recog

A package for constructive recognition of
permutation and matrix groups

1.3.2dev

9 July 2019

Max Neunhoffer

Akos Seress

Max Neunhoffer
Email: max@9hoeffer.de

mailto://max@9hoeffer.de

recog 2

Copyright

© 2005-2014 by Max Neunhoffer and Akos Seress
This package may be distributed under the terms and conditions of the GNU Public License Version 3 or
(at your option) any later version.

Contents

7

Introduction

1.1 Philosophy
1.2 Overview over this manual . .
1.3 Feedback and support
1.4 Literature (temporary)

Installation of the recog package

Group recognition

3.1 The recursive procedure

3.2 Recognition info records . . .

3.3 Methods to find homomorphisms Lo
3.4 Conventions for the recognition of permutation groups
3.5 Conventions for the recognition of matrix groups
3.6 Conventions for the recognition of projective groups
Method selection

4.1 What are methods?
4.2 How methods are called

After successful recognition

5.1 Functions and methods for recognition inforecords

Methods for recognition

6.1 Methods for generic groups . .
6.2 Methods for permutation groups
6.3 Methods for matrix groups . .
6.4 Methods for projective groups

Examples

References

Index

O R T)

=)

24
24
25

28
29

30
30
30
33
35

39

44

45

Chapter 1

Introduction

1.1 Philosophy

This package is about group recognition. It provides a generic framework to implement methods of
group recognition, regardless of what computational representation is used. This means, that the code
in this package is useful at least for permutation groups, matrix groups and projective groups. The
setup is described in [NS06].

The framework allows to build composition trees and handles the builtup and usage of these trees
in a generic way. It also contains a method selection (described in Chapter 4) that allows install
recognition methods in a convenient way and that automatically tries to try the different available
methods in a sensible order.

1.2 Overview over this manual

Chapter 2 describes the installation of this package.

Chapter 3 describes the generic, recursive procedure used for group recognition throughout this
package. At the heart of this procedure is the definition of “FindHomomorphism” methods, which is
also described in that chapter. For the choice of the right method for finding a homomorphism (or an
isomorphism) we use another generic procedure, the “method selection” which is not to be confused
with the GAP method selection.

Our own method selection system is described in detail in Chapter 4, because it is interesting in
its own right and might be useful in other circumstances.

Chapter 6 describes the available “FindHomomorphism” methods.

Chapter 5 explains what one can do with a completed recognition tree.

Finally, Chapter 7 shows some instructive examples of the usage of this package.

1.3 Feedback and support

If you have any bug reports, feature requests, or suggestions, then please tell us via the issue tracker
on GitHub.

In addition, the recog package has a mailing list, at recog@gap-system.org, which can
be used for holding discussions, sharing information, and asking questions about the pack-
age. You can find more information, and register to receive the mail sent to this list, at

https://github.com/gap-packages/recog/issues
https://github.com/gap-packages/recog/issues
mailto:recog@gap-system.org

recog 5
https://mail.gap-system.org/mailman/listinfo/recog.

1.4 Literature (temporary)

TODO Find the appropriate place to put these references, so that they appear in the bibliogra-
phy: [LNPS06] [BLS97] [JLNP13] [DLGLO13] [LGO09] [BLGN"05] [BLGN'03] [NP98] [NP99]
[NP97] [Pra99] [CLG97a] [CLG97b] [CLGM'95] [BNS06] [CNRD09] [BHLGO15] [Neu09]
Ser03] [KK15] [LO16] [LO07] [HLO"08] [BB99] [BBS09] [BS01] [Bro01] [Bro08] [Bro03] [BK06]
BKO1] [CLG98] [CLGO06] [CLGO1] [CFL97] [DLGOI15] [GH97] [GLGO06] [HLGORY6a]
HLGOR96b] [HR94] [IL00] [KM13] [KM15] [LGOY97a] [LGO02] [LGOY7b] [LGO1] [LMOO7]

[
[
[
[NP92] [NieO5] [O’B11] [O’B06] [Pak00] [Par84]

https://mail.gap-system.org/mailman/listinfo/recog

Chapter 2

Installation of the recog package

To install this package, just extract the package’s archive file to the GAP pkg directory.

If the recog package is not automatically loaded when GAP is started, then you must load the
package with LoadPackage ("recog") ; before its functions become available.

Note that the recog package needs the AtlasRep, Factint, Forms, genss, and orb packages to
work. Recompiling the documentation is possible by the command gap makedoc.g in the recog
directory. But this should not be necessary.

Chapter 3

Group recognition

This chapter describes a generic framework for group recognition. The basic problem is, we want to
solve the constructive membership problem: given any g € G, G = (X), write a straight line program
(SLP) from X to g, for g ¢ G (in the situation that G is naturally embedded into some bigger group),
the algorithm should fail. This is usually done by constructing some nice generators (and then writing
an SLP from the nice generators to g and concatenating with an SLP from X to the nice generators).
Often, for efficiency reasons, we will just store the nice generators and then only be interested in the
SLP from those to g. The framework presented here deals with exactly this process.

The generic framework was designed having three situations in mind: permutation groups, matrix
groups and projective groups. Although the methods used are quite different for those cases, there is
a common pattern in the procedure of recognition. Namely, first we have to find a homomorphism,
solve the constructive membership problem recursively in image and kernel, then put it together. The
recursion ends in groups where we can solve the constructive membership problem directly. The
general framework reflects this idea and separates it from the rest of the recognition methods.

Solution of the constructive membership problem comes in two stages: first a “recognition phase”
and then a “verification phase”. The recognition phase usually consists of randomised algorithms with
certain error or failure probabilities. The result is some kind of “recognition information” that will
describe the group already very well, but which is not yet proven to be correct. However, one can
already write arbitrary elements in the group as product of the given generators. In the verification
phase a presentation of the group is calculated, thereby proving that the group generated by the given
generators is in fact isomorphic to the group described by the recognition information. In many cases
the verification phase will be much more expensive than the recognition phase.

In the following sections, we describe the generic framework. We begin with a technical descrip-
tion of the recursive procedure and describe then the way methods to find homomorphism have to be
implemented. Finally, we have four sections in which we collect conventions for the recognition of
different types of groups.

3.1 The recursive procedure

At the heart of the recognition procedure is a function called RecogniseGeneric (3.1.1) which gets
a GAP group object and returns a so-called “recognition info record” (see Subsection 3.2 for details).
Success or failure will be indicated by this record being in the filter IsReady (3.2.4) or not.

To know how to find homomorphisms the function gets as another argument a database of methods
(see Section 3.3 for a description of the setup for methods for finding homomorphisms and Section

recog 8

4.1 in Chapter 4 for details about method databases). This database will be different according to the
type of group in question.
To describe the algorithm executed by RecogniseGeneric (3.1.1) we first summarise it in steps:

1.
2.

Create a new, empty recognition info record.

Use the database of FindHomomorphism methods and the method selection procedure described
in Chapter 4 to try to find a homomorphism onto a smaller group or an isomorphism onto another
known group. Terminate with failure if this does not work.

. If an isomorphism is found or a method somehow else recognises the group in question, such

that we can write elements as straight line programs in the generators from now on, then make
the recognition info record a leaf of the recognition tree and return success.

Otherwise the function sets up all the data for the homomorphism and calls itself with the
image of the homomorphism. Note that this might use another database of recognition methods
because the homomorphism might change the representation of the group.

