bifunctors-5.5.4: Bifunctors

Safe HaskellSafe
LanguageHaskell98

Data.Bifunctor.Sum

Documentation

data Sum p q a b Source #

Constructors

L2 (p a b) 
R2 (q a b) 
Instances
BifunctorFunctor (Sum p :: (k1 -> k2 -> Type) -> k1 -> k2 -> Type) Source # 
Instance details

Defined in Data.Bifunctor.Sum

Methods

bifmap :: (p0 :-> q) -> Sum p p0 :-> Sum p q Source #

BifunctorMonad (Sum p :: (k1 -> k2 -> Type) -> k1 -> k2 -> Type) Source # 
Instance details

Defined in Data.Bifunctor.Sum

Methods

bireturn :: p0 :-> Sum p p0 Source #

bibind :: (p0 :-> Sum p q) -> Sum p p0 :-> Sum p q Source #

bijoin :: Sum p (Sum p p0) :-> Sum p p0 Source #

Generic1 (Sum p q a :: k1 -> Type) Source # 
Instance details

Defined in Data.Bifunctor.Sum

Associated Types

type Rep1 (Sum p q a) :: k -> Type

Methods

from1 :: Sum p q a a0 -> Rep1 (Sum p q a) a0

to1 :: Rep1 (Sum p q a) a0 -> Sum p q a a0

(Bifunctor p, Bifunctor q) => Bifunctor (Sum p q) Source # 
Instance details

Defined in Data.Bifunctor.Sum

Methods

bimap :: (a -> b) -> (c -> d) -> Sum p q a c -> Sum p q b d

first :: (a -> b) -> Sum p q a c -> Sum p q b c

second :: (b -> c) -> Sum p q a b -> Sum p q a c

(Bifoldable p, Bifoldable q) => Bifoldable (Sum p q) Source # 
Instance details

Defined in Data.Bifunctor.Sum

Methods

bifold :: Monoid m => Sum p q m m -> m

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> Sum p q a b -> m

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> Sum p q a b -> c

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> Sum p q a b -> c

(Bitraversable p, Bitraversable q) => Bitraversable (Sum p q) Source # 
Instance details

Defined in Data.Bifunctor.Sum

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Sum p q a b -> f (Sum p q c d)

(Eq (p a b), Eq (q a b)) => Eq (Sum p q a b) Source # 
Instance details

Defined in Data.Bifunctor.Sum

Methods

(==) :: Sum p q a b -> Sum p q a b -> Bool

(/=) :: Sum p q a b -> Sum p q a b -> Bool

(Ord (p a b), Ord (q a b)) => Ord (Sum p q a b) Source # 
Instance details

Defined in Data.Bifunctor.Sum

Methods

compare :: Sum p q a b -> Sum p q a b -> Ordering

(<) :: Sum p q a b -> Sum p q a b -> Bool

(<=) :: Sum p q a b -> Sum p q a b -> Bool

(>) :: Sum p q a b -> Sum p q a b -> Bool

(>=) :: Sum p q a b -> Sum p q a b -> Bool

max :: Sum p q a b -> Sum p q a b -> Sum p q a b

min :: Sum p q a b -> Sum p q a b -> Sum p q a b

(Read (p a b), Read (q a b)) => Read (Sum p q a b) Source # 
Instance details

Defined in Data.Bifunctor.Sum

Methods

readsPrec :: Int -> ReadS (Sum p q a b)

readList :: ReadS [Sum p q a b]

readPrec :: ReadPrec (Sum p q a b)

readListPrec :: ReadPrec [Sum p q a b]

(Show (p a b), Show (q a b)) => Show (Sum p q a b) Source # 
Instance details

Defined in Data.Bifunctor.Sum

Methods

showsPrec :: Int -> Sum p q a b -> ShowS

show :: Sum p q a b -> String

showList :: [Sum p q a b] -> ShowS

Generic (Sum p q a b) Source # 
Instance details

Defined in Data.Bifunctor.Sum

Associated Types

type Rep (Sum p q a b) :: Type -> Type

Methods

from :: Sum p q a b -> Rep (Sum p q a b) x

to :: Rep (Sum p q a b) x -> Sum p q a b

type Rep1 (Sum p q a :: k1 -> Type) Source # 
Instance details

Defined in Data.Bifunctor.Sum

type Rep1 (Sum p q a :: k1 -> Type) = D1 (MetaData "Sum" "Data.Bifunctor.Sum" "bifunctors-5.5.4-FjcMlwZ5ubs8uJIgpQl17c" False) (C1 (MetaCons "L2" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec1 (p a))) :+: C1 (MetaCons "R2" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec1 (q a))))
type Rep (Sum p q a b) Source # 
Instance details

Defined in Data.Bifunctor.Sum

type Rep (Sum p q a b) = D1 (MetaData "Sum" "Data.Bifunctor.Sum" "bifunctors-5.5.4-FjcMlwZ5ubs8uJIgpQl17c" False) (C1 (MetaCons "L2" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (p a b))) :+: C1 (MetaCons "R2" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (q a b))))