NV_LENGTH_OMP, NV_NUM_THREADS_OMP
These macros give individual access to the parts of the content of a OpenMP N_Vector.

The assignment v_data = NV_DATA OMP(v) sets v_data to be a pointer to the first component
of the data for the N_Vector v. The assignment NV_DATA OMP(v) = v_data sets the component
array of v to be v_data by storing the pointer v_data.

The assignment v_len = NV_LENGTH_OMP(v) sets v_len to be the length of v. On the other
hand, the call NV_.LENGTH_OMP(v) = len_v sets the length of v to be len_v.

The assignment v_num_threads = NV_NUM_THREADS_OMP (v) sets v_num_threads to be the num-
ber of threads from v. On the other hand, the call NV.NUM_THREADS OMP(v) = num threads_v
sets the number of threads for v to be num_threads_v.

Implementation:

#define NV_OWN_DATA_OMP(v) ( NV_CONTENT_OMP(v)->own_data )
#define NV_DATA_OMP(v) ( NV_CONTENT_OMP(v)->data )

#define NV_LENGTH_OMP(v) ( NV_CONTENT_OMP(v)->length )

#define NV_NUM_THREADS_OMP(v) ( NV_CONTENT_OMP(v)->num_threads )

e NV_Ith_OMP
This macro gives access to the individual components of the data array of an N_Vector.

The assignment r = NV_Ith OMP(v,i) sets r to be the value of the i-th component of v. The
assignment NV_Ith OMP(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n — 1 for a vector of length n.

Implementation:

#define NV_Ith_OMP(v,i) ( NV_DATA_OMP(v)[i] )
The NVECTOR_OPENMP module defines OpenMP implementations of all vector operations listed in
Table 7.2. Their names are obtained from those in Table 7.2 by appending the suffix _OpenMP (e.g.
N_VDestroy_OpenMP). The module NVECTOR_OPENMP provides the following additional user-callable
routines:

e N_VNew_OpenMP

This function creates and allocates memory for a OpenMP N_Vector. Arguments are the vector
length and number of threads.

N_Vector N_VNew_OpenMP(sunindextype vec_length, int num_threads);

o N_VNewEmpty_OpenMP
This function creates a new OpenMP N_Vector with an empty (NULL) data array.
N_Vector N_VNewEmpty_OpenMP(sunindextype vec_length, int num_threads) ;

e N_VMake_OpenMP
This function creates and allocates memory for a OpenMP vector with user-provided data array.

(This function does not allocate memory for v_data itself.)

N_Vector N_VMake_OpenMP(sunindextype vec_length, realtype *v_data, int num_threads);

e N_VCloneVectorArray_OpenMP
This function creates (by cloning) an array of count OpenMP vectors.

N_Vector *N_VCloneVectorArray_OpenMP(int count, N_Vector w);
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e N_VCloneVectorArrayEmpty_OpenMP

This function creates (by cloning) an array of count OpenMP vectors, each with an empty
(NULL) data array.

N_Vector *N_VCloneVectorArrayEmpty_OpenMP(int count, N_Vector w);

e N_VDestroyVectorArray_OpenMP

This function frees memory allocated for the array of count variables of type N_Vector created
with N_VCloneVectorArray OpenMP or with N_-VCloneVectorArrayEmpty_OpenMP.

void N_VDestroyVectorArray_OpenMP(N_Vector *vs, int count);

e N_VGetLength OpenMP
This function returns number of vector elements.

sunindextype N_VGetLength_OpenMP(N_Vector v);

e N_VPrint_OpenMP
This function prints the content of an OpenMP vector to stdout.

void N_VPrint_OpenMP(N_Vector v);

e N_VPrintFile_OpenMP
This function prints the content of an OpenMP vector to outfile.

void N_VPrintFile_OpenMP(N_Vector v, FILE *outfile);

Notes

e When looping over the components of an N_Vector v, it is more efficient to first obtain the
component array via v_data = NV_DATA_OMP(v) and then access v_datal[i] within the loop
than it is to use NV_Ith_OMP(v,i) within the loop.

e N_VNewEmpty_OpenMP, N_VMake OpenMP, and N_VCloneVectorArrayEmpty_OpenMP set the field
own_data = SUNFALSE. N_VDestroy_OpenMP and N_VDestroyVectorArray OpenMP will not at-
tempt to free the pointer data for any N_Vector with own_data set to SUNFALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

e To maximize efficiency, vector operations in the NVECTOR_OPENMP implementation that have
more than one N_Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N_Vector
arguments that were all created with the same internal representations.

For solvers that include a Fortran interface module, the NVECTOR_OPENMP module also includes
a Fortran-callable function FNVINITOMP (code, NEQ, NUMTHREADS, IER), to initialize this module.
Here code is an input solver id (1 for CVODE, 2 for IDA, 3 for KINSOL, 4 for ARKODE); NEQ is the
problem size (declared so as to match C type long int); NUMTHREADS is the number of threads;
and TER is an error return flag equal 0 for success and -1 for failure.

7.4 The NVECTOR_PTHREADS implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel threads
with shared memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVEC-
TOR_OPENMP, and an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown
that vectors should be of length at least 100,000 before the overhead associated with creating and
using the threads is made up by the parallelism in the vector calculations.

The Pthreads NVECTOR implementation provided with SUNDIALS, denoted NVECTOR_PTHREADS,
defines the content field of N_-Vector to be a structure containing the length of the vector, a pointer
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to the beginning of a contiguous data array, a boolean flag own_data which specifies the ownership
of data, and the number of threads. Operations on the vector are threaded using POSIX threads
(Pthreads).

struct _N_VectorContent_Pthreads {
sunindextype length;
booleantype own_data;
realtype *data;
int num_threads;

1

The header file to include when using this module is nvector_pthreads.h. The installed module
library to link to is 1ibsundials nvecpthreads. l2b where . 12b is typically .so for shared libraries
and .a for static libraries.

The following macros are provided to access the content of an NVECTOR_PTHREADS vector. The
suffix PT in the names denotes the Pthreads version.

e NV_CONTENT_PT

This routine gives access to the contents of the Pthreads vector N_Vector.

The assignment v_cont = NV_CONTENT_PT(v) sets v_cont to be a pointer to the Pthreads
N_Vector content structure.

Implementation:
#define NV_CONTENT_PT(v) ( (N_VectorContent_Pthreads) (v->content) )

e NV_OWN_DATA_PT, NV.DATA_PT, NV_LENGTH_PT, NV_NUM_THREADS_PT
These macros give individual access to the parts of the content of a Pthreads N_Vector.

The assignment v_data = NV_DATA PT(v) sets v_data to be a pointer to the first component
of the data for the N_Vector v. The assignment NV_DATA PT(v) = v_data sets the component
array of v to be v_data by storing the pointer v_data.

The assignment v_len = NV_LENGTH_PT(v) sets v_len to be the length of v. On the other hand,
the call NV_.LENGTH PT(v) = len_v sets the length of v to be len_v.

The assignment v_num_threads = NV_NUM_THREADS_PT(v) sets v_num_threads to be the number
of threads from v. On the other hand, the call NV_.NUM_THREADS_PT(v) = num_threads_v sets
the number of threads for v to be num_threads_v.

Implementation:

#define NV_OWN_DATA_PT(v) ( NV_CONTENT_PT(v)->own_data )
#define NV_DATA_PT(v) ( NV_CONTENT_PT(v)->data )

#define NV_LENGTH_PT(v) ( NV_CONTENT_PT(v)->length )

#define NV_NUM_THREADS_PT(v) ( NV_CONTENT_PT(v)->num_threads )

e NV_Ith PT
This macro gives access to the individual components of the data array of an N_Vector.

The assignment r = NV_Ith PT(v,i) sets r to be the value of the i-th component of v. The
assignment NV_Ith PT(v,i) = r sets the value of the i-th component of v to be r.

Here ¢ ranges from 0 to n — 1 for a vector of length n.

Implementation:

#define NV_Ith_PT(v,i) ( NV_DATA_PT(v)[i] )
The NVECTOR_PTHREADS module defines Pthreads implementations of all vector operations listed
in Table 7.2. Their names are obtained from those in Table 7.2 by appending the suffix Pthreads

(e.g. N_VDestroy_Pthreads). The module NVECTOR_-PTHREADS provides the following additional
user-callable routines:
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o N_VNew_Pthreads

This function creates and allocates memory for a Pthreads N_Vector. Arguments are the vector
length and number of threads.

N_Vector N_VNew_Pthreads(sunindextype vec_length, int num_threads);

o N_VNewEmpty_Pthreads
This function creates a new Pthreads N_Vector with an empty (NULL) data array.
N_Vector N_VNewEmpty_Pthreads(sunindextype vec_length, int num_threads);

e N_VMake Pthreads
This function creates and allocates memory for a Pthreads vector with user-provided data array.
(This function does not allocate memory for v_data itself.)

N_Vector N_VMake_Pthreads(sunindextype vec_length, realtype *v_data, int num_threads);

e N _VCloneVectorArray Pthreads
This function creates (by cloning) an array of count Pthreads vectors.

N_Vector *N_VCloneVectorArray_Pthreads(int count, N_Vector w);

o N_VCloneVectorArrayEmpty_Pthreads

This function creates (by cloning) an array of count Pthreads vectors, each with an empty
(NULL) data array.

N_Vector #N_VCloneVectorArrayEmpty_Pthreads(int count, N_Vector w);

e N_VDestroyVectorArray Pthreads

This function frees memory allocated for the array of count variables of type N_Vector created
with N_VCloneVectorArray Pthreads or with N_.VCloneVectorArrayEmpty Pthreads.

void N_VDestroyVectorArray_Pthreads(N_Vector *vs, int count);

o N_VGetLength Pthreads
This function returns the number of vector elements.

sunindextype N_VGetLength_Pthreads(N_Vector v);

e N VPrint Pthreads
This function prints the content of a Pthreads vector to stdout.

void N_VPrint_Pthreads(N_Vector v);

e N VPrintFile Pthreads
This function prints the content of a Pthreads vector to outfile.

void N_VPrintFile_Pthreads(N_Vector v, FILE *outfile);

Notes

e When looping over the components of an N_Vector v, it is more efficient to first obtain the
component array via v.data = NV_DATA PT(v) and then access v_data[i] within the loop than
it is to use NV_Ith PT(v,i) within the loop.

e N_VNewEmpty Pthreads, N_.VMake Pthreads, and N_VCloneVectorArrayEmpty Pthreads set the
field own_data = SUNFALSE. N_VDestroy Pthreads and N_VDestroyVectorArray Pthreads will
not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE. In such
a case, it is the user’s responsibility to deallocate the data pointer.
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e To maximize efficiency, vector operations in the NVECTOR_PTHREADS implementation that have
more than one N_Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N_Vector
arguments that were all created with the same internal representations.

For solvers that include a Fortran interface module, the NVECTOR_PTHREADS module also includes
a Fortran-callable function FNVINITPTS(code, NEQ, NUMTHREADS, IER), to initialize this module.
Here code is an input solver id (1 for CVODE, 2 for IDA, 3 for KINSOL, 4 for ARKODE); NEQ is the
problem size (declared so as to match C type long int); NUMTHREADS is the number of threads;
and IER is an error return flag equal 0 for success and -1 for failure.

7.5 The NVECTOR_PARHYP implementation

The NVECTOR_PARHYP implementation of the NVECTOR module provided with SUNDIALS is a wrapper
around hypre’s ParVector class. Most of the vector kernels simply call hypre vector operations. The
implementation defines the content field of N_Vector to be a structure containing the global and local
lengths of the vector, a pointer to an object of type hypre_ParVector, an MPI communicator, and a
boolean flag own_parvector indicating ownership of the hypre parallel vector object x.

struct _N_VectorContent_ParHyp {
sunindextype local_length;
sunindextype global_length;
booleantype own_parvector;
MPI_Comm comm;
hypre_ParVector *x;

};

The header file to include when using this module is nvector_parhyp.h. The installed module library
to link to is 1libsundials nvecparhyp.ltb where .14b is typically .so for shared libraries and .a
for static libraries.

Unlike native SUNDIALS vector types, NVECTOR_PARHYP does not provide macros to access its
member variables. Note that NVECTOR_PARHYP requires SUNDIALS to be built with MPI support.

The NVECTOR_PARHYP module defines implementations of all vector operations listed in Table
7.2, except for N_VSetArrayPointer and N_VGetArrayPointer, because accessing raw vector data
is handled by low-level hypre functions. As such, this vector is not available for use with SUNDIALS
Fortran interfaces. When access to raw vector data is needed, one should extract the hypre vector first,
and then use hypre methods to access the data. Usage examples of NVECTOR_PARHYP are provided in
the cvAdvDiff non ph.c example program for CVODE [23] and the ark diurnal kry ph.c example
program for ARKODE [31].

The names of parhyp methods are obtained from those in Table 7.2 by appending the suffix
_ParHyp (e.g. N_.VDestroy_ParHyp). The module NVECTOR_PARHYP provides the following additional
user-callable routines:

e N_VNewEmpty_ParHyp
This function creates a new parhyp N_Vector with the pointer to the hypre vector set to NULL.

N_Vector N_VNewEmpty_ParHyp(MPI_Comm comm,
sunindextype local_length,
sunindextype global_length);

e N_VMake_ParHyp

This function creates an N_Vector wrapper around an existing hypre parallel vector. It does
not allocate memory for x itself.

N_Vector N_VMake_ParHyp(hypre_ParVector *x);
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e N_VGetVector_ParHyp
This function returns a pointer to the underlying hypre vector.

hypre_ParVector *N_VGetVector_ParHyp(N_Vector v);

e N_VCloneVectorArray_ParHyp

This function creates (by cloning) an array of count parallel vectors.
N_Vector *N_VCloneVectorArray_ParHyp(int count, N_Vector w);

e N_VCloneVectorArrayEmpty_ParHyp

This function creates (by cloning) an array of count parallel vectors, each with an empty (NULL)
data array.

N_Vector *N_VCloneVectorArrayEmpty_ParHyp(int count, N_Vector w);

e N_VDestroyVectorArray ParHyp

This function frees memory allocated for the array of count variables of type N_Vector created
with N_VCloneVectorArray ParHyp or with N_VCloneVectorArrayEmpty ParHyp.

void N_VDestroyVectorArray_ParHyp(N_Vector *vs, int count);

e N_VPrint_ParHyp
This function prints the local content of a parhyp vector to stdout.

void N_VPrint_ParHyp(N_Vector v);

e N_VPrintFile_ParHyp
This function prints the local content of a parhyp vector to outfile.

void N_VPrintFile_ParHyp(N_Vector v, FILE *outfile);

Notes

e When there is a need to access components of an N_Vector_ParHyp, v, it is recommended to
extract the hypre vector via x_vec = N_VGetVector_ ParHyp(v) and then access components
using appropriate hypre functions.

o N_VNewEmpty ParHyp, N_VMake ParHyp, and N_VCloneVectorArrayEmpty ParHyp set the field
own_parvector to SUNFALSE. N_VDestroy_ParHyp and N_VDestroyVectorArray ParHyp will not
attempt to delete an underlying hypre vector for any N_Vector with own_parvector set to
SUNFALSE. In such a case, it is the user’s responsibility to delete the underlying vector.

e To maximize efficiency, vector operations in the NVECTOR_PARHYP implementation that have
more than one N_Vector argument do not check for consistent internal representations of these
vectors. It is the user’s responsibility to ensure that such routines are called with N_Vector
arguments that were all created with the same internal representations.

7.6 The NVECTOR_PETSC implementation

The NVECTOR_PETSC module is an NVECTOR wrapper around the PETSc vector. It defines the content
field of a N_Vector to be a structure containing the global and local lengths of the vector, a pointer
to the PETSc vector, an MPI communicator, and a boolean flag own_data indicating ownership of the
wrapped PETSc vector.
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struct _N_VectorContent_Petsc {
sunindextype local_length;
sunindextype global_length;
booleantype own_data;
Vec *pvec;
MPI_Comm comm;

};

The header file to include when using this module is nvector_petsc.h. The installed module
library to link to is libsundials nvecpetsc. ltb where . 14b is typically .so for shared libraries and
.a for static libraries.

Unlike native SUNDIALS vector types, NVECTOR_PETSC does not provide macros to access its mem-
ber variables. Note that NVECTOR_PETSC requires SUNDIALS to be built with MPI support.

The NVECTOR_PETSC module defines implementations of all vector operations listed in Table 7.2,
except for N_VGetArrayPointer and N_VSetArrayPointer. As such, this vector cannot be used
with SUNDIALS Fortran interfaces. When access to raw vector data is needed, it is recommended to
extract the PETSc vector first, and then use PETSc methods to access the data. Usage examples of
NVECTOR-PETSC are provided in example programs for IDA [22].

The names of vector operations are obtained from those in Table 7.2 by appending the suffix
_Petsc (e.g. N_VDestroy Petsc). The module NVECTOR_PETSC provides the following additional
user-callable routines:

e N_VNewEmpty_Petsc

This function creates a new NVECTOR wrapper with the pointer to the wrapped PETSc vector
set to (NULL). It is used by the N_VMake Petsc and N_VClone Petsc implementations.

N_Vector N_VNewEmpty_Petsc(MPI_Comm comm,
sunindextype local_length,
sunindextype global_length);

e N_VMake Petsc

This function creates and allocates memory for an NVECTOR_PETSC wrapper around a user-
provided PETSc vector. It does not allocate memory for the vector pvec itself.

N_Vector N_VMake_Petsc(Vec *pvec);

e N_VGetVector_Petsc

This function returns a pointer to the underlying PETSc vector.
Vec *N_VGetVector_Petsc(N_Vector v);

e N_VCloneVectorArray Petsc

This function creates (by cloning) an array of count NVECTOR_PETSC vectors.
N_Vector *N_VCloneVectorArray_Petsc(int count, N_Vector w);
e N_VCloneVectorArrayEmpty_Petsc
This function creates (by cloning) an array of count NVECTOR_PETSC vectors, each with pointers

to PETSc vectors set to (NULL).

N_Vector *N_VCloneVectorArrayEmpty_Petsc(int count, N_Vector w);
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e N_VDestroyVectorArray Petsc

This function frees memory allocated for the array of count variables of type N_Vector created
with N_VCloneVectorArray Petsc or with N_-VCloneVectorArrayEmpty_Petsc.

void N_VDestroyVectorArray_Petsc(N_Vector *vs, int count);

e N_VPrint_Petsc
This function prints the global content of a wrapped PETSc vector to stdout.

void N_VPrint_Petsc(N_Vector v);

e N VPrintFile Petsc
This function prints the global content of a wrapped PETSc vector to fname.

void N_VPrintFile_Petsc(N_Vector v, const char fnamel[]);

Notes

e When there is a need to access components of an N_Vector Petsc, v, it is recommeded to
extract the PETSc vector via x_vec = N_VGetVector Petsc(v) and then access components
using appropriate PETSc functions.

e The functions N_VNewEmpty_Petsc, N_VMake Petsc, and N_VCloneVectorArrayEmpty Petsc set
the field own_data to SUNFALSE. N_VDestroy_Petsc and N_VDestroyVectorArray Petsc will not
attempt to free the pointer puvec for any N _Vector with own_data set to SUNFALSE. In such a
case, it is the user’s responsibility to deallocate the puvec pointer.

e To maximize efficiency, vector operations in the NVECTOR_PETSC implementation that have
more than one N_Vector argument do not check for consistent internal representations of these
vectors. It is the user’s responsibility to ensure that such routines are called with N_Vector
arguments that were all created with the same internal representations.

7.7 The NVECTOR_CUDA implementation

The NVECTOR_CUDA module is an experimental NVECTOR implementation in the CUDA language. The
module allows for SUNDIALS vector kernels to run on GPU devices. It is intended for users who are
already familiar with cuDA and GPU programming. Building this vector module requires a CUDA
compiler and, by extension, a C++ compiler. The class Vector in namespace suncudavec manages
vector data layout:

template <class T, class I>
class Vector {
I size_;
I mem_size_;
T* h_vec_;
Tx d_vec_;
ThreadPartitioning<T, I>* partStream_;
ThreadPartitioning<T, I>* partReduce_;
bool ownPartitioning_;

};

The class members are vector size (length), size of the vector data memory block, pointers to vector
data on the host and the device, pointers to ThreadPartitioning implementations that handle thread
partitioning for streaming and reduction vector kernels, and a boolean flag that signals if the vector
owns the thread partitioning. The class Vector inherits from the empty structure
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struct _N_VectorContent_Cuda {
};

to interface the C++ class with the NVECTOR C code. When instantiated, the class Vector will
allocate memory on both the host and the device. Due to the rapid progress of CUDA development, we
expect that the suncudavec: :Vector class will change frequently in future SUNDIALS releases. The
code is structured so that it can tolerate significant changes in the suncudavec: :Vector class without
requiring changes to the user API.

The NVECTOR_CUDA module can be utilized for single-node parallelism or in a distributed con-
text with MPI. The header file to include when using this module for single-node parallelism is
nvector_cuda.h. The header file to include when using this module in the distributed case is
nvector mpicuda.h. Note that only the NVECTOR_CUDA constructor signature differs between the
two header files. The installed module libraries to link to are libsundials nveccuda. l4b in the
single-node case, or libsundials nvecmpicuda. 14b in the distributed case. Only one one of these
libraries may be linked to when creating an executable or library. SUNDIALS must be built with MPI
support if the distributed library is desired. The extension, . 1%b, is typically .so for shared libraries
and .a for static libraries.

Unlike other native SUNDIALS vector types, NVECTOR_CUDA does not provide macros to access its
member variables. Instead, user should use the accessor functions in the namespace suncudavec.

e getDevData(N_Vector wv)

This function takes an N_Vector as an argument and returns a raw pointer to the vector data
on the device (GPU). It is the user’s responsibility to ensure that the vector argument is of the
correct N_-Vector type.

e getHostData(N_Vector v)

This function takes a N_Vector as an argument and returns a raw pointer to the vector data on
the host (CPU memory). It is the user’s responsibility to ensure that the vector argument is of
the correct N_Vector type.

o getSize(N_Vector v)

Returns the vector’s local length.

e getGlobalSize(N_Vector v)
Returns the vector’s global length.

e getMPIComm(N_Vector wv)

Takes a N_Vector as an argument and returns a sundials communicator of type SUNDIALS_Comm.

The NVECTOR_CUDA module defines implementations of all vector operations listed in Table 7.2,
except for N_-VGetArrayPointer and N_VSetArrayPointer. As such, this vector cannot be used with
the sUNDIALS Fortran interfaces, nor with the SUNDIALS direct solvers and preconditioners. Instead,
the NVECTOR_CUDA module provides separate functions to access data on the host and on the device.
It also provides methods for copying from the host to the device and vice versa. Usage examples of
NVECTOR_CUDA are provided in some example programs for CVODE [23].

The names of vector operations are obtained from those in Table 7.2 by appending the suffix _Cuda
(e.g. N_VDestroy_Cuda). The module NVECTOR_CUDA provides the following additional user-callable
routines:

e N_VNew_Cuda

Note: this function signature is defined in the header nvector mpicuda.h and should be used
when using this module in a distributed context. This function creates and allocates memory for
a CUDA N_Vector. The memory is allocated on both host and device. Its arguments are local
and global vector lengths, as well as the MPI communicator. Use this constructor with the
libsundials_nvecmpicuda.lib library.
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N_Vector N_VNew_Cuda(MPI_Comm comm,
sunindextype local_length,
sunindextype global_length);

e N_VNew_Cuda

Note: this function signature is defined in the header nvector_cuda.h and should be used when
using this module for single-node parallelism. This function creates and allocates memory for a
CUDA N_Vector on a single node. The memory is allocated on both host and device. Its only
argument is vector length. Use this constructor with the 1ibsundials nveccuda.lib library.

N_Vector N_VNew_Cuda(sunindextype length);

o N_VNewEmpty_Cuda

This function creates a new NVECTOR wrapper with the pointer to the wrapped CUDA vector set
to (NULL). It is used by the N_VNew_Cuda, N_VMake_Cuda, and N_VClone_Cuda implementations.

N_Vector N_VNewEmpty_Cuda(sunindextype vec_length) ;

e N_VMake_Cuda

This function creates and allocates memory for an NVECTOR_CUDA wrapper around a user-
provided suncudavec: : Vector class. Its only argument is of type N_VectorContent_Cuda, which
is the pointer to the class.

N_Vector N_VMake_Cuda(N_VectorContent_Cuda c);

o N_VGetLength Cuda
This function returns the length of the vector.

sunindextype N_VGetLength_Cuda(N_Vector v);

o N_VGetHostArrayPointer_Cuda
This function returns a pointer to the vector data on the host.

realtype *N_VGetHostArrayPointer_Cuda(N_Vector v);

o N_VGetDeviceArrayPointer_Cuda
This function returns a pointer to the vector data on the device.

realtype *N_VGetDeviceArrayPointer_Cuda(N_Vector v);

e N_VCopyToDevice_Cuda
This function copies host vector data to the device.

realtype *N_VCopyToDevice_Cuda(N_Vector v);

e N_VCopyFromDevice_Cuda
This function copies vector data from the device to the host.

realtype *N_VCopyFromDevice_Cuda(N_Vector v);

e N_VPrint_Cuda
This function prints the content of a CUDA vector to stdout.

void N_VPrint_Cuda(N_Vector v);

e N _VPrintFile_Cuda
This function prints the content of a CUDA vector to outfile.
void N_VPrintFile_Cuda(N_Vector v, FILE *outfile);
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Notes

e When there is a need to access components of an N_Vector_Cuda, v, it is recommeded to use
functions N_VGetDeviceArrayPointer_Cuda or N_VGetHostArrayPointer_Cuda.

A e To maximize efficiency, vector operations in the NVECTOR_CUDA implementation that have more
than one N_Vector argument do not check for consistent internal representations of these vectors.
It is the user’s responsibility to ensure that such routines are called with N_Vector arguments
that were all created with the same internal representations.

7.8 The NVECTOR_RAJA implementation

The NVECTOR_RAJA module is an experimental NVECTOR implementation using the RAJA hardware
abstraction layer. In this implementation, RAJA allows for SUNDIALS vector kernels to run on GPU
devices. The module is intended for users who are already familiar with RAJA and GPU programming.
Building this vector module requires a C++11 compliant compiler and a CUDA software development
toolkit. Besides the CUDA backend, RAJA has other backends such as serial, OpenMP, and OpenAC.
These backends are not used in this SUNDIALS release. Class Vector in namespace sunrajavec
manages the vector data layout:

template <class T, class I>
class Vector {

I size_;

I mem_size_;

Tx h_vec_;

Tx d_vec_;

};

The class members are: vector size (length), size of the vector data memory block, and pointers to
vector data on the host and on the device. The class Vector inherits from an empty structure

struct _N_VectorContent_Raja {
s

to interface the C++ class with the NVECTOR C code. When instantiated, the class Vector will
allocate memory on both the host and the device. Due to the rapid progress of RAJA development, we
expect that the sunrajavec: :Vector class will change frequently in future SUNDIALS releases. The
code is structured so that it can tolerate significant changes in the sunrajavec: :Vector class without
requiring changes to the user API.

The NVECTOR_RAJA module can be utilized for single-node parallelism or in a distributed con-
text with MPI. The header file to include when using this module for single-node parallelism is
nvector_raja.h. The header file to include when using this module in the distributed case is
nvector mpiraja.h. Note that only the NVECTOR_RAJA constructor signature differs between the
two header files. The installed module libraries to link to are libsundials nvecraja.lsb in the
single-node case, or libsundials nvecmpicudaraja.lzb in the distributed case. Only one one of
these libraries may be linked to when creating an executable or library. SUNDIALS must be built with
MPI support if the distributed library is desired. The extension, .1%b, is typically .so for shared
libraries and .a for static libraries.

Unlike other native SUNDIALS vector types, NVECTOR_RAJA does not provide macros to access its
member variables. Instead, user should use the accessor functions in the namespace sunrajavec.

e getDevData(N_Vector v)

This function takes a N_Vector as an argument and returns a raw pointer to the vector data
on the device (GPU). It is the user’s responsibility to ensure that the vector argument is of the
correct N_Vector type.
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e getHostData(N_Vector v)

This function takes a N_Vector as an argument and returns a raw pointer to the vector data on
the host (CPU memory). It is the user’s responsibility to ensure that the vector argument is of
the correct N_Vector type.

o getSize(N_Vector v)

Returns the vector’s local length.

e getGlobalSize(N_Vector v)
Returns the vector’s global length.

e getMPIComm(N_Vector wv)

Takes a N_Vector as an argument and returns a sundials communicator of type SUNDIALS_Comm.

The NVECTOR_RAJA module defines the implementations of all vector operations listed in Table
7.2, except for N_VGetArrayPointer and N_VSetArrayPointer. As such, this vector cannot be used
with the SUNDIALS Fortran interfaces, nor with the SUNDIALS direct solvers and preconditioners. The
NVECTOR_RAJA module provides separate functions to access data on the host and on the device. It
also provides methods for copying data from the host to the device and vice versa. Usage examples
of NVECTOR_RAJA are provided in some example programs for CVODE [23].

The names of vector operations are obtained from those in Table 7.2 by appending the suffix _Raja
(e.g. N_VDestroy-Raja). The module NVECTOR-RAJA provides the following additional user-callable
routines:

e N_VNew Raja

Note: this function signature is defined in the header nvector mpiraja.h and should be used
when using this module in a distributed context. This function creates and allocates memory for
a RAJA N_Vector. The memory is allocated on both host and device. Its arguments are local
and global vector lengths, as well as the MPI communicator. Use this constructor with the
libsundials nvecmpicudaraja.lib library.

N_Vector N_VNew_Raja(MPI_Comm comm,
sunindextype local_length,
sunindextype global_length);

e N_VNew Raja

Note: this function signature is defined in the header nvector_raja.h and should be used when
using this module for single-node parallelism. This function creates and allocates memory for
a RAJA N_Vector on a single node. The memory is allocated on both host and device. Its
only argument is vector length. Use this constructor with the libsundials nveccudaraja.lib
library.

N_Vector N_VNew_Raja(sunindextype length);

e N VNewEmpty Raja

This function creates a new NVECTOR wrapper with the pointer to the wrapped RAJA vector set
to (NULL). It is used by the N_VNew Raja, N_VMake Raja, and N_VClone Raja implementations.

N_Vector N_VNewEmpty_Raja(sunindextype vec_length);

e N_VMake Raja

This function creates and allocates memory for an NVECTOR_RAJA wrapper around a user-
provided sunrajavec: :Vector class. Its only argument is of type N_-VectorContent_Raja, which
is the pointer to the class.
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N_Vector N_VMake_Raja(N_VectorContent_Raja c);

e N_VGetLength Raja
This function returns the length of the vector.

sunindextype N_VGetLength_Raja(N_Vector v);

e N _VGetHostArrayPointer_Raja
This function returns a pointer to the vector data on the host.

realtype *N_VGetHostArrayPointer_Raja(N_Vector v);

e N_VGetDeviceArrayPointer_Raja
This function returns a pointer to the vector data on the device.

realtype *N_VGetDeviceArrayPointer_Raja(N_Vector v);

e N_VCopyToDevice Raja
This function copies host vector data to the device.

realtype *N_VCopyToDevice_Raja(N_Vector v);

e N_VCopyFromDevice Raja
This function copies vector data from the device to the host.

realtype *N_VCopyFromDevice_Raja(N_Vector v);

e N _VPrint_Raja
This function prints the content of a RAJA vector to stdout.

void N_VPrint_Raja(N_Vector v);

e N VPrintFile Raja
This function prints the content of a RAJA vector to outfile.

void N_VPrintFile_Raja(N_Vector v, FILE *outfile);

Notes

e When there is a need to access components of an N_Vector_ Raja, v, it is recommeded to use
functions N_VGetDeviceArrayPointer Raja or N_VGetHostArrayPointer Raja.