. After successful recognition of the factor group the procedure has to recognise the kernel of

the homomorphism. The first step for this is to find generators. If they are not already known
from the FindHomomorphism method, they are created by producing random elements in the
group, mapping them through the homomorphism, writing them as a straight line program in
the images of the generators and applying this straight line program to the original generators.
The quotient of the random element and the result of the straight line program lies in the kernel
of the homomorphism. After creating 20 (FIXME: is 20 correct?) random generators of the
kernel we assume for the moment that they generate the kernel.

The function RecogniseGeneric (3.1.1) can now call itself for the kernel. After successful
recognition of the kernel all the data for the node is completed and success is returned.

. The function RecogniseGeneric (3.1.1) now acquires preimages of the nice generators behind

the homomorphism and appends the nice generators of the kernel. This list of generators is now
the list of nice generators for the current node.

Note that with the collected data one can write arbitrary elements of the group as a straight line
program in the generators as follows:

1.
2.

Map the element through the homomorphism.

Write the element in the factor group as a product of the nice generators in the factor group.

. Apply the resulting straight line program to the preimages of those nice generators and calculate

the quotient, which will now lie in the kernel.
Write the kernel element as a straight line program in the kernel generators.

Assemble both straight line programs to one bigger straight line program (which is now in terms
of our own nice generators) and return it.

If this procedure fails in the fourth step, this indicates that our random generators for the kernel did
not yet generate the full kernel and makes further recognition steps necessary. This will not happen
after a successful verification phase.

recog 9

The latter procedure to write elements as straight line programs in the generators is implemented
in the function SLPforElementGeneric (3.3.2) which will be called automatically if one calls
the SLPforElement (3.2.14) function of the resulting recognition info record (see slpforelement
(3.2.13)).

It is now high time to give you the calling details of the main recursive recognition function:

3.1.1 RecogniseGeneric

> RecogniseGeneric(H, methoddb, depthString, knowledge) (function)
> RecognizeGeneric(H, methoddb, depthString, knowledge) (function)

Returns: fail for failure or a recognition info record.

H must be a GAP group object, methoddb must be a method database in the sense of Section 4.1
containing FindHomomorphism methods in the sense of Section 3.3. depthString is a string whose
length measures the depth in the recognition tree. It will be increased by one character for each step we
go into the tree, namely by F for a factor node, and K for a kernel. The top level begins with an empty
string. knowledge is an optional record the components of which are copied into the new recognition
info record which is created for the group H. Especially the component hints can contain a list of
additional find homomorphism methods (described by records as in Section 4.1) which is prepended
to the method database in methoddb before the recognition starts. This feature is intended to give
hints about prior knowledge about which find homomorphism method might succeed.

The function performs the algorithm described above and returns either fail in case of failure or
a recognition info record in case of success. For the content and definition of recognition info records
see Section 3.2.

The user will usually not call this function directly, but will use the following convenience func-
tions:

3.1.2 RecognisePermGroup

> RecognisePermGroup (H) (function)
> RecognizePermGroup (H) (function)
Returns: fail for failure or a recognition info record.
H must be a GAP permutation group object. This function calls RecogniseGeneric (3.1.1)
with the method database used for permutation groups, which is stored in the global variable
FindHomDbPerm (3.1.6), and no prior knowledge.

3.1.3 RecogniseMatrixGroup

> RecogniseMatrixGroup (H) (function)
> RecognizeMatrixGroup (H) (function)
Returns: fail for failure or a recognition info record.
H must be a GAP matrix group object. This function calls RecogniseGeneric (3.1.1) with the
method database used for matrix groups, which is stored in the global variable FindHomDbMatrix
(3.1.9), and no prior knowledge.

3.1.4 RecogniseProjectiveGroup

recog 10

> RecogniseProjectiveGroup (H) (function)
> RecognizeProjectiveGroup (H) (function)

Returns: fail for failure or a recognition info record.

H must be a GAP matrix group object. Since as of now no actual projective groups are imple-
mented in the GAP library we use matrix groups instead. The recognition will however view the
group as the projective group, i.e. the matrix group modulo its scalar matrices. This function calls
RecogniseGeneric (3.1.1) with the method database used for projective groups, which is stored in
the global variable FindHomDbProjective (3.1.12), and no prior knowledge.

3.1.5 RecogniseGroup

> RecogniseGroup (H) (function)
> RecognizeGroup (H) (function)

Returns: fail for failure or a recognition info record.

H must be a GAP group object. This function automatically dispatches to one of the two previous
functions RecognisePermGroup (3.1.2), or RecogniseMatrixGroup (3.1.3), according to the type
of the group H. Note that since currently there is no implementation of projective groups in the GAP
library, one cannot recognise a matrix group H as a projective group using this function.

3.1.6 FindHomDbPerm

> FindHomDbPerm (global variable)

This list contains the methods for finding homomorphisms for permutation group recognition that
are stored in the record FindHomMethodsPerm (3.1.7). As described in Section 4.1 each method is
described by a record. The list is always sorted with respect to decreasing ranks. The order in this
list tells in which order the methods should be applied. Use AddMethod (4.1.1) to add methods to this
database.

3.1.7 FindHomMethodsPerm

> FindHomMethodsPerm (global variable)

In this global record the functions that are methods for finding homomorphisms for permutation
group recognition are stored. We collect them all in this record such that we do not use up too many
global variable names.

3.1.8 SLPforElementFuncsPerm

> SLPforElementFuncsPerm (global variable)

This global record holds the functions that are methods for writing group elements as straight line
programs (SLPs) in terms of the generators after successful permutation group recognition. We collect
them all in this record such that we do not use up too many global variable names.

recog 11

3.1.9 FindHomDbMatrix

> FindHomDbMatrix (global variable)

This list contains the methods for finding homomorphisms for matrix group recognition that are
stored in the record FindHomMethodsMatrix (3.1.10). As described in Section 4.1 each method is
described by a record. The list is always sorted with respect to decreasing ranks. The order in this

list tells in which order the methods should be applied. Use AddMethod (4.1.1) to add methods to this
database.

3.1.10 FindHomMethodsMatrix

> FindHomMethodsMatrix (global variable)

In this global record the functions that are methods for finding homomorphisms for matrix group
recognition are stored. We collect them all in this record such that we do not use up too many global
variable names.

3.1.11 SLPforElementFuncsMatrix

> SLPforElementFuncsMatrix (global variable)

This global record holds the functions that are methods for writing group elements as straight line
programs (SLPs) in terms of the generators after successful matrix group recognition. We collect them
all in this record such that we do not use up too many global variable names.

3.1.12 FindHomDbProjective

> FindHomDbProjective (global variable)
This list contains the methods for finding homomorphisms for projective group recognition that

are stored in the record FindHomMethodsProjective (3.1.13). As described in Section 4.1 each

method is described by a record. The list is always sorted with respect to decreasing ranks. The order

in this list tells in which order the methods should be applied. Use AddMethod (4.1.1) to add methods

to this database.

3.1.13 FindHomMethodsProjective

> FindHomMethodsProjective (global variable)

In this global record the functions that are methods for finding homomorphisms for projective
group recognition are stored. We collect them all in this record such that we do not use up too many
global variable names.

3.1.14 SLPforElementFuncsProjective

> SLPforElementFuncsProjective (global variable)

recog 12

This global record holds the functions that are methods for writing group elements as straight line
programs (SLPs) in terms of the generators after successful projective group recognition. We collect
them all in this record such that we do not use up too many global variable names.

3.1.15 FindHomMethodsGeneric

> FindHomMethodsGeneric (global variable)

In this global record the functions that are methods for finding homomorphisms for generic group
recognition are stored. We collect them all in this record such that we do not use up too many global
variable names.

3.1.16 SLPforElementFuncsGeneric

> SLPforElementFuncsGeneric (global variable)

This global record holds the functions that are methods for writing group elements as straight line
programs (SLPs) in terms of the generators after successful generic group recognition. We collect
them all in this record such that we do not use up too many global variable names.

3.1.17 TryFindHomMethod

> TryFindHomMethod (H, method, projective) (function)

Returns: fail or false or a recognition info record.

Use this function to try to run a given find homomorphism method method on a group H. Indicate
by the boolean projective whether or not the method works in projective mode. For permutation
groups, set this to false. The result is either fail or false if the method fails or a recognition
info record ri. If the method created a leaf then ri will be a leaf, otherwise it will have the at-
tribute Homom (3.2.6) set, but no factor or kernel have been created or recognised yet. You can use
for example the methods in FindHomMethodsPerm (3.1.7) or FindHomMethodsMatrix (3.1.10) or
FindHomMethodsProjective (3.1.13) as the method argument.

GAP homomorphisms are not required to give a sensible answer when given a value not in
their source, and in practice often enter the break loop, or return an incorrect answer. This
causes problems when checking if a value is not in the represented group. To avoid this problem,
validatehomominput (3.2.17) can be set to a function. This function is used to filter possible group
elements, before they are passed to Homom (3.2.6).

3.2 Recognition info records

A recognition info record is a GAP component object. It is a member of the family

3.2.1 RecognitionInfoFamily

> RecognitionInfoFamily (family)

and is in the category

recog 13

3.2.2 IsRecognitionInfo

> IsRecognitionInfo (Category)

and is IsAttributeStoringRep (Reference: IsAttributeStoringRep), such that we can define
attributes for it, the values of which are stored once they are known. A recognition info record always
represents a whole binary tree of such records, see the attributes RIFac (3.2.9) and RIKer (3.2.10)
below.

The following filters are defined for recognition info records:

3.2.3 IsLeaf

> IsLeaf (Flag)

This flag indicates, whether or not a recognition info record represents a leaf in the recognition
tree. If it is not set, one finds at least one of the attributes RIFac (3.2.9) and RIKer (3.2.10) set for the
corresponding node. This flag is normally reset and has to be set by a find homomorphism method to
indicate a leaf.

3.2.4 IsReady

> IsReady (Flag)

This flag indicates during the recognition procedure, whether a node in the recognition tree is
already completed or not. It is mainly set for debugging purposes during the recognition. However, if
the recognition fails somewhere in a leaf, this flag is not set and all nodes above will also not have this
flag set. In this way one can see whether the recognition failed and where the problem was.

The following attributes are defined for recognition info records:

3.25 Grp

> Grp(ri) (attribute)
The value of this attribute is the group that is to be recognised by this recognition info record

ri. This attribute is always present during recognition and after completion. Note that the generators

of the group object stored here always have a memory attached to them, such that elements that are

generated from them remember, how they were acquired.

3.2.6 Homom

> Homom(ri) (attribute)

The value of this attribute is the homomorphism that was found from the group described by the
recognition info record ri as a GAP object. It is set by a find homomorphism method that succeeded
to find a homomorphism (or isomorphism). It does not have to be set in leaf nodes of the recognition
tree.

recog 14

3.2.7 NiceGens

> NiceGens(ri) (attribute)

The value of this attribute must be set for all nodes and contains the nice generators. The
SLPforElement (3.2.14) function of the node will write its straight line program in terms of these
nice generators. For leaf nodes, the find homomorphism method is responsible to set the value of
NiceGens. By default, the original generators of the group at this node are taken. For a homomor-
phism (or isomorphism), the NiceGens will be the concatenation of preimages of the NiceGens of
the factor group (see pregensfac (3.2.8)) and the NiceGens of the kernel. A find homomorphism
method does not have to set NiceGens if it finds a homomorphism. Note however, that such a find
homomorphism method has to ensure somehow, that preimages of the NiceGens of the factor group
can be acquired. See calcnicegens (3.2.19), CalcNiceGens (3.2.22) and slptonice (3.2.23) for
instructions.

3.2.8 pregensfac

> pregensfac(ri) (attribute)

The value of this attribute is only set for homomorphism nodes. In that case it contains preimages
of the nice generators in the factor group. This attribute is set automatically by the generic recursive
recognition function using the mechanism described with the attribute calcnicegens (3.2.19) below.
A find homomorphism does not have to touch this attribute.

3.2.9 RIFac

> RIFac(ri) (attribute)

The value of this attribute is the recognition info record of the image of the homomorphism that
was found from the group described by the recognition info record ri. It is set by the generic re-
cursive procedure after a find homomorphism method has succeeded to find a homomorphism (or
isomorphism). It does not have to be set in leaf nodes of the recognition tree. This attribute value
provides the link to the “factor” subtree of the recognition tree.

3.2.10 RIKer

> RIKer (ri) (attribute)

The value of this attribute is the recognition info record of the kernel of the homomorphism that
was found from the group described by the recognition info record ri. It is set by the generic re-
cursive procedure after a find homomorphism method has succeeded to find a homomorphism (or
isomorphism). It does not have to be set in leaf nodes of the recognition tree or if the homomorphism
is known to be an isomorphism. In the latter case the value of the attribute is set to fail. This attribute
value provides the link to the “kernel” subtree of the recognition tree.

3.2.11 RIParent

recog 15

> RIParent(ri) (attribute)

The value of this attribute is the recognition info record of the parent of this node in the recognition
tree. The top node does not have this attribute set.

3.2.12 fhmethsel

> fhmethsel (ri) (attribute)

The value of this attribute is the record returned by the method selection (see Section 4.2) after it
ran to find a homomorphism (or isomorphism). It is there to be able to see which methods were tried
until the recognition of the node was completed.

3.2.13 slpforelement

> slpforelement (ri) (attribute)

After the recognition phase is completed for the node ri, we are by definition able to write ar-
bitrary elements in the group described by this node as a straight line program (SLP) in terms of the
nice generators stored in NiceGens (3.2.7). This attribute value is a function taking the node ri and
a group element as its arguments and returning the above mentioned straight line program. For the
case that a find homomorphism method succeeds in finding a homomorphism, the generic recursive
function sets this attribute to the function SLPforElementGeneric (3.3.2) which does the job for the
generic homomorphism situation. In all other cases the successful find homomorphism method has to
set this attribute to a function doing the job. The find homomorphism method is free to store additional
data in the recognition info record or the group object such that the SLPforElement (3.2.14) function
can work.

3.2.14 SLPforElement

> SLPforElement(ri, x) (function)
Returns: a straight line program expressing x in the nice generators.
This is a wrapper function which extracts the value of the attribute slpforelement (3.2.13) and
calls that function with the arguments ri and x.

3.2.15 StdPresentation

> StdPresentation(ri) (attribute)

After the verification phase, the presentation is stored here. Details have still to be decided upon.