A e To maximize efficiency, vector operations in the NVECTOR_RAJA implementation that have more
than one N_Vector argument do not check for consistent internal representations of these vectors.
It is the user’s responsibility to ensure that such routines are called with N_Vector arguments
that were all created with the same internal representations.

7.9 NVECTOR Examples

There are NVector examples that may be installed for the implementations provided with SUNDIALS.
Each implementation makes use of the functions in test _nvector.c. These example functions show
simple usage of the NVector family of functions. The input to the examples are the vector length,
number of threads (if threaded implementation), and a print timing flag.

The following is a list of the example functions in test_nvector.c:

e Test_N_VClone: Creates clone of vector and checks validity of clone.
e Test_N_VCloneEmpty: Creates clone of empty vector and checks validity of clone.

e Test_N_VCloneVectorArray: Creates clone of vector array and checks validity of cloned array.
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e Test_N_VCloneVectorArray: Creates clone of empty vector array and checks validity of cloned

array.

o Test_N_VGetArrayPointer: Get array pointer.

e Test_N_VSetArrayPointer: Allocate new vector, set pointer to new vector array, and check

values.
e Test_N_VLinearSum Case la:
e Test_N VLinearSum Case 1b:
e Test N VLinearSum Case lc:
e Test_N_VLinearSum Case 2a:
e Test_N_VLinearSum Case 2b:

e Test_N_VLinearSum Case 2c:

Testy =x+y
Testy =-x+y
Test y =ax +y
Test x =x 4y
Test x =x-y

Test x = x + by

e Test N VLinearSum Case 3: Test z =x + y

e Test_N_VLinearSum Case 4a:
e Test_N VLinearSum Case 4b:
e Test N VLinearSum Case ba:
e Test_N_VLinearSum Case 5b:
e Test_ N VLinearSum Case 6a:

e Test_N_VLinearSum Case 6b:

Test z=x-y

Test z=-x+y
Test z = x + by
Test z=ax + y
Test z = -x + by

Test z =ax -y

e Test_N_VLinearSum Case 7: Test z = a(x + y)

e Test_N_VLinearSum Case 8: Test z = a(x - y)

e Test N VLinearSum Case 9: Test z = ax + by

e Test_N_VConst: Fill vector with constant and check result.

e Test_N_VProd: Test vector multiply: z = x * y

e Test N_VDiv: Test vector division: z =x / y

e Test_N_VScale: Case 1: scale: x = cx

e Test_N_VScale: Case 2: copy: z = X

e Test_N_VScale: Case 3: negate: z = -x

e Test_N_VScale: Case 4: combination: z = ¢x

e Test_N_VAbs: Create absolute value of vector.

e Test_N_VAddConst: add constant vector: z = ¢ + x
e Test_N_VDotProd: Calculate dot product of two vectors.

e Test_N_VMaxNorm: Create vector with known values, find and validate max norm.

e Test_N_VWrmsNorm: Create vector of known values, find and validate weighted root mean square.



180 Description of the NVECTOR module

e Test N VWrmsNormMask: Case 1: Create vector of known values, find and validate weighted root
mean square using all elements.

e Test_N_VWrmsNormMask: Case 2: Create vector of known values, find and validate weighted root
mean square using no elements.

e Test_N_VMin: Create vector, find and validate the min.

e Test_N_VWL2Norm: Create vector, find and validate the weighted Euclidean 1.2 norm.

e Test_N_VL1Norm: Create vector, find and validate the L1 norm.

e Test_N_VCompare: Compare vector with constant returning and validating comparison vector.
e Test N VInvTest: Test z[i] = 1 / x[i]

e Test_N_VConstrMask: Test mask of vector x with vector c.

e Test_N_VMinQuotient: Fill two vectors with known values. Calculate and validate minimum
quotient.

7.10 NVECTOR functions used by CVODES

In Table 7.3 below, we list the vector functions in the NVECTOR module used within the CVODES
package. The table also shows, for each function, which of the code modules uses the function.
The ¢VODES column shows function usage within the main integrator module, while the remaining
columns show function usage within each of the CVODES linear solver interfaces, the CVBANDPRE
and CVBBDPRE preconditioner modules, and the CvODES adjoint sensitivity module (denoted here by
CVODEA). Here cvDLS stands for the direct linear solver interface in CVODES; CVSPILS stands for the
scaled, preconditioned, iterative linear solver interface in CVODES.

At this point, we should emphasize that the CVODES user does not need to know anything about
the usage of vector functions by the CVODES code modules in order to use CVODES. The information
is presented as an implementation detail for the interested reader.

The vector functions listed in Table 7.2 that are not used by CVODES are: N_VWL2Norm, N_VL1Norm,
N_VWrmsNormMask, and N_VCloneEmpty. Therefore, a user-supplied NVECTOR module for CVODES
could omit these kernels. The functions N_MinQuotient, N_VConstrMask, and N_VCompare are only
used when constraint checking is enabled and may be omitted if this feature is not used.
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Table 7.3: List of vector functions usage by CVODES code modules

CVODES
CVDLS
CVDIAG
CVSPILS
CVBANDPRE
CVBBDPRE
CVODEA

N_VGetVectorID
N_VClone
N_VDestroy
N_VCloneVectorArray
N_VDestroyVectorArray
N_VSpace
N_VGetArrayPointer
N_VSetArrayPointer
N_VLinearSum
N_VConst

N_VProd

N_VDiv

N_VScale

N_VAbs

N_VInv

N_VAddConst
N_VDotProd v
N_VMaxNorm
N_VWrmsNorm

N_VMin
N_MinQuotient
N_VConstrMask
N_VCompare
N_VInvTest v

NEN
NEN

ASENENEN

SNENENENEN

SNENEN

SNENEN
ANENENENEN

SSENENENENENENEN

SNENENENENEN







Chapter 8

Description of the SUNMatrix
module

For problems that involve direct methods for solving linear systems, the SUNDIALS solvers not only op-
erate on generic vectors, but also on generic matrices (of type SUNMatrix), through a set of operations
defined by the particular SUNMATRIX implementation. Users can provide their own specific imple-
mentation of the SUNMATRIX module, particularly in cases where they provide their own NVECTOR
and/or linear solver modules, and require matrices that are compatible with those implementations.
Alternately, we provide three SUNMATRIX implementations: dense, banded, and sparse. The generic
operations are described below, and descriptions of the implementations provided with SUNDIALS
follow.

The generic SUNMatrix type has been modeled after the object-oriented style of the generic
N_Vector type. Specifically, a generic SUNMatrix is a pointer to a structure that has an implementation-
dependent content field containing the description and actual data of the matrix, and an ops field
pointing to a structure with generic matrix operations. The type SUNMatrix is defined as

typedef struct _generic_SUNMatrix *SUNMatrix;

struct _generic_SUNMatrix {
void *content;
struct _generic_SUNMatrix_Ops *ops;

};

The _generic_SUNMatrix_Ops structure is essentially a list of pointers to the various actual matrix
operations, and is defined as

struct _generic_SUNMatrix_Ops {
SUNMatrix_ID (*getid) (SUNMatrix) ;
SUNMatrix (*clone) (SUNMatrix) ;

void (*destroy) (SUNMatrix) ;

int (*zero) (SUNMatrix) ;

int (*copy) (SUNMatrix, SUNMatrix);

int (*scaleadd) (realtype, SUNMatrix, SUNMatrix);

int (*scaleaddi) (realtype, SUNMatrix);

int (*matvec) (SUNMatrix, N_Vector, N_Vector);

int (*space) (SUNMatrix, long int*, long intx*);
};

The generic SUNMATRIX module defines and implements the matrix operations acting on SUNMatrix
objects. These routines are nothing but wrappers for the matrix operations defined by a particular
SUNMATRIX implementation, which are accessed through the ops field of the SUNMatrix structure. To
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Table 8.1: Identifiers associated with matrix kernels supplied with SUNDIALS.

Matrix ID Matrix type ID Value
SUNMATRIX_DENSE Dense M x N matrix 0
SUNMATRIX_BAND Band M x M matrix 1
SUNMATRIX_SPARSE | Sparse (CSR or CSC) M x N matrix 2
SUNMATRIX_CUSTOM | User-provided custom matrix 3

illustrate this point we show below the implementation of a typical matrix operation from the generic
SUNMATRIX module, namely SUNMatZero, which sets all values of a matrix A to zero, returning a flag
denoting a successful/failed operation:

int SUNMatZero(SUNMatrix A)

{

return((int) A->ops->zero(4));

}

Table 8.2 contains a complete list of all matrix operations defined by the generic SUNMATRIX module.
A particular implementation of the SUNMATRIX module must:

Specify the content field of the SUNMatrix object.

Define and implement a minimal subset of the matrix operations. See the documentation for
each SUNDIALS solver to determine which SUNMATRIX operations they require.

Note that the names of these routines should be unique to that implementation in order to
permit using more than one SUNMATRIX module (each with different SUNMatrix internal data
representations) in the same code.

Define and implement user-callable constructor and destructor routines to create and free a
SUNMatrix with the new content field and with ops pointing to the new matrix operations.

Optionally, define and implement additional user-callable routines acting on the newly defined
SUNMatrix (e.g., a routine to print the content for debugging purposes).

Optionally, provide accessor macros or functions as needed for that particular implementation
to access different parts of the content field of the newly defined SUNMatrix.

Each SUNMATRIX implementation included in SUNDIALS has a unique identifier specified in enu-
meration and shown in Table 8.1. It is recommended that a user-supplied SUNMATRIX implementation
use the SUNMATRIX_CUSTOM identifier.

Table 8.2: Description of the SUNMatrix operations

Name Usage and Description

SUNMatGetID id = SUNMatGetID(A);

Returns the type identifier for the matrix A. It is used to determine the ma-
trix implementation type (e.g. dense, banded, sparse,...) from the abstract
SUNMatrix interface. This is used to assess compatibility with SUNDIALS-
provided linear solver implementations. Returned values are given in the
Table 8.1.

continued on next page
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Name Usage and Description
SUNMatClone B = SUNMatClone(A);
Creates a new SUNMatrix of the same type as an existing matrix A and sets
the ops field. It does not copy the matrix, but rather allocates storage for
the new matrix.
SUNMatDestroy SUNMatDestroy(A) ;
Destroys the SUNMatrix A and frees memory allocated for its internal data.
SUNMatSpace ier = SUNMatSpace(A, &lrw, &liw);
Returns the storage requirements for the matrix A. 1rw is a long int con-
taining the number of realtype words and liw is a long int containing
the number of integer words. The return value is an integer flag denoting
success/failure of the operation.
This function is advisory only, for use in determining a user’s total space
requirements; it could be a dummy function in a user-supplied SUNMATRIX
module if that information is not of interest.
SUNMatZero ier = SUNMatZero(A);
Performs the operation A;; = 0 for all entries of the matrix A. The return
value is an integer flag denoting success/failure of the operation.
SUNMatCopy ier = SUNMatCopy(A,B);
Performs the operation B;; = A; ; for all entries of the matrices A and B.
The return value is an integer flag denoting success/failure of the operation.
SUNMatScaleAdd ier = SUNMatScaleAdd(c, A, B);
Performs the operation A = cA + B. The return value is an integer flag
denoting success/failure of the operation.
SUNMatScaleAddI | ier = SUNMatScaleAddI(c, A);
Performs the operation A = ¢A + I. The return value is an integer flag
denoting success/failure of the operation.
SUNMatMatvec ier = SUNMatMatvec(A, x, y);

Performs the matrix-vector product operation, y = Axz. It should only be
called with vectors x and y that are compatible with the matrix A — both in
storage type and dimensions. The return value is an integer flag denoting
success/failure of the operation.

We note that not all SUNMATRIX types are compatible with all NVECTOR types provided with
SUNDIALS. This is primarily due to the need for compatibility within the SUNMatMatvec routine;
however, compatibility between SUNMATRIX and NVECTOR implementations is more crucial when
considering their interaction within SUNLINSOL objects, as will be described in more detail in Chapter
9. More specifically, in Table 8.3 we show the matrix interfaces available as SUNMATRIX modules, and
the compatible vector implementations.

Table 8.3: SUNDIALS matrix interfaces and vector implementations that can be used for each.

Matrix Serial| Parallel | OpenMP | pThreads| hypre | PETSc | CUDA | RAJA | User
Interface (MPI) Vec. Vec. Suppl.
Dense v v v v

continued on next page
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Matrix Serial| Parallel | OpenMP | pThreads| hypre | PETSc | CUDA | RAJA | User
Interface (MPTI) Vec. Vec. Suppl.
Band v v v v
Sparse v v v v
User supplied v v v v v v v v v

8.1 The SUNMatrix_Dense implementation

The dense implementation of the SUNMATRIX module provided with SUNDIALS, SUNMATRIX_DENSE,
defines the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Dense {
sunindextype M;
sunindextype N;
realtype *data;
sunindextype ldata;
realtype **cols;

};

These entries of the content field contain the following information:
M - number of rows

N - number of columns

data - pointer to a contiguous block of realtype variables. The elements of the dense matrix are
stored columnwise, i.e. the (i,j)-th element of a dense SUNMATRIX A (with 0 < i < Mand 0 <
j < N) may be accessed via data[j*M+i].

ldata - length of the data array (= M-N).

cols - array of pointers. cols[j] points to the first element of the j-th column of the matrix in the
array data. The (i,j)-th element of a dense SUNMATRIX A (with 0 < i < Mand 0 < j < N) may
be accessed via cols[j] [i].

The header file to include when using this module is sunmatrix/sunmatrix_dense.h. The SUNMA-
TRIX_DENSE module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunmatrixdense module library.

The following macros are provided to access the content of a SUNMATRIX_DENSE matrix. The prefix
SM_ in the names denotes that these macros are for SUNMatriz implementations, and the suffix D
denotes that these are specific to the dense version.
e SM_CONTENT_D
This macro gives access to the contents of the dense SUNMatrix.

The assignment A_cont = SM_CONTENT_D(A) sets A_cont to be a pointer to the dense SUNMatrix
content structure.

Implementation:

#define SM_CONTENT_D(A) ( (SUNMatrixContent_Dense) (A->content) )

e SM_ROWS_D, SM_COLUMNS_D, and SM_LDATA D

These macros give individual access to various lengths relevant to the content of a dense
SUNMatrix.
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These may be used either to retrieve or to set these values. For example, the assignment A_rows
= SM_ROWS_D(A) sets A_rows to be the number of rows in the matrix A. Similarly, the assignment
SM_COLUMNS_ D(A) = A_cols sets the number of columns in A to equal A_cols.

Implementation:

#define SM_ROWS_D(A) ( SM_CONTENT_D(A)->M )
#define SM_COLUMNS_D(A) ( SM_CONTENT_D(A)->N )
#define SM_LDATA_D(A) ( SM_CONTENT_D(A)->1ldata )

e SM DATA D and SM_COLS_D
These macros give access to the data and cols pointers for the matrix entries.

The assignment A_data = SM_DATA D(A) sets A_data to be a pointer to the first component of
the data array for the dense SUNMatrix A. The assignment SM_DATA D(A) = A_data sets the data
array of A to be A_data by storing the pointer A_data.

Similarly, the assignment A_cols = SM_COLS_D(A) sets A_cols to be a pointer to the array of
column pointers for the dense SUNMatrix A. The assignment SM_COLS D(A) = A_cols sets the
column pointer array of A to be A_cols by storing the pointer A_cols.

Implementation:
#define SM_DATA_D(A) ( SM_CONTENT_D(A)->data )
#define SM_COLS_D(A) ( SM_CONTENT_D(A)->cols )

e SM_COLUMN. D and SM_ELEMENT D

These macros give access to the individual columns and entries of the data array of a dense
SUNMatrix.

The assignment col_j = SM_COLUMN D(A,j) sets col_j to be a pointer to the first entry of
the j-th column of the M X N dense matrix A (with 0 < j < N). The type of the expression
SM_COLUMN_D(4A, j) is realtype *. The pointer returned by the call SM_COLUMN D(4,j) can be
treated as an array which is indexed from 0 to M — 1.

The assignments SM_ELEMENT D(A,i,j) = a_ijanda_ij = SM_ELEMENT D(A,1i, j) reference the
(1,j)-th element of the M x N dense matrix A (with 0 <i <Mand 0 < j <N).

Implementation:

#define SM_COLUMN_D(4,j) ( (SM_CONTENT_D(A)->cols) [j] )

#define SM_ELEMENT_D(A,i,j) ( (SM_CONTENT_D(A)->cols)[jl[i]l )
The SUNMATRIX_DENSE module defines dense implementations of all matrix operations listed in Ta-
ble 8.2. Their names are obtained from those in Table 8.2 by appending the suffix Dense (e.g.
SUNMatCopy Dense). The module SUNMATRIX_DENSE provides the following additional user-callable
routines:

e SUNDenseMatrix

This constructor function creates and allocates memory for a dense SUNMatrix. Its arguments
are the number of rows, M, and columns, N, for the dense matrix.

SUNMatrix SUNDenseMatrix(sunindextype M, sunindextype N);

e SUNDenseMatrix Print

This function prints the content of a dense SUNMatrix to the output stream specified by outfile.
Note: stdout or stderr may be used as arguments for outfile to print directly to standard
output or standard error, respectively.

void SUNDenseMatrix_Print (SUNMatrix A, FILE*x outfile);
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e SUNDenseMatrix_Rows
This function returns the number of rows in the dense SUNMatrix.

sunindextype SUNDenseMatrix_Rows(SUNMatrix A);

e SUNDenseMatrix_Columns
This function returns the number of columns in the dense SUNMatrix.

sunindextype SUNDenseMatrix_Columns(SUNMatrix A);

e SUNDenseMatrix_LData
This function returns the length of the data array for the dense SUNMatrix.
sunindextype SUNDenseMatrix_LData(SUNMatrix A);

e SUNDenseMatrix Data
This function returns a pointer to the data array for the dense SUNMatrix.

realtypex SUNDenseMatrix_Data(SUNMatrix A);

e SUNDenseMatrix_Cols
This function returns a pointer to the cols array for the dense SUNMatrix.

realtypex* SUNDenseMatrix_Cols(SUNMatrix A);

e SUNDenseMatrix_Column

This function returns a pointer to the first entry of the jth column of the dense SUNMatrix. The
resulting pointer should be indexed over the range 0 to M — 1.

realtypex SUNDenseMatrix_Column(SUNMatrix A, sunindextype j);

Notes

e When looping over the components of a dense SUNMatrix A, the most efficient approaches are
to:

— First obtain the component array via A_data = SM_DATA D(A) or
A_data = SUNDenseMatrix_Data(A) and then access A_data[i] within the loop.

— First obtain the array of column pointers via A_cols = SM_COLS_D(A) or
A_cols = SUNDenseMatrix_Cols(A), and then access A_cols[j] [i] within the loop.

— Within a loop over the columns, access the column pointer via
A_colj = SUNDenseMatrix_Column(A,j) and then to access the entries within that column
using A_colj[i] within the loop.

All three of these are more efficient than using SM_ELEMENT D(A,i,j) within a double loop.

A e Within the SUNMatMatvec Dense routine, internal consistency checks are performed to ensure
that the matrix is called with consistent NVECTOR implementations. These are currently limited
to: NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible
vector implementations are added to SUNDIALS, these will be included within this compatibility
check.

For solvers that include a Fortran interface module, the SUNMATRIX_DENSE module also in-
cludes the Fortran-callable function FSUNDenseMatInit (code, M, N, ier) to initialize this SUNMA-
TRIX_DENSE module for a given SUNDIALS solver. Here code is an integer input solver id (1 for CVODE,
2 for IDA, 3 for KINSOL, 4 for ARKODE); M and N are the corresponding dense matrix construction ar-
guments (declared to match C type long int); and ier is an error return flag equal to 0 for success
and -1 for failure. Both code and ier are declared to match C type int. Additionally, when using
ARKODE with a non-identity mass matrix, the Fortran-callable function FSUNDenseMassMatInit (M,
N, ier) initializes this SUNMATRIX_DENSE module for storing the mass matrix.
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8.2 The SUNMatrix_Band implementation

The banded implementation of the SUNMATRIX module provided with SUNDIALS, SUNMATRIX_BAND,
defines the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Band {
sunindextype M;
sunindextype N;
sunindextype mu;
sunindextype ml;
sunindextype s_mu;
sunindextype ldim;
realtype *data;
sunindextype ldata;
realtype **cols;

};

A diagram of the underlying data representation in a banded matrix is shown in Figure 8.1. A more
complete description of the parts of this content field is given below:

M - number of rows

N - number of columns (N = M)

mu - upper half-bandwidth, 0 < mu < N
ml - lower half-bandwidth, 0 < ml < N

s-mu - storage upper bandwidth, mu < s_mu < N. The LU decomposition routines in the associated
SUNLINSOL_BAND and SUNLINSOL_LAPACKBAND modules write the LU factors into the storage
for A. The upper triangular factor U, however, may have an upper bandwidth as big as min(N-
1,mu+ml) because of partial pivoting. The s_mu field holds the upper half-bandwidth allocated
for A.

ldim - leading dimension (1dim > s_mu+ml+1)

data - pointer to a contiguous block of realtype variables. The elements of the banded matrix are
stored columnwise (i.e. columns are stored one on top of the other in memory). Only elements
within the specified half-bandwidths are stored. data is a pointer to 1data contiguous locations
which hold the elements within the band of A.

ldata - length of the data array (= 1dim-N)

cols - array of pointers. cols[j] is a pointer to the uppermost element within the band in the j-th
column. This pointer may be treated as an array indexed from s_mu—mu (to access the uppermost
element within the band in the j-th column) to s mu+ml (to access the lowest element within the
band in the j-th column). Indices from 0 to s_mu—mu—1 give access to extra storage elements
required by the LU decomposition function. Finally, cols[j] [i-j+s_mu] is the (4, j)-th element
with j—mu < i < j4ml.

The header file to include when using this module is sunmatrix/sunmatrix_band.h. The SUNMA-
TRIX_BAND module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunmatrixband module library.

The following macros are provided to access the content of a SUNMATRIX_BAND matrix. The prefix
SM_ in the names denotes that these macros are for SUNMatriz implementations, and the suffix B
denotes that these are specific to the banded version.
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Figure 8.1: Diagram of the storage for the SUNMATRIX_BAND module. Here A is an N x N band
matrix with upper and lower half-bandwidths mu and ml, respectively. The rows and columns of A are
numbered from 0 to N — 1 and the (i, j)-th element of A is denoted A(i,j). The greyed out areas of
the underlying component storage are used by the associated SUNLINSOL_BAND linear solver.
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e SM_CONTENT_B
This routine gives access to the contents of the banded SUNMatrix.

The assignment A_cont = SM_CONTENT_B(A) sets A_cont to be a pointer to the banded SUNMatrix
content structure.

Implementation:
#define SM_CONTENT_B(A) ( (SUNMatrixContent_Band) (A->content) )

e SM ROWS_B, SM_COLUMNS_B, SM_UBAND_B, SM_LBAND_B, SM_SUBAND_B, SM_LDIM B, and SM_LDATA B

These macros give individual access to various lengths relevant to the content of a banded
SUNMatrix.

These may be used either to retrieve or to set these values. For example, the assignment A_rows
= SM_ROWS_B(A) sets A_rows to be the number of rows in the matrix A. Similarly, the assignment
SM_COLUMNS B(A) = A_cols sets the number of columns in A to equal A_cols.

Implementation:
#define SM_ROWS_B(A) ( SM_CONTENT_B(A)->M )
#define SM_COLUMNS_B(A) ( SM_CONTENT_B(A)->N )
#define SM_UBAND_B(A) ( SM_CONTENT_B(A)->mu )
#define SM_LBAND_B(A) ( SM_CONTENT_B(A)->ml )
#define SM_SUBAND_B(A) ( SM_CONTENT_B(A)->s_mu )
#define SM_LDIM_B(A) ( SM_CONTENT_B(A)->1dim )
(

#define SM_LDATA_B(A) SM_CONTENT_B(A)->ldata )

e SM_DATA B and SM_COLS_B
These macros give access to the data and cols pointers for the matrix entries.

The assignment A_data = SM_DATA B(A) sets A_data to be a pointer to the first component of
the data array for the banded SUNMatrix A. The assignment SM_DATA B(A) = A_data sets the
data array of A to be A_data by storing the pointer A_data.

Similarly, the assignment A_cols = SM_COLS_B(A) sets A_cols to be a pointer to the array of
column pointers for the banded SUNMatrix A. The assignment SM_COLS_B(A) = A_cols sets the
column pointer array of A to be A_cols by storing the pointer A_cols.

Implementation:
#define SM_DATA_B(A) ( SM_CONTENT_B(A)->data )
#define SM_COLS_B(A) ( SM_CONTENT_B(A)->cols )

e SM_COLUMN_B, SM_COLUMN_ELEMENT_B, and SM_ELEMENT_B

These macros give access to the individual columns and entries of the data array of a banded
SUNMatrix.

The assignments SM_ELEMENT B(A,i,j) = a_ijanda_ij = SM_ELEMENT_B(A,1i, j) reference the
(i,j)-th element of the N x N band matrix A, where 0 < i,j <N — 1. The location (i,j) should
further satisfy j—mu < i < j+ml.

The assignment col_j = SM_COLUMN_B(A, j) sets col_j to be a pointer to the diagonal element
of the j-th column of the N x N band matrix A, 0 < j < N — 1. The type of the expression
SM_COLUMN_B(4, j) is realtype *. The pointer returned by the call SM_COLUMN B(A,j) can be
treated as an array which is indexed from —mu to ml.

The assignments SM_COLUMN_ELEMENT B(col_j,i,j) = a_ij and

a_ij = SM_COLUMN_ELEMENT B(col_j,i,j) reference the (i,j)-th entry of the band matrix A
when used in conjunction with SM_COLUMN_B to reference the j-th column through col_j. The
index (1i,j) should satisfy j—mu < i < j4ml.
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Implementation:
#define SM_COLUMN_B(A,j) ( ((SM_CONTENT_B(A)->cols) [j])+SM_SUBAND_B(A) )
#define SM_COLUMN_ELEMENT_B(col_j,i,j) (col_jL[(i)-(j11)
#define SM_ELEMENT_B(A,1i,j)
( (SM_CONTENT_B(A)->cols) [j]1[(i)-(j)+SM_SUBAND_B(A)] )
The SUNMATRIX_BAND module defines banded implementations of all matrix operations listed in
Table 8.2. Their names are obtained from those in Table 8.2 by appending the suffix Band (e.g.
SUNMatCopy_Band). The module SUNMATRIX_BAND provides the following additional user-callable
routines:
e SUNBandMatrix
This constructor function creates and allocates memory for a banded SUNMatrix. Its arguments
are the matrix size, N, the upper and lower half-bandwidths of the matrix, mu and ml, and the
stored upper bandwidth, smu. When creating a band SUNMatrix, this value should be
— at least min(N-1,mu+ml) if the matrix will be used by the SUNLINSOL_BAND module;
— exactly equal to mu+ml if the matrix will be used by the SUNLINSOL_LAPACKBAND module;

— at least mu if used in some other manner.

SUNMatrix SUNBandMatrix(sunindextype N, sunindextype mu,
sunindextype ml, sunindextype smu);

e SUNBandMatrix_Print

This function prints the content of a banded SUNMatrix to the output stream specified by
outfile. Note: stdout or stderr may be used as arguments for outfile to print directly to
standard output or standard error, respectively.

void SUNBandMatrix_Print(SUNMatrix A, FILE* outfile);

e SUNBandMatrix_Rows
This function returns the number of rows in the banded SUNMatrix.

sunindextype SUNBandMatrix_Rows(SUNMatrix A);

e SUNBandMatrix_Columns
This function returns the number of columns in the banded SUNMatrix.

sunindextype SUNBandMatrix_Columns (SUNMatrix A);

e SUNBandMatrix_LowerBandwidth
This function returns the lower half-bandwidth of the banded SUNMatrix.
sunindextype SUNBandMatrix_LowerBandwidth(SUNMatrix A);

e SUNBandMatrix UpperBandwidth
This function returns the upper half-bandwidth of the banded SUNMatrix.
sunindextype SUNBandMatrix_UpperBandwidth(SUNMatrix A);

e SUNBandMatrix_StoredUpperBandwidth
This function returns the stored upper half-bandwidth of the banded SUNMatrix.
sunindextype SUNBandMatrix_StoredUpperBandwidth(SUNMatrix A);
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e SUNBandMatrix_LDim
This function returns the length of the leading dimension of the banded SUNMatrix.
sunindextype SUNBandMatrix_LDim(SUNMatrix A);

e SUNBandMatrix Data
This function returns a pointer to the data array for the banded SUNMatrix.

realtypex SUNBandMatrix_Data(SUNMatrix A);

e SUNBandMatrix_Cols
This function returns a pointer to the cols array for the banded SUNMatrix.

realtypex* SUNBandMatrix_Cols(SUNMatrix A);

e SUNBandMatrix_Column

This function returns a pointer to the diagonal entry of the j-th column of the banded SUNMatrix.
The resulting pointer should be indexed over the range —mu to ml1.

realtypex SUNBandMatrix_Column(SUNMatrix A, sunindextype j);

Notes

e When looping over the components of a banded SUNMatrix A, the most efficient approaches are
to:

— First obtain the component array via A_data = SM_DATA B(A) or
A _data = SUNBandMatrix Data(A) and then access A_data[i] within the loop.

— First obtain the array of column pointers via A_cols = SM_COLS_B(A) or
A_cols = SUNBandMatrix_Cols(A), and then access A_cols[j] [i] within the loop.

— Within a loop over the columns, access the column pointer via
A_colj = SUNBandMatrix_ Column(A,j) and then to access the entries within that column
using SM_COLUMN_ELEMENT B(A_colj,i,j).

All three of these are more efficient than using SM_ELEMENT B(A,i,j) within a double loop.

e Within the SUNMatMatvec_Band routine, internal consistency checks are performed to ensure
that the matrix is called with consistent NVECTOR implementations. These are currently limited
to: NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible
vector implementations are added to SUNDIALS, these will be included within this compatibility
check.

For solvers that include a Fortran interface module, the SUNMATRIX_BAND module also includes the
Fortran-callable function FSUNBandMatInit(code, N, mu, ml, smu, ier) to initialize this SUNMA-
TRIX_BAND module for a given SUNDIALS solver. Here code is an integer input solver id (1 for CVODE, 2
for 1DA, 3 for KINSOL, 4 for ARKODE); N, mu, m1 and smu are the corresponding band matrix construction
arguments (declared to match C type long int); and ier is an error return flag equal to 0 for success
and -1 for failure. Both code and ier are declared to match C type int. Additionally, when using
ARKODE with a non-identity mass matrix, the Fortran-callable function FSUNBandMassMatInit (N,
mu, ml, smu, ier) initializes this SUNMATRIX_BAND module for storing the mass matrix.

8.3 The SUNMatrix_Sparse implementation

The sparse implementation of the SUNMATRIX module provided with SUNDIALS, SUNMATRIX_SPARSE,
is designed to work with either compressed-sparse-column (CSC) or compressed-sparse-row (CSR)
sparse matrix formats. To this end, it defines the content field of SUNMatrix to be the following
structure:
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struct _SUNMatrixContent_Sparse {

sunindextype M;
sunindextype N;
sunindextype NNZ;
sunindextype NP;
realtype *data;

int sparsetype;
sunindextype *indexvals;
sunindextype *indexptrs;
/* CSC indices */
sunindextype **rowvals;
sunindextype **colptrs;
/* CSR indices */
sunindextype **colvals;
sunindextype **rowptrs;

};

A diagram of the underlying data representation for a CSC matrix is shown in Figure 8.2 (the CSR
format is similar). A more complete description of the parts of this content field is given below:

M - number of rows
N - number of columns

NNZ - maximum number of nonzero entries in the matrix (allocated length of data and indexvals
arrays)

NP - number of index pointers (e.g. number of column pointers for CSC matrix). For CSC matrices
NP = N, and for CSR matrices NP = M. This value is set automatically based the input for
sparsetype.

data - pointer to a contiguous block of realtype variables (of length NNZ), containing the values of
the nonzero entries in the matrix

sparsetype - type of the sparse matrix (CSC_MAT or CSR_MAT)

indexvals - pointer to a contiguous block of int variables (of length NNZ), containing the row indices
(if CSC) or column indices (if CSR) of each nonzero matrix entry held in data

indexptrs - pointer to a contiguous block of int variables (of length NP+1). For CSC matrices each
entry provides the index of the first column entry into the data and indexvals arrays, e.g. if
indexptr[3]=7, then the first nonzero entry in the fourth column of the matrix is located in
datal[7], and is located in row indexvals[7] of the matrix. The last entry contains the total
number of nonzero values in the matrix and hence points one past the end of the active data in
the data and indexvals arrays. For CSR matrices, each entry provides the index of the first
row entry into the data and indexvals arrays.