3.2.16 methodsforfactor

> methodsforfactor(ri) (attribute)

This attribute is initialised at the beginning of the recursive recognition function with the database
of find homomorphism methods that was used to recognise the group corresponding to the recogni-
tion info record ri. If the found homomorphism changes the representation of the group (going for

recog 16

example from a matrix group to a permutation group), the find homomorphism method can report
this by exchanging the database of find homomorphism methods to be used in the recognition of the
image of the homomorphism by setting the value of this attribute to something different. It lies in the
responsibility of the find homomorphism method to do so, if the representation changes through the
homomorphism.

3.2.17 validatehomominput

> validatehomominput (ri, x) (attribute)

The value of this attribute, if there is any, must be a function with two arguments: a recognition
record ri, and an element x. The function must return a boolean. If it returns false, then this means
that x is not in the source of the homomorphism returned by Homom (3.2.6). If true is returned, then
either x is in the source of that homomorphism, or passing x to the homomorphism returns fail.

For example, if ri represents a matrix group that preserves a subspace, then the source of
Homom (3.2.6) will be matrices which preserve that subspace, and passing matrices which do not pre-
serve this subspace to Homom (3.2.6) may produce incorrect answers. validatehomominput can
be used to filter out such elements. The function ValidateHomomInput (3.2.18) provides a simple
wrapper to this attribute, which calls validatehomominput unless it is not defined, in which case
ValidateHomomInput (3.2.18) returns true.

3.2.18 ValidateHomomInput

> ValidateHomomInput(ri, x) (function)

Returns: a boolean.

This is a wrapper function which calls validatehomominput (3.2.17) of ri with x, or returns
true if ri does not define validatehomominput (3.2.17).

The following two attributes are concerned with the relation between the original generators and
the nice generators for a node. They are used to transport this information from a successful find
homomorphism method up to the recursive recognition function:

3.2.19 calcnicegens

> calcnicegens(ri) (attribute)

To make the recursion work, we have to acquire preimages of the nice generators in factor groups
under the homomorphism found. But we want to keep the information, how the nice generators were
found, locally at the node where they were found. This attribute solves this problem of acquiring
preimages in the following way: Its value must be a function, taking the recognition info record ri
as first argument, and a list origgens of preimages of the original generators of the current node,
and has to return corresponding preimages of the nice generators. Usually this task can be done by
storing a straight line program writing the nice generators in terms of the original generators and
executing this with inputs origgens. Therefore the default value of this attribute is the function
CalcNiceGensGeneric (3.2.20) described below.

3.2.20 CalcNiceGensGeneric

recog 17

> CalcNiceGensGeneric(ri, origgens) (function)

Returns: a list of preimages of the nice generators

This is the default function for leaf nodes for the attribute calcnicegens (3.2.19) described above.
It does the following: If the value of the attribute slptonice (3.2.23) is set, then it must be a straight
line program expressing the nice generators in terms of the original generators of this node. In that
case, this straight line program is executed with origgens as inputs and the result is returned. Other-
wise, origgens is returned as is. Therefore a leaf node just has to do nothing if the nice generators
are equal to the original generators, or can simply store the right straight line program into the attribute
slptonice (3.2.23) to fulfill its duties.

3.2.21 CalcNiceGensHomNode

> CalcNiceGensHomNode(ri, origgens) (function)
Returns: a list of preimages of the nice generators
This is the default function for homomorphism node for the attribute calcnicegens (3.2.19). It
just delegates to factor and kernel of the homomorphism, as the nice generators of a homomorphism
(or isomorphism) node are just the concatenation of the nice generators of the factor and the kernel. A
find homomorphism method finding a homomorphism or isomorphism does not have to do anything
with respect to nice generators.

3.2.22 CalcNiceGens

> CalcNiceGens(ri, origgens) (function)
Returns: a list of preimages of the nice generators
This is a wrapper function which extracts the value of the attribute calcnicegens (3.2.19) and
calls that function with the arguments ri and origgens.

3.2.23 slptonice

> slptonice(ri) (attribute)

As described above, the value, if set, must be a straight line program expressing the nice generators
at this node in terms of the original generators. This is for leaf nodes, that choose to use the default
function CalcNiceGensGeneric (3.2.20) installed in the calcnicegens (3.2.19) attribute.

The following three attributes are concerned with the administration of the kernel of a found
homomorphism. Find homomorphism methods use them to report to the main recursive recognition
function their knowledge about the kernel:

3.2.24 gensN

> gensN(ri) (attribute)

The value of this mutable attribute is a list of generators of the kernel of the homomorphism found
at the node ri. It is initialised as an empty list when the recursive recognition function starts. Suc-
cessful find homomorphism methods may append generators of the kernel to this list if they happen to
stumble on them. After successful recognition of the image of the homomorphism the main recursive
recognition function will try to create a few more generators of the kernel and append them to the list

recog 18

which is the value of the attribute gensN. The exact behaviour depends on the value of the attribute
findgensNmeth (3.2.25) below. The list of generators after that step is used to recognise the kernel.
Note that the generators in gensN have a memory attached to them, how they were obtained in terms
of the original generators of the current node.

3.2.25 findgensNmeth

> findgensNmeth(ri) (attribute)

This attribute decides about how generators of the kernel of a found homomorphism are produced.
Its value has to be a record with at least two components bound. The first is method which holds a
function taking at least one argument ri and possibly more, and does not return anything. The second
is args which holds a list of arguments for the above mentioned function. The real list of arguments
is derived by prepending the recognition info record to the list of arguments in args. That is, the
following code is used to call the method:

gensNmeth := findgensNmeth(ri);
CallFunclList(gensNmeth.method,Concatenation([ri],gensNmeth.args));

The record is initialised upon creation of the recognition info record to calling FindKernelRandom
(3.2.26) with one argument of 20 (FIXME: is 20 correct?) (in addition to the first argument ri). See
below for a choice of possible find kernel methods.

3.2.26 FindKernelRandom

> FindKernelRandom(ri, n) (function)

Returns: true or false.

n random elements are generated, mapped through the homomorphism, written as a straight line
program in the generators. Then the straight line program is executed with the original generators
thereby producing elements in the same coset. The quotients are then elements of the kernel. The
kernel elements created are stored in the attribute gensN (3.2.24). Returns false if the generation of
the straight line program for some element fails.

3.2.27 FindKernelDoNothing

> FindKernelDoNothing(ri, n1, n2) (function)
Returns: true.
Does nothing. This function is intended to be set as method for producing kernel elements if
the kernel is known to be trivial or if one knows, that the attribute gensN (3.2.24) already contains a
complete set of generators for the kernel.

3.2.28 FindKernelFastNormalClosure

> FindKernelFastNormalClosure(ri, nl, n2) (function)
Returns: true or false.
n1 random elements of the kernel are generated by calling FindKernelRandom. Then this func-
tion computes a probable generating set of the normal closure in G of the group generated by the
random elements. The integer n2 indicates how hard it should try. Returns false if the call to
FindKernelRandom (3.2.26) returns false.

recog 19

3.2.29 gensNslp

> gensNslp(ri) (attribute)

The recursive recognition function calculates a straight line program that computes the generators
of the kernel stored in gensN (3.2.24) in terms of the generators of the group recognised by ri. This
straight line program is stored in the value of this mutable attribute. It is used by the generic function
SLPforElementGeneric (3.3.2).

3.2.30 immediateverification

> immediateverification(ri) (attribute)

Sometimes a find homomorphism has information that it will be difficult to create generators for
the kernel, for example if it is known that the kernel will need lots of generators. In that case this
attribute with the default boolean value false can be set to true. In that case, the generic recursive
recognition function will perform an immediate verification phase after the kernel has been recognised.
This is done as follows: A few random elements are created, mapped through the homomorphism and
written as an SLP in the nice generators there. Then this SLP is executed with preimages of those nice
generators. The quotient lies then in the kernel and is written as an SLP in terms of the nice generators
of the would be kernel. If this is not possible, then probably the creation of kernel generators was not
complete and a few more kernel elements are produced and recognition in the kernel starts all over
again. This is for example done in case of the “Imprimitive” method which maps onto the action on a
block system. In that case, the kernel often needs lots of generators.

The following attributes are used to give a successful find homomorphism method further possi-
bilities to transport knowledge about the group recognised by the current recognition info record to
the factor or kernel of the found homomorphism:

3.2.31 forkernel

> forkernel(ri) (attribute)

This attribute is initialised to a record with only the component hints bound to an empty list at
the beginning of the recursive recognition function. Find homomorphism methods can put acquired
knowledge about the group to be recognised (like for example an invariant subspace of a matrix group)
into this record. When a homomorphism is found and recognition goes on in its kernel, the value of
this attribute is taken as initialisation data for the newly created recognition info record for the kernel.
Thus, information is transported down to the recognition process for the kernel. The component hints
is special insofar as it has to contain records describing find homomorphism methods which might be
particularly successful. They are prepended to the find homomorphism method database such that
they are called before any other methods. This is a means to give hints to the recognition procedure in
the kernel, because often during the finding of a homomorphism knowledge is acquired which might
help the recognition of the kernel.

3.2.32 forfactor

> forfactor(ri) (attribute)

recog 20

This attribute is initialised to a record with only the component hints bound to an empty list at
the beginning of the recursive recognition function. Find homomorphism methods can put acquired
knowledge about the group to be recognised (like for example an invariant subspace of a matrix group)
into this record. When a homomorphism is found and recognition goes on in its image, the value of
this attribute is taken as initialisation data for the newly created recognition info record for the factor.
Thus, information is transported down to the recognition process for the factor. The component hints
is special insofar as it has to contain records describing find homomorphism methods which might be
particularly successful. They are prepended to the find homomorphism method database such that
they are called before any other methods. This is a means to give hints to the recognition procedure in
the factor, because often during the finding of a homomorphism knowledge is acquired which might
help the recognition of the factor.

3.2.33 isone

> isone(ri) (attribute)

This attribute returns a function that tests, whether or not an element of the group is equal to the
identity or not. Usually this is just the operation IsOne (Reference: IsOne) but for projective groups
it is a special function returning true for scalar matrices. In generic code, one should always use the
result of this attribute to compare an element to the identity such that the code works also for projective
groups. Find homomorphism methods usually do not have to set this attribute.

3.2.34 isequal

> isequal(ri) (attribute)

This attribute returns a function that compares two elements of the group being recognised. Usu-
ally this is just the operation EQ (Reference: equality of records) but for projective groups it is a
special function checking for equality up to a scalar factor. In generic code, one should always use the
result of this attribute to compare two elements such that the code works also for projective groups.
Find homomorphism methods usually do not have to set this attribute.

3.2.35 order

> order(ri) (attribute)

This attribute returns a function that computes the order of an element of the group being recog-
nised. Usually this is just the operation Order (Reference: Order) but for projective groups it is
a special function. In generic code, one should always use the result of this attribute to compute the
order of an element such that the code works also for projective groups. Find homomorphism methods
usually do not have to set this attribute.

3.2.36 Other components of recognition info records

In this subsection we describe a few more components of recognition info records that can be queried
or set by find homomorphism methods. Not all of these components are bound in all cases. See
the individual descriptions about the conventions. Remember to use the ! . notation to access these
components of a recognition info record.

recog 21

leavegensNuntouched
If this component is bound to true by a find homomorphism method or a find kernel generators
method, the generic mechanism to remove duplicates and identities in the generator for the
kernel is not used. This is important if your methods rely on the generating set of the kernel
being exactly as it was when found.

3.3 Methods to find homomorphisms

A “find homomorphism method” has the objective to, given a group G, either find a homomorphism
from G onto a group, or to find an isomorphism, or to solve the constructive membership problem
directly for G, or to fail.

In case a homomorphism is found, it has to report that homomorphism back to the calling recursive
recognition function together with as much information about the kernel as possible.

If a find homomorphism method determines that the node is a leaf in the recognition tree (by
solving the constructive membership problem directly), then it has to ensure, that arbitrary elements
can be written in terms of the nice generators of G. It does so by returning a function together with
possible extra data, that can perform this job.

Of course, the find homomorphism method also has to report, how the nice generators were ac-
quired in terms of the original generators.

If the find homomorphism method fails, it has to report, whether it has failed forever or if it
possibly makes sense to try to call this method again later.

Find homomorphism methods have to fit into the framework for method selection described in
Chapter 4. We now begin to describe the technical details of how a find homomorphism method has to
look like and what it has to do and what it is not allowed to do. We first explain the calling convention
by means of a hypothetical function:

3.3.1 FindHomomorphism

> FindHomomorphism(ri, G) (function)

Returns: One of the values Success, NeverApplicable, TemporaryFailure, or
NotEnoughInformation.

Find homomorphism methods take two arguments ri and G, of which ri is a recognition info
record and G is a GAP group object. The return value is one of the four possible values in the
framework for method selection described in Chapter 4 indicating success, failure, or (temporary)
non-applicability. The above mentioned additional information in case of success are all returned
by changing the recognition info record ri. For the conventions about what a find homomorphism
method has to do and return see below.

A failed or not applicable find homomorphism method does not have to report or do anything in the
recognition info record ri. However, it can collect information and store it either in the group object
or in the recognition info record. Note that for example it might be that a failed find homomorphism
method acquires additional information that allows another find homomorphism method to become
applicable.

A not applicable find homomorphism method should find out so relatively quickly, because oth-
erwise the whole process might be slowed down, because a find homomorphism method repeatedly
ponders about its applicability. Usually no big calculations should be triggered just to decide applica-
bility.

recog 22

A successful find homomorphism method has the following duties:

for leaves:
First it has to report whether the current node is a leaf or not in the recognition tree. That is, in
case a leaf was found the method has to do SetFilterObj(ri,IsLeaf) ; thereby setting the
IsLeaf (3.2.3) flag.