The following pointers are added to the SlsMat type for user convenience, to provide a more intuitive
interface to the CSC and CSR sparse matrix data structures. They are set automatically when creating
a sparse SUNMATRIX, based on the sparse matrix storage type.

rowvals - pointer to indexvals when sparsetype is CSC_MAT, otherwise set to NULL.
colptrs - pointer to indexptrs when sparsetype is CSC_MAT, otherwise set to NULL.
colvals - pointer to indexvals when sparsetype is CSR_MAT, otherwise set to NULL.

rowptrs - pointer to indexptrs when sparsetype is CSR_.MAT, otherwise set to NULL.
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For example, the 5 x 4 CSC matrix
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could be stored in this structure as either
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8;
NP = N;
data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0};
sparsetype = CSC_MAT;

indexvals = {1, 3, 0, 2, 0, 1, 3, 4};

indexptrs = {0, 2, 4, 5, 8};
or
M = 5;
N = 4;
NNZ = 10;
NP = N;
data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0, *, *};
sparsetype = CSC_MAT;

indexvals = {1, 3, 0, 2, 0, 1, 3, 4, *, *};
indexptrs = {0, 2, 4, 5, 8};

where the first has no unused space, and the second has additional storage (the entries marked with
* may contain any values). Note in both cases that the final value in indexptrs is 8, indicating the

total number of nonzero entries in the matrix.
Similarly, in CSR, format, the same matrix could be stored as

M =5;
N = 4;
NNZ = 8;
NP = N;
data = {3.0, 1.0, 3.0, 2.0, 7.0, 1.0, 9.0, 5.0};
sparsetype = CSR_MAT;

indexvals = {1, 2, 0, 3, 1, 0, 3, 3};

indexptrs = {0, 2, 4, 5, 7, 8};

The header file to include when using this module is sunmatrix/sunmatrix_sparse.h. The SUNMA-

TRIX_SPARSE module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunmatrixsparse module library.

The following macros are provided to access the content of a SUNMATRIX_SPARSE matrix. The prefix
SM_ in the names denotes that these macros are for SUNMatriz implementations, and the suffix _S

denotes that these are specific to the sparse version.

e SM_CONTENT_S

This routine gives access to the contents of the sparse SUNMatrix.

The assignment A_cont = SM_CONTENT_S(A) sets A_cont to be a pointer to the sparse SUNMatrix

content structure.
Implementation:

#define SM_CONTENT_S(A) ( (SUNMatrixContent_Sparse) (A->content) )
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Figure 8.2: Diagram of the storage for a compressed-sparse-column matrix. Here A is an M x N sparse
matrix with storage for up to NNZ nonzero entries (the allocated length of both data and indexvals).
The entries in indexvals may assume values from 0 to M — 1, corresponding to the row index (zero-
based) of each nonzero value. The entries in data contain the values of the nonzero entries, with the
row 4, column j entry of A (again, zero-based) denoted as A(i, j). The indexptrs array contains N+ 1
entries; the first N denote the starting index of each column within the indexvals and data arrays,
while the final entry points one past the final nonzero entry. Here, although NNZ values are allocated,
only nz are actually filled in; the greyed-out portions of data and indexvals indicate extra allocated
space.
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e SM_ROWS_S, SM_COLUMNS_S, SM_NNZ_S, SM_NP_S, and SM_SPARSETYPE_S

These macros give individual access to various lengths relevant to the content of a sparse
SUNMatrix.

These may be used either to retrieve or to set these values. For example, the assignment A_rows
= SM_ROWS_S(A) sets A_rows to be the number of rows in the matrix A. Similarly, the assignment
SM_COLUMNS_S(A) = A_cols sets the number of columns in A to equal A_cols.

Implementation:

#define SM_ROWS_S(A) ( SM_CONTENT_S(A)->M )
#define SM_COLUMNS_S(A) ( SM_CONTENT_S(A)->N )
#define SM_NNZ_S(A) ( SM_CONTENT_S(A)->NNZ )
#define SM_NP_S(A) ( SM_CONTENT_S(A)->NP )

#define SM_SPARSETYPE_S(A) ( SM_CONTENT_S(A)->sparsetype )

e SM_DATA_S, SM_INDEXVALS_S, and SM_INDEXPTRS_S
These macros give access to the data and index arrays for the matrix entries.

The assignment A_data = SM_DATA_S(A) sets A_data to be a pointer to the first component of
the data array for the sparse SUNMatrix A. The assignment SM_DATA S(A) = A_data sets the
data array of A to be A_data by storing the pointer A_data.

Similarly, the assignment A_indexvals = SM_INDEXVALS_S(A) sets A_indexvals to be a pointer
to the array of index values (i.e. row indices for a CSC matrix, or column indices for a CSR
matrix) for the sparse SUNMatrix A. The assignment A_indexptrs = SM_INDEXPTRS_S(A) sets
A_indexptrs to be a pointer to the array of index pointers (i.e. the starting indices in the
data/indexvals arrays for each row or column in CSR or CSC formats, respectively).

Implementation:

#define SM_DATA_S(A) ( SM_CONTENT_S(A)->data )

#define SM_INDEXVALS_S(A) ( SM_CONTENT_S(A)->indexvals )

#define SM_INDEXPTRS_S(A)  ( SM_CONTENT_S(A)->indexptrs )
The SUNMATRIX_SPARSE module defines sparse implementations of all matrix operations listed in
Table 8.2. Their names are obtained from those in Table 8.2 by appending the suffix _Sparse (e.g.
SUNMatCopy_Sparse). The module SUNMATRIX_SPARSE provides the following additional user-callable
routines:

e SUNSparseMatrix

This function creates and allocates memory for a sparse SUNMatrix. Its arguments are the
number of rows and columns of the matrix, M and N, the maximum number of nonzeros to be
stored in the matrix, NNZ, and a flag sparsetype indicating whether to use CSR or CSC format
(valid arguments are CSR_MAT or CSC_MAT).

SUNMatrix SUNSparseMatrix(sunindextype M, sunindextype N,
sunindextype NNZ, int sparsetype);

e SUNSparseFromDenseMatrix

This function creates a new sparse matrix from an existing dense matrix by copying all values
with magnitude larger than droptol into the sparse matrix structure.

Requirements:

— A must have type SUNMATRIX DENSE;
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— droptol must be non-negative;
— sparsetype must be either CSC_MAT or CSR_MAT.

The function returns NULL if any requirements are violated, or if the matrix storage request
cannot be satisfied.

SUNMatrix SUNSparseFromDenseMatrix(SUNMatrix A, realtype droptol,
int sparsetype);

SUNSparseFromBandMatrix

This function creates a new sparse matrix from an existing band matrix by copying all values
with magnitude larger than droptol into the sparse matrix structure.

Requirements:

— A must have type SUNMATRIX_BAND;
— droptol must be non-negative;
— sparsetype must be either CSC_MAT or CSR_MAT.

The function returns NULL if any requirements are violated, or if the matrix storage request
cannot be satisfied.

SUNMatrix SUNSparseFromBandMatrix(SUNMatrix A, realtype droptol,
int sparsetype);

SUNSparseMatrix_Realloc

This function reallocates internal storage arrays in a sparse matrix so that the resulting sparse
matrix has no wasted space (i.e. the space allocated for nonzero entries equals the actual number
of nonzeros, indexptrs[NP]). Returns 0 on success and 1 on failure (e.g. if the input matrix is
not sparse).

int SUNSparseMatrix_Realloc(SUNMatrix A);

SUNSparseMatrix_Reallocate

This function reallocates internal storage arrays in a sparse matrix so that the resulting sparse
matrix has storage for a specified number of nonzeros. Returns 0 on success and 1 on failure
(e.g. if the input matrix is not sparse or if NNZ is negative).

int SUNSparseMatrix_Reallocate(SUNMatrix A, sunindextype NNZ);

SUNSparseMatrix Print

This function prints the content of a sparse SUNMatrix to the output stream specified by
outfile. Note: stdout or stderr may be used as arguments for outfile to print directly
to standard output or standard error, respectively.

void SUNSparseMatrix_Print(SUNMatrix A, FILE* outfile);

SUNSparseMatrix_Rows
This function returns the number of rows in the sparse SUNMatrix.

sunindextype SUNSparseMatrix_Rows(SUNMatrix A);

SUNSparseMatrix_Columns
This function returns the number of columns in the sparse SUNMatrix.

sunindextype SUNSparseMatrix_Columns(SUNMatrix A);
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e SUNSparseMatrix_NNZ

This function returns the number of entries allocated for nonzero storage for the sparse matrix
SUNMatrix.

sunindextype SUNSparseMatrix_NNZ(SUNMatrix A);

e SUNSparseMatrix_NP

This function returns the number of columns/rows for the sparse SUNMatrix, depending on
whether the matrix uses CSC/CSR format, respectively. The indexptrs array has NP+1 entries.

sunindextype SUNSparseMatrix_NP(SUNMatrix A);

e SUNSparseMatrix_SparseType
This function returns the storage type (CSR-MAT or CSC_MAT) for the sparse SUNMatrix.
int SUNSparseMatrix_SparseType(SUNMatrix A);

e SUNSparseMatrix Data
This function returns a pointer to the data array for the sparse SUNMatrix.

realtypex SUNSparseMatrix_Data(SUNMatrix A);

e SUNSparseMatrix_IndexValues

This function returns a pointer to index value array for the sparse SUNMatrix: for CSR format
this is the column index for each nonzero entry, for CSC format this is the row index for each
nonzero entry.

sunindextype* SUNSparseMatrix_IndexValues(SUNMatrix A);

e SUNSparseMatrix_IndexPointers

This function returns a pointer to the index pointer array for the sparse SUNMatrix: for CSR
format this is the location of the first entry of each row in the data and indexvalues arrays,
for CSC format this is the location of the first entry of each column.

sunindextype* SUNSparseMatrix_IndexPointers(SUNMatrix A);

Within the SUNMatMatvec_Sparse routine, internal consistency checks are performed to ensure that
the matrix is called with consistent NVECTOR implementations. These are currently limited to: NVEC-
TOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible vector imple-
mentations are added to SUNDIALS, these will be included within this compatibility check.

For solvers that include a Fortran interface module, the SUNMATRIX_SPARSE module also includes
the Fortran-callable function FSUNSparseMatInit(code, M, N, NNZ, sparsetype, ier) to initial-
ize this SUNMATRIX_SPARSE module for a given SUNDIALS solver. Here code is an integer input for the
solver id (1 for CVODE, 2 for IDA, 3 for KINSOL, 4 for ARKODE); M, N and NNZ are the corresponding
sparse matrix construction arguments (declared to match C type long int); sparsetype is an integer
flag indicating the sparse storage type (0 for CSC, 1 for CSR); and ier is an error return flag equal to
0 for success and -1 for failure. Each of code, sparsetype and ier are declared so as to match C type
int. Additionally, when using ARKODE with a non-identity mass matrix, the Fortran-callable function
FSUNSparseMassMatInit(M, N, NNZ, sparsetype, ier) initializes this SUNMATRIX_SPARSE mod-
ule for storing the mass matrix.

8.4 SUNMatrix Examples

There are SUNMatrix examples that may be installed for each implementation: dense, banded, and
sparse. Each implementation makes use of the functions in test_sunmatrix.c. These example func-
tions show simple usage of the SUNMatrix family of functions. The inputs to the examples depend on
the matrix type, and are output to stdout if the example is run without the appropriate number of
command-line arguments.

The following is a list of the example functions in test_sunmatrix.c:
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Test_SUNMatGetID: Verifies the returned matrix ID against the value that should be returned.

Test_SUNMatClone: Creates clone of an existing matrix, copies the data, and checks that their
values match.

Test_SUNMatZero: Zeros out an existing matrix and checks that each entry equals 0.0.

Test_SUNMatCopy: Clones an input matrix, copies its data to a clone, and verifies that all values
match.

Test_SUNMatScaleAdd: Given an input matrix A and an input identity matrix I, this test clones
and copies A to a new matrix B, computes B = —B + B, and verifies that the resulting matrix
entries equal 0.0. Additionally, if the matrix is square, this test clones and copies A to a new
matrix D, clones and copies I to a new matrix C, computes D = D 4+ I and C = C + A using
SUNMatScaleAdd, and then verifies that C' ==

Test_SUNMatScaleAddI: Given an input matrix A and an input identity matrix I, this clones
and copies I to a new matrix B, computes B = —B + [ using SUNMatScaleAddI, and verifies
that the resulting matrix entries equal 0.0.

Test_SUNMatMatvec Given an input matrix A and input vectors x and y such that y = Az, this
test has different behavior depending on whether A is square. If it is square, it clones and copies
A to a new matrix B, computes B = 3B + I using SUNMatScaleAddI, clones y to new vectors w
and z, computes z = Bx using SUNMatMatvec, computes w = 3y + = using N_VLinearSum, and
verifies that w == z. If A is not square, it just clones y to a new vector z, computes z = Az
using SUNMatMatvec, and verifies that y == 2.

Test_SUNMatSpace verifies that SUNMatSpace can be called, and outputs the results to stdout.

8.5 SUNMatrix functions used by CVODES

In Table 8.4 below, we list the matrix functions in the SUNMATRIX module used within the CVODES
package. The table also shows, for each function, which of the code modules uses the function.
Neither the main CVODES integrator or the CVSPILS interface call SUNMATRIX functions directly, so
the table columns are specific to the CvDLS direct solver interface and the CVBANDPRE and CVBBDPRE
preconditioner modules.

At this point, we should emphasize that the CVODES user does not need to know anything about
the usage of matrix functions by the CVODES code modules in order to use CVODES. The information
is presented as an implementation detail for the interested reader.

Table 8.4: List of matrix functions usage by CVODES code modules
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SUNMatGetID | v/
SUNMatClone | v/
SUNMatDestroy | v | v | V
SUNMatZero | v | vV | V
SUNMatCopy | v | V' | V
SUNMatScaleAddI | v | v | V
SUNMatSpace | t | T | t
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The matrix functions listed in Table 8.2 with a { symbol are optionally used, in that these are
only called if they are implemented in the SUNMATRIX module that is being used (i.e. their function
pointers are non-NULL). The matrix functions listed in Table 8.2 that are not used by CVODES are:
SUNMatScaleAdd and SUNMatMatvec. Therefore a user-supplied SUNMATRIX module for CVODES could
omit these functions.






Chapter 9

Description of the
SUNLinearSolver module

For problems that involve the solution of linear systems of equations, the SUNDIALS solvers operate
using generic linear solver modules (of type SUNLinearSolver), through a set of operations defined
by the particular SUNLINSOL implementation. These work in coordination with the SUNDIALS generic
NVECTOR and SUNMATRIX modules to provide a set of compatible data structures and solvers for
the solution of linear systems using direct or iterative methods. Moreover, users can provide their
own specific SUNLINSOL implementation to each SUNDIALS solver, particularly in cases where they
provide their own NVECTOR and/or SUNMATRIX modules, and the customized linear solver leverages
these additional data structures to create highly efficient and/or scalable solvers for their particular
problem. Additionally, SUNDIALS provides native implementations SUNLINSOL modules, as well as
SUNLINSOL modules that interface between SUNDIALS and external linear solver libraries.

The various SUNDIALS solvers have been designed to specifically leverage the use of either direct
linear solvers or scaled, preconditioned, iterative linear solvers, through their “Dls” and “Spils” in-
terfaces, respectively. Additionally, SUNDIALS solvers can make use of user-supplied custom linear
solvers, whether these are problem-specific or come from external solver libraries.

For iterative (and possibly custom) linear solvers, the SUNDIALS solvers leverage scaling and precon-
ditioning, as applicable, to balance error between solution components and to accelerate convergence
of the linear solver. To this end, instead of solving the linear system Ax = b directly, we apply the
underlying iterative algorithm to the transformed system

Az =b (9.1)
where
A= 8 P AP S
b=S,P b, (9.2)
T =5Pur,
and where

e P is the left preconditioner,
e P, is the right preconditioner,
e S is a diagonal matrix of scale factors for P 1p,

e S5 is a diagonal matrix of scale factors for Psx.

The SUNDIALS solvers request that iterative linear solvers stop based on the 2-norm of the scaled
preconditioned residual meeting a prescribed tolerance

Hz;_Aj;-HQ < tol.
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We note that not all of the iterative linear solvers implemented in SUNDIALS support the full range of
the above options. Similarly, some of the SUNDIALS integrators only utilize a subset of these options.
Exceptions to the operators shown above are described in the documentation for each SUNLINSOL
implementation, or for each SUNDIALS solver “Spils” interface.

The generic SUNLinearSolver type has been modeled after the object-oriented style of the generic
N_Vector type. Specifically, a generic SUNLinearSolver is a pointer to a structure that has an
implementation-dependent content field containing the description and actual data of the linear
solver, and an ops field pointing to a structure with generic linear solver operations. The type
SUNLinearSolver is defined as

typedef struct _generic_SUNLinearSolver *SUNLinearSolver;

struct _generic_SUNLinearSolver {
void *content;
struct _generic_SUNLinearSolver_0Ops *ops;

};

The _generic_SUNLinearSolver Ops structure is essentially a list of pointers to the various actual
linear solver operations, and is defined as

struct _generic_SUNLinearSolver_Ops {
SUNLinearSolver_Type (*gettype) (SUNLinearSolver) ;

int (*setatimes) (SUNLinearSolver, void*, ATimesFn);

int (*setpreconditioner) (SUNLinearSolver, voidx,
PSetupFn, PSolveFn);

int (*setscalingvectors) (SUNLinearSolver,
N_Vector, N_Vector);

int (*initialize) (SUNLinearSolver) ;

int (*setup) (SUNLinearSolver, SUNMatrix);

int (*solve) (SUNLinearSolver, SUNMatrix, N_Vector,

N_Vector, realtype);

int (*numiters) (SUNLinearSolver) ;

realtype (*resnorm) (SUNLinearSolver) ;

long int (*lastflag) (SUNLinearSolver) ;

int (*space) (SUNLinearSolver, long int*, long intx*);

N_Vector (x*resid) (SUNLinearSolver) ;

int (*free) (SUNLinearSolver) ;

};

The generic SUNLINSOL module defines and implements the linear solver operations acting on
SUNLinearSolver objects. These routines are in fact only wrappers for the linear solver operations
defined by a particular SUNLINSOL implementation, which are accessed through the ops field of the
SUNLinearSolver structure. To illustrate this point we show below the implementation of a typical
linear solver operation from the generic SUNLINSOL module, namely SUNLinSolInitialize, which
initializes a SUNLINSOL object for use after it has been created and configured, and returns a flag
denoting a successful /failed operation:

int SUNLinSolInitialize(SUNLinearSolver S)
{
return ((int) S->ops->initialize(S));

}

Table 9.2 contains a complete list of all linear solver operations defined by the generic SUNLINSOL

module. In order to support both direct and iterative linear solver types, the generic SUNLINSOL

module defines linear solver routines (or arguments) that may be specific to individual use cases. As

such, for each routine we specify its intended use. If a custom SUNLINSOL module is provided, the

function pointers for non-required routines may be set to NULL to indicate that they are not provided.
A particular implementation of the SUNLINSOL module must:
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Table 9.1: Identifiers associated with linear solver kernels supplied with SUNDIALS.

Linear Solver ID Solver type ID Value
SUNLINEARSOLVER_DIRECT Direct solvers 0
SUNLINEARSOLVER_ITERATIVE | Iterative solvers 1
SUNLINEARSOLVER_CUSTOM Custom solvers 2

Specify the content field of the SUNLinearSolver object.

Define and implement a minimal subset of the linear solver operations. See the documentation
for each SUNDIALS linear solver interface to determine which SUNLINSOL operations they require.

Note that the names of these routines should be unique to that implementation in order to
permit using more than one SUNLINSOL module (each with different SUNLinearSolver internal
data representations) in the same code.

Define and implement user-callable constructor and destructor routines to create and free a
SUNLinearSolver with the new content field and with ops pointing to the new linear solver
operations.

Optionally, define and implement additional user-callable routines acting on the newly defined
SUNLinearSolver (e.g., routines to set various configuration options for tuning the linear solver
to a particular problem).

Optionally, provide functions as needed for that particular implementation to access different
parts in the content field of the newly defined SUNLinearSolver object (e.g., routines to return
various statistics from the solver).

Each SUNLINSOL implementation included in SUNDIALS has a “type” identifier specified in enu-
It is recommended that a user-supplied SUNLINSOL implemen-
the SUNDIALS solver interface they intend to use: “Dls” inter-
faces require the SUNLINEARSOLVER DIRECT SUNLINSOL objects and “Spils” interfaces require the
SUNLINEARSOLVER_ITERATIVE objects.

meration and shown in Table 9.1.
tation set this identifier based on

Table 9.2: Description of the SUNLinearSolver operations

Name

Usage and Description

SUNLinSolGetType

type = SUNLinSolGetType(LS);

Returns the type identifier for the linear solver LS. It is used to
determine the solver type (direct, iterative, or custom) from
the abstract SUNLinearSolver interface. This is used to assess
compatibility with SUNDIALS-provided linear solver interfaces.
Returned values are given in the Table 9.1.

continued on next page
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Name Usage and Description

SUNLinSolInitialize ier = SUNLinSolInitialize(LS);

Performs linear solver initialization (assumes that all solver-
specific options have been set). This should return zero for
a successful call, and a negative value for a failure, ideally
returning one of the generic error codes listed in Table 9.4.

SUNLinSolSetup ier = SUNLinSolSetup(LS, A);

Performs any linear solver setup needed, based on an updated
system SUNMATRIX A. This may be called frequently (e.g. with
a full Newton method) or infrequently (for a modified Newton
method), based on the type of integrator and/or nonlinear
solver requesting the solves. This should return zero for a
successful call, a positive value for a recoverable failure and a
negative value for an unrecoverable failure, ideally returning
one of the generic error codes listed in Table 9.4.

SUNLinSolSolve ier = SUNLinSolSolve(LS, A, x, b, tol);

Solves a linear system Ax = b. This should return zero for a
successful call, a positive value for a recoverable failure and a
negative value for an unrecoverable failure, ideally returning
one of the generic error codes listed in Table 9.4.

Direct solvers: can ignore the realtype argument tol.
Iterative solvers: can ignore the SUNMATRIX input A since a
NULL argument will be passed (these should instead rely on the
matrix-vector product function supplied through the routine
SUNLinSolSetATimes). These should attempt to solve to the
specified realtype tolerance tol in a weighted 2-norm. If
the solver does not support scaling then it should just use a
2-norm.

Custom solvers: all arguments will be supplied, and if the
solver is approximate then it should attempt to solve to the
specified realtype tolerance tol in a weighted 2-norm. If
the solver does not support scaling then it should just use a
2-norm.

SUNLinSolFree ier = SUNLinSolFree(LS);
Frees memory allocated by the linear solver. This should re-
turn zero for a successful call, and a negative value for a failure.

SUNLinSolSetATimes ier = SUNLinSolSetATimes (LS, A_data, ATimes);
(Tterative/Custom linear solvers only) Provides ATimesFn
function pointer, as well as a void * pointer to a data struc-
ture used by this routine, to a linear solver object. SUNDIALS
solvers will call this function to set the matrix-vector product
function to either a solver-provided difference-quotient via vec-
tor operations or a user-supplied solver-specific routine. This
routine should return zero for a successful call, and a negative
value for a failure, ideally returning one of the generic error
codes listed in Table 9.4.

continued on next page
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Name

Usage and Description

SUNLinSolSetPreconditioner

SUNLinSolSetScalingVectors

SUNLinSolNumIters

SUNLinSolResNorm

SUNLinSolResid

ier = SUNLinSolSetPreconditioner (LS, Pdata, Pset,
Psol);

(Optional; Tterative/Custom linear solvers only) Provides
PSetupFn and PSolveFn function pointers that implement the
preconditioner solves P, ' and P; ' from equations (9.1)-(9.2).
This routine will be called by a SUNDIALS solver, which will
provide translation between the generic Pset and Psol calls
and the integrator-specific and integrator- or user-supplied
routines. This routine should return zero for a successful call,
and a negative value for a failure, ideally returning one of the
generic error codes listed in Table 9.4.

ier = SUNLinSolSetScalingVectors(LS, sl1, s2);
(Optional; Iterative/Custom linear solvers only) Sets pointers
to left/right scaling vectors for the linear system solve. Here,
sl is an NVECTOR of positive scale factors containing the diag-
onal of the matrix S; from equations (9.1)-(9.2). Similarly, s2
is an NVECTOR containing the diagonal of Sy from equations
(9.1)-(9.2). Neither of these vectors are tested for positivity,
and a NULL argument for either indicates that the correspond-
ing scaling matrix is the identity. This routine should return
zero for a successful call, and a negative value for a failure,
ideally returning one of the generic error codes listed in Table
9.4.

its = SUNLinSolNumIters(LS);

(Optional; Tterative/Custom linear solvers only) Should return
the int number of linear iterations performed in the last ‘solve’
call.

rnorm = SUNLinSolResNorm(LS) ;
(Optional; Tterative/Custom linear solvers only) Should return
the realtype final residual norm from the last ‘solve’ call.

rvec = SUNLinSolResid(LS);

(Optional; Iterative/Custom linear solvers only) If an iterative
method computes the preconditioned initial residual and re-
turns with a successful solve without performing any iterations
(i.e. either the initial guess or the preconditioner is sufficiently
accurate), then this function may be called by the SUNDIALS
solver. This routine should return the NVECTOR containing
the preconditioned initial residual vector.

continued on next page
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Name Usage and Description

SUNLinLastFlag 1flag = SUNLinLastFlag(LS);
(Optional) Should return the last error flag encountered within
the linear solver. This is not called by the SUNDIALS solvers
directly; it allows the user to investigate linear solver issues
after a failed solve.

SUNLinSolSpace ier = SUNLinSolSpace(LS, &lrw, &liw);

(Optional) Returns the storage requirements for the linear
solver LS. 1rw is a long int containing the number of re-
altype words and liw is a long int containing the number
of integer words. The return value is an integer flag denoting
success/failure of the operation.

This function is advisory only, for use in determining a user’s
total space requirements.

9.1 Description of the client-supplied SUNLinearSolver rou-
tines

The SUNDIALS packages provide the ATimes, Pset and Psol routines utilized by the SUNLINSOL mod-
ules. These function types are defined in the header file sundials/sundials_iterative.h, and are
described here in case a user wishes to interact directly with an iterative SUNLINSOL object.

Definition

Purpose

Arguments

Return value

Notes

Definition

Purpose
Arguments

Return value

Notes

typedef int (*ATimesFn) (void *A_data, N_Vector v, N_Vector z);

These functions compute the action of a matrix on a vector, performing the operation
z = Av. Memory for z should already be allocted prior to calling this function. The
vector v should be left unchanged.

A _data is a pointer to client data, the same as that supplied to SUNLinSolSetATimes.
v is the input vector to multiply.

z is the output vector computed.

This routine should return 0 if successful and a non-zero value if unsuccessful.

typedef int (*PSetupFn) (void *P_data)

These functions set up any requisite problem data in preparation for calls to the corre-
sponding PSolveFn.

P_data is a pointer to client data, the same pointer as that supplied to the routine
SUNLinSolSetPreconditioner.

This routine should return 0 if successful and a non-zero value if unsuccessful.
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Definition

Purpose

Arguments

Return value

Notes

typedef int (*¥PSolveFn) (void *P_data, N_Vector r, N Vector z,
realtype tol, int 1lr)

These functions solve the preconditioner equation Pz = r for the vector z. Memory for
z should already be allocted prior to calling this function. The parameter P_data is a
pointer to any information about P which the function needs in order to do its job (set
up by the corresponding PSetupFn. The parameter 1r is input, and indicates whether
P is to be taken as the left preconditioner or the right preconditioner: 1r = 1 for left
and 1r = 2 for right. If preconditioning is on one side only, 1r can be ignored. If the
preconditioner is iterative, then it should strive to solve the preconditioner equation so
that
1Pz — 7||wrms < tol

where the weight vector for the WRMS norm may be accessed from the main package
memory structure. The vector r should not be modified by the PSolveFn.

P_data is a pointer to client data, the same pointer as that supplied to the routine
SUNLinSolSetPreconditioner.

r is the right-hand side vector for the preconditioner system

z is the solution vector for the preconditioner system

tol is the desired tolerance for an iterative preconditioner

1r is flag indicating whether the routine should perform left (1) or right (2) precondi-
tioning.

This routine should return 0 if successful and a non-zero value if unsuccessful. On a
failure, a negative return value indicates an unrecoverable condition, while a positive
value indicates a recoverable one, in which the calling routine may reattempt the solution
after updating preconditioner data.

9.2 Compatibility of SUNLinearSolver modules

We note that not all SUNLINSOL types are compatible with all SUNMATRIX and NVECTOR types provided
with SUNDIALS. In Table 9.3 we show the direct linear solvers available as SUNLINSOL modules, and
the compatible matrix implementations. Recall that Table 4.1 shows the compatibility between all
SUNLINSOL modules and vector implementations.

Table 9.3: SUNDIALS direct linear solvers and matrix implementations that can be used for each.

Linear Solver | Dense Banded | Sparse User
Interface Matrix Matrix Matrix Supplied
Dense v v
Band v v
LapackDense v v
LapackBand v v
KLU v v
SUPERLUMT v v
continued on next page
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Linear Solver | Dense Banded | Sparse User
Interface Matrix Matrix Matrix Supplied
User supplied v v v v

The functions within the SUNDIALS-provided SUNLinearSolver implementations return a common
set of error codes, shown below in the Table 9.4.

Table 9.4: Description of the SUNLinearSolver error codes

Name Value | Description

SUNLS_SUCCESS 0 successful call or converged solve

SUNLS_MEM_NULL -1 the memory argument to the function is NULL

SUNLS_ILL_INPUT -2 an illegal input has been provided to the function

SUNLS_MEM_FAIL -3 failed memory access or allocation

SUNLS_ATIMES FAIL_UNREC -4 an unrecoverable failure occurred in the ATimes routine

SUNLS_PSET_FAIL_UNREC -5 an unrecoverable failure occurred in the Pset routine

SUNLS_PSOLVE_FAIL UNREC | -6 an unrecoverable failure occurred in the Psolve routine

SUNLS_PACKAGE_FAIL UNREC | -7 an unrecoverable failure occurred in an external linear
solver package

SUNLS_GS_FAIL -8 a failure occurred during Gram-Schmidt orthogonalization
(SUNLINSOL_SPGMR/SUNLINSOL_SPFGMR)

SUNLS_QRSOL_FAIL -9 a singular R matrix was encountered in a QR factorization
(SUNLINSOL_SPGMR/SUNLINSOL_SPFGMR)

SUNLS_RES_REDUCED 1 an iterative solver reduced the residual, but did not con-
verge to the desired tolerance

SUNLS_CONV_FAIL 2 an iterative solver did not converge (and the residual was
not reduced)

SUNLS_ATIMES FAIL REC 3 a recoverable failure occurred in the ATimes routine

SUNLS_PSET_FAIL REC 4 a recoverable failure occurred in the Pset routine

SUNLS_PSOLVE_FAIL REC 5 a recoverable failure occurred in the Psolve routine

SUNLS_PACKAGE_FAIL REC 6 a recoverable failure occurred in an external linear solver
package

SUNLS_QRFACT_FAIL 7 a singular matrix was encountered during a QR factoriza-
tion (SUNLINSOL_SPGMR/SUNLINSOL_SPFGMR)

SUNLS_LUFACT_FAIL 8 a singular matrix was encountered during a LU factorization
(SUNLINSOL_DENSE/SUNLINSOL_BAND)

9.3 The SUNLinearSolver_Dense implementation

The dense implementation of the SUNLINSOL module provided with SUNDIALS, SUNLINSOL_DENSE,
is designed to be used with the corresponding SUNMATRIX_DENSE matrix type, and one of the se-
rial or shared-memory NVECTOR implementations (NVECTOR_SERIAL, NVECTOR_OPENMP Or NVEC-
TOR_PTHREADS). The SUNLINSOL_DENSE module defines the content field of a SUNLinearSolver to
be the following structure:

struct _SUNLinearSolverContent_Dense {
sunindextype N;
sunindextype *pivots;
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long int last_flag;

};

These entries of the content field contain the following information:

N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last_flag - last error return flag from internal function evaluations.

This solver is constructed to perform the following operations:

The “setup” call performs a LU factorization with partial (row) pivoting (O(N?) cost), PA =
LU, where P is a permutation matrix, L is a lower triangular matrix with 1’s on the diago-
nal, and U is an upper triangular matrix. This factorization is stored in-place on the input
SUNMATRIX_DENSE object A, with pivoting information encoding P stored in the pivots array.

The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the SUNMATRIX_DENSE object (O(N?) cost).

The header file to include when using this module is sunlinsol/sunlinsol_dense.h. The SUNLIN-

SOL_DENSE module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunlinsoldense module library.

The SUNLINSOL_DENSE module defines dense implementations of all “direct” linear solver operations

listed in Table 9.2:

SUNLinSolGetType_Dense

SUNLinSolInitialize Dense — this does nothing, since all consistency checks are performed at
solver creation.

SUNLinSolSetup_Dense — this performs the LU factorization.
SUNLinSolSolve Dense — this uses the LU factors and pivots array to perform the solve.
SUNLinSolLastFlag Dense

SUNLinSolSpace Dense — this only returns information for the storage within the solver object,
i.e. storage for N, last_flag, and pivots.

SUNLinSolFree_Dense

The module SUNLINSOL_DENSE provides the following additional user-callable constructor routine:

SUNDenseLinearSolver

This function creates and allocates memory for a dense SUNLinearSolver. Its arguments are
an NVECTOR and SUNMATRIX, that it uses to determine the linear system size and to assess
compatibility with the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent NVECTOR
and SUNMATRIX implementations. These are currently limited to the SUNMATRIX_DENSE matrix
type and the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As
additional compatible matrix and vector implementations are added to SUNDIALS, these will be
included within this compatibility check.

If either A or y are incompatible then this routine will return NULL.

SUNLinearSolver SUNDenseLinearSolver(N_Vector y, SUNMatrix A);
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For solvers that include a Fortran interface module, the SUNLINSOL_DENSE module also includes
the Fortran-callable function FSUNDenseLinSolInit (code, ier) to initialize this SUNLINSOL_DENSE
module for a given SUNDIALS solver. Here code is an integer input solver id (1 for CVODE, 2 for IDA,
3 for KINSOL, 4 for ARKODE); ier is an error return flag equal to 0 for success and -1 for failure.
Both code and ier are declared to match C type int. This routine must be called after both the
NVECTOR and SUNMATRIX objects have been initialized. Additionally, when using ARKODE with a
non-identity mass matrix, the Fortran-callable function FSUNMassDenseLinSolInit(ier) initializes
this SUNLINSOL_DENSE module for solving mass matrix linear systems.

9.4 The SUNLinearSolver_Band implementation

The band implementation of the SUNLINSOL module provided with SUNDIALS, SUNLINSOL_BAND,
is designed to be used with the corresponding SUNMATRIX_BAND matrix type, and one of the se-
rial or shared-memory NVECTOR implementations (NVECTOR-SERIAL, NVECTOR_OPENMP or NVEC-
TOR_PTHREADS). The SUNLINSOL_BAND module defines the content field of a SUNLinearSolver to be
the following structure:

struct _SUNLinearSolverContent_Band {
sunindextype N;
sunindextype *pivots;
long int last_flag;

};

These entries of the content field contain the following information:

N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last_flag - last error return flag from internal function evaluations.
This solver is constructed to perform the following operations:

e The “setup” call performs a LU factorization with partial (row) pivoting, PA = LU, where P
is a permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an
upper triangular matrix. This factorization is stored in-place on the input SUNMATRIX_BAND
object A, with pivoting information encoding P stored in the pivots array.

e The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the SUNMATRIX_BAND object.

e A must be allocated to accommodate the increase in upper bandwidth that occurs during factor-
ization. More precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth m1,
then the upper triangular factor U can have upper bandwidth as big as smu = MIN(N-1,mu+ml).
The lower triangular factor L has lower bandwidth ml.

The header file to include when using this module is sunlinsol/sunlinsol _band.h. The SUNLIN-

SOL_BAND module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunlinsolband module library.

The SUNLINSOL_BAND module defines band implementations of all “direct” linear solver operations

listed in Table 9.2:

e SUNLinSolGetType_Band

e SUNLinSolInitialize Band — this does nothing, since all consistency checks are performed at
solver creation.

e SUNLinSolSetup_Band — this performs the LU factorization.
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e SUNLinSolSolve Band — this uses the LU factors and pivots array to perform the solve.
e SUNLinSolLastFlag Band

e SUNLinSolSpace_Band — this only returns information for the storage within the solver object,
i.e. storage for N, last_flag, and pivots.

e SUNLinSolFree_Band
The module SUNLINSOL_BAND provides the following additional user-callable constructor routine:

e SUNBandLinearSolver

This function creates and allocates memory for a band SUNLinearSolver. Its arguments are
an NVECTOR and SUNMATRIX, that it uses to determine the linear system size and to assess
compatibility with the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent NVECTOR
and SUNMATRIX implementations. These are currently limited to the SUNMATRIX_BAND matrix
type and the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As
additional compatible matrix and vector implementations are added to SUNDIALS, these will be
included within this compatibility check.

Additionally, this routine will verify that the input matrix A is allocated with appropriate upper
bandwidth storage for the LU factorization.

If either A or y are incompatible then this routine will return NULL.

SUNLinearSolver SUNBandLinearSolver(N_Vector y, SUNMatrix A);

For solvers that include a Fortran interface module, the SUNLINSOL_BAND module also includes the
Fortran-callable function FSUNBandLinSolInit(code, ier) to initialize this SUNLINSOL_BAND mod-
ule for a given SUNDIALS solver. Here code is an integer input solver id (1 for CVODE, 2 for IDA,
3 for KINSOL, 4 for ARKODE); ier is an error return flag equal to 0 for success and -1 for failure.
Both code and ier are declared to match C type int. This routine must be called after both the
NVECTOR and SUNMATRIX objects have been initialized. Additionally, when using ARKODE with a
non-identity mass matrix, the Fortran-callable function FSUNMassBandLinSolInit(ier) initializes
this SUNLINSOL_BAND module for solving mass matrix linear systems.

9.5 The SUNLinearSolver_LapackDense implementation

The LAPACK dense implementation of the SUNLINSOL module provided with SUNDIALS, SUNLIN-
SOL_LAPACKDENSE, is designed to be used with the corresponding SUNMATRIX_DENSE matrix type, and
one of the serial or shared-memory NVECTOR implementations (NVECTOR_SERIAL, NVECTOR_OPENMP,
or NVECTOR_PTHREADS). The SUNLINSOL_LAPACKDENSE module defines the content field of a
SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Dense {
sunindextype N;
sunindextype *pivots;
long int last_flag;

}

These entries of the content field contain the following information:
N - size of the linear system,
pivots - index array for partial pivoting in LU factorization,

last_flag - last error return flag from internal function evaluations.
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The SUNLINSOL_LAPACKDENSE module is a SUNLINSOL wrapper for the LAPACK dense matrix
factorization and solve routines, *GETRF and *GETRS, where * is either D or S, depending on whether
SUNDIALS was configured to have realtype set to double or single, respectively (see Section 4.2).
In order to use the SUNLINSOL_LAPACKDENSE module it is assumed that LAPACK has been installed
on the system prior to installation of SUNDIALS, and that SUNDIALS has been configured appropriately
to link with LAPACK (see Appendix A for details). We note that since there do not exist 128-bit
floating-point factorization and solve routines in LAPACK, this interface cannot be compiled when
using extended precision for realtype. Similarly, since there do not exist 64-bit integer LAPACK
routines, the SUNLINSOL_LAPACKDENSE module also cannot be compiled when using int64_t for the
sunindextype.

This solver is constructed to perform the following operations:

e The “setup” call performs a LU factorization with partial (row) pivoting (O(N3) cost), PA =
LU, where P is a permutation matrix, L is a lower triangular matrix with 1’s on the diago-
nal, and U is an upper triangular matrix. This factorization is stored in-place on the input
SUNMATRIX_DENSE object A, with pivoting information encoding P stored in the pivots array.

e The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the SUNMATRIX_DENSE object (O(N?) cost).

The header file to include when using this module is sunlinsol/sunlinsol_lapackdense.h. The in-
stalled module library to link to is 1ibsundials_sunlinsollapackdense. ltb where . 14b is typically
.so for shared libraries and .a for static libraries.

The SUNLINSOL_LAPACKDENSE module defines dense implementations of all “direct” linear solver
operations listed in Table 9.2:

e SUNLinSolGetType_LapackDense

e SUNLinSolInitialize_LapackDense — this does nothing, since all consistency checks are per-
formed at solver creation.

e SUNLinSolSetup_LapackDense — this calls either DGETRF or SGETRF to perform the LU factor-
ization.

e SUNLinSolSolve_LapackDense — this calls either DGETRS or SGETRS to use the LU factors and
pivots array to perform the solve.

e SUNLinSolLastFlag _LapackDense

e SUNLinSolSpace_LapackDense — this only returns information for the storage within the solver
object, i.e. storage for N, last_flag, and pivots.

e SUNLinSolFree_LapackDense

The module SUNLINSOL_LAPACKDENSE provides the following additional user-callable constructor rou-
tine:

e SUNLapackDense

This function creates and allocates memory for a LAPACK dense SUNLinearSolver. Its argu-
ments are an NVECTOR and SUNMATRIX, that it uses to determine the linear system size and to
assess compatibility with the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent NVECTOR
and SUNMATRIX implementations. These are currently limited to the SUNMATRIX_DENSE matrix
type and the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As
additional compatible matrix and vector implementations are added to SUNDIALS, these will be
included within this compatibility check.

If either A or y are incompatible then this routine will return NULL.

SUNLinearSolver SUNLapackDense(N_Vector y, SUNMatrix A);
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For solvers that include a Fortran interface module, the SUNLINSOL_LAPACKDENSE module also in-
cludes the Fortran-callable function FSUNLapackDenseInit(code, ier) to initialize this SUNLIN-
SOL_LAPACKDENSE module for a given SUNDIALS solver. Here code is an integer input solver id (1 for
CVODE, 2 for IDA, 3 for KINSOL, 4 for ARKODE); ier is an error return flag equal to 0 for success and
-1 for failure. Both code and ier are declared to match C type int. This routine must be called after
both the NVECTOR and SUNMATRIX objects have been initialized. Additionally, when using ARKODE
with a non-identity mass matrix, the Fortran-callable function FSUNMassLapackDenseInit(ier) ini-
tializes this SUNLINSOL_LAPACKDENSE module for solving mass matrix linear systems.

9.6 The SUNLinearSolver_LapackBand implementation

The LAPACK band implementation of the SUNLINSOL module provided with SUNDIALS, SUNLIN-
SOL_LAPACKBAND, is designed to be used with the corresponding SUNMATRIX_BAND matrix type, and
one of the serial or shared-memory NVECTOR implementations (NVECTOR_SERIAL, NVECTOR_OPENMP,
or NVECTOR_PTHREADS). The SUNLINSOL_LAPACKBAND module defines the content field of a
SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Band {
sunindextype N;
sunindextype *pivots;
long int last_flag;

};

These entries of the content field contain the following information:
N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,
last_flag - last error return flag from internal function evaluations.

The SUNLINSOL_LAPACKBAND module is a SUNLINSOL wrapper for the LAPACK band matrix
factorization and solve routines, *GBTRF and *GBTRS, where * is either D or S, depending on whether
SUNDIALS was configured to have realtype set to double or single, respectively (see Section 4.2).
In order to use the SUNLINSOL_LAPACKBAND module it is assumed that LAPACK has been installed
on the system prior to installation of SUNDIALS, and that SUNDIALS has been configured appropriately
to link with LAPACK (see Appendix A for details). We note that since there do not exist 128-bit
floating-point factorization and solve routines in LAPACK, this interface cannot be compiled when
using extended precision for realtype. Similarly, since there do not exist 64-bit integer LAPACK
routines, the SUNLINSOL_LAPACKBAND module also cannot be compiled when using int64_t for the
sunindextype.

This solver is constructed to perform the following operations:

e The “setup” call performs a LU factorization with partial (row) pivoting, PA = LU, where P
is a permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an
upper triangular matrix. This factorization is stored in-place on the input SUNMATRIX_BAND
object A, with pivoting information encoding P stored in the pivots array.

e The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the SUNMATRIX_BAND object.

e A must be allocated to accommodate the increase in upper bandwidth that occurs during factor-
ization. More precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth m1,
then the upper triangular factor U can have upper bandwidth as big as smu = MIN(N-1,mu+ml).
The lower triangular factor L has lower bandwidth ml.

A
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The header file to include when using this module is sunlinsol/sunlinsol_lapackband.h. The
installed module library to link to is 1ibsundials_sunlinsollapackband. 1zb where . 14b is typically
.so for shared libraries and .a for static libraries.

The SUNLINSOL_LAPACKBAND module defines band implementations of all “direct” linear solver op-
erations listed in Table 9.2:

e SUNLinSolGetType_LapackBand

e SUNLinSolInitialize_LapackBand — this does nothing, since all consistency checks are per-
formed at solver creation.

e SUNLinSolSetup_LapackBand — this calls either DGBTRF or SGBTRF to perform the LU factoriza-
tion.

e SUNLinSolSolve _LapackBand — this calls either DGBTRS or SGBTRS to use the LU factors and
pivots array to perform the solve.

e SUNLinSolLastFlag LapackBand

e SUNLinSolSpace_LapackBand — this only returns information for the storage within the solver
object, i.e. storage for N, last_flag, and pivots.

e SUNLinSolFree_LapackBand
The module SUNLINSOL_LAPACKBAND provides the following additional user-callable routine:

e SUNLapackBand

This function creates and allocates memory for a LAPACK band SUNLinearSolver. Its argu-
ments are an NVECTOR and SUNMATRIX, that it uses to determine the linear system size and to
assess compatibility with the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent NVECTOR
and SUNMATRIX implementations. These are currently limited to the SUNMATRIX_BAND matrix
type and the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As
additional compatible matrix and vector implementations are added to SUNDIALS, these will be
included within this compatibility check.

Additionally, this routine will verify that the input matrix A is allocated with appropriate upper
bandwidth storage for the LU factorization.

If either A or y are incompatible then this routine will return NULL.

SUNLinearSolver SUNLapackBand(N_Vector y, SUNMatrix A);

For solvers that include a Fortran interface module, the SUNLINSOL_LAPACKBAND module also includes
the Fortran-callable function FSUNLapackBandInit(code, ier) to initialize this
SUNLINSOL_LAPACKBAND module for a given SUNDIALS solver. Here code is an integer input solver id (1
for CVODE, 2 for IDA, 3 for KINSOL, 4 for ARKODE); ier is an error return flag equal to 0 for success and
-1 for failure. Both code and ier are declared to match C type int. This routine must be called after
both the NVECTOR and SUNMATRIX objects have been initialized. Additionally, when using ARKODE
with a non-identity mass matrix, the Fortran-callable function FSUNMassLapackBandInit(ier) ini-
tializes this SUNLINSOL_LAPACKBAND module for solving mass matrix linear systems.

9.7 The SUNLinearSolver KLU implementation

The KLU implementation of the SUNLINSOL module provided with SUNDIALS, SUNLINSOL_KLU, is
designed to be used with the corresponding SUNMATRIX_SPARSE matrix type, and one of the se-
rial or shared-memory NVECTOR implementations (NVECTOR_SERIAL, NVECTOR_OPENMP, or NVEC-
TOR_PTHREADS). The SUNLINSOL_KLU module defines the content field of a SUNLinearSolver to be
the following structure:
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struct _SUNLinearSolverContent_KLU {

long int last_flag;

int first_factorize;

sun_klu_symbolic *symbolic;

sun_klu_numeric *numeric;

sun_klu_common common ;

sunindextype (*klu_solver) (sun_klu_symbolic*, sun_klu_numerick,
sunindextype, sunindextype,
double*, sun_klu_commonx) ;

+;

These entries of the content field contain the following information:

last_flag - last error return flag from internal function evaluations,

first_factorize - flag indicating whether the factorization has ever been performed,
symbolic - KLU storage structure for symbolic factorization components,

numeric - KLU storage structure for numeric factorization components,

common - storage structure for common KLU solver components,

klu_solver — pointer to the appropriate KLU solver function (depending on whether it is using a CSR
or CSC sparse matrix).

The SUNLINSOL_KLU module is a SUNLINSOL wrapper for the KLU sparse matrix factorization and
solver library written by Tim Davis [1, 11]. In order to use the SUNLINSOL_KLU interface to KLU,
it is assumed that KLU has been installed on the system prior to installation of SUNDIALS, and that
SUNDIALS has been configured appropriately to link with KLU (see Appendix A for details). Addi-
tionally, this wrapper only supports double-precision calculations, and therefore cannot be compiled
if SUNDIALS is configured to have realtype set to either extended or single (see Section 4.2). Since
the KLU library supports both 32-bit and 64-bit integers, this interface will be compiled for either of
the available sunindextype options.

The KLU library has a symbolic factorization routine that computes the permutation of the linear
system matrix to block triangular form and the permutations that will pre-order the diagonal blocks
(the only ones that need to be factored) to reduce fill-in (using AMD, COLAMD, CHOLAMD, natural,
or an ordering given by the user). Of these ordering choices, the default value in the SUNLINSOL_KLU
module is the COLAMD ordering.

KLU breaks the factorization into two separate parts. The first is a symbolic factorization and the
second is a numeric factorization that returns the factored matrix along with final pivot information.
KLU also has a refactor routine that can be called instead of the numeric factorization. This routine
will reuse the pivot information. This routine also returns diagnostic information that a user can
examine to determine if numerical stability is being lost and a full numerical factorization should be
done instead of the refactor.

Since the linear systems that arise within the context of SUNDIALS calculations will typically
have identical sparsity patterns, the SUNLINSOL_KLU module is constructed to perform the following
operations:

e The first time that the “setup” routine is called, it performs the symbolic factorization, followed
by an initial numerical factorization.

e On subsequent calls to the “setup” routine, it calls the appropriate KLU “refactor” routine,
followed by estimates of the numerical conditioning using the relevant “rcond”, and if necessary
“condest”, routine(s). If these estimates of the condition number are larger than e~2/3 (where
¢ is the double-precision unit roundoff), then a new factorization is performed.

e The module includes the routine SUNKLUReInit, that can be called by the user to force a full or
partial refactorization at the next “setup” call.
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e The “solve” call performs pivoting and forward and backward substitution using the stored KLU
data structures. We note that in this solve KLU operates on the native data arrays for the
right-hand side and solution vectors, without requiring costly data copies.

The header file to include when using this module is sunlinsol/sunlinsol_klu.h. The installed
module library to link to is 1ibsundials_sunlinsolklu. 1%b where . 1%b is typically .so for shared
libraries and .a for static libraries.

The SUNLINSOL_KLU module defines implementations of all “direct” linear solver operations listed in
Table 9.2:

e SUNLinSolGetType KLU

e SUNLinSolInitialize KLU — this sets the first_factorize flag to 1, forcing both symbolic
and numerical factorizations on the subsequent “setup” call.

e SUNLinSolSetup_KLU — this performs either a LU factorization or refactorization of the input
matrix.

e SUNLinSolSolve KLU — this calls the appropriate KLU solve routine to utilize the LU factors to
solve the linear system.

e SUNLinSolLastFlag KLU

e SUNLinSolSpace KLU — this only returns information for the storage within the solver interface,
i.e. storage for the integers last_flag and first_factorize. For additional space requirements,
see the KLU documentation.

e SUNLinSolFree KLU
The module SUNLINSOL_KLU provides the following additional user-callable routines:

e SUNKLU

This constructor function creates and allocates memory for a SUNLINSOL_KLU object. Its argu-
ments are an NVECTOR and SUNMATRIX, that it uses to determine the linear system size and to
assess compatibility with the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent NVECTOR
and SUNMATRIX implementations. These are currently limited to the SUNMATRIX_SPARSE matrix
type (using either CSR or CSC storage formats) and the NVECTOR_SERIAL, NVECTOR_OPENMP,
and NVECTOR_PTHREADS vector types. As additional compatible matrix and vector implemen-
tations are added to SUNDIALS, these will be included within this compatibility check.

If either A or y are incompatible then this routine will return NULL.

SUNLinearSolver SUNKLU(N_Vector y, SUNMatrix A);

e SUNKLUReInit

This function reinitializes memory and flags for a new factorization (symbolic and numeric) to be
conducted at the next solver setup call. This routine is useful in the cases where the number of
nonzeroes has changed or if the structure of the linear system has changed which would require
a new symbolic (and numeric factorization).

The reinit_type argument governs the level of reinitialization. The allowed values are:

— SUNKLU_REINIT FULL — The Jacobian matrix will be destroyed and a new one will be allo-
cated based on the nnz value passed to this call. New symbolic and numeric factorizations
will be completed at the next solver setup.

— SUNKLU_REINIT PARTIAL — Only symbolic and numeric factorizations will be completed.
It is assumed that the Jacobian size has not exceeded the size of nnz given in the sparse
matrix provided to the original constructor routine (or the previous SUNKLUReInit call).
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This routine assumes no other changes to solver use are necessary.

The return values from this function are SUNLS_MEM_NULL (either S or A are NULL), SUNLS_ILL_INPUT
(A does not have type SUNMATRIX_SPARSE or reinit_type is invalid), SUNLS_MEM_FAIL (realloca-
tion of the sparse matrix failed) or SUNLS_SUCCESS.

int SUNKLUReInit(SUNLinearSolver S, SUNMatrix A,
sunindextype nnz, int reinit_type);

o SUNKLUSetOrdering

This function sets the ordering used by KLU for reducing fill in the linear solve. Options for
ordering_choice are:

0 AMD,
1 COLAMD, and

2 the natural ordering.

The default is 1 for COLAMD.

The return values from this function are SUNLS_MEM_NULL (S is NULL), SUNLS_ILL_INPUT (invalid
ordering_choice), or SUNLS_SUCCESS.

int SUNKLUSetOrdering(SUNLinearSolver S, int ordering_choice);

For solvers that include a Fortran interface module, the SUNLINSOL_KLU module also includes the
Fortran-callable function FSUNKLUInit(code, ier) to initialize this SUNLINSOL_KLU module for a
given SUNDIALS solver. Here code is an integer input solver id (1 for CVODE, 2 for IDA, 3 for KINSOL,
4 for ARKODE); ier is an error return flag equal to 0 for success and -1 for failure. Both code and
ier are declared to match C type int. This routine must be called after both the NVECTOR and
SUNMATRIX objects have been initialized. Additionally, when using ARKODE with a non-identity mass
matrix, the Fortran-callable function FSUNMassKLUInit (ier) initializes this SUNLINSOL_KLU module
for solving mass matrix linear systems.

The SUNKLUReInit and SUNKLUSetOrdering routines also support Fortran interfaces for the system
and mass matrix solvers:

e FSUNKLUReInit(code, NNZ, reinit_type, ier) —NNZ should be commensurate with a C long
int and reinit_type should be commensurate with a C int (1 = ‘FULL’, 2 = ‘PARTIAL’)

e FSUNMassKLUReInit(NNZ, reinit_type, ier)

e FSUNKLUSetOrdering(code, ordering, ier) — ordering should be commensurate with a C
int

e FSUNMassKLUSetOrdering(ordering, ier)

9.8 The SUNLinearSolver_SuperLUMT implementation

The SUPERLUMT implementation of the SUNLINSOL module provided with SUNDIALS,
SUNLINSOL_SUPERLUMT, is designed to be used with the corresponding SUNMATRIX_SPARSE matrix
type, and one of the serial or shared-memory NVECTOR implementations (NVECTOR_SERIAL, NVEC-
TOR_OPENMP, or NVECTOR_PTHREADS). While these are compatible, it is not recommended to use a
threaded vector module with SUNLINSOL_SUPERLUMT unless it is the NVECTOR_OPENMP module and
the SUPERLUMT library has also been compiled with OpenMP. The SUNLINSOL_SUPERLUMT module
defines the content field of a SUNLinearSolver to be the following structure:
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struct _SUNLinearSolverContent_SuperLUMT {

long int last_flag;

int first_factorize;
SuperMatrix *A, *AC, *L, *U, *B;
Gstat_t *Gstat;

sunindextype *perm_r, *perm_c;
sunindextype N;

int num_threads;

realtype diag_pivot_thresh;

int ordering;

superlumt_options_t *options;
};

These entries of the content field contain the following information:
last_flag - last error return flag from internal function evaluations,
first_factorize - flag indicating whether the factorization has ever been performed,
A, AC, L, U, B - SuperMatrix pointers used in solve,

Gstat - GStat_t object used in solve,

perm_r, perm_c - permutation arrays used in solve,

N - size of the linear system,

num _threads - number of OpenMP /Pthreads threads to use,
diag_pivot_thresh - threshold on diagonal pivoting,

ordering - flag for which reordering algorithm to use,

options - pointer to SUPERLUMT options structure.

The SUNLINSOL_SUPERLUMT module is a SUNLINSOL wrapper for the SUPERLUMT sparse matrix
factorization and solver library written by X. Sherry Li [2, 27, 12]. The package performs matrix fac-
torization using threads to enhance efficiency in shared memory parallel environments. It should be
noted that threads are only used in the factorization step. In order to use the SUNLINSOL_SUPERLUMT
interface to SUPERLUMT, it is assumed that SUPERLUMT has been installed on the system prior to in-
stallation of SUNDIALS, and that SUNDIALS has been configured appropriately to link with SUPERLUMT
(see Appendix A for details). Additionally, this wrapper only supports single- and double-precision
calculations, and therefore cannot be compiled if SUNDIALS is configured to have realtype set to
extended (see Section 4.2). Moreover, since the SUPERLUMT library may be installed to support
either 32-bit or 64-bit integers, it is assumed that the SUPERLUMT library is installed using the same
integer precision as the SUNDIALS sunindextype option.

The SUPERLUMT library has a symbolic factorization routine that computes the permutation of
the linear system matrix to reduce fill-in on subsequent LU factorizations (using COLAMD, minimal
degree ordering on AT x A, minimal degree ordering on A7 + A, or natural ordering). Of these ordering
choices, the default value in the SUNLINSOL_SUPERLUMT module is the COLAMD ordering.

Since the linear systems that arise within the context of SUNDIALS calculations will typically have
identical sparsity patterns, the SUNLINSOL_SUPERLUMT module is constructed to perform the following
operations:

e The first time that the “setup” routine is called, it performs the symbolic factorization, followed
by an initial numerical factorization.

e On subsequent calls to the “setup” routine, it skips the symbolic factorization, and only refactors
the input matrix.
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The “solve” call performs pivoting and forward and backward substitution using the stored
SUPERLUMT data structures. We note that in this solve SUPERLUMT operates on the native data
arrays for the right-hand side and solution vectors, without requiring costly data copies.

The header file to include when using this module is sunlinsol/sunlinsol_superlumt.h. The in-
stalled module library to link to is 1libsundials_sunlinsolsuperlumt.l4b where .1b is typically
.so for shared libraries and .a for static libraries.

The SUNLINSOL_SUPERLUMT module defines implementations of all “direct” linear solver operations
listed in Table 9.2:

SUNLinSolGetType_SuperLUMT

SUNLinSolInitialize_SuperLUMT — this sets the first_factorize flag to 1 and resets the
internal SUPERLUMT statistics variables.

SUNLinSolSetup_SuperLUMT — this performs either a LU factorization or refactorization of the
input matrix.

SUNLinSolSolve_SuperLUMT — this calls the appropriate SUPERLUMT solve routine to utilize the
LU factors to solve the linear system.

SUNLinSolLastFlag SuperLUMT

SUNLinSolSpace_SuperLUMT — this only returns information for the storage within the solver
interface, i.e. storage for the integers last _flag and first_factorize. For additional space
requirements, see the SUPERLUMT documentation.

SUNLinSolFree_SuperLUMT

The module SUNLINSOL_SUPERLUMT provides the following additional user-callable routines:

SUNSuperLUMT

This constructor function creates and allocates memory for a SUNLINSOL_SUPERLUMT object.
Its arguments are an NVECTOR, a SUNMATRIX, and a desired number of threads (OpenMP or
Pthreads, depending on how SUPERLUMT was installed) to use during the factorization steps.
This routine analyzes the input matrix and vector to determine the linear system size and to
assess compatibility with the SUPERLUMT library.

This routine will perform consistency checks to ensure that it is called with consistent NVECTOR
and SUNMATRIX implementations. These are currently limited to the SUNMATRIX_SPARSE matrix
type (using either CSR or CSC storage formats) and the NVECTOR_SERIAL, NVECTOR_OPENMP,
and NVECTOR_PTHREADS vector types. As additional compatible matrix and vector implemen-
tations are added to SUNDIALS, these will be included within this compatibility check.

If either A or y are incompatible then this routine will return NULL. The num_threads argument
is not checked and is passed directly to SUPERLUMT routines.

SUNLinearSolver SUNSuperLUMT(N_Vector y, SUNMatrix A, int num_threads);

SUNSuperLUMTSetOrdering
This function sets the ordering used by SUPERLUMT for reducing fill in the linear solve. Options
for ordering_choice are:

0 natural ordering

1 minimal degree ordering on AT A

2 minimal degree ordering on AT + A

3 COLAMD ordering for unsymmetric matrices
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The default is 3 for COLAMD.

The return values from this function are SUNLS_MEM NULL (S is NULL), SUNLS_ILL_INPUT (invalid
ordering choice), or SUNLS_SUCCESS.

int SUNSuperLUMTSetOrdering(SUNLinearSolver S, int ordering_choice);

For solvers that include a Fortran interface module, the SUNLINSOL_SUPERLUMT module also includes
the Fortran-callable function FSUNSuperLUMTInit (code, num threads, ier) to initialize this SUN-
LINSOL_SUPERLUMT module for a given SUNDIALS solver. Here code is an integer input solver id (1
for cVODE, 2 for IDA, 3 for KINSOL, 4 for ARKODE); num_threads is the desired number of Open-
MP/Pthreads threads to use in the factorization; ier is an error return flag equal to 0 for suc-
cess and -1 for failure. All of these arguments should be declared so as to match C type int.
This routine must be called after both the NVECTOR and SUNMATRIX objects have been initial-
ized. Additionally, when using ARKODE with a non-identity mass matrix, the Fortran-callable func-
tion FSUNMassSuperLUMTInit (num_threads, ier) initializes this SUNLINSOL_SUPERLUMT module for
solving mass matrix linear systems.