A method finding a homomorphism which is not an isomorphism indicates so by not touching
the flags. FIXME: What does that mean? Which flags? The IsLeaf filter? But then this sounds
as if isomorphisms require settings some flag.. but which?!? perhaps remove that sentence?

for leaves: SLPforElement (3.2.14) function
If a find homomorphism method has produced a leaf in the recognition tree, then it has to set
the attribute slpforelement (3.2.13) to a function like SLPforElementGeneric (3.3.2) that
can write an arbitrary element in G as a straight line program in the nice generators of G. The
method may store additional data into the recognition info record for this to work. It does not
have to set any other value in ri.

for leaves: information about nice generators

If a find homomorphism method has produced a leaf in the recognition tree, then it has to
report what are the nice generators of the group described by the leaf. To this end, it has
three possibilities: Firstly to do nothing, which means, that the original generators are the nice
generators. Secondly to store a straight line program expressing the nice generators in terms
of the original generators into the attribute slptonice (3.2.23). In that case, the generic frame
work takes care of the rest. The third possibility is to store a function into the value of the
attribute calcnicegens (3.2.19) which can calculate preimages of the nice generators in terms
of preimages of the original generators. See the function CalcNiceGensGeneric (3.2.20) for
an example of such a function.

for non-leaves: the homomorphism itself
If a find homomorphism method has found a homomorphism, it has to store it as a GAP ho-
momorphism object from G to the image group in the attribute Homom (3.2.6). Note that if your
homomorphism changes the representation (for example going from matrix groups to permuta-
tion groups), you will have to set the attribute methodsforfactor (3.2.16) accordingly. Also,
ValidateHomomInput (3.2.18) may be set to a function which returns false for values which
may cause Homom (3.2.6) to produce the wrong answer, or error.

for non-leaves: kernel generators

If a find homomorphism method has found a homomorphism, it has to provide information
about already known generators of the kernel. This is done firstly by appending known genera-
tors of the kernel to the attribute value of gensN (3.2.24) and secondly by leaving or changing
the attribute findgensNmeth (3.2.25) to a record describing the method that should be used
(for details see findgensNmeth (3.2.25)). If one does not change the default value, the recur-
sive recognition function will generate 20 (FIXME: is 20 correct?) random elements in G and
produce random generators of the kernel by dividing by a preimage of an image under the ho-
momorphism. Note that generators in gensN (3.2.24) have to have a memory attached to them
that stores, how they were acquired from the generators of G.

additional information
A find homomorphism method may store any data into the attributes forkernel (3.2.31) and

recog 23

forfactor (3.2.32), which both are records. Components in these record that are bound during
the recognition will be copied into the recognition info record of the kernel and factor respec-
tively of a found homomorphism upon creation and thus are available to all find homomorphism
methods called for the kernel and factor. This feature might be interesting to transport informa-
tion that is relevant for the recognition of the kernel or factor and was acquired during the
recognition of G itself.

A special role is played by the component hints in both of the above records, which can hold a
list of records describing find homomorphism methods that shall be tried first when recognising
the kernel or factor.

In addition, a find homomorphism method might set the attribute immediateverification
(3.2.30) to true, if it considers the problem of finding kernel generators particularly difficult.

To explain the calling conventions for SLPforElement (3.2.14) functions and for the sake of com-
pleteness we present now the function SLPforElementGeneric (3.3.2) which is used for the case of
a “homomorphism node”:

3.3.2 SLPforElementGeneric

> SLPforElementGeneric(ri, x) (function)

Returns: A GAP straight line program.

This function takes as arguments a recognition info record ri and a group element x. It returns a
GAP straight line program that expresses the element x in terms of the nice generators of the group G
recognised by ri.

This generic function here does exactly this job for the generic situation that we found a homo-
morphism from G to some other group say H with kernel N. It first maps x via the homomorphism to
H and uses the recognition information there to write it as a straight line program in terms of the nice
generators of H. Then it applies this straight line program to the preimages of those nice generators
(see pregensfac (3.2.8)) thereby finding an element y of G with x-y~! lying in the kernel N.

Then the function writes this element as a straight line program in the nice generators of N again
using the recursively acquired recognition info about N. In the end a concatenated straight line pro-
gram for x is built, which is in terms of the nice generators of the current node.

3.4 Conventions for the recognition of permutation groups

No conventions so far.

3.5 Conventions for the recognition of matrix groups

We are considering only the case of matrix groups over finite fields.
No conventions so far.

3.6 Conventions for the recognition of projective groups

We are considering only the case of projective groups over finite fields.
No conventions so far.

Chapter 4

Method selection

The setup described in this chapter is intended for situations, in which lots of different methods are
available to fulfill a certain task, but in which it is not possible in the beginning to decide, which one
to use. Therefore this setup regulates, rather than just which method to choose, in which order the
various methods are tried. The methods themselves return whether they were successful and, if not,
whether it is sensible to try them again at a later stage.

The design is intentionally kept as simple as possible and at the same time as versatile as possible,
thereby providing a useful framework for many situations as described above.

Note the differences to the GAP method selection, which is designed with the idea in mind that
it will be quite clear in most situations, which one is “the best” method for a given set of input data,
and that we do not want to try different things. On the other hand, the GAP method selection is quite
complicated, which is to some extend necessary to make sure, that lots of different information about
the objects in question can be used to really find the best method.

Our setup here in particular has to fulfill the requirement, that in the end, with lots of methods
installed, one still has to be able to have an overview and to “prove”, that the whole system always
does the right thing.

4.1 What are methods?

A method is just a GAP function together with an agreement about what arguments it takes and what
result it returns. The agreement about the arguments of course has to be made for every situation in
which this generic method selection code is used, and the user is completely free there. A method can
(and has to) return one of the following four values:

Success
means that the method was successful and no more methods have to be tried.

NeverApplicable
means that the method was not successful and that there is no point to call the method again in
this situation whatsoever.

TemporaryFailure
means that the method temporarily failed, that it however could be sensible to call it again in
this situation at a later stage. This value is typical for a Las Vegas algorithm using randomised
methods, which has failed, but which may succeed when called again.

24

recog 25

NotEnoughInformation
means that the method for some reason refused to do its work. However, it is possible that it will
become applicable later such that it makes sense to call it again, may when more information is
available.

For administration in the method selection, a method is described by a record with the following
components bound:

method
holds the function itself.

rank
holds an integer used to sort the various methods. Higher numbers mean that the method is tried
earlier. The numbering scheme is left to the user.

stamp
holds a string value that uniquely describes the method. This is used for bookkeeping and to
keep track of what has to be tried how often.

comment
a string valued comment. This field is optional and can be left out.

The different methods for a certain task are collected in so-called “method databases”. A method
database is just a list of records, each describing a method in the format described above. Usually, the
ranks will be descending, but that is not necessary.

There is one convenience function to put a new method into a method database:

4.1.1 AddMethod

> AddMethod(db, meth, rank, stamp[, comment]) (function)
Returns: nothing
db must be a method database (list of records, see above) with non-ascending rank values. meth
is the method function, rank the rank and stamp a string valued stamp. The optional argument
comment can be a string comment. The record describing the method is created and inserted at the
correct position in the method database. Nothing is returned.

4.2 How methods are called

Whenever the method selection shall be used, one calls the following function:

4.2.1 CallMethods

> CallMethods(db, limit[, furtherargs]) (function)

Returns: arecord ms describing this method selection procedure.

The argument db must be a method database in the sense of Section 4.1. 1imit must be a non-
negative integer. furtherargs stands for an arbitrary number of additional arguments, which are
handed down to the called methods. Of course they must fulfill the conventions defined for the methods
in the database db.

recog 26

The function first creates a “method selection” record keeping track of the things that happened
during the method trying procedure, which is also used during this procedure. Then it calls methods
with the algorithm described below and in the end returns the method selection record in its final state.

The method selection record has the following components:

inapplicableMethods
arecord, in which for every method that returned NeverApplicable the value 1 is bound to the
component with name the stamp of the method.

failedMethods
a record, in which for every time a method returned TemporaryFailure the value bound to the
component with name the stamp of the method is increased by 1 (not being bound means zero).

successMethod
the stamp of the method that succeeded, if one did. This component is only bound after suc-
cessful completion.

result
a boolean value which is either Success or TemporaryFailure depending on whether a suc-
cessful method was found or the procedure gave up respectively. This component is only bound
after completion of the method selection procedure.

tolerance
the number of times all methods failed until one succeeded. See below.