The SUNSuperLUMTSetOrdering routine also supports Fortran interfaces for the system and mass
matrix solvers:

e FSUNSuperLUMTSetOrdering(code, ordering, ier) —ordering should be commensurate with
a C int

e FSUNMassSuperLUMTSetOrdering(ordering, ier)

9.9 The SUNLinearSolver SPGMR implementation

The sPGMR (Scaled, Preconditioned, Generalized Minimum Residual [33]) implementation of the
SUNLINSOL module provided with SUNDIALS, SUNLINSOL_SPGMR, is an iterative linear solver that is
designed to be compatible with any NVECTOR implementation (serial, threaded, parallel, and user-
supplied) that supports a minimal subset of operations (N_-VClone, N_VDotProd, N_.VScale, N_-VLinearSum,
N_VProd, N_VConst, N_VDiv, and N_VDestroy).

The SUNLINSOL_SPGMR module defines the content field of a SUNLinearSolver to be the following
structure:

struct _SUNLinearSolverContent_SPGMR {
int maxl;
int pretype;
int gstype;
int max_restarts;
int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector si;
N_Vector s2;
N_Vector *V;
realtype **Hes;
realtype *givens;
N_Vector xcor;
realtype *yg;
N_Vector vtemp;
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These entries of the content field contain the following information:
max] - number of GMRES basis vectors to use (default is 5),
pretype - flag for type of preconditioning to employ (default is none),
gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),
max_restarts - number of GMRES restarts to allow (default is 0),
numiters - number of iterations from the most-recent solve,
resnorm - final linear residual norm from the most-recent solve,
last_flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

V - the array of Krylov basis vectors v1, ..., Unaxi+1, stored in V[0], ..., V[max1l]. Each v; is a vector
of type NVECTOR.,

Hes - the (maxl + 1) x maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th element is
given by Hes[i] [].,

givens - alength 2*max1 array which represents the Givens rotation matrices that arise in the GMRES

1
1
algorithm. These matrices are Fy, Fi,...,F;, where F; = gl ;Sl ,
2 (2
1

L 1_
are represented in the givens vector as givens[0] = ¢y, givens[1] = sp, givens[2] = ¢y,
givens[3] = sy, ...givens[2j] = ¢;, givens[2j+1] = s;.,

xcor - a vector which holds the scaled, preconditioned correction to the initial guess,
vg - a length (max1+1) array of realtype values used to hold “short” vectors (e.g. y and g),
vtemp - temporary vector storage.

This solver is constructed to perform the following operations:

e During construction, the xcor and vtemp arrays are cloned from a template NVECTOR that is
input, and default solver parameters are set.

e User-facing “set” routines may be called to modify default solver parameters.

e Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLINSOL_SPGMR
to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.
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In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg )

In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
SUNDIALS solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

In the “solve” call, the GMRES iteration is performed. This will include scaling, preconditioning,
and restarts if those options have been supplied.

The header file to include when using this module is sunlinsol/sunlinsol _spgmr.h. The SUNLIN-

SOL_SPGMR module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunlinsolspgmr module library.

The SUNLINSOL_SPGMR module defines implementations of all “iterative” linear solver operations listed

in Table 9.2:

SUNLinSolGetType_SPGMR
SUNLinSolInitialize SPGMR
SUNLinSolSetATimes_SPGMR
SUNLinSolSetPreconditioner SPGMR
SUNLinSolSetScalingVectors_SPGMR
SUNLinSolSetup_SPGMR
SUNLinSolSolve_SPGMR
SUNLinSolNumIters_SPGMR
SUNLinSolResNorm_SPGMR
SUNLinSolResid_SPGMR
SUNLinSolLastFlag_SPGMR
SUNLinSolSpace_SPGMR

SUNLinSolFree_SPGMR

The module SUNLINSOL_SPGMR provides the following additional user-callable routines:

SUNSPGMR

This constructor function creates and allocates memory for a SPGMR SUNLinearSolver. Its
arguments are an NVECTOR, the desired type of preconditioning, and the number of Krylov
basis vectors to use.

This routine will perform consistency checks to ensure that it is called with a consistent NVECTOR
implementation (i.e. that it supplies the requisite vector operations). If y is incompatible, then
this routine will return NULL.

A max1 argument that is < 0 will result in the default value (5).

Allowable inputs for pretype are PREC_NONE (0), PREC_LEFT (1), PREC_RIGHT (2) and PREC_BOTH
(3); any other integer input will result in the default (no preconditioning). We note that some
SUNDIALS solvers are designed to only work with left preconditioning (IDA and IDAS) and others
with only right preconditioning (KINSOL). While it is possible to configure a SUNLINSOL_SPGMR
object to use any of the preconditioning options with these solvers, this use mode is not supported
and may result in inferior performance.

SUNLinearSolver SUNSPGMR(N_Vector y, int pretype, int maxl);
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e SUNSPGMRSetPrecType

This function updates the type of preconditioning to use. Supported values are PREC_NONE (0),
PREC_LEFT (1), PREC_RIGHT (2) and PREC_BOTH (3).

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal pretype), SUNLS_MEM_NULL
(S is NULL) or SUNLS_SUCCESS.

int SUNSPGMRSetPrecType(SUNLinearSolver S, int pretype);

e SUNSPGMRSetGSType

This function sets the type of Gram-Schmidt orthogonalization to use. Supported values are
MODIFIED GS (1) and CLASSICAL GS (2). Any other integer input will result in a failure, returning
error code SUNLS_ILL_INPUT.

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal gstype), SUNLS_MEM_NULL
(8 is NULL) or SUNLS_SUCCESS.

int SUNSPGMRSetGSType (SUNLinearSolver S, int gstype);

e SUNSPGMRSetMaxRestarts

This function sets the number of GMRES restarts to allow. A negative input will result in the
default of 0.

This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.
int SUNSPGMRSetMaxRestarts(SUNLinearSolver S, int maxrs);

For solvers that include a Fortran interface module, the SUNLINSOL_SPGMR module also includes
the Fortran-callable function FSUNSPGMRInit (code, pretype, maxl, ier) to initialize this SUNLIN-
SOL_SPGMR module for a given SUNDIALS solver. Here code is an integer input solver id (1 for CVODE,
2 for IDA, 3 for KINSOL, 4 for ARKODE); pretype and max1 are the same as for the C function SUNSPGMR;
ier is an error return flag equal to 0 for success and -1 for failure. All of these input arguments should
be declared so as to match C type int. This routine must be called after the NVECTOR object has been
initialized. Additionally, when using ARKODE with a non-identity mass matrix, the Fortran-callable
function FSUNMassSPGMRInit(pretype, maxl, ier) initializes this SUNLINSOL_SPGMR module for
solving mass matrix linear systems.

The SUNSPGMRSetPrecType, SUNSPGMRSetGSType and SUNSPGMRSetMaxRestarts routines also sup-
port Fortran interfaces for the system and mass matrix solvers (all arguments should be commensurate
with a C int):

e FSUNSPGMRSetGSType(code, gstype, ier)

e FSUNMassSPGMRSetGSType(gstype, ier)

FSUNSPGMRSetPrecType(code, pretype, ier)

FSUNMassSPGMRSetPrecType (pretype, ier)
e FSUNSPGMRSetMaxRS(code, maxrs, ier)

FSUNMassSPGMRSetMaxRS (maxrs, ier)

9.10 The SUNLinearSolver SPFGMR implementation

The SPFGMR (Scaled, Preconditioned, Flexible, Generalized Minimum Residual [32]) implementation
of the SUNLINSOL module provided with SUNDIALS, SUNLINSOL_SPFGMR, is an iterative linear solver
that is designed to be compatible with any NVECTOR implementation (serial, threaded, parallel,
and user-supplied) that supports a minimal subset of operations (N_VClone, N_.VDotProd, N_VScale,
N_VLinearSum, N_VProd, N_VConst, N_.VDiv, and N_VDestroy). Unlike the other Krylov iterative linear
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solvers supplied with SUNDIALS, FGMRES is specifically designed to work with a changing precondi-
tioner (e.g. from an iterative method).

The SUNLINSOL_SPFGMR module defines the content field of a SUNLinearSolver to be the following
structure:

struct _SUNLinearSolverContent_SPFGMR {
int maxl;
int pretype;
int gstype;
int max_restarts;
int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
voidx ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector si;
N_Vector s2;
N_Vector *V;
N_Vector *Z;
realtype **Hes;
realtype *givens;
N_Vector xcor;
realtype *yg;
N_Vector vtemp;

3

These entries of the content field contain the following information:
maxl - number of FGMRES basis vectors to use (default is 5),
pretype - flag for use of preconditioning (default is none),

gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),
max_restarts - number of FGMRES restarts to allow (default is 0),
numiters - number of iterations from the most-recent solve,
resnorm - final linear residual norm from the most-recent solve,
last_flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

V - the array of Krylov basis vectors vy, ..., Ugax1+1, stored in V[0], ..., V[max1]. Each v; is a vector
of type NVECTOR.,
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Z - the array of preconditioned Krylov basis vectors zi, ..., Zpax1+1, stored in Z[0], ..., Z[max1].
Each z; is a vector of type NVECTOR.,

Hes - the (maxl 4 1) x maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th element is
given by Hes[i] [j].,

givens - a length 2*max1 array which represents the Givens rotation matrices that arise in the FGM-

1
1
RES algorithm. These matrices are Fy, F1,. .., F};, where F; = ? _CSZ ,
K3 T
1

- 1_
are represented in the givens vector as givens[0] = ¢y, givens[1] = sg, givens[2] = ¢y,
givens[3] = sq,...givens[2j] = c¢j, givens[2j+1] = s;.,

xcor - a vector which holds the scaled, preconditioned correction to the initial guess,
yvg - a length (max1+1) array of realtype values used to hold “short” vectors (e.g. y and g),
vtemp - temporary vector storage.

This solver is constructed to perform the following operations:

e During construction, the xcor and vtemp arrays are cloned from a template NVECTOR that is
input, and default solver parameters are set.

e User-facing “set” routines may be called to modify default solver parameters.

e Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLINSOL_SPFGMR
to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

e In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg )

e In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
SUNDIALS solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

e In the “solve” call, the FGMRES iteration is performed. This will include scaling, precondition-
ing, and restarts if those options have been supplied.

The header file to include when using this module is sunlinsol/sunlinsol_spfgmr.h. The SUNLIN-

SOL_SPFGMR module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunlinsolspfgmr module library.

The SUNLINSOL_SPFGMR module defines implementations of all “iterative” linear solver operations

listed in Table 9.2:

e SUNLinSolGetType_SPFGMR

SUNLinSolInitialize_SPFGMR

SUNLinSolSetATimes_SPFGMR

SUNLinSolSetPreconditioner_SPFGMR

SUNLinSolSetScalingVectors_SPFGMR

SUNLinSolSetup_SPFGMR
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e SUNLinSolSolve_SPFGMR
e SUNLinSolNumIters_SPFGMR
e SUNLinSolResNorm_SPFGMR
e SUNLinSolResid_SPFGMR
e SUNLinSolLastFlag SPFGMR
e SUNLinSolSpace_SPFGMR
e SUNLinSolFree_SPFGMR
The module SUNLINSOL_SPFGMR, provides the following additional user-callable routines:

e SUNSPFGMR

This constructor function creates and allocates memory for a SPFGMR SUNLinearSolver. Its
arguments are an NVECTOR, a flag indicating to use preconditioning, and the number of Krylov
basis vectors to use.

This routine will perform consistency checks to ensure that it is called with a consistent NVECTOR
implementation (i.e. that it supplies the requisite vector operations). If y is incompatible, then
this routine will return NULL.

A max1 argument that is < 0 will result in the default value (5).

Since the FGMRES algorithm is designed to only support right preconditioning, then any of the
pretype inputs PREC_LEFT (1), PREC_RIGHT (2), or PREC_BOTH (3) will result in use of PREC_RIGHT;
any other integer input will result in the default (no preconditioning). We note that some
SUNDIALS solvers are designed to only work with left preconditioning (IDA and 1DAS). While
it is possible to use a right-preconditioned SUNLINSOL_SPFGMR. object for these packages, this
use mode is not supported and may result in inferior performance.

SUNLinearSolver SUNSPFGMR(N_Vector y, int pretype, int maxl);

e SUNSPFGMRSetPrecType

This function updates the flag indicating use of preconditioning. Since the FGMRES algorithm
is designed to only support right preconditioning, then any of the pretype inputs PREC_LEFT
(1), PREC_RIGHT (2), or PREC_BOTH (3) will result in use of PREC_RIGHT; any other integer input
will result in the default (no preconditioning).

This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.
int SUNSPFGMRSetPrecType(SUNLinearSolver S, int pretype);

e SUNSPFGMRSetGSType

This function sets the type of Gram-Schmidt orthogonalization to use. Supported values are
MODIFIED GS (1) and CLASSICAL_GS (2). Any other integer input will result in a failure, returning
error code SUNLS_ILL_INPUT.

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal gstype), SUNLS_MEM_NULL
(S is NULL), or SUNLS_SUCCESS.

int SUNSPFGMRSetGSType(SUNLinearSolver S, int gstype);

e SUNSPFGMRSetMaxRestarts

This function sets the number of FGMRES restarts to allow. A negative input will result in the
default of 0.

This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.
int SUNSPFGMRSetMaxRestarts(SUNLinearSolver S, int maxrs);
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For solvers that include a Fortran interface module, the SUNLINSOL_SPFGMR module also includes
the Fortran-callable function FSUNSPFGMRInit(code, pretype, maxl, ier) to initialize this SUN-
LINSOL_SPFGMR module for a given SUNDIALS solver. Here code is an integer input solver id (1 for
CVODE, 2 for IDA, 3 for KINSOL, 4 for ARKODE); pretype and maxl are the same as for the C func-
tion SUNSPFGMR; ier is an error return flag equal to 0 for success and -1 for failure. All of these
input arguments should be declared so as to match C type int. This routine must be called af-
ter the NVECTOR object has been initialized. Additionally, when using ARKODE with a non-identity
mass matrix, the Fortran-callable function FSUNMassSPFGMRInit(pretype, maxl, ier) initializes
this SUNLINSOL_SPFGMR module for solving mass matrix linear systems.

The SUNSPFGMRSetPrecType, SUNSPFGMRSetGSType, and SUNSPFGMRSetMaxRestarts routines also
support Fortran interfaces for the system and mass matrix solvers (all arguments should be commen-
surate with a C int):

e FSUNSPFGMRSetGSType(code, gstype, ier)

FSUNMassSPFGMRSetGSType (gstype, ier)

FSUNSPFGMRSetPrecType(code, pretype, ier)

e FSUNMassSPFGMRSetPrecType (pretype, ier)

FSUNSPFGMRSetMaxRS(code, maxrs, ier)

FSUNMassSPFGMRSetMaxRS (maxrs, ier)

9.11 The SUNLinearSolver SPBCGS implementation

The spBCGS (Scaled, Preconditioned, Bi-Conjugate Gradient, Stabilized [36]) implementation of
the SUNLINSOL module provided with SUNDIALS, SUNLINSOL_SPBCGS, is an iterative linear solver
that is designed to be compatible with any NVECTOR implementation (serial, threaded, parallel,
and user-supplied) that supports a minimal subset of operations (N_VClone, N_VDotProd, N_VScale,
N_VLinearSum, N_VProd, N_VDiv, and N_VDestroy). Unlike the SPGMR and SPFGMR algorithms, SP-
BCGCS requires a fixed amount of memory that does not increase with the number of allowed iterations.

The SUNLINSOL_SPBCGS module defines the content field of a SUNLinearSolver to be the following
structure:

struct _SUNLinearSolverContent_SPBCGS {
int maxl;
int pretype;
int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector si;
N_Vector s2;
N_Vector r;
N_Vector r_star;
N_Vector p;
N_Vector q;
N_Vector u;
N_Vector Ap;
N_Vector vtemp;
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These entries of the content field contain the following information:

max] - number of SPBCGS iterations to allow (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last_flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

r - a NVECTOR which holds the current scaled, preconditioned linear system residual,

r_star - a NVECTOR which holds the initial scaled, preconditioned linear system residual,

P, 95 u, Ap, vtemp - NVECTORs used for workspace by the SPBCGS algorithm.
This solver is constructed to perform the following operations:

e During construction all NVECTOR solver data is allocated, with vectors cloned from a template
NVECTOR that is input, and default solver parameters are set.

e User-facing “set” routines may be called to modify default solver parameters.

e Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLINSOL_SPBCGS
to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

e In the “initialize” call, the solver parameters are checked for validity.

e In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
SUNDIALS solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

e In the “solve” call the SPBCGS iteration is performed. This will include scaling and precondi-
tioning if those options have been supplied.

The header file to include when using this module is sunlinsol/sunlinsol_spbcgs.h. The SUNLIN-

SOL_SPBCGS module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunlinsolspbcgs module library.

The SUNLINSOL_SPBCGS module defines implementations of all “iterative” linear solver operations

listed in Table 9.2:

e SUNLinSolGetType_SPBCGS
e SUNLinSolInitialize_SPBCGS

SUNLinSolSetATimes_SPBCGS

SUNLinSolSetPreconditioner SPBCGS

SUNLinSolSetScalingVectors_SPBCGS
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e SUNLinSolSetup_SPBCGS
e SUNLinSolSolve_SPBCGS
e SUNLinSolNumIters_SPBCGS
e SUNLinSolResNorm_SPBCGS
e SUNLinSolResid_SPBCGS
e SUNLinSolLastFlag SPBCGS
e SUNLinSolSpace_SPBCGS
e SUNLinSolFree_SPBCGS
The module SUNLINSOL_SPBCGS provides the following additional user-callable routines:

e SUNSPBCGS

This constructor function creates and allocates memory for a SPBCGS SUNLinearSolver. Its
arguments are an NVECTOR, the desired type of preconditioning, and the number of linear
iterations to allow.

This routine will perform consistency checks to ensure that it is called with a consistent NVECTOR
implementation (i.e. that it supplies the requisite vector operations). If y is incompatible, then
this routine will return NULL.

A max1 argument that is < 0 will result in the default value (5).

Allowable inputs for pretype are PREC_NONE (0), PREC_LEFT (1), PREC_RIGHT (2) and PREC_BOTH
(3); any other integer input will result in the default (no preconditioning). We note that some
SUNDIALS solvers are designed to only work with left preconditioning (IDA and IDAS) and others
with only right preconditioning (KINSOL). While it is possible to configure a SUNLINSOL_SPBCGS
object to use any of the preconditioning options with these solvers, this use mode is not supported
and may result in inferior performance.

SUNLinearSolver SUNSPBCGS(N_Vector y, int pretype, int maxl);

e SUNSPBCGSSetPrecType

This function updates the type of preconditioning to use. Supported values are PREC_NONE (0),
PREC_LEFT (1), PREC_RIGHT (2), and PREC_BOTH (3).

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal pretype), SUNLS_MEM_NULL
(S is NULL), or SUNLS_SUCCESS.

int SUNSPBCGSSetPrecType (SUNLinearSolver S, int pretype);

e SUNSPBCGSSetMaxl
This function updates the number of linear solver iterations to allow.
A max1 argument that is < 0 will result in the default value (5).
This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.
int SUNSPBCGSSetMaxl(SUNLinearSolver S, int maxl);

For solvers that include a Fortran interface module, the SUNLINSOL_SPBCGS module also includes
the Fortran-callable function FSUNSPBCGSInit(code, pretype, maxl, ier) to initialize this SUN-
LINSOL_SPBCGS module for a given SUNDIALS solver. Here code is an integer input solver id (1 for
CVODE, 2 for DA, 3 for KINSOL, 4 for ARKODE); pretype and maxl are the same as for the C func-
tion SUNSPBCGS; ier is an error return flag equal to 0 for success and -1 for failure. All of these
input arguments should be declared so as to match C type int. This routine must be called af-
ter the NVECTOR object has been initialized. Additionally, when using ARKODE with a non-identity
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mass matrix, the Fortran-callable function FSUNMassSPBCGSInit (pretype, maxl, ier) initializes
this SUNLINSOL_SPBCGS module for solving mass matrix linear systems.

The SUNSPBCGSSetPrecType and SUNSPBCGSSetMax1 routines also support Fortran interfaces for
the system and mass matrix solvers (all arguments should be commensurate with a C int):

e FSUNSPBCGSSetPrecType(code, pretype, ier)
e FSUNMassSPBCGSSetPrecType (pretype, ier)
e FSUNSPBCGSSetMaxl(code, maxl, ier)

e FSUNMassSPBCGSSetMaxl (maxl, ier)

9.12 The SUNLinearSolver SPTFQMR implementation

The SPTFQMR (Scaled, Preconditioned, Transpose-Free Quasi-Minimum Residual [14]) implementa-
tion of the SUNLINSOL module provided with SUNDIALS, SUNLINSOL_SPTFQMR, is an iterative linear
solver that is designed to be compatible with any NVECTOR implementation (serial, threaded, parallel,
and user-supplied) that supports a minimal subset of operations (N_VClone, N_VDotProd, N_VScale,
N_VLinearSum, N_.VProd, N_VConst, N_.VDiv, and N_VDestroy). Unlike the SPGMR and SPFGMR al-
gorithms, SPTFQMR requires a fixed amount of memory that does not increase with the number of
allowed iterations.

The SUNLINSOL_SPTFQMR module defines the content field of a SUNLinearSolver to be the fol-
lowing structure:

struct _SUNLinearSolverContent_SPTFQMR {
int maxl;
int pretype;
int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
voidx PData;
N_Vector si;
N_Vector s2;
N_Vector r_star;
N_Vector q;
N_Vector d;
N_Vector v;
N_Vector p;
N_Vector *r;
N_Vector u;
N_Vector vtempl;
N_Vector vtemp2;
N_Vector vtemp3;

};

These entries of the content field contain the following information:
max]l - number of TFQMR iterations to allow (default is 5),
pretype - flag for type of preconditioning to employ (default is none),

numiters - number of iterations from the most-recent solve,
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resnorm - final linear residual norm from the most-recent solve,
last_flag - last error return flag from an internal function,
ATimes - function pointer to perform Av product,
ATData - pointer to structure for ATimes,
Psetup - function pointer to preconditioner setup routine,
Psolve - function pointer to preconditioner solve routine,
PData - pointer to structure for Psetup and Psolve,
s1, s2 - vector pointers for supplied scaling matrices (default is NULL),
r_star - a NVECTOR which holds the initial scaled, preconditioned linear system residual,
q, d, v, p, u - NVECTORSs used for workspace by the SPTFQMR algorithm,
r - array of two NVECTORs used for workspace within the SPTFQMR, algorithm,
vtempl, vtemp2, vtemp3 - temporary vector storage.
This solver is constructed to perform the following operations:

e During construction all NVECTOR solver data is allocated, with vectors cloned from a template
NVECTOR that is input, and default solver parameters are set.

e User-facing “set” routines may be called to modify default solver parameters.

e Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLINSOL_SPTFQMR
to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

e In the “initialize” call, the solver parameters are checked for validity.

e In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
SUNDIALS solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

e In the “solve” call the TFQMR iteration is performed. This will include scaling and precondi-
tioning if those options have been supplied.

The header file to include when using this module is sunlinsol/sunlinsol_sptfqmr.h. The SUN-

LINSOL_SPTFQMR module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunlinsolsptfqmr module library.

The SUNLINSOL_SPTFQMR module defines implementations of all “iterative” linear solver operations

listed in Table 9.2:

e SUNLinSolGetType_SPTFQMR

e SUNLinSolInitialize SPTFQMR

e SUNLinSolSetATimes_SPTFQMR

e SUNLinSolSetPreconditioner_SPTFQMR
e SUNLinSolSetScalingVectors_SPTFQMR
e SUNLinSolSetup_SPTFQMR

e SUNLinSolSolve_SPTFQMR

e SUNLinSolNumIters_SPTFQMR
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SUNLinSolResNorm_SPTFQMR
SUNLinSolResid_SPTFQMR
SUNLinSolLastFlag SPTFQMR
SUNLinSolSpace_SPTFQMR

SUNLinSolFree_SPTFQMR

The module SUNLINSOL_SPTFQMR. provides the following additional user-callable routines:

SUNSPTFQMR

This constructor function creates and allocates memory for a SPTFQMR SUNLinearSolver. Its
arguments are an NVECTOR, the desired type of preconditioning, and the number of linear
iterations to allow.

This routine will perform consistency checks to ensure that it is called with a consistent NVECTOR
implementation (i.e. that it supplies the requisite vector operations). If y is incompatible, then
this routine will return NULL.

A max1 argument that is < 0 will result in the default value (5).

Allowable inputs for pretype are PREC_NONE (0), PREC_LEFT (1), PREC_RIGHT (2) and PREC_BOTH
(3); any other integer input will result in the default (no preconditioning). We note that
some SUNDIALS solvers are designed to only work with left preconditioning (IDA and IDAS)
and others with only right preconditioning (KINsOL). While it is possible to configure a SUN-
LINSOL_SPTFQMR object to use any of the preconditioning options with these solvers, this use
mode is not supported and may result in inferior performance.

SUNLinearSolver SUNSPTFQMR(N_Vector y, int pretype, int maxl);

SUNSPTFQMRSetPrecType

This function updates the type of preconditioning to use. Supported values are PREC_NONE (0),
PREC_LEFT (1), PREC_RIGHT (2), and PREC_BOTH (3).

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal pretype), SUNLS_MEM NULL
(S is NULL), or SUNLS_SUCCESS.

int SUNSPTFQMRSetPrecType(SUNLinearSolver S, int pretype);

SUNSPTFQMRSetMax1

This function updates the number of linear solver iterations to allow.

A max1 argument that is < 0 will result in the default value (5).

This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.
int SUNSPTFQMRSetMaxl (SUNLinearSolver S, int maxl);

For solvers that include a Fortran interface module, the SUNLINSOL_SPTFQMR module also includes
the Fortran-callable function FSUNSPTFQMRInit (code, pretype, maxl, ier) to initialize this SUN-
LINSOL_SPTFQMR module for a given SUNDIALS solver. Here code is an integer input solver id (1
for cVODE, 2 for DA, 3 for KINSOL, 4 for ARKODE); pretype and maxl are the same as for the C
function SUNSPTFQMR; ier is an error return flag equal to O for success and -1 for failure. All of
these input arguments should be declared so as to match C type int. This routine must be called
after the NVECTOR object has been initialized. Additionally, when using ARKODE with a non-identity
mass matrix, the Fortran-callable function FSUNMassSPTFQMRInit (pretype, maxl, ier) initializes
this SUNLINSOL_SPTFQMR module for solving mass matrix linear systems.

The SUNSPTFQMRSetPrecType and SUNSPTFQMRSetMaxl routines also support Fortran interfaces
for the system and mass matrix solvers (all arguments should be commensurate with a C int):

FSUNSPTFQMRSetPrecType(code, pretype, ier)
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e FSUNMassSPTFQMRSetPrecType (pretype, ier)
e FSUNSPTFQMRSetMaxl (code, maxl, ier)

e FSUNMassSPTFQMRSetMaxl (maxl, ier)

9.13 The SUNLinearSolver PCG implementation

The pcG (Preconditioned Conjugate Gradient [15]) implementation of the SUNLINSOL module provided
with SUNDIALS, SUNLINSOL_PCG, is an iterative linear solver that is designed to be compatible with
any NVECTOR implementation (serial, threaded, parallel, and user-supplied) that supports a minimal
subset of operations (N_VClone, N_VDotProd, N_VScale, N_VLinearSum, N_VProd, and N_VDestroy).
Unlike the SPGMR and SPFGMR algorithms, PCG requires a fixed amount of memory that does not
increase with the number of allowed iterations.

Unlike all of the other iterative linear solvers supplied with SUNDIALS, PCG should only be used
on symmetric linear systems (e.g. mass matrix linear systems encountered in ARKODE). As a result,
the explanation of the role of scaling and preconditioning matrices given in general must be modified
in this scenario. The PCG algorithm solves a linear system Az = b where A is a symmetric (A7 = A),
real-valued matrix. Preconditioning is allowed, and is applied in a symmetric fashion on both the
right and left. Scaling is also allowed and is applied symmetrically. We denote the preconditioner and
scaling matrices as follows:

e P is the preconditioner (assumed symmetric),
e S is a diagonal matrix of scale factors.

The matrices A and P are not required explicitly; only routines that provide A and P! as operators
are required. The diagonal of the matrix S is held in a single NVECTOR, supplied by the user.
In this notation, PCG applies the underlying CG algorithm to the equivalent transformed system

Az = (9.3)

where

b=SP b, (9.4)

The scaling matrix must be chosen so that the vectors SP~'b and S~!Px have dimensionless com-
ponents.
The stopping test for the PCG iterations is on the L2 norm of the scaled preconditioned residual:

Ib— Azl < 6
ISP~ — SP Az, < §

|P~1b— P~ Az||s < §

where ||v]|s = VvT ST Sv, with an input tolerance 4.
The SUNLINSOL_PCG module defines the content field of a SUNLinearSolver to be the following
structure:

struct _SUNLinearSolverContent_PCG {
int maxl;
int pretype;
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int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector s;
N_Vector r;
N_Vector p;
N_Vector z;
N_Vector Ap;

};

These entries of the content field contain the following information:

max]l - number of PCG iterations to allow (default is 5),

pretype - flag for use of preconditioning (default is none),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last_flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s - vector pointer for supplied scaling matrix (default is NULL),

r - a NVECTOR which holds the preconditioned linear system residual,

P, z, Ap - NVECTORs used for workspace by the pCcG algorithm.
This solver is constructed to perform the following operations:

e During construction all NVECTOR solver data is allocated, with vectors cloned from a template
NVECTOR that is input, and default solver parameters are set.

e User-facing “set” routines may be called to modify default solver parameters.

e Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLINSOL_PCG
to supply the ATimes, PSetup, and Psolve function pointers and s scaling vector.

e In the “initialize” call, the solver parameters are checked for validity.

e In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
SUNDIALS solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

e In the “solve” call the PCG iteration is performed. This will include scaling and preconditioning
if those options have been supplied.
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The header file to include when using this module is sunlinsol/sunlinsol_pcg.h. The SUNLIN-

SOL_PCG module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunlinsolpcg module library.

The SUNLINSOL_PCG module defines implementations of all “iterative” linear solver operations listed

in Table 9.2:

e SUNLinSolGetType_PCG

e SUNLinSolInitialize PCG

e SUNLinSolSetATimes_PCG

e SUNLinSolSetPreconditioner_PCG

e SUNLinSolSetScalingVectors PCG — since PCG only supports symmetric scaling, the second
NVECTOR argument to this function is ignored

e SUNLinSolSetup_PCG

e SUNLinSolSolve_PCG

e SUNLinSolNumIters_PCG
e SUNLinSolResNorm_PCG
e SUNLinSolResid_PCG

e SUNLinSolLastFlag PCG
e SUNLinSolSpace_PCG

e SUNLinSolFree_PCG

The module SUNLINSOL_PCG provides the following additional user-callable routines:

e SUNPCG

This constructor function creates and allocates memory for a PCG SUNLinearSolver. Its ar-
guments are an NVECTOR, a flag indicating to use preconditioning, and the number of linear
iterations to allow.

This routine will perform consistency checks to ensure that it is called with a consistent NVECTOR
implementation (i.e. that it supplies the requisite vector operations). If y is incompatible then
this routine will return NULL.

A max1 argument that is < 0 will result in the default value (5).

Since the PCG algorithm is designed to only support symmetric preconditioning, then any of
the pretype inputs PREC_LEFT (1), PREC_RIGHT (2), or PREC_BOTH (3) will result in use of the
symmetric preconditioner; any other integer input will result in the default (no preconditioning).
Although some SUNDIALS solvers are designed to only work with left preconditioning (IDA and
1DAS) and others with only right preconditioning (KINSOL), PCG should only be used with these
packages when the linear systems are known to be symmetric. Since the scaling of matrix rows
and columns must be identical in a symmetric matrix, symmetric preconditioning should work
appropriately even for packages designed with one-sided preconditioning in mind.