The algorithm used by CallMethods (4.2.1) is extremely simple: It sets a counter tolerance to zero.
The main loop starts at the beginning of the method database and runs through the methods in turn.
Provided a method did not yet return NeverApplicable and did not yet return TemporaryFailure
more than tolerance times before, it is tried. According to the value returned by the method, the
following happens:

NeverApplicable
this is marked in the method selection record and the main loop starts again at the beginning of
the method database.

TemporaryFailure
this is counted in the method selection record and the main loop starts again at the beginning of
the method database.

NotEnoughInformation
the main loop goes to the next method in the method database.

Success
this is marked in the method selection record and the procedure returns successfully.

If the main loop reaches the end of the method database without calling a method (because all meth-
ods have already failed or are not applicable), then the counter tolerance is increased by one and
everything starts all over again. This is repeated until tolerance is greater than the 1imit which is
the second argument of CallMethods (4.2.1). The last value of the tolerance counter is returned in
the component tolerance of the method selection record.

recog 27

Note that the main loop starts again at the beginning of the method database after each failed
method call! However, this does not lead to an infinite loop, because the failure is recorded in the
method selection record such that the method is skipped until the tolerance increases. Once the
tolerance has been increased methods having returned TemporaryFailure will be called again.
The idea behind this approach is that even failed methods can collect additional information about the
arguments changing them accordingly. This might give methods that come earlier and were not appli-
cable up to now the opportunity to begin working. Therefore one can install very good methods that
depend on some already known knowledge which will only be acquired during the method selection
procedure by other methods, with a high rank.

Chapter 5

After successful recognition

This chapter explains, what one can do with recognition info records after a successful recognition
(and possibly verification).

Of course, one can inspect the whole tree of recognition info records just by looking at the
stored attribute values. Moreover, constructive membership tests can be performed using the func-
tion SLPforElement (3.2.14), thereby writing an arbitrary element in terms of the nice generators,
which are stored in the attribute NiceGens (3.2.7). If fail is returned, then the element in question
does not lie in the recognised group or the recognition made an error.

Here is an example of a successful recognition tree:
Example
gap> g := DirectProduct (SymmetricGroup(12),SymmetricGroup(5));

Group([(1,2,3,4,5,6,7,8,9,10,11,12), (1,2), (13,14,15,16,17), (13,14) 1)
gap> ri := RecogniseGroup(g);

#I Finished rank 90 method "NonTransitive": success.

#I Going to the factor (depth=0, try=1).

#I Finished rank 95 method "MovesOnlySmallPoints": success.

#I Back from factor (depth=0).

#I Calculating preimages of nice generators.

#I Creating 20 random generators for kernel.

#I Going to the kernel (depth=0).

#I Finished rank 80 method "Giant": success.
#I Back from kernel (depth=0).

<recoginfo NonTransitive

F:<recoginfo MovesOnlySmallPoints Size=120>
K:<recoginfo Giant Size=479001600>>

One sees that the recursive process runs, first it finds that the permutation action is not transitive, a
homomorphism is found by mapping onto the action on one of the orbits. The image is recognised to
permute only a few points. The kernel is recognised to be a full symmetric group in its natural action
on at least 10 points (recognised as “Giant”).

After this, we can write arbitrary group elements in the group g in terms of the nice generators:
Example

gap> x := PseudoRandom(g) ;
(1,12)(2,5,9,11,10,3,4)(7,8) (13,14,16,15,17)
gap> slp := SLPforElement(ri,x);

28

recog 29

<straight line program>
gap> ResultOfStraightLineProgram(slp,NiceGens(ri));
(1,12)(2,5,9,11,10,3,4)(7,8)(13,14,16,15,17)

Note that this example only works by using also the recog package which contains the necessary
recognition methods.

5.1 Functions and methods for recognition info records

If you need an element explicitly written in terms of the original generators, you can use the following
function:

5.1.1 SLPforNiceGens

> SLPforNiceGens(ri) (function)
Returns: an SLP expressing the nice generators in the original ones
This function assembles a possibly quite large straight line program expressing the nice generators
in terms of the original ones by using the locally stored information in the recognition tree recursively.
You can concatenate straight line programs in the nice generators with the result of this function
to explicitly write an element in terms of the original generators.

5.1.2 \in

> \in(x, ri) (method)
Returns: true or false
This method tests, whether the element x lies in the group recognised by the recognition info
record ri. Note that this is only a convenience method, in fact SLPforElement (3.2.14) is used and
the resulting straight line program is thrown away.

5.1.3 Size

> Size(ri) (method)
Returns: the size of the recognised group
This method calculates the size of the recognised group by multiplying the size of the factor and
the kernel recursively. It is assumed that leaf nodes know already or can calculate the size of their

group.

5.1.4 DisplayCompositionFactors

> DisplayCompositionFactors(ri) (function)
Returns: nothing
This function displays a composition series by using the recursive recognition tree. It only works,
if the usual operation CompositionSeries (Reference: CompositionSeries) works for all leaves.
THIS DOES CURRENTLY NOT WORK FOR PROJECTIVE GROUPS AND THUS FOR MATRIX
GROUPS!

Chapter 6

Methods for recognition

6.1 Methods for generic groups

The following methods can be equally applied to permutation, matrix and projective groups. We do
not refer to them as black-box groups here, as they are allowed to contain code that only works for
inputs of the listed types.

6.1.1 FewGensAbelian

If there are not too may generators (right now that means at most 200), check whether they commute;
if yes, dispatch to ‘KnownNilpotent’, otherwise return NeverApplicable.

6.1.2 KnownNilpotent

TODO

6.1.3 TrivialGroup

This method is successful if and only if all generators of a group G are equal to the identity. Otherwise,
it returns NeverApplicable indicating that it will never succeed. This method is only installed to
handle the trivial case such that we do not have to take this case into account in the other methods.

6.2 Methods for permutation groups

The following table gives an overview over the installed methods and their rank (higher rank means
higher priority, the method is tried earlier, see Chapter 4).

30

recog 31

300 | TrivialGroup just go through generators and compare to the identity 6.1.3
100 | ThrowAwayFixedPoints | try to find a huge amount of (possible internal) fixed points 6.2.11
99 | FewGensAbelian if very few generators, check IsAbelian and if yes, do KnownNilpotent | 6.1.1
97 | Pcgs use a Pcgs to calculate a stabilizer chain 6.2.7
95 | MovesOnlySmallPoints | calculate a stabilizer chain if only small points are moved 6.2.5
90 | NonTransitive try to find non-transitivity and restrict to orbit 6.2.6
80 | Giant tries to find Sn and An in their natural actions 6.2.2
70 | Imprimitive for a imprimitive permutation group, restricts to block system 6.2.3
60 | LargeBasePrimitive recognises large-base primitive permutation groups 6.2.4
55 | StabilizerChainPerm | for a permutation group using a stabilizer chain via the genss package | 6.2.10
50 | StabChain for a permutation group using a stabilizer chain 6.2.9

Table: Permutation group find homomorphism methods

6.2.1 BalTreeForBlocks

This method creates a balanced composition tree for the kernel of an imprimitive group. This is
guaranteed as the method is just called from ‘Imprimitive’ and itself. The homomorphism for the
split in the composition tree used is induced by the action of G on half of its blocks.