SUNLinearSolver SUNPCG(N_Vector y, int pretype, int maxl);

o SUNPCGSetPrecType

This function updates the flag indicating use of preconditioning. As above, any one of the input
values, PREC_LEFT (1), PREC_RIGHT (2), or PREC_BOTH (3) will enable preconditioning; PREC_NONE
(0) disables preconditioning.

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal pretype), SUNLS_MEM_NULL
(8 is NULL), or SUNLS_SUCCESS.

int SUNPCGSetPrecType(SUNLinearSolver S, int pretype);
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e SUNPCGSetMaxl
This function updates the number of linear solver iterations to allow.
A max1 argument that is < 0 will result in the default value (5).
This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.
int SUNPCGSetMaxl(SUNLinearSolver S, int maxl);

For solvers that include a Fortran interface module, the SUNLINSOL_PCG module also includes the
Fortran-callable function FSUNPCGInit (code, pretype, maxl, ier) to initialize this SUNLINSOL_PCG
module for a given SUNDIALS solver. Here code is an integer input solver id (1 for CVODE, 2 for IDA,
3 for KINSOL, 4 for ARKODE); pretype and maxl are the same as for the C function SUNPCG; ier is
an error return flag equal to 0 for success and -1 for failure. All of these input arguments should be
declared so as to match C type int. This routine must be called after the NVECTOR object has been
initialized. Additionally, when using ARKODE with a non-identity mass matrix, the Fortran-callable
function FSUNMassPCGInit (pretype, maxl, ier) initializes this SUNLINSOL_PCG module for solving
mass matrix linear systems.

The SUNPCGSetPrecType and SUNPCGSetMaxl routines also support Fortran interfaces for the
system and mass matrix solvers (all arguments should be commensurate with a C int):

e FSUNPCGSetPrecType(code, pretype, ier)
e FSUNMassPCGSetPrecType (pretype, ier)
e FSUNPCGSetMaxl(code, maxl, ier)

e FSUNMassPCGSetMaxl (maxl, ier)

9.14 SUNLinearSolver Examples

There are SUNLinearSolver examples that may be installed for each implementation; these make
use of the functions in test_sunlinsol.c. These example functions show simple usage of the
SUNLinearSolver family of functions. The inputs to the examples depend on the linear solver type,
and are output to stdout if the example is run without the appropriate number of command-line
arguments.

The following is a list of the example functions in test_sunlinsol.c:

e Test_SUNLinSolGetType: Verifies the returned solver type against the value that should be
returned.

e Test_SUNLinSolInitialize: Verifies that SUNLinSolInitialize can be called and returns
successfully.

e Test_SUNLinSolSetup: Verifies that SUNLinSolSetup can be called and returns successfully.

e Test_SUNLinSolSolve: Given a SUNMATRIX object A, NVECTOR objects = and b (where Az = b)
and a desired solution tolerance tol, this routine clones x into a new vector y, calls SUNLinSolSolve
to fill y as the solution to Ay = b (to the input tolerance), verifies that each entry in z and y
match to within 10*tol, and overwrites x with y prior to returning (in case the calling routine
would like to investigate further).

e Test_SUNLinSolSetATimes (iterative solvers only): Verifies that SUNLinSolSetATimes can be
called and returns successfully.

e Test_SUNLinSolSetPreconditioner (iterative solvers only): Verifies that SUNLinSolSetPreconditioner
can be called and returns successfully.

e Test_SUNLinSolSetScalingVectors (iterative solvers only): Verifies that SUNLinSolSetScalingVectors
can be called and returns successfully.
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e Test_SUNLinSolLastFlag: Verifies that SUNLinSolLastFlag can be called, and outputs the
result to stdout.

e Test_SUNLinSolNumIters (iterative solvers only): Verifies that SUNLinSolNumIters can be
called, and outputs the result to stdout.

e Test_SUNLinSolResNorm (iterative solvers only): Verifies that SUNLinSolResNorm can be called,
and that the result is non-negative.

e Test_SUNLinSolResid (iterative solvers only): Verifies that SUNLinSolResid can be called.

e Test_SUNLinSolSpace verifies that SUNLinSolSpace can be called, and outputs the results to
stdout.

We’ll note that these tests should be performed in a particular order. For either direct or iterative lin-
ear solvers, Test_SUNLinSolInitialize must be called before Test_SUNLinSolSetup, which must be
called before Test _SUNLinSolSolve. Additionally, for iterative linear solvers Test_SUNLinSolSetATimes,
Test_SUNLinSolSetPreconditioner and Test_SUNLinSolSetScalingVectors should be called be-
fore Test_SUNLinSolInitialize; similarly Test_SUNLinSolNumIters, Test_SUNLinSolResNorm and
Test_SUNLinSolResid should be called after Test_SUNLinSolSolve. These are called in the appro-
priate order in all of the example problems.

9.15 SUNLinearSolver functions used by CVODES

In Table 9.5 below, we list the linear solver functions in the SUNLINSOL module used within the CVODES
package. The table also shows, for each function, which of the code modules uses the function. In gen-
eral, the main CVODES integrator considers three categories of linear solvers, direct, iterative and cus-
tom, with interfaces accessible in the CVODES header files cvodes_direct.h (CVDLS), cvodes_spils.h
(cvspILS) and cvodes_customls.h (CVCLS), respectively. Hence, the the table columns reference the
use of SUNLINSOL functions by each of these solver interfaces.

As with the SUNMATRIX module, we emphasize that the CVODES user does not need to know
detailed usage of linear solver functions by the CVODES code modules in order to use CVODES. The
information is presented as an implementation detail for the interested reader.

Table 9.5: List of linear solver functions usage by CVODES code modules

n

2|E |3

a n O

5|58

SUNLinSolGetType | v/ | v | T

SUNLinSolSetATimes VT

SUNLinSolSetPreconditioner v T

SUNLinSolSetScalingVectors Vot

SUNLinSolInitialize | v | vV | V

SUNLinSolSetup | v | v | vV

SUNLinSolSolve | v/ | v | V

SUNLinSolNumIters V| T

SUNLinSolResNorm VT

SUNLinSolResid V| T
SUNLinSolLastFlag

SUNLinSolFree | v | V' | V

SUNLinSolSpace | T | f | T

The linear solver functions listed in Table 9.2 with a T symbol are optionally used, in that these
are only called if they are implemented in the SUNLINSOL module that is being used (i.e. their function
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pointers are non-NULL). Also, although cvODES does not call the SUNLinSolLastFlag directly, this
routine is available for users to query linear solver issues directly.



Appendix A

SUNDIALS Package Installation
Procedure

The installation of any SUNDIALS package is accomplished by installing the SUNDIALS suite as a whole,
according to the instructions that follow. The same procedure applies whether or not the downloaded
file contains one or all solvers in SUNDIALS.

The SUNDIALS suite (or individual solvers) are distributed as compressed archives (.tar.gz).
The name of the distribution archive is of the form solver-x.y.z.tar.gz, where solver is one of:
sundials, cvode, cvodes, arkode, ida, idas, or kinsol, and x.y.z represents the version number
(of the SUNDIALS suite or of the individual solver). To begin the installation, first uncompress and
expand the sources, by issuing

% tar xzf solver-x.y.z.tar.gz

This will extract source files under a directory solver-x.y.z.
Starting with version 2.6.0 of SUNDIALS, CMake is the only supported method of installation.
The explanations of the installation procedure begins with a few common observations:

e The remainder of this chapter will follow these conventions:

solverdir is the directory solver-x.y.z created above; i.e., the directory containing the SUNDI-
ALS sources.

builddir is the (temporary) directory under which SUNDIALS is built.

instdir is the directory under which the SUNDIALS exported header files and libraries will be
installed. Typically, header files are exported under a directory instdir/include while
libraries are installed under instdir/CMAKE_INSTALL_LIBDIR, with instdir and
CMAKE_INSTALL_LIBDIR specified at configuration time.

e For suNDIALS CMake-based installation, in-source builds are prohibited; in other words, the
build directory builddir can not be the same as solverdir and such an attempt will lead to
an error. This prevents “polluting” the source tree and allows efficient builds for different
configurations and/or options.

e The installation directory instdir can not be the same as the source directory solverdir.

e By default, only the libraries and header files are exported to the installation directory instdir.
If enabled by the user (with the appropriate toggle for CMake), the examples distributed with
SUNDIALS will be built together with the solver libraries but the installation step will result
in exporting (by default in a subdirectory of the installation directory) the example sources
and sample outputs together with automatically generated configuration files that reference the
installed SUNDIALS headers and libraries. As such, these configuration files for the SUNDIALS ex-
amples can be used as “templates” for your own problems. CMake installs CMakeLists. txt files



242 SUNDIALS Package Installation Procedure

and also (as an option available only under Unix/Linux) Makefile files. Note this installation
approach also allows the option of building the SUNDIALS examples without having to install
them. (This can be used as a sanity check for the freshly built libraries.)

e Even if generation of shared libraries is enabled, only static libraries are created for the FCMIX
modules. (Because of the use of fixed names for the Fortran user-provided subroutines, FCMIX
shared libraries would result in “undefined symbol” errors at link time.)

A.1 CMake-based installation

CMake-based installation provides a platform-independent build system. CMake can generate Unix
and Linux Makefiles, as well as KDevelop, Visual Studio, and (Apple) XCode project files from the
same configuration file. In addition, CMake also provides a GUI front end and which allows an
interactive build and installation process.

The SUNDIALS build process requires CMake version 3. 1.3 or higher and a working C compiler. On
Unix-like operating systems, it also requires Make (and curses, including its development libraries,
for the GUI front end to CMake, ccmake), while on Windows it requires Visual Studio. CMake is con-
tinually adding new features, and the latest version can be downloaded from http://www.cmake.org.
Build instructions for CMake (only necessary for Unix-like systems) can be found on the CMake web-
site. Once CMake is installed, Linux/Unix users will be able to use ccmake, while Windows users will
be able to use CMakeSetup.

As previously noted, when using CMake to configure, build and install SUNDIALS, it is always
required to use a separate build directory. While in-source builds are possible, they are explicitly
prohibited by the SUNDIALS CMake scripts (one of the reasons being that, unlike autotools, CMake
does not provide a make distclean procedure and it is therefore difficult to clean-up the source tree
after an in-source build). By ensuring a separate build directory, it is an easy task for the user to
clean-up all traces of the build by simply removing the build directory. CMake does generate a make
clean which will remove files generated by the compiler and linker.

A.1.1 Configuring, building, and installing on Unix-like systems

The default CMake configuration will build all included solvers and associated examples and will build
static and shared libraries. The installdir defaults to /usr/local and can be changed by setting the
CMAKE_INSTALL_PREFIX variable. Support for FORTRAN and all other options are disabled.

CMake can be used from the command line with the cmake command, or from a curses-based
GUI by using the ccmake command. Examples for using both methods will be presented. For the
examples shown it is assumed that there is a top level SUNDIALS directory with appropriate source,
build and install directories:

% mkdir (...)sundials/instdir
% mkdir (...)sundials/builddir
% cd (...)sundials/builddir

Building with the GUI
Using CMake with the GUI follows this general process:

e Select and modify values, run configure (c key)
e New values are denoted with an asterisk
e To set a variable, move the cursor to the variable and press enter

— If it is a boolean (ON/OFF) it will toggle the value
— If it is string or file, it will allow editing of the string
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— For file and directories, the <tab> key can be used to complete

Repeat until all values are set as desired and the generate option is available (g key)

Some variables (advanced variables) are not visible right away
e To see advanced variables, toggle to advanced mode (t key)

e To search for a variable press / key, and to repeat the search, press the n key

To build the default configuration using the GUI, from the builddir enter the ccmake command
and point to the solverdir:

% ccmake ../solverdir

The default configuration screen is shown in Figure A.1.

Terminal

File Edit View Search Terminal Help

Page 1 of 2
BLAS ENABLE
BUILD ARKODE
BUILD CVODE
BUILD CVODES
BUILD IDA
BUILD IDAS
BUILD KINSOL
BUILD SHARED LIBS
BUILD STATIC LIBS
CMAKE BUILD TYPE
CMAKE_C_COMPILER
CMAKE C FLAGS
CMAKE INSTALL PREFIX
CUDA ENABLE
EXAMPLES ENABLE C
EXAMPLES ENABLE C
EXAMPLES INSTALL
EXAMPLES INSTALL PATH
FCMIX_ENABLE
HYPRE ENABLE
KLU ENABLE
LAPACK ENABLE
MPI_ENABLE
OPENMP_ENABLE
PETSC_ENABLE
PTHREAD ENABLE

CMAKE C FLAGS: Flags used by the compiler during all build types.

Press [enter] to edit option CMake Version 2.8.12.2
[c] to configure Press [g] to generate and exit
[h] for help Press [q] to quit without generating
to toggle advanced mode (Currently Off)

Figure A.1: Default configuration screen. Note: Initial screen is empty. To get this default config-
uration, press 'c’ repeatedly (accepting default values denoted with asterisk) until the ’g’ option is
available.

The default instdir for both SUNDIALS and corresponding examples can be changed by setting the
CMAKE_INSTALL_PREFIX and the EXAMPLES_INSTALL_PATH as shown in figure A.2

Pressing the (g key) will generate makefiles including all dependencies and all rules to build SUN-
DIALS on this system. Back at the command prompt, you can now run:

% make
To install SUNDIALS in the installation directory specified in the configuration, simply run:

% make install
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Terminal

File Edit View Search Terminal

Page 1 of 2
BLAS ENABLE
BUILD ARKODE
BUILD CVODE
BUILD CVODES
BUILD IDA
BUILD IDAS
BUILD KINSOL
BUILD SHARED LIBS
BUILD STATIC LIBS
CMAKE _BUILD TYPE
CMAKE C COMPILER
CMAKE C FLAGS
CMAKE INSTALL PREFIX fusr/casc/sundials/instdir
CUDA_ENABLE OFF
EXAMPLES ENABLE C ON
EXAMPLES ENABLE CXX OFF
EXAMPLES INSTALL ON
EXAMPLES INSTALL PATH /usr/casc/sundials/instdir/examples
FCMIX ENABLE
HYPRE_ENABLE
KLU ENABLE
LAPACK_ENABLE
MPI ENABLE
OPENMP_ENABLE
PETSC_ENABLE
PTHREAD ENABLE

CMAKE C FLAGS: Flags used by the compiler during all build types.

Press [enter] to edit option CMake Version 2.8.12.2
Press [c] to configure Press [g] to generate and exit

for help Press [q] to quit without generating

to toggle advanced mode (Currently Off)

Figure A.2: Changing the instdir for SUNDIALS and corresponding examples

Building from the command line

Using CMake from the command line is simply a matter of specifying CMake variable settings with
the cmake command. The following will build the default configuration:

% cmake -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> ../solverdir

% make

% make install

A.1.2 Configuration options (Unix/Linux)

A complete list of all available options for a CMake-based SUNDIALS configuration is provide below.
Note that the default values shown are for a typical configuration on a Linux system and are provided
as illustration only.

BLAS_ENABLE - Enable BLAS support
Default: OFF
Note: Setting this option to ON will trigger additional CMake options. See additional informa-
tion on building with BLAS enabled in A.1.4.

BLAS_LIBRARIES - BLAS library
Default: /usr/lib/libblas.so
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Note: CMake will search for libraries in your LD_LIBRARY _PATH prior to searching default system
paths.

BUILD_ARKODE - Build the ARKODE library
Default: ON

BUILD_CVODE - Build the CVODE library
Default: ON

BUILD_CVODES - Build the CVODES library
Default: ON

BUILD_IDA - Build the IDA library
Default: ON

BUILD_IDAS - Build the IDAS library
Default: ON

BUILD KINSOL - Build the KINSOL library
Default: ON

BUILD_SHARED_LIBS - Build shared libraries
Default: ON

BUILD_STATIC_LIBS - Build static libraries
Default: ON

CMAKE BUILD_TYPE - Choose the type of build, options are: None (CMAKE_C_FLAGS used), Debug,
Release, RelWithDebInfo, and MinSizeRel
Default:
Note: Specifying a build type will trigger the corresponding build type specific compiler flag
options below which will be appended to the flags set by CMAKE_<language>_FLAGS.

CMAKE_C_COMPILER - C compiler
Default: /usr/bin/cc

CMAKE_C_FLAGS - Flags for C compiler
Default:

CMAKE_C_FLAGS_DEBUG - Flags used by the C compiler during debug builds
Default: -g

CMAKE_C_FLAGS_MINSIZEREL - Flags used by the C compiler during release minsize builds
Default: -Os -DNDEBUG

CMAKE_C_FLAGS_RELEASE - Flags used by the C compiler during release builds
Default: -O3 -DNDEBUG

CMAKE_CXX_COMPILER - C++ compiler
Default: /usr/bin/c++
Note: A C++ compiler (and all related options) are only triggered if C++ examples are enabled
(EXAMPLES_ENABLE_CXX is ON). All SUNDIALS solvers can be used from C++ applications by
default without setting any additional configuration options.

CMAKE_CXX_FLAGS - Flags for C++ compiler
Default:

CMAKE_CXX_FLAGS_DEBUG - Flags used by the C++ compiler during debug builds
Default: -g
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CMAKE_CXX_FLAGS_MINSIZEREL - Flags used by the C++ compiler during release minsize builds
Default: -Os -DNDEBUG

CMAKE_CXX_FLAGS_RELEASE - Flags used by the C++ compiler during release builds
Default: -O3 -DNDEBUG

CMAKE Fortran_COMPILER - Fortran compiler
Default: /usr/bin/gfortran
Note: Fortran support (and all related options) are triggered only if either Fortran-C sup-
port is enabled (FCMIX_ENABLE is ON) or BLAS/LAPACK support is enabled (BLAS_ENABLE or
LAPACK_ENABLE is ON).

CMAKE_Fortran FLAGS - Flags for Fortran compiler
Default:

CMAKE Fortran FLAGS_DEBUG - Flags used by the Fortran compiler during debug builds
Default: -g

CMAKE_Fortran FLAGS_MINSIZEREL - Flags used by the Fortran compiler during release minsize builds
Default: -Os

CMAKE Fortran FLAGS_RELEASE - Flags used by the Fortran compiler during release builds
Default: -O3

CMAKE_INSTALL_PREFIX - Install path prefix, prepended onto install directories
Default: /usr/local
Note: The user must have write access to the location specified through this option. Ex-
ported SUNDIALS header files and libraries will be installed under subdirectories include and
CMAKE_INSTALL_LIBDIR of CMAKE_INSTALL PREFIX, respectively.

CMAKE_INSTALL_LIBDIR - Library installation directory
Default:
Note: This is the directory within CMAKE_INSTALL_PREFIX that the SUNDIALS libraries will be
installed under. The default is automatically set based on the operating system using the
GNUlInstallDirs CMake module.

CUDA_ENABLE - Build the SUNDIALS CUDA vector module.
Default: OFF

EXAMPLES_ENABLE_C - Build the suNDIALS C examples
Default: ON

EXAMPLES_ENABLE CUDA - Build the SUNDIALS CUDA examples
Default: OFF
Note: You need to enable CUDA support to build these examples.

EXAMPLES_ENABLE _CXX - Build the SUNDIALS C++ examples
Default: OFF

EXAMPLES_ENABLE RAJA - Build the SUNDIALS RAJA examples
Default: OFF
Note: You need to enable CUDA and RAJA support to build these examples.

EXAMPLES_ENABLE_F77 - Build the SUNDIALS Fortran77 examples
Default: ON (if FCMIX_ENABLE is ON)

EXAMPLES_ENABLE_F90 - Build the SUNDIALS Fortran90 examples
Default: OFF
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EXAMPLES_INSTALL - Install example files
Default: ON
Note: This option is triggered when any of the SUNDIALS example programs are enabled
(EXAMPLES_ENABLE_<language> is ON). If the user requires installation of example programs
then the sources and sample output files for all SUNDIALS modules that are currently enabled
will be exported to the directory specified by EXAMPLES_INSTALL PATH. A CMake configuration
script will also be automatically generated and exported to the same directory. Additionally, if
the configuration is done under a Unix-like system, makefiles for the compilation of the example
programs (using the installed SUNDIALS libraries) will be automatically generated and exported
to the directory specified by EXAMPLES_INSTALL _PATH.

EXAMPLES_INSTALL PATH - Output directory for installing example files
Default: /usr/local/examples
Note: The actual default value for this option will be an examples subdirectory created under
CMAKE_INSTALL PREFIX.

FCMIX_ENABLE - Enable Fortran-C support
Default: OFF

HYPRE_ENABLE - Enable hypre support
Default: OFF
Note: See additional information on building with hypre enabled in A.1.4.

HYPRE_INCLUDE_DIR - Path to hypre header files
HYPRE LIBRARY DIR - Path to hypre installed library files

KLU_ENABLE - Enable KLU support
Default: OFF
Note: See additional information on building with KLU enabled in A.1.4.

KLU_INCLUDE DIR - Path to SuiteSparse header files
KLU_LIBRARY DIR - Path to SuiteSparse installed library files

LAPACK_ENABLE - Enable LAPACK support
Default: OFF
Note: Setting this option to ON will trigger additional CMake options. See additional informa-
tion on building with LAPACK enabled in A.1.4.

LAPACK_LIBRARIES - LAPACK (and BLAS) libraries
Default: /usr/lib/liblapack.so;/usr/lib/libblas.so
Note: CMake will search for libraries in your LD_LIBRARY _PATH prior to searching default system
paths.

MPI_ENABLE - Enable MPI support (build the parallel nvector).
Default: OFF
Note: Setting this option to ON will trigger several additional options related to MPI.

MPI_C_COMPILER - mpicc program
Default:

MPI_CXX_COMPILER - mpicxx program
Default:
Note: This option is triggered only if MPI is enabled (MPI_ENABLE is ON) and C++ examples are
enabled (EXAMPLES_ENABLE_CXX is ON). All SUNDIALS solvers can be used from C++ MPT appli-
cations by default without setting any additional configuration options other than MPI_ENABLE.
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MPI_Fortran COMPILER - mpif77 or mpif90 program
Default:
Note: This option is triggered only if MPI is enabled (MPI_ENABLE is ON), Fortran-C support is
enabled (FCMIX_ENABLE is ON), and Fortran77 or Fortran90 examples are enabled (EXAMPLES_ENABLE_F77
or EXAMPLES_ENABLE _F90 are ON).

MPIEXEC_EXECUTABLE - Specify the executable for running MPI programs
Default: mpirun
Note: This option is triggered only if MPI is enabled (MPI_ENABLE is ON).

OPENMP_ENABLE - Enable OpenMP support (build the OpenMP nvector).
Default: OFF

PETSC_ENABLE - Enable PETSc support
Default: OFF
Note: See additional information on building with PETSc enabled in A.1.4.

PETSC_INCLUDE DIR - Path to PETSc header files
PETSC_LIBRARY_DIR - Path to PETSc installed library files

PTHREAD_ENABLE - Enable Pthreads support (build the Pthreads nvector).
Default: OFF

RAJA_ENABLE - Enable RAJA support (build the RAJA nvector).
Default: OFF
Note: You need to enable CUDA in order to build the RAJA vector module.

SUNDIALS_F77_FUNC_CASE - advanced option - Specify the case to use in the Fortran name-mangling
scheme, options are: lower or upper
Default:
Note: The build system will attempt to infer the Fortran name-mangling scheme using the
Fortran compiler. This option should only be used if a Fortran compiler is not available or
to override the inferred or default (Lower) scheme if one can not be determined. If used,
SUNDIALS_F77_FUNC_UNDERSCORES must also be set.

SUNDIALS_F77_FUNC_UNDERSCORES - advanced option - Specify the number of underscores to append
in the Fortran name-mangling scheme, options are: none, one, or two
Default:
Note: The build system will attempt to infer the Fortran name-mangling scheme using the
Fortran compiler. This option should only be used if a Fortran compiler is not available
or to override the inferred or default (one) scheme if one can not be determined. If used,
SUNDIALS_F77_FUNC_CASE must also be set.

SUNDIALS_INDEX_TYPE - advanced
Integer type used for SUNDIALS indices. The size must match the size provided for the SUNDTALS_INDEX_SIZE
option.
Default:
Note: In past SUNDIALS versions, a user could set this option to INT64_T to use 64-bit integers,
or INT32_T to use 32-bit integers. Starting in SUNDIALS 3.2.0, these special values are dep-
recated. For SUNDIALS 3.2.0 and up, a user will only need to use the SUNDIALS_INDEX_SIZE
option in most cases.

SUNDIALS_INDEX_SIZE - Integer size (in bits) used for indices in SUNDIALS, options are: 32 or 64
Default: 64
Note: The build system tries to find an integer type of appropriate size. Candidate 64-bit
integer types are (in order of preference): int64_t, __int64, long long, and long. Candidate
32-bit integers are (in order of preference): int32_-t, int, and long. The advanced option,
SUNDIALS_INDEX_TYPE can be used to provide a type not listed here.
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SUNDIALS_PRECISION - Precision used in SUNDIALS, options are: double, single, or extended
Default: double

SUPERLUMT_ENABLE - Enable SuperLU_MT support
Default: OFF
Note: See additional information on building with SuperLU_MT enabled in A.1.4.

SUPERLUMT_INCLUDE DIR - Path to SuperLU_MT header files (typically SRC directory)
SUPERLUMT_LIBRARY DIR - Path to SuperLU_MT installed library files

SUPERLUMT_THREAD_TYPE - Must be set to Pthread or OpenMP
Default: Pthread

USE_GENERIC_MATH - Use generic (stdc) math libraries
Default: ON

xSDK Configuration Options

SUNDIALS supports CMake configuration options defined by the Extreme-scale Scientific Software
Development Kit (xSDK) community policies (see https://xsdk.info for more information). xSDK
CMake options are unused by default but may be activated by setting USE_XSDK_DEFAULTS to ON.

When xSDK options are active, they will overwrite the corresponding SUNDIALS option and may
have different default values (see details below). As such the equivalent SUNDIALS options should
not be used when configuring with xSDK options. In the GUI front end to CMake (ccmake), setting
USE_XSDK_DEFAULTS to ON will hide the corresponding SUNDIALS options as advanced CMake variables.
During configuration, messages are output detailing which xSDK flags are active and the equivalent
SUNDIALS options that are replaced. Below is a complete list xXSDK options and the corresponding
SUNDIALS options if applicable.

TPL_BLAS_LIBRARIES - BLAS library
Default: /usr/lib/libblas.so
SUNDIALS equivalent: BLAS_LIBRARIES
Note: CMake will search for libraries in your LD_LIBRARY_PATH prior to searching default system
paths.

TPL_ENABLE BLAS - Enable BLAS support
Default: OFF
SUNDIALS equivalent: BLAS_ENABLE

TPL_ENABLE HYPRE - Enable hypre support
Default: OFF
SUNDIALS equivalent: HYPRE_ENABLE

TPL_ENABLE KLU - Enable KLU support
Default: OFF
SUNDIALS equivalent: KLU ENABLE

TPL_ENABLE_PETSC - Enable PETSc support
Default: OFF
SUNDIALS equivalent: PETSC_ENABLE

TPL_ENABLE_LAPACK - Enable LAPACK support
Default: OFF
SUNDIALS equivalent: LAPACK_ENABLE

TPL_ENABLE_SUPERLUMT - Enable SuperLU_MT support
Default: OFF
SUNDIALS equivalent: SUPERLUMT_ENABLE
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TPL_HYPRE_INCLUDE DIRS - Path to hypre header files
SUNDIALS equivalent: HYPRE_INCLUDE_DIR

TPL_HYPRE LIBRARIES - hypre library
SUNDIALS equivalent: N/A

TPL_KLU_INCLUDE_DIRS - Path to KLU header files
SUNDIALS equivalent: KLU_INCLUDE_DIR

TPL_KLU_LIBRARIES - KLU library
SUNDIALS equivalent: N/A

TPL_LAPACK_LIBRARIES - LAPACK (and BLAS) libraries
Default: /usr/lib/liblapack.so;/usr/lib/libblas.so
SUNDIALS equivalent: LAPACK_LIBRARIES
Note: CMake will search for libraries in your LD_LIBRARY _PATH prior to searching default system
paths.

TPL_PETSC_INCLUDE_DIRS - Path to PETSc header files
SUNDIALS equivalent: PETSC_INCLUDE DIR

TPL_PETSC_LIBRARIES - PETSc library
SUNDIALS equivalent: N/A

TPL_SUPERLUMT_INCLUDE DIRS - Path to SuperLU_MT header files
SUNDIALS equivalent: SUPERLUMT_INCLUDE DIR

TPL_SUPERLUMT_LIBRARIES - SuperLU_MT library
SUNDIALS equivalent: N/A

TPL_SUPERLUMT_THREAD_TYPE - SuperLU_MT library thread type
SUNDIALS equivalent: SUPERLUMT_THREAD_TYPE

USE_XSDK_DEFAULTS - Enable xSDK default configuration settings
Default: OFF
SUNDIALS equivalent: N/A
Note: Enabling xSDK defaults also sets CMAKE_BUILD_TYPE to Debug

XSDK_ENABLE_FORTRAN - Enable SUNDIALS Fortran interface
Default: OFF
SUNDIALS equivalent: FCMIX_ENABLE

XSDK_INDEX_SIZE - Integer size (bits) used for indices in SUNDIALS, options are: 32 or 64
Default: 32
SUNDIALS equivalent: SUNDIALS_INDEX_SIZE

XSDK_PRECISION - Precision used in SUNDIALS, options are: double, single, or quad
Default: double
SUNDIALS equivalent: SUNDIALS PRECISION

A.1.3 Configuration examples

The following examples will help demonstrate usage of the CMake configure options.

To configure SUNDIALS using the default C and Fortran compilers, and default mpicc and mpif77
parallel compilers, enable compilation of examples, and install libraries, headers, and example sources
under subdirectories of /home/myname/sundials/, use:
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% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DMPI_ENABLE=0N \

> -DFCMIX_ENABLE=0N \

> /home/myname/sundials/solverdir

% make install

To disable installation of the examples, use:

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DMPI_ENABLE=0N \

> -DFCMIX_ENABLE=0N \

> -DEXAMPLES_INSTALL=0FF \

> /home/myname/sundials/solverdir

% make install

A.1.4 Working with external Libraries

The SUNDIALS suite contains many options to enable implementation flexibility when developing so-
lutions. The following are some notes addressing specific configurations when using the supported
third party libraries. When building SUNDIALS as a shared library external libraries any used with
SUNDIALS must also be build as a shared library or as a static library compiled with the -fPIC flag.

Building with BLAS

SUNDIALS does not utilize BLAS directly but it may be needed by other external libraries that SUN-
DIALS can be built with (e.g. LAPACK, PETSc, SuperLUMT, etc.). To enable BLAS, set the
BLAS_ENABLE option to ON. If the directory containing the BLAS library is in the LD_LIBRARY _PATH
environment variable, CMake will set the BLAS_LIBRARIES variable accordingly, otherwise CMake will
attempt to find the BLAS library in standard system locations. To explicitly tell CMake what libraries
to use, the BLAS_LIBRARIES variable can be set to the desired library. Example:

==

cmake \

-DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
-DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
-DBLAS_ENABLE=0N \

-DBLAS_LIBRARIES=/myblaspath/lib/libblas.so \
-DSUPERLUMT_ENABLE=0N \

-DSUPERLUMT _INCLUDE_DIR=/mysuperlumtpath/SRC
-DSUPERLUMT_LIBRARY_DIR=/mysuperlumtpath/lib
/home/myname/sundials/solverdir

V V V V V V V Vv

% make install

When allowing CMake to automatically locate the LAPACK library, CMake may also locate the
corresponding BLAS library.

If a working Fortran compiler is not available to infer the Fortran name-mangling scheme, the op-
tions SUNDIALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORES must be set in order to bypass
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the check for a Fortran compiler and define the name-mangling scheme. The defaults for these options
in earlier versions of SUNDIALS were lower and one respectively.