6.2.2 Giant

The method tries to determine whether the input group G is a giant (that is, A, or S, in its natural action
on n points). The output is either a data structure D containing nice generators for G and a procedure
to write an SLP for arbitrary elements of G from the nice generators; or NeverApplicable if G is not
transitive; or fail, in the case that no evidence was found that G is a giant, or evidence was found,
but the construction of D was unsuccessful. If the method constructs D then the calling node becomes
a leaf.

6.2.3 Imprimitive

If the input group is not known to be transitive then this method returns NotEnoughInformation. If
the input group is known to be transitive and primitive then the method returns NeverApplicable;
otherwise, the method tries to compute a nontrivial block system. If successful then a homomorphism
to the action on the blocks is defined; otherwise, the method returns NeverApplicable.

If the method is successful then it also gives a hint for the children of the node by determining
whether the kernel of the action on the block system is solvable. If the answer is yes then the default
value 20 for the number of random generators in the kernel construction is increased by the number
of blocks.

6.2.4 LargeBasePrimitive

This method tries to determine whether the input group G is a large-base primitive group that neither
is a symmetric nor an alternating group in its natural action. This method is an implementation of
[LNPSO06].

A primitive group H acting on N points is called large if there exist n, k, and r with (Nk:};{") and
up to a permutational isomorphism H is a subgroup of the product action wreath product S, ¢S, and

https://gap-packages.github.io/genss/

recog 32

an overgroup of (A,)" where S, and A, act on the k-subsets of {1,...,n}. This algorithm recognises
large primitive groups with -k > 1 and 2-r-k*> < n.

If G is imprimitive then the output is NeverApplicable. If G is primitive then the output is either
a homomorphism into the natural imprimitive action of G on nr points with r blocks of size n, or
TemporaryFailure.

6.2.5 MovesOnlySmallPoints

If a permutation group moves only small points (currently, this means that its largest moved point is at
most 10), then this method computes a stabilizer chain for the group via ‘StabChain’. This is because
the most convenient way of solving constructive membership in such a group is via a stabilizer chain.
In this case, the calling node becomes a leaf node of the composition tree.

If the input group moves a large point (currently, this means a point larger than 10), then this
method returns NeverApplicable.

6.2.6 NonTransitive

If a permutation group G acts nontransitively then this method computes a homomorphism to the
action of G on the orbit of the largest moved point. If G is transitive then the method returns
NeverApplicable.

6.2.7 Pcgs

This is the GAP library function to compute a stabiliser chain for a solvable permutation group. If the
method is successful then the calling node becomes a leaf node in the recursive scheme. If the input
group is not solvable then the method returns NeverApplicable.

6.2.8 PcgsForBlocks

This method is called after a hint is set in ‘Imprimitive’. Therefore, the group G preserves a non-
trivial block system. This method checks whether or not the restriction of G on one block is solvable.
If so, then ‘Pcgs’ is called, and otherwise NeverApplicable is returned.

6.2.9 StabChain

This is the randomized GAP library function for computing a stabiliser chain. The method selection
process ensures that this function is called only with small-base inputs, where the method works
efficiently.

6.2.10 StabilizerChainPerm

TODO

6.2.11 ThrowAwayFixedPoints

This method defines a homomorphism of a permutation group G to the action on the moved points of
G if G does not have too many moved points. In the current setup, the homomorphism is defined if the
number k of moved points is at most 1/3 of the largest moved point of G, or k is at most half of the

recog 33

number of points on which G is stored internally by GAP. The method returns NeverApplicable if
it does not define a homomorphism indicating that it will never succeed.

6.3 Methods for matrix groups

The following table gives an overview over the installed methods and their rank (higher rank means
higher priority, the method is tried earlier, see Chapter 4). Note that there are not that many methods
for matrix groups since the system can switch to projective groups by dividing out the subgroup of
scalar matrices. The bulk of the recognition methods are then installed es methods for projective
groups.

3100 | TrivialGroup check whether all generators are equal to the identity matrix 6.1.3
1175 | KnownStabilizerChain | use an already known stabilizer chain for this group 6.3.6
1100 | DiagonalMatrices check whether all generators are diagonal matrices 6.34
1050 | FewGensAbelian if very few generators, check IsAbelian and if yes, do KnownNilpotent | 6.1.1
1000 | ReduciblelIso use the MeatAxe to find invariant subspaces 6.3.9
900 | GoProjective divide out scalars and recognise projectively 6.3.5

Table: Matrix group find homomorphism methods

6.3.1 BlockDiagonal

This method is only called when a hint was passed down from the method ‘BlockLowerTriangular’.
In that case, it knows that the group is in block diagonal form. The method is used both in the matrix-
and the projective case.

The method immediately delegates to projective methods handling all the diagonal blocks projec-
tively. This is done by giving a hint to the factor to use the method ‘BlocksModScalars’ is given.
The method for the kernel then has to deal with only scalar blocks, either projectively or with scalars,
which is again done by giving a hint to either use ‘BlockScalar’ or ‘BlockScalarProj’ respectively.

Note that this method is implemented in a way such that it can also be used as a method for a
projective group G. In that case the recognition info record has the ! . projective component bound
to true and this information is passed down to image and kernel.

6.3.2 BlockLowerTriangular

This method is only called when a hint was passed down from the method ‘ReducibleIso’. In that
case, it knows that a base change to block lower triangular form has been performed. The method can
then immediately find a homomorphism by mapping to the diagonal blocks. It sets up this homomor-
phism and gives hints to image and kernel. For the image, the method ‘BlockDiagonal’ is used and
for the kernel, the method ‘LowerLeftPGroup’ is used.

Note that this method is implemented in a way such that it can also be used as a method for a
projective group G. In that case the recognition info record has the ! .projective component bound
to true and this information is passed down to image and kernel.

6.3.3 BlockScalar

recog 34

This method is only called by a hint. Alongside with the hint it gets a block decomposition respected
by the matrix group G to be recognised and the promise that all diagonal blocks of all group elements
will only be scalar matrices. This method recursively builds a balanced tree and does scalar recognition
in each leaf.

6.3.4 DiagonalMatrices

This method is successful if and only if all generators of a matrix group G are diagonal matrices.
Otherwise, it returns NeverApplicable.

6.3.5 GoProjective

This method defines a homomorphism from a matrix group G into the projective group G modulo scalar
matrices. In fact, since projective groups in GAP are represented as matrix groups, the homomorphism
is the identity mapping and the only difference is that in the image the projective group methods can
be applied. The bulk of the work in matrix recognition is done in the projective group setting.

6.3.6 KnownStabilizerChain

If a stabilizer chain is already known, then the kernel node is given knowledge about this known
stabilizer chain, and the factor node is told to use homomorphism methods from the database for per-
mutation groups. If a stabilizer chain of a parent node is already known this is used for the computation
of a stabilizer chain of this node. This stabilizer chain is then used in the same way as above.

6.3.7 LowerLeftPGroup

This method is only called by a hint from ‘BlockLowerTriangular’ as the kernel of the homomor-
phism mapping to the diagonal blocks. The method uses the fact that this kernel is a p-group where p
is the characteristic of the underlying field. It exploits this fact and uses this special structure to find
nice generators and a method to express group elements in terms of these.

6.3.8 NaturalSL
TODO

6.3.9 Reduciblelso

This method determines whether a matrix group G acts irreducibly. If yes, then it returns
NeverApplicable. If G acts reducibly then a composition series of the underlying module is com-
puted and a base change is performed to write G in a block lower triangular form. Also, the method
passes a hint to the image group that it is in block lower triangular