Building with LAPACK

To enable LAPACK, set the LAPACK_ENABLE option to ON. If the directory containing the LAPACK li-
brary is in the LD_LIBRARY_PATH environment variable, CMake will set the LAPACK_LIBRARIES variable
accordingly, otherwise CMake will attempt to find the LAPACK library in standard system locations.
To explicitly tell CMake what library to use, the LAPACK_LIBRARIES variable can be set to the de-
sired libraries. When setting the LAPACK location explicitly the location of the corresponding BLAS
library will also need to be set. Example:

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DBLAS_ENABLE=0N \

> -DBLAS_LIBRARIES=/mylapackpath/lib/libblas.so \

> -DLAPACK_ENABLE=0N \

> -DLAPACK_LIBRARIES=/mylapackpath/lib/liblapack.so \

> /home/myname/sundials/solverdir

% make install

When allowing CMake to automatically locate the LAPACK library, CMake may also locate the
corresponding BLAS library.

If a working Fortran compiler is not available to infer the Fortran name-mangling scheme, the op-
tions SUNDIALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORES must be set in order to bypass
the check for a Fortran compiler and define the name-mangling scheme. The defaults for these options
in earlier versions of SUNDIALS were lower and one respectively.

Building with KLU

The KLU libraries are part of SuiteSparse, a suite of sparse matrix software, available from the Texas
A&M University website: http://faculty.cse.tamu.edu/davis/suitesparse.html. SUNDIALS has
been tested with SuiteSparse version 4.5.3. To enable KLU, set KLU_ENABLE to ON, set KLU_INCLUDE DIR
to the include path of the KLU installation and set KLU_.LIBRARY_DIR to the 1ib path of the KLU
installation. The CMake configure will result in populating the following variables: AMD_LIBRARY,
AMD_LIBRARY_DIR, BTF_LIBRARY, BTF_LIBRARY_DIR, COLAMD_LIBRARY, COLAMD_LIBRARY_DIR, and
KLU_LIBRARY.

Building with SuperLU_MT

The SuperLU_MT libraries are available for download from the Lawrence Berkeley National Labo-
ratory website: http://crd-legacy.1lbl.gov/~xiaoye/SuperLU/#superlu mt. SUNDIALS has been
tested with SuperLU_MT version 3.1. To enable SuperLU_MT, set SUPERLUMT_ENABLE to ON, set
SUPERLUMT_INCLUDE_DIR to the SRC path of the SuperLU_MT installation, and set the variable
SUPERLUMT_LIBRARY DIR to the 1ib path of the SuperLU_MT installation. At the same time, the
variable SUPERLUMT_THREAD_TYPE must be set to either Pthread or OpenMP.

Do not mix thread types when building SUNDIALS solvers. If threading is enabled for SUNDIALS by
having either OPENMP_ENABLE or PTHREAD_ENABLE set to ON then SuperLU_MT should be set to use
the same threading type.
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Building with PETSc

The PETSc libraries are available for download from the Argonne National Laboratory website:
http://www.mcs.anl.gov/petsc. SUNDIALS has been tested with PETSc version 3.7.2. To en-
able PETSc, set PETSC_ENABLE to ON, set PETSC_INCLUDE DIR to the include path of the PETSc
installation, and set the variable PETSC_LIBRARY DIR to the 1ib path of the PETSc installation.

Building with hypre

The hypre libraries are available for download from the Lawrence Livermore National Laboratory
website: http://computation.llnl.gov/projects/hypre. SUNDIALS has been tested with hypre
version 2.11.1. To enable hypre, set HYPRE_ENABLE to ON, set HYPRE_INCLUDE DIR to the include
path of the hypre installation, and set the variable HYPRE_LIBRARY DIR to the 1ib path of the hypre
installation.

Building with CUDA

SUNDIALS CUDA modules and examples have been tested with version 8.0 of the cUDA toolkit. To
build them, you need to install the Toolkit and compatible NVIDIA drivers. Both are available for
download from the NVIDIA website: https://developer.nvidia.com/cuda-downloads. To enable
CUDA, set CUDA_ENABLE to ON. If cUDA is installed in a nonstandard location, you may be prompted to
set the variable CUDA_TOOLKIT_ROOT_DIR with your cUDA Toolkit installation path. To enable cuDA
examples, set EXAMPLES_ENABLE_CUDA to ON.

Building with RAJA

RAJA is a performance portability layer developed by Lawrence Livermore National Laboratory and
can be obtained from https://github.com/LLNL/RAJA. SUNDIALS RAJA modules and examples have
been tested with RAJA version 0.3. Building SUNDIALS RAJA modules requires a CUDA-enabled RAJA
installation. To enable RAJA, set CUDA_ENABLE and RAJA_ENABLE to ON. If RAJA is installed in a
nonstandard location you will be prompted to set the variable RAJA_DIR with the path to the RAJA
CMake configuration file. To enable building the RAJA examples set EXAMPLES_ENABLE RAJA to ON.

A.1.5 Testing the build and installation

If suNDIALS was configured with EXAMPLES_ENABLE_<language> options to ON, then a set of regression
tests can be run after building with the make command by running:

% make test

Additionally, if EXAMPLES_INSTALL was also set to ON, then a set of smoke tests can be run after
installing with the make install command by running:

% make test_install

A.2 Building and Running Examples

Each of the SUNDIALS solvers is distributed with a set of examples demonstrating basic usage. To
build and install the examples, set at least of the EXAMPLES ENABLE <language> options to ON,
and set EXAMPLES_INSTALL to ON. Specify the installation path for the examples with the variable
EXAMPLES_INSTALL PATH. CMake will generate CMakeLists.txt configuration files (and Makefile
files if on Linux/Unix) that reference the installed SUNDIALS headers and libraries.

Either the CMakeLists.txt file or the traditional Makefile may be used to build the examples as
well as serve as a template for creating user developed solutions. To use the supplied Makefile simply
run make to compile and generate the executables. To use CMake from within the installed example
directory, run cmake (or ccmake to use the GUI) followed by make to compile the example code.
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Note that if CMake is used, it will overwrite the traditional Makefile with a new CMake-generated
Makefile. The resulting output from running the examples can be compared with example output
bundled in the SUNDIALS distribution.

NOTE: There will potentially be differences in the output due to machine architecture, compiler
versions, use of third party libraries etc.

A.3 Configuring, building, and installing on Windows

CMake can also be used to build SUNDIALS on Windows. To build SUNDIALS for use with Visual
Studio the following steps should be performed:

1. Unzip the downloaded tar file(s) into a directory. This will be the solverdir
2. Create a separate builddir

3. Open a Visual Studio Command Prompt and cd to builddir

4. Run cmake-gui ../solverdir

(a) Hit Configure

(b) Check/Uncheck solvers to be built

(c) Change CMAKE_INSTALL_PREFIX to instdir
(d) Set other options as desired

(e) Hit Generate

5. Back in the VS Command Window:

(a) Run msbuild ALL_BUILD.vcxproj
(b) Run msbuild INSTALL.vexproj

The resulting libraries will be in the instdir. The SUNDIALS project can also now be opened in Visual
Studio. Double click on the ALL_BUILD.vexproj file to open the project. Build the whole solution to
create the SUNDIALS libraries. To use the SUNDIALS libraries in your own projects, you must set the
include directories for your project, add the SUNDIALS libraries to your project solution, and set the
SUNDIALS libraries as dependencies for your project.

A.4 Installed libraries and exported header files

Using the CMake SUNDIALS build system, the command
% make install

will install the libraries under libdir and the public header files under includedir. The values for these
directories are instdir/CMAKE_INSTALL_LIBDIR and instdir/include, respectively. The location can be
changed by setting the CMake variable CMAKE_INSTALL_PREFIX. Although all installed libraries reside
under [ibdir/CMAKE_INSTALL _LIBDIR, the public header files are further organized into subdirectories
under includedir/include.

The installed libraries and exported header files are listed for reference in Table A.1. The file
extension .lib is typically .so for shared libraries and .a for static libraries. Note that, in the Tables,
names are relative to libdir for libraries and to includedir for header files.

A typical user program need not explicitly include any of the shared SUNDIALS header files from
under the includedir/include/sundials directory since they are explicitly included by the appropriate
solver header files (e.g., cvode_dense.h includes sundials dense.h). However, it is both legal and
safe to do so, and would be useful, for example, if the functions declared in sundials_dense.h are to
be used in building a preconditioner.
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Table A.1: SUNDIALS libraries and header files

SHARED

Libraries

n/a

Header files

sundials/sundials_config.h
sundials/sundials_types.h sundials/sundials_math.h
sundials/sundials_nvector.h  sundials/sundials_fnvector.h
sundials/sundials_iterative.h sundials/sundials_direct.h
sundials/sundials_dense.h sundials/sundials_band.h
sundials/sundials_matrix.h  sundials/sundials_version.h
sundials/sundials_linearsolver.hundials /sundials_mpi_types.

sundials/sundials_fconfig.h

NVECTOR_SERIAL Libraries libsundials_nvecserial.lib libsundials_fnvecserial.a
Header files | nvector/nvector_serial.h

NVECTOR_PARALLEL Libraries libsundials_nvecparallel.lib libsundials_fnvecparallel.a
Header files | nvector/nvector_parallel.h

NVECTOR_OPENMP Libraries libsundials_nvecopenmp.lib  libsundials_fnvecopenmp.a
Header files | nvector/nvector_openmp.h

NVECTOR_PTHREADS Libraries libsundials_nvecpthreads.lib  libsundials_fnvecpthreads.a
Header files | nvector/nvector_pthreads.h

NVECTOR_PARHYP Libraries libsundials_nvecparhyp.lib
Header files | nvector/nvector_parhyp.h

NVECTOR_PETSC Libraries libsundials_nvecpetsc.lib
Header files | nvector/nvector_petsc.h

NVECTOR_CUDA Libraries libsundials_nveccuda.lib
Libraries libsundials_nvecmpicuda.lib

Header files

nvector /nvector_cuda.h

nvector /nvector_mpicuda.h
nvector/cuda/ThreadPartitioning.hpp
nvector/cuda/Vector.hpp
nvector/cuda/VectorKernels.cuh

NVECTOR_RAJA

Libraries
Libraries

libsundials_nveccudaraja.lib
libsundials_nveccudampiraja.lib

Header files

nvector /nvector_raja.h
nvector /nvector_mpiraja.h
nvector/raja/Vector.hpp

SUNMATRIX_BAND

Libraries

libsundials_sunmatrixband.{7b
libsundials_fsunmatrixband.a

Header files

sunmatrix/sunmatrix_band.h

SUNMATRIX_DENSE

Libraries

libsundials_sunmatrixdense.lib
libsundials_fsunmatrixdense.a

Header files

sunmatrix/sunmatrix_dense.h

SUNMATRIX_SPARSE

Libraries

libsundials_sunmatrixsparse.lib

continued on next page
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continued from last page

libsundials_fsunmatrixsparse.a

Header files | sunmatrix/sunmatrix_sparse.h

SUNLINSOL_BAND Libraries libsundials_sunlinsolband.lib
libsundials_fsunlinsolband.a

Header files | sunlinsol/sunlinsol_band.h

SUNLINSOL_DENSE Libraries libsundials_sunlinsoldense.lib
libsundials_fsunlinsoldense.a

Header files | sunlinsol/sunlinsol_dense.h

SUNLINSOL_KLU Libraries libsundials_sunlinsolklu.lib
libsundials_fsunlinsolklu.a

Header files | sunlinsol/sunlinsol klu.h

SUNLINSOL_LAPACKBAND | Libraries libsundials_sunlinsollapackband.lib
libsundials_fsunlinsollapackband.a

Header files | sunlinsol/sunlinsol_lapackband.h

SUNLINSOL_LAPACKDENSE | Libraries libsundials_sunlinsollapackdense. lib
libsundials_fsunlinsollapackdense.a

Header files | sunlinsol/sunlinsol lapackdense.h

SUNLINSOL_PCG Libraries libsundials_sunlinsolpcg.lib
libsundials_fsunlinsolpcg.a

Header files | sunlinsol/sunlinsol_pcg.h

SUNLINSOL_SPBCGS Libraries libsundials_sunlinsolspbcgs.lib
libsundials_fsunlinsolspbcgs.a

Header files | sunlinsol/sunlinsol_spbcgs.h

SUNLINSOL_SPFGMR Libraries libsundials_sunlinsolspfgmr.lib
libsundials_fsunlinsolspfgmr.a

Header files | sunlinsol/sunlinsol_spfgmr.h

SUNLINSOL_SPGMR Libraries libsundials_sunlinsolspgmr.lib
libsundials_fsunlinsolspgmr.a

Header files | sunlinsol/sunlinsol_spgmr.h

SUNLINSOL_SPTFQMR, Libraries libsundials_sunlinsolsptfqmr.lib
libsundials_fsunlinsolsptfqmr.a

Header files | sunlinsol/sunlinsol_sptfqmr.h

SUNLINSOL_SUPERLUMT Libraries libsundials_sunlinsolsuperlumt.lib
libsundials_fsunlinsolsuperlumt.a

Header files | sunlinsol/sunlinsol_superlumt.h

CVODE Libraries libsundials_cvode.lib libsundials_fcvode.a
Header files | cvode/cvode.h cvode/cvode_impl.h
cvode/cvode_direct.h cvode/cvode_spils.h
cvode/cvode_bandpre.h cvode/cvode_bbdpre.h
CVODES Libraries libsundials_cvodes.lib
Header files | cvodes/cvodes.h cvodes/cvodes_impl.h

continued on next page
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cvodes/cvodes_direct.h
cvodes/cvodes_bandpre.h

cvodes/cvodes_spils.h
cvodes/cvodes_bbdpre.h

ARKODE Libraries libsundials_arkode. b libsundials_farkode.a
Header files | arkode/arkode.h arkode/arkode_impl.h
arkode/arkode_direct.h arkode/arkode_spils.h
arkode/arkode_bandpre.h arkode/arkode_bbdpre.h
IDA Libraries libsundials_ida.lib libsundials_fida.a
Header files | ida/ida.h ida/ida_impl.h
ida/ida_direct.h ida/ida_spils.h
ida/ida_bbdpre.h
IDAS Libraries libsundials_idas.lib
Header files | idas/idas.h idas/idas_impl.h
idas/idas_direct.h idas/idas_spils.h
idas/idas_bbdpre.h
KINSOL Libraries libsundials_kinsol.lzb libsundials_fkinsol.a

Header files

kinsol /kinsol.h
kinsol/kinsol_direct.h
kinsol/kinsol_bbdpre.h

kinsol /kinsol_impl.h
kinsol/kinsol_spils.h







Appendix B

CVODES Constants

Below we list all input and output constants used by the main solver and linear solver modules,
together with their numerical values and a short description of their meaning.

B.1 CVODES input constants

CVODES main solver module

CV_ADAMS Adams-Moulton linear multistep method.

CV_BDF BDF linear multistep method.

CV_FUNCTIONAL Nonlinear system solution through functional iterations.
CV_NEWTON Nonlinear system solution through Newton iterations.
CV_NORMAL Solver returns at specified output time.

CV_ONE_STEP Solver returns after each successful step.

CV_SIMULTANEQUS
CV_STAGGERED
CV_STAGGERED1
CV_CENTERED

Simultaneous corrector forward sensitivity method.
Staggered corrector forward sensitivity method.

Staggered (variant) corrector forward sensitivity method.
Central difference quotient approximation (2"¢ order) of the
sensitivity RHS.

CV_FORWARD 2 Forward difference quotient approximation (1%¢ order) of the
sensitivity RHS.

— W NN DN

CVODES adjoint solver module

CV_HERMITE 1 Use Hermite interpolation.
CV_POLYNOMIAL 2 Use variable-degree polynomial interpolation.

Iterative linear solver module

PREC_NONE 0 No preconditioning
PREC_LEFT 1 Preconditioning on the left only.
PREC_RIGHT 2 Preconditioning on the right only.
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PREC_BOTH 3 Preconditioning on both the left and the right.
MODIFIED_GS 1 Use modified Gram-Schmidt procedure.
CLASSICAL_GS 2 Use classical Gram-Schmidt procedure.

B.2 CVODES output constants

CVODES main solver module

CV_SUCCESS
CV_TSTOP_RETURN
CV_ROOT_RETURN
CV_WARNING
CV_TOO_MUCH_WORK

CV_TO0_MUCH_ACC

CV_ERR_FAILURE

CV_CONV_FAILURE

CV_LINIT_FAIL
CV_LSETUP_FAIL

CV_LSOLVE_FAIL

CV_RHSFUNC_FAIL

CV_FIRST_RHSFUNC_ERR
CV_REPTD_RHSFUNC_ERR

CV_UNREC_RHSFUNC_ERR

CV_RTFUNC_FAIL
CV_CONSTR_FAIL

CV_MEM_FAIL
CV_MEM_NULL
CV_ILL_INPUT
CV_NO_MALLOC

CV_BAD K
CV_BAD_T
CV_BAD_DKY
CV_TO0_CLOSE
CV_NO_QUAD

N = O

-11

-12
-13

-20
-21
-22
-23

-24
-25
-26
=27
-30

Successful function return.

CVode succeeded by reaching the specified stopping point.
CVode succeeded and found one or more roots.

CVode succeeded but an unusual situation occurred.

The solver took mxstep internal steps but could not reach
tout.

The solver could not satisfy the accuracy demanded by the
user for some internal step.

Error test failures occurred too many times during one in-
ternal time step or minimum step size was reached.
Convergence test failures occurred too many times during
one internal time step or minimum step size was reached.
The linear solver’s initialization function failed.

The linear solver’s setup function failed in an unrecoverable
manner.

The linear solver’s solve function failed in an unrecoverable
manner.

The right-hand side function failed in an unrecoverable man-
ner.

The right-hand side function failed at the first call.

The right-hand side function had repetead recoverable er-
Tors.

The right-hand side function had a recoverable error, but no
recovery is possible.

The rootfinding function failed in an unrecoverable manner.
The inequality constraints were violated and the solver was
unable to recover.

A memory allocation failed.

The cvode mem argument was NULL.

One of the function inputs is illegal.

The cvODE memory block was not allocated by a call to
CVodeMalloc.

The derivative order k is larger than the order used.

The time t is outside the last step taken.

The output derivative vector is NULL.

The output and initial times are too close to each other.
Quadrature integration was not activated.
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CV_QRHSFUNC_FAIL

CV_FIRST_QRHSFUNC_ERR

CV_REPTD_QRHSFUNC_ERR

CV_UNREC_QRHSFUNC_ERR

CV_NO_SENS
CV_SRHSFUNC_FAIL

CV_FIRST_SRHSFUNC_ERR

CV_REPTD_SRHSFUNC_ERR

CV_UNREC_SRHSFUNC_ERR

CV_BAD_IS

CV_NO_QUADSENS
CV_QSRHSFUNC_FAIL

CV_FIRST_QSRHSFUNC_ERR

CV_REPTD_QSRHSFUNC_ERR

CV_UNREC_QSRHSFUNC_ERR

-31

-32

-33

-34

-40
-41

-50
-51

-52

-53

-54

The quadrature right-hand side function failed in an unre-
coverable manner.

The quadrature right-hand side function failed at the first
call.

The quadrature ight-hand side function had repetead recov-
erable errors.

The quadrature right-hand side function had a recoverable
error, but no recovery is possible.

Forward sensitivity integration was not activated.

The sensitivity right-hand side function failed in an unre-
coverable manner.

The sensitivity right-hand side function failed at the first
call.

The sensitivity ight-hand side function had repetead recov-
erable errors.

The sensitivity right-hand side function had a recoverable
error, but no recovery is possible.

The sensitivity index is larger than the number of sensitivi-
ties computed.

Forward sensitivity integration was not activated.

The sensitivity right-hand side function failed in an unre-
coverable manner.

The sensitivity right-hand side function failed at the first
call.

The sensitivity ight-hand side function had repetead recov-
erable errors.

The sensitivity right-hand side function had a recoverable
error, but no recovery is possible.

CVODES adjoint solver module

CV_NO_ADJ
CV_NO_FWD
CV_NO_BCK
CV_BAD_TBO
CV_REIFWD_FAIL
CV_FWD_FAIL

CV_GETY_BADT

-101
-102
-103
-104
-105
-106

-107

Adjoint module was not initialized.

The forward integration was not yet performed.

No backward problem was specified.

The final time for the adjoint problem is outside the interval
over which the forward problem was solved.
Reinitialization of the forward problem failed at the first
checkpoint.

An error occurred during the integration of the forward
problem.

Wrong time in interpolation function.

CVDLS linear solver modules

CVDLS_SUCCESS
CVDLS_MEM_NULL
CVDLS_LMEM_NULL

0
-1
-2

Successful function return.
The cvode_mem argument was NULL.
The cvDLS linear solver has not been initialized.
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CVDLS_ILL_INPUT

CVDLS_MEM_FAIL
CVDLS_JACFUNC_UNRECVR
CVDLS_JACFUNC_RECVR
CVDLS_SUNMAT_FAIL
CVDLS_NO_ADJ

CVDLS_LMEMB_NULL

-7
-101

-102

The cvDLS solver is not compatible with the current NVEC-
TOR module.

A memory allocation request failed.

The Jacobian function failed in an unrecoverable manner.
The Jacobian function had a recoverable error.

An error occurred with the current SUNMATRIX module.
The combined forward-backward problem has not been ini-
tialized.

The linear solver was not initialized for the backward phase.

CVDIAG linear solver module

CVDIAG_SUCCESS
CVDIAG_MEM_NULL
CVDIAG_LMEM_NULL
CVDIAG_ILL_INPUT

CVDIAG_MEM_FAIL
CVDIAG_INV_FAIL

CVDIAG_RHSFUNC_UNRECVR

CVDIAG_RHSFUNC_RECVR
CVDIAG_NO_ADJ

-6

-7
-101

Successful function return.

The cvode_mem argument was NULL.

The CVDIAG linear solver has not been initialized.

The CVDIAG solver is not compatible with the current NVEC-
TOR module.

A memory allocation request failed.

A diagonal element of the Jacobian was 0.

The right-hand side function failed in an unrecoverable man-
ner.

The right-hand side function had a recoverable error.

The combined forward-backward problem has not been ini-
tialized.

CVSPILS linear solver modules

CVSPILS_SUCCESS
CVSPILS_MEM_NULL
CVSPILS_LMEM_NULL
CVSPILS_ILL_INPUT

CVSPILS_MEM_FAIL
CVSPILS_PMEM_NULL
CVSPILS_SUNLS_FAIL
CVSPILS_NO_ADJ

CVSPILS_LMEMB_NULL

-101

-102

Successful function return.

The cvode_mem argument was NULL.

The cvsPiILs linear solver has not been initialized.

The cVSPILS solver is not compatible with the current NVEC-
TOR module, or an input value was illegal.

A memory allocation request failed.

The preconditioner module has not been initialized.

An error occurred with the current SUNLINSOL module.
The combined forward-backward problem has not been ini-
tialized.

The linear solver was not initialized for the backward phase.



Bibliography

[1]
2]

3]

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

KLU Sparse Matrix Factorization Library. http://faculty.cse.tamu.edu/davis/suitesparse.html.

SuperLU_MT Threaded Sparse Matrix Factorization Library. http://crd-legacy.lbl.gov/ xiaoye/-
SuperLU/.

P. N. Brown, G. D. Byrne, and A. C. Hindmarsh. VODE, a Variable-Coefficient ODE Solver.
SIAM J. Sci. Stat. Comput., 10:1038-1051, 1989.

P. N. Brown and A. C. Hindmarsh. Reduced Storage Matrix Methods in Stiff ODE Systems. J.
Appl. Math. & Comp., 31:49-91, 1989.

G. D. Byrne. Pragmatic Experiments with Krylov Methods in the Stiff ODE Setting. In J.R.
Cash and I. Gladwell, editors, Computational Ordinary Differential Equations, pages 323—-356,
Oxford, 1992. Oxford University Press.

G. D. Byrne and A. C. Hindmarsh. A Polyalgorithm for the Numerical Solution of Ordinary
Differential Equations. ACM Trans. Math. Softw., 1:71-96, 1975.

G. D. Byrne and A. C. Hindmarsh. PVODE, An ODE Solver for Parallel Computers. Intl. J.
High Perf. Comput. Apps., 13(4):254-365, 1999.

Y. Cao, S. Li, L. R. Petzold, and R. Serban. Adjoint Sensitivity Analysis for Differential-Algebraic
Equations: The Adjoint DAE System and its Numerical Solution. SIAM J. Sci. Comput.,
24(3):1076-1089, 2003.

M. Caracotsios and W. E. Stewart. Sensitivity Analysis of Initial Value Problems with Mixed
ODEs and Algebraic Equations. Computers and Chemical Engineering, 9:359-365, 1985.

S. D. Cohen and A. C. Hindmarsh. CVODE, a Stiff/Nonstiff ODE Solver in C. Computers in
Physics, 10(2):138-143, 1996.

T. A. Davis and P. N. Ekanathan. Algorithm 907: KLU, a direct sparse solver for circuit
simulation problems. ACM Trans. Math. Softw., 37(3), 2010.

J. W. Demmel, J. R. Gilbert, and X. S. Li. An asynchronous parallel supernodal algorithm for
sparse gaussian elimination. SIAM J. Matriz Analysis and Applications, 20(4):915-952, 1999.

W. F. Feehery, J. E. Tolsma, and P. I. Barton. Efficient Sensitivity Analysis of Large-Scale
Differential-Algebraic Systems. Applied Numer. Math., 25(1):41-54, 1997.

R. W. Freund. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear
Systems. SIAM J. Sci. Comp., 14:470-482, 1993.

M. R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for Solving Linear Systems. .J.
Research of the National Bureau of Standards, 49(6):409-436, 1952.

K. L. Hiebert and L. F. Shampine. Implicitly Defined Output Points for Solutions of ODEs.
Technical Report SANDS80-0180, Sandia National Laboratories, February 1980.



264 BIBLIOGRAPHY

[17] A. C. Hindmarsh. Detecting Stability Barriers in BDF Solvers. In J.R. Cash and I. Gladwell,
editor, Computational Ordinary Differential Equations, pages 87-96, Oxford, 1992. Oxford Uni-
versity Press.

[18] A. C. Hindmarsh. Avoiding BDF Stability Barriers in the MOL Solution of Advection-Dominated
Problems. Appl. Num. Math., 17:311-318, 1995.

[19] A. C. Hindmarsh. The PVODE and IDA Algorithms. Technical Report UCRL-ID-141558, LLNL,
December 2000.

[20] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S.
Woodward. SUNDIALS, suite of nonlinear and differential/algebraic equation solvers. ACM
Trans. Math. Softw., (31):363-396, 2005.

[21] A. C. Hindmarsh and R. Serban. User Documentation for CVODE v3.2.1. Technical Report
UCRL-SM-208108, LLNL, 2018.

[22] A. C. Hindmarsh, R. Serban, and A. Collier. Example Programs for IDA v3.2.1. Technical Report
UCRL-SM-208113, LLNL, 2018.

[23] A. C. Hindmarsh, R. Serban, and D. R. Reynolds. Example Programs for CVODE v3.2.1.
Technical report, LLNL, 2018. UCRL-SM-208110.

[24] A. C. Hindmarsh and A. G. Taylor. PVODE and KINSOL: Parallel Software for Differential
and Nonlinear Systems. Technical Report UCRL-ID-129739, LLNL, February 1998.

[25] K. R. Jackson and R. Sacks-Davis. An Alternative Implementation of Variable Step-Size Multistep
Formulas for Stiff ODEs. ACM Trans. Math. Softw., 6:295-318, 1980.

[26] S. Li, L. R. Petzold, and W. Zhu. Sensitivity Analysis of Differential-Algebraic Equations: A
Comparison of Methods on a Special Problem. Applied Num. Math., 32:161-174, 2000.

[27] X. S. Li. An overview of SuperLU: Algorithms, implementation, and user interface. ACM Trans.
Math. Softw., 31(3):302-325, September 2005.

[28] T. Maly and L. R. Petzold. Numerical Methods and Software for Sensitivity Analysis of
Differential-Algebraic Systems. Applied Numerical Mathematics, 20:57-79, 1997.

[29] D.B. Ozyurt and P.I. Barton. Cheap second order directional derivatives of stiff ODE embedded
functionals. STAM J. of Sci. Comp., 26(5):1725-1743, 2005.

[30] K. Radhakrishnan and A. C. Hindmarsh. Description and Use of LSODE, the Livermore Solver
for Ordinary Differential Equations. Technical Report UCRL-ID-113855, LLNL, march 1994.

[31] Daniel R. Reynolds. Example Programs for ARKODE v2.2.1. Technical report, Southern
Methodist University, 2018.

[32] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput.,
14(2):461-469, 1993.

[33] Y. Saad and M. H. Schultz. GMRES: A Generalized Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comp., 7:856-869, 1986.

[34] R. Serban and A. C. Hindmarsh. CVODES, the sensitivity-enabled ODE solver in SUNDIALS.
In Proceedings of the 5th International Conference on Multibody Systems, Nonlinear Dynamics
and Control, Long Beach, CA, 2005. ASME.

[35] R. Serban and A. C. Hindmarsh. Example Programs for CVODES v3.2.1. Technical Report
UCRL-SM-208115, LLNL, 2017.

[36] H. A. Van Der Vorst. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the
Solution of Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comp., 13:631-644, 1992.



Index

Adams method, 13

adjoint sensitivity analysis
checkpointing, 25
implementation in CVODES, 26, 30
mathematical background, 23-26
quadrature evaluation, 143
right-hand side evaluation, 142
sensitivity-dependent quadrature evaluation,

144

BDF method, 13
BIG_REAL, 36, 160
booleantype, 36

CV_ADAMS, 41, 72, 129

CV_BAD_DKY, 57, 83, 102-104, 115, 116

CV_BAD_IS, 103, 104, 116

CV_BAD_ITASK, 133

CV_BAD K, 57, 83, 103, 104, 115, 116

CV_BAD_T, 57, 83, 103, 104, 115, 116

CV_BAD_TBO, 129, 130

CV_BAD_TBOUT, 134

CV_BCKMEM_NULL, 134

CV_BDF, 41, 72, 129

CV_CENTERED, 104

CV_CONSTR_FAIL, 47

CV_CONV_FAILURE, 47, 128, 133

CV_ERR_FAILURE, 47, 128, 133

CV_FIRST_QRHSFUNC_ERR, 85

CV_FIRST_QRHSFUNC_FAIL, 81

CV_FIRST_QSRHSFUNC_ERR, 114, 120

CV_FIRST_RHSFUNC_ERR, 73

CV_FIRST_RHSFUNC_FAIL, 47

CV_FIRST_SRHSFUNC_ERR, 102, 110, 111

CV_FORWARD, 104

CV_FUNCTIONAL, 41, 53, 129

CV_FWD_FAIL, 134

CV_GETY_BADT, 139

CV_HERMITE, 126

CV_ILL_INPUT, 42, 47, 50-53, 56, 72, 83, 84, 98—
101, 104, 105, 113, 114, 117, 118, 126,
128-131, 133-135, 140, 141

CV_LINIT_FAIL, 47

CV_LSETUP_FAIL, 47, 75, 89, 90, 128, 133, 145, 146,
153, 154

CV_LSOLVE_FAIL, 47, 128

CV_MEM_FAIL, 42, 80, 98-100, 126, 128, 129, 140

CV_MEM_NULL, 41-43, 47, 49-53, 56, 57, 59-66, 72,
80-85, 98-109, 129-131, 133, 134, 139
141

CV_NEWTON, 41, 53, 129

CV_NO_ADJ, 127-131, 133-135, 140, 141

CV_NO_BCK, 133

CV_NO_FWD, 133

CV_NO_MALLOC, 42, 43, 47, 72, 128-131

CV_NO_QUAD, 81, 83-85, 117, 140

CV_NO_QUADSENS, 114-119

CV_NO_SENS, 100-104, 106-109, 113, 114, 116

CV_NORMAL, 46, 124, 128, 133

CV_ONE_STEP, 46, 124, 128, 133

CV_POLYNOMIAL, 126

CV_QRHS_FAIL, 120

CV_QRHSFUNC_FAIL, 81, 85, 143, 144

CV_QSRHSFUNC_ERR, 114

CV_REIFWD_FAIL, 134

CV_REPTD_QRHSFUNC_ERR, 82

CV_REPTD_QSRHSFUNC_ERR, 114

CV_REPTD_RHSFUNC_ERR, 47

CV_REPTD_SRHSFUNC_ERR, 102

CV_RHSFUNC_FAIL, 47, 73, 142, 143

CV_ROOT_RETURN, 47, 128

CV_RTFUNC_FAIL, 47, 74

CV_SIMULTANEQUS, 30, 98, 99, 110

CV_SOLVE_FAIL, 133

CV_SRHSFUNC_FAIL, 102, 110, 111

CV_STAGGERED, 30, 98, 99, 110

CV_STAGGERED1, 30, 99, 111

CV_SUCCESS, 41-43, 46, 49-53, 56, 57, 59-66, 72,
80-85, 98-109, 113-119, 126-131, 133,
134, 139-141

CV_TOO_CLOSE, 47

CV_TOO0_MUCH_ACC, 47, 128, 133

CV_TOO_MUCH_WORK, 47, 128, 133

CV_TSTOP_RETURN, 47, 128

CV_UNREC_QRHSFUNC_ERR, 85

CV_UNREC_QSRHSFUNC_ERR, 120



266

INDEX

CV_UNREC_RHSFUNC_ERR, 47, 73, 82
CV_UNREC_SRHSFUNC_ERR, 102, 110, 111
CV_WARNING, 74
CVBANDPRE preconditioner

description, 86

optional output, 87-88

usage, 8687

usage with adjoint module, 151-152

user-callable functions, 87, 151-152
CVBandPrecGetNumRhsEvals, 88
CVBandPrecGetWorkSpace, 87
CVBandPrecInit, 87
CVBandPrecInitB, 151
CVBBDPRE preconditioner

description, 88—89

optional output, 92-93

usage, 90-91

usage with adjoint module, 152-154

user-callable functions, 91-92, 152-153
user-supplied functions, 89-90, 153154

CVBBDPrecGetNumGfnEvals, 93
CVBBDPrecGetWorkSpace, 92
CVBBDPrecInit, 91
CVBBDPrecInitB, 152
CVBBDPrecRelInit, 92
CVBBDPrecReInitB, 153
CVDENSE linear solver
optional input, 135
CVDIAG linear solver
Jacobian approximation used by, 45
selection of, 45
CVDIAG linear solver interface
memory requirements, 70
optional output, 70-71
CVDiag, 39, 44, 45
CVDIAG_ILL_INPUT, 45
CVDIAG_LMEM NULL, 71
CVDIAG_MEM_FAIL, 45
CVDIAG_MEM_NULL, 45, 71
CVDIAG_SUCCESS, 45, 71
CVDiagGetLastFlag, 71
CVDiagGetNumRhsEvals, 71
CVDiagGetReturnFlagName, 71
CVDiagGetWorkSpace, 70
CVDLS linear solver
SUNLINSOL compatibility, 44
CVDLS linear solver interface
Jacobian approximation used by, 54
memory requirements, 66
optional input, 54, 135-136
optional output, 66-67
CVDLS_ILL_INPUT, 45, 132, 135, 136
CVDLS_JACFUNC_RECVR, 75, 145, 146
CVDLS_JACFUNC_UNRECVR, 75, 145, 146

CVDLS_LMEM_NULL, 54, 66, 67, 135, 136
CVDLS_MEM_FAIL, 45, 132

CVDLS_MEM_NULL, 45, 54, 66, 67, 132, 135, 136

CVDLS_NO_ADJ, 132, 135, 136

CVDLS_SUCCESS, 45, 54, 66, 67, 132, 135,

CVDlsGetLastFlag, 67
CVD1lsGetNumJacEvals, 66
CVD1sGetNumRhsEvals, 67
CVDlsGetReturnFlagName, 67
CVD1sGetWorkSpace, 66
CVDlsJacFn, 75

CVDlsJacFnB, 144
CVDlsJacFnBS, 144
CVDlsSetJacFn, 54
CVD1sSetJacFnB, 135
CVD1sSetJacFnBS, 135
CVD1lsSetLinearSolver, 39, 44, 75
CVDlsSetLinearSolverB, 132, 144
CVErrHandlerFn, 73

CVEwtFn, 74

CVODE, 1

CVode, 40, 46, 118
CVODE_MEM_FATL, 113
CVODE_MEM_NULL, 113-119
CVodeAdjFree, 127
CVodeAdjInit, 124, 126
CVodeAdjReInit, 127
CVodeAdjSetNoSensi, 134
CVodeB, 125, 133

CVodeCreate, 41
CVodeCreateB, 124, 129
CVodeF, 124, 127
CVodeFree, 40, 42
CVodeGetActualInitStep, 62
CVodeGetAdjCheckPointsInfo, 139
CVodeGetAdjCVodeBmem, 138
CVodeGetAdjY, 138
CVodeGetB, 134
CVodeGetCurrentOrder, 61
CVodeGetCurrentStep, 62
CVodeGetCurrentTime, 62
CVodeGetDky, 57
CVodeGetErrWeights, 63
CVodeGetEstLocalErrors, 63
CVodeGetIntegratorStats, 64
CVodeGetLastOrder, 61
CVodeGetLastStep, 62
CVodeGetNonlinSolvStats, 65
CVodeGetNumErrTestFails, 61
CVodeGetNumGEvals, 66
CVodeGetNumLinSolvSetups, 61
CVodeGetNumNonlinSolvConvFails, 64
CVodeGetNumNonlinSolvIters, 64
CVodeGetNumRhsEvals, 60

136



INDEX

CVodeGetNumRhsEvalsSEns, 106
CVodeGetNumStabLimOrderReds, 63
CVodeGetNumSteps, 60
CVodeGetQuad, 82, 141
CVodeGetQuadB, 125, 141
CVodeGetQuadDky, 82
CVodeGetQuadErrWeights, 84
CVodeGetQuadNumErrTestFails, 84
CVodeGetQuadNumRhsEvals, 84
CVodeGetQuadSens, 115
CVodeGetQuadSens1, 116
CVodeGetQuadSensDky, 115
CVodeGetQuadSensDkyl, 116
CVodeGetQuadSensErrWeights, 119

CVodeGetQuadSensNumErrTestFails, 118

CVodeGetQuadSensNumRhsEvals, 118
CVodeGetQuadSensStats, 119
CVodeGetQuadStats, 85
CVodeGetReturnFlagName, 65
CVodeGetRootInfo, 65
CVodeGetSens, 97, 102
CVodeGetSens1, 97, 103
CVodeGetSensDky, 97, 102
CVodeGetSensDky1, 97, 103
CVodeGetSensErrWeights, 108
CVodeGetSensNonlinSolvStats, 109
CVodeGetSensNumErrTestFails, 107

CVodeRelInitB, 130
CVodeRootInit, 46
CVODES
brief description of, 1
motivation for writing in C, 2
package structure, 29
relationship to CVODE, PVODE, 2
relationship to VODE, VODPK, 1-2
CVODES linear solver interfaces, 30
CVDIAG, 45
CVDLS, 44, 131
CVSPILS, 45
CVSpilscvspILs, 132
selecting one, 44
CVODES linear solvers
header files, 37
implementation details, 33
NVECTOR compatibility, 35
selecting one, 44
usage with adjoint module, 131
cvodes.h, 37
cvodes/cvodes_diag.h, 38
cvodes/cvodes_direct.h, 37
cvodes/cvodes_spils.h, 37
CVodeSensEEtolerances, 101
CVodeSensFree, 100
CVodeSensInit, 97-99

CVodeGetSensNumLinSolvSetups, 107 CVodeSensInitl, 97-99, 110
CVodeGetSensNumNonlinSolvConvFails, 108 CVodeSensReInit, 99
CVodeGetSensNumNonlinSolvIters, 108 CVodeSensSStolerances, 101
CVodeGetSensNumRhsEvals, 106 CVodeSensSVtolerances, 101
CVodeGetSensStats, 107 CVodeSensToggleOff, 100
CVodeGetStgrSensNumNonlinSolvConvFails, 109 CVodeSetConstraints, 53
CVodeGetStgrSensNumNonlinSolvIters, 109 CVodeSetErrFile, 49

CVodeGetTolScaleFactor, 63
CVodeGetWorkSpace, 59
CVodelInit, 41, 72
CVodeInitB, 124, 129
CVodeInitBS, 124, 130
CVodeQuadFree, 81
CVodeQuadInit, 80, 81
CVodeQuadInitB, 139
CVodeQuadInitBS, 140
CVodeQuadRelInit, 81
CVodeQuadReInitB, 140
CVodeQuadSensEEtolerances, 118
CVodeQuadSensFree, 114
CVodeQuadSensInit, 113, 114
CVodeQuadSensReInit, 114
CVodeQuadSensSStolerances, 117
CVodeQuadSensSVtolerances, 117
CVodeQuadSStolerances, 83
CVodeQuadSVtolerances, 83
CVodeRelInit, 72

CVodeSetErrHandlerFn, 49
CVodeSetInitStep, 51
CVodeSetIterType, 53
CVodeSetMaxConvFails, 52
CVodeSetMaxErrTestFails, 52
CVodeSetMaxHnilWarns, 50
CVodeSetMaxNonlinIters, 52
CVodeSetMaxNumSteps, 50
CVodeSetMax0rd, 50
CVodeSetMaxStep, 51
CVodeSetMinStep, 51
CVodeSetNoInactiveRootWarn, 56
CVodeSetNonlinConvCoef, 53
CVodeSetQuadErrCon, 83
CVodeSetQuadSensErrCon, 117
CVodeSetRootDirection, 56
CVodeSetSensDQMethod, 104
CVodeSetSensErrCon, 105
CVodeSetSensMaxNonlinIters, 105
CVodeSetSensParams, 104



268 INDEX

CVodeSetStabLimDet, 50 CVSpilsJacTimesVecFn, 76
CVodeSetStopTime, 52 CVSpilsJacTimesVecFnB, 146
CVodeSetUserData, 49 CVSpilsJacTimesVecFnBS, 146
CVodeSStolerances, 42 CVSpilsPrecSetupFn, 78
CVodeSStolerancesB, 131 CVSpilsPrecSolveFn, 78
CVodeSVtolerances, 42 CVSpilsSetEpsLin, 56
CVodeSVtolerancesB, 131 CVSpilsSetEpsLinB, 138
CVodeWFtolerances, 43 CVSpilsSetJacTimes, 55
CVQuadRhsFn, 80, 85 CVSpilsSetJacTimesB, 137
CVQuadRhsFnB, 140, 143 CVSpilsSetJacTimesBS, 137
CVQuadRhsFnBS, 140, 144 CVSpilsSetLinearSolver, 39, 44, 45, 132
CVQuadSensRhsFn, 113, 119 CVSpilsSetPreconditioner, 55
CVRhsFn, 41, 73 CVSpilsSetPrecSolveFnB, 136
CVRhsFnB, 129, 142 CVSpilsSetPrecSolveFnBS, 136
CVRhsFnBS, 130, 142
CVRootFn, 74 eh data, 74
CVSensRhs1Fn, 99, 111 error control
CVSensRhsFn, 98, 110 order selection, 16-17
CVSPILS linear solver sensitivity variables, 22
preconditioner setup function, 150 step size selection, 16
preconditioner solve function, 149 error messages, 48
SUNLINSOL compatibility, 45 redirecting, 48
CVSPILS linear solver interface user-defined handler, 49, 73

convergence test, 55

Jacobian approximation used by, 54 forwafbd slensmvllty analyslls .
memory requirements, 67 absolute tolerance selection, 22

optional input, 54 56, 136138 correction.strategies, 21-22, 29, 98, 100
mathematical background, 20-23

right hand side evaluation, 23
right-hand side evaluation, 22, 110-111

optional output, 67-70
preconditioner setup function, 54, 78
preconditioner solve function, 54, 77
CVSPILS_ILL_INPUT, 45, 56, 87, 91, 132, 136138,
152, 153
CVSPILS_LMEM_NULL, 55, 56, 68-70, 87, 91, 92,
136-138, 152, 153
CVSPILS_MEM FATL, 45, 87, 91, 132, 151-153
CVSPILS_MEM_NULL, 45, 55, 56, 68-70, 132, 136—
138, 152, 153 half-bandwidths, 87, 91
CVSPILS_NO_ADJ, 132, 136-138 header files, 37, 86, 90
CVSPILS_PMEM_NULL, 87, 88, 92, 93, 153
CVSPILS_SUCCESS, 45, 55, 56, 68-70, 87, 88, 132, jtask, 40, 46, 128

getDevData(N_Vector v), 174, 176
getGlobalSize(N_Vector v), 174, 177
getHostData(N_Vector v), 174, 177
getMPIComm (N _Vector v), 174, 177
getSize(N_Vector v), 174, 177

136-138, 151-153 iter, 41, 53
CVSPILS_SUNLS_FAIL, 45, 55
CVSpilsGetLastFlag, 70 Jacobian approximation function
CVSpilsGetNumConvFails, 68 diagonal
CVSpilsGetNumJtimesEvals, 69 difference quotient, 45
CVSpilsGetNumJTSetupEvals, 69 difference quotient, 54
CVSpilsGetNumLinIters, 68 direct
CVSpilsGetNumPrecEvals, 68 user-supplied (backward), 135
CVSpilsGetNumPrecSolves, 69 Jacobian times vector
CVSpilsGetNumRhsEvals, 69 difference quotient, 54
CVSpilsGetReturnFlagName, 70 user-supplied, 55
CVSpilsGetWorkSpace, 68 Jacobian-vector product
CVSpilsJacTimesSetupFn, 77 user-supplied, 7677

CVSpilsJacTimesSetupFnB, 147 user-supplied (backward), 137, 146



INDEX

269

Jacobian-vector setup, 77
user-supplied (backward), 147

user-supplied, 54, 75-76, 135

user-supplied (backward), 144, 145

1mm, 41, 72
LSODE, 1

maxord, 50, 72

memory requirements
CVBANDPRE preconditioner, 87
CVBBDPRE preconditioner, 92
CVDIAG linear solver interface, 70
CVDLS linear solver interface, 66
CVODES solver, 81, 99, 113
CVODES solver, 60
CVSPILS linear solver interface, 67

N_VCloneVectorArray, 156
N_VCloneVectorArray_OpenMP, 166
N_VCloneVectorArray Parallel, 164
N_VCloneVectorArray_ParHyp, 171
N_VCloneVectorArray_Petsc, 172
N_VCloneVectorArray Pthreads, 169
N_VCloneVectorArray_Serial, 161
N_VCloneVectorArrayEmpty, 156
N_VCloneVectorArrayEmpty_OpenMP, 167
N_VCloneVectorArrayEmpty_Parallel, 164
N_VCloneVectorArrayEmpty_ParHyp, 171
N_VCloneVectorArrayEmpty_Petsc, 172
N_VCloneVectorArrayEmpty Pthreads, 169
N_VCloneVectorArrayEmpty_Serial, 161
N_VCopyFromDevice_Cuda, 175
N_VCopyFromDevice Raja, 178
N_VCopyToDevice_Cuda, 175
N_VCopyToDevice Raja, 178
N_VDestroyVectorArray, 156
N_VDestroyVectorArray_OpenMP, 167
N_VDestroyVectorArray_Parallel, 164
N_VDestroyVectorArray ParHyp, 171
N_VDestroyVectorArray Petsc, 173
N_VDestroyVectorArray Pthreads, 169
N_VDestroyVectorArray_Serial, 161
N_Vector, 37, 155
N_VGetDeviceArrayPointer_Cuda, 175
N_VGetDeviceArrayPointer Raja, 178
N_VGetHostArrayPointer_Cuda, 175
N_VGetHostArrayPointer Raja, 178
N_VGetLength_Cuda, 175

N_VGetLength OpenMP, 167
N_VGetLength Parallel, 164
N_VGetLength Pthreads, 169
N_VGetLength Raja, 178
N_VGetLength_Serial, 162
N_VGetLocallength Parallel, 164

N_VGetVector_ParHyp, 171
N_VGetVector_Petsc, 172
N_VMake_Cuda, 175
N_VMake_OpenMP, 166
N_VMake_Parallel, 164
N_VMake_ParHyp, 170
N_VMake Petsc, 172
N_VMake_Pthreads, 169
N_VMake_Raja, 177
N_VMake_Serial, 161
N_VNew_Cuda, 174, 175
N_VNew_OpenMP, 166
N_VNew_Parallel, 163
N_VNew_Pthreads, 169
N_VNew Raja, 177
N_VNew_Serial, 161
N_VNewEmpty_Cuda, 175
N_VNewEmpty_OpenMP, 166
N_VNewEmpty_Parallel, 164
N_VNewEmpty_ParHyp, 170
N_VNewEmpty_Petsc, 172
N_VNewEmpty_Pthreads, 169
N_VNewEmpty Raja, 177
N_VNewEmpty_Serial, 161
N_VPrint_Cuda, 175
N_VPrint_OpenMP, 167
N_VPrint_Parallel, 164
N_VPrint_ParHyp, 171
N_VPrint_Petsc, 173
N_VPrint_Pthreads, 169
N_VPrint_Raja, 178
N_VPrint_Serial, 162
N_VPrintFile_Cuda, 175
N_VPrintFile_OpenMP, 167
N_VPrintFile Parallel, 164
N_VPrintFile_ParHyp, 171
N_VPrintFile Petsc, 173
N_VPrintFile Pthreads, 169
N_VPrintFile_Raja, 178
N_VPrintFile Serial, 162
nonlinear system

definition, 13—-14

Newton convergence test, 15

Newton iteration, 14-15
NV_COMM_P, 163
NV_CONTENT_OMP, 165
NV_CONTENT_P, 163
NV_CONTENT_PT, 168
NV_CONTENT_S, 160
NV_DATA_OMP, 166
NV_DATA_P, 163
NV_DATA_PT, 168
NV_DATA_S, 160
NV_GLOBLENGTH_P, 163



270

INDEX

NV_Ith_OMP, 166
NV_Ith_P, 163
NV_Ith_PT, 168
NV_Ith_S, 161
NV_LENGTH_OMP, 166
NV_LENGTH_PT, 168
NV_LENGTH_S, 160
NV_LOCLENGTH_P, 163
NV_NUM_THREADS_OMP, 166
NV_NUM_THREADS_PT, 168
NV_OWN_DATA_OMP, 166
NV_OWN_DATA_P, 163
NV_OWN_DATA_PT, 168
NV_OWN_DATA_S, 160
NVECTOR module, 155

optional input
backward solver, 135
direct linear solver interface, 54, 135-136
forward sensitivity, 104-105
iterative linear solver, 54-56, 136-138
quadrature integration, 83-84, 141
rootfinding, 56
sensitivity-dependent quadrature integration,

116-118

solver, 48-54

optional output
backward solver, 138
band-block-diagonal preconditioner, 92-93
banded preconditioner, 87-88
diagonal linear solver interface, 70-71
direct linear solver interface, 66—67
forward sensitivity, 105-109
interpolated quadratures, 82
interpolated sensitivities, 102
interpolated sensitivity-dep. quadratures, 115
interpolated solution, 57
iterative linear solver interface, 67—70
quadrature integration, 84-85, 141
sensitivity-dependent quadrature integration,

118-119

solver, 5965
version, 57-59

output mode, 17, 46, 128, 133

partial error control

explanation of CVODES behavior, 120
portability, 36
preconditioning

advice on, 17, 33

band-block diagonal, 88

banded, 86

setup and solve phases, 33

user-supplied, 54-55, 77, 78, 136-137, 149,

150

PVODE, 2

quadrature integration, 20
forward sensitivity analysis, 23

RCONST, 36
realtype, 36
reinitialization, 72, 130
right-hand side function, 73
backward problem, 142
forward sensitivity, 110-111
quadrature backward problem, 143
quadrature equations, 85
sensitivity-dep. quadrature backward prob-
lem, 144
sensitivity-dependent quadrature equations,
119
Rootfinding, 19, 40, 46

second-order sensitivity analysis, 26
support in CVODES, 27
SM_COLS_B, 191
SM_COLS_D, 187
SM_COLUMN_B, 76, 191
SM_COLUMN_D, 75, 187
SM_COLUMN_ELEMENT_B, 76, 191
SM_COLUMNS_B, 191
SM_COLUMNS D, 186
SM_COLUMNS_S, 197
SM_CONTENT_B, 191
SM_CONTENT D, 186
SM_CONTENT_S, 195
SM_DATA_ B, 191
SM_DATA D, 187
SM_DATA_S, 197
SM_ELEMENT_B, 76, 191
SM_ELEMENT D, 75, 187
SM_INDEXPTRS_S, 197
SM_INDEXVALS_S, 197
SM_LBAND_B, 191
SM_LDATA_B, 191
SM_LDATA_D, 186
SM_LDIM B, 191
SM_NNZ_S, 76, 197
SM_NP_S, 197
SM_ROWS_B, 191
SM_ROWS_D, 186
SM_ROWS_S, 197
SM_SPARSETYPE_S, 197
SM_SUBAND_B, 191
SM_UBAND_B, 191
SMALL_REAL, 36
Stability limit detection, 18
step size bounds, 51
SUNBandLinearSolver, 213



INDEX

271

SUNBandMatrix, 192
SUNBandMatrix_Cols, 193
SUNBandMatrix_Column, 193
SUNBandMatrix_Columns, 192
SUNBandMatrix Data, 193
SUNBandMatrix_LDim, 193
SUNBandMatrix LowerBandwidth, 192
SUNBandMatrix Print, 192
SUNBandMatrix Rows, 192

SUNBandMatrix_StoredUpperBandwidth, 192

SUNBandMatrix_UpperBandwidth, 192
SUNDenseLinearSolver, 211
SUNDenseMatrix, 187
SUNDenseMatrix_Cols, 188
SUNDenseMatrix_Column, 188
SUNDenseMatrix_Columns, 188
SUNDenseMatrix_Data, 188
SUNDenseMatrix_LData, 188
SUNDenseMatrix Print, 187
SUNDenseMatrix Rows, 188
sundials_nvector.h, 37
sundials_types.h, 36, 37
SUNDIALSGetVersion, 59
SUNDIALSGetVersionNumber, 59
sunindextype, 36

SUNKLU, 218

SUNKLUReInit, 218
SUNKLUSetOrdering, 219
SUNLapackBand, 216
SUNLapackDense, 214
SUNLinearSolver, 203, 204
SUNLinearSolver module, 203
SUNLINEARSOLVER_DIRECT, 205
SUNLINEARSOLVER_ITERATIVE, 205
sunlinsol/sunlinsol_band.h, 37
sunlinsol/sunlinsol_dense.h, 37
sunlinsol/sunlinsol klu.h, 37
sunlinsol/sunlinsol_lapackband.h, 37
sunlinsol/sunlinsol_lapackdense.h, 37
sunlinsol/sunlinsol_pcg.h, 38
sunlinsol/sunlinsol_spbcgs.h, 37
sunlinsol/sunlinsol_spfgmr.h, 37
sunlinsol/sunlinsol_spgmr.h, 37
sunlinsol/sunlinsol_sptfqmr.h, 37
sunlinsol/sunlinsol_superlumt.h, 37
SUNLinSolFree, 40
SUNMatDestroy, 40

SUNMatrix, 183

SUNMatrix module, 183
SUNPCG, 237, 238
SUNPCGSetMaxl, 238
SUNPCGSetPrecType, 237
SUNSparseFromBandMatrix, 198
SUNSparseFromDenseMatrix, 197

SUNSparseMatrix, 197
SUNSparseMatrix_Columns, 198
SUNSparseMatrix_Data, 199
SUNSparseMatrix_IndexPointers, 199
SUNSparseMatrix_IndexValues, 199
SUNSparseMatrix NNZ, 76, 199
SUNSparseMatrix NP, 199
SUNSparseMatrix_Print, 198
SUNSparseMatrix_Realloc, 198
SUNSparseMatrix_Reallocate, 198
SUNSparseMatrix_Rows, 198
SUNSparseMatrix_SparseType, 199
SUNSPBCGS, 231
SUNSPBCGSSetMaxl, 231
SUNSPBCGSSetPrecType, 231
SUNSPFGMR, 228, 229
SUNSPFGMRSetGSType, 228
SUNSPFGMRSetMaxRestarts, 228
SUNSPFGMRSetPrecType, 228
SUNSPGMR, 224, 225
SUNSPGMRSetGSType, 225
SUNSPGMRSetMaxRestarts, 225
SUNSPGMRSetPrecType, 225
SUNSPTFQMR, 234
SUNSPTFQMRSetMaxl, 234
SUNSPTFQMRSetPrecType, 234
SUNSuperLUMT, 221
SUNSuperLUMTSetOrdering, 221, 222

tolerances, 14, 43, 74, 83, 84, 117

UNIT_ROUNDOFF, 36
User main program
Adjoint sensitivity analysis, 123
CVBANDPRE usage, 86
CVBBDPRE usage, 90
forward sensitivity analysis, 95
integration of quadratures, 79
integration of sensitivitiy-dependent quadra-
tures, 111
IVP solution, 38
user_data, 49, 73-75, 85, 89, 90, 110, 111, 120
user_dataB, 153, 154

VODE, 1
VODPK, 1

weighted root-mean-square norm, 14






	List of Tables
	List of Figures
	Introduction
	Historical Background
	Changes from previous versions
	Reading this User Guide
	SUNDIALS Release License
	Copyright Notices
	SUNDIALS Copyright
	ARKode Copyright

	BSD License


	Mathematical Considerations
	IVP solution
	Preconditioning
	BDF stability limit detection
	Rootfinding
	Pure quadrature integration
	Forward sensitivity analysis
	Forward sensitivity methods
	Selection of the absolute tolerances for sensitivity variables
	Evaluation of the sensitivity right-hand side
	Quadratures depending on forward sensitivities

	Adjoint sensitivity analysis
	Checkpointing scheme

	Second-order sensitivity analysis

	Code Organization
	SUNDIALS organization
	CVODES organization

	Using CVODES for IVP Solution
	Access to library and header files
	Data Types
	Floating point types
	Integer types used for vector and matrix indices

	Header files
	A skeleton of the user's main program
	User-callable functions
	CVODES initialization and deallocation functions
	CVODES tolerance specification functions
	Linear solver interface functions
	Rootfinding initialization function
	CVODES solver function
	Optional input functions
	Main solver optional input functions
	Direct linear solver interface optional input functions
	Iterative linear solver interface optional input functions
	Rootfinding optional input functions

	Interpolated output function
	Optional output functions
	SUNDIALS version information
	Main solver optional output functions
	Rootfinding optional output functions
	Direct linear solver interface optional output functions
	Iterative linear solver interface optional output functions
	Diagonal linear solver interface optional output functions

	CVODES reinitialization function

	User-supplied functions
	ODE right-hand side
	Error message handler function
	Error weight function
	Rootfinding function
	Jacobian information (direct method Jacobian)
	Jacobian information (matrix-vector product)
	Jacobian information (matrix-vector setup)
	Preconditioning (linear system solution)
	Preconditioning (Jacobian data)

	Integration of pure quadrature equations
	Quadrature initialization and deallocation functions
	CVODES solver function
	Quadrature extraction functions
	Optional inputs for quadrature integration
	Optional outputs for quadrature integration
	User-supplied function for quadrature integration

	Preconditioner modules
	A serial banded preconditioner module
	A parallel band-block-diagonal preconditioner module


	Using CVODES for Forward Sensitivity Analysis
	A skeleton of the user's main program
	User-callable routines for forward sensitivity analysis
	Forward sensitivity initialization and deallocation functions
	Forward sensitivity tolerance specification functions
	CVODES solver function
	Forward sensitivity extraction functions
	Optional inputs for forward sensitivity analysis
	Optional outputs for forward sensitivity analysis

	User-supplied routines for forward sensitivity analysis
	Sensitivity equations right-hand side (all at once)
	Sensitivity equations right-hand side (one at a time)

	Integration of quadrature equations depending on forward sensitivities
	Sensitivity-dependent quadrature initialization and deallocation
	CVODES solver function
	Sensitivity-dependent quadrature extraction functions
	Optional inputs for sensitivity-dependent quadrature integration
	Optional outputs for sensitivity-dependent quadrature integration
	User-supplied function for sensitivity-dependent quadrature integration

	Note on using partial error control

	Using CVODES for Adjoint Sensitivity Analysis
	A skeleton of the user's main program
	User-callable functions for adjoint sensitivity analysis
	Adjoint sensitivity allocation and deallocation functions
	Forward integration function
	Backward problem initialization functions
	Tolerance specification functions for backward problem
	Linear solver initialization functions for backward problem
	Backward integration function
	Adjoint sensitivity optional input
	Optional input functions for the backward problem
	Main solver optional input functions
	Direct linear solver interface optional input functions
	SPILS linear solvers

	Optional output functions for the backward problem
	Backward integration of quadrature equations
	Backward quadrature initialization functions
	Backward quadrature extraction function
	Optional input/output functions for backward quadrature integration


	User-supplied functions for adjoint sensitivity analysis
	ODE right-hand side for the backward problem
	ODE right-hand side for the backward problem depending on the forward sensitivities
	Quadrature right-hand side for the backward problem
	Sensitivity-dependent quadrature right-hand side for the backward problem
	Jacobian information for the backward problem (direct method Jacobian)
	Jacobian information for the backward problem (matrix-vector product)
	Jacobian information for the backward problem (matrix-vector setup)
	Preconditioning for the backward problem (linear system solution)
	Preconditioning for the backward problem (Jacobian data)

	Using CVODES preconditioner modules for the backward problem
	Using the banded preconditioner CVBANDPRE
	Using the band-block-diagonal preconditioner CVBBDPRE
	Initialization of CVBBDPRE
	User-supplied functions for CVBBDPRE



	Description of the NVECTOR module
	The NVECTOR_SERIAL implementation
	The NVECTOR_PARALLEL implementation
	The NVECTOR_OPENMP implementation
	The NVECTOR_PTHREADS implementation
	The NVECTOR_PARHYP implementation
	The NVECTOR_PETSC implementation
	The NVECTOR_CUDA implementation
	The NVECTOR_RAJA implementation
	NVECTOR Examples
	NVECTOR functions used by CVODES

	Description of the SUNMatrix module
	The SUNMatrix_Dense implementation
	The SUNMatrix_Band implementation
	The SUNMatrix_Sparse implementation
	SUNMatrix Examples
	SUNMatrix functions used by CVODES

	Description of the SUNLinearSolver module
	Description of the client-supplied SUNLinearSolver routines
	Compatibility of SUNLinearSolver modules
	The SUNLinearSolver_Dense implementation
	The SUNLinearSolver_Band implementation
	The SUNLinearSolver_LapackDense implementation
	The SUNLinearSolver_LapackBand implementation
	The SUNLinearSolver_KLU implementation
	The SUNLinearSolver_SuperLUMT implementation
	The SUNLinearSolver_SPGMR implementation
	The SUNLinearSolver_SPFGMR implementation
	The SUNLinearSolver_SPBCGS implementation
	The SUNLinearSolver_SPTFQMR implementation
	The SUNLinearSolver_PCG implementation
	SUNLinearSolver Examples
	SUNLinearSolver functions used by CVODES

	SUNDIALS Package Installation Procedure
	CMake-based installation
	Configuring, building, and installing on Unix-like systems
	Configuration options (Unix/Linux)
	Configuration examples
	Working with external Libraries
	Testing the build and installation

	Building and Running Examples
	Configuring, building, and installing on Windows
	Installed libraries and exported header files

	CVODES Constants
	CVODES input constants
	CVODES output constants

	Bibliography
	Index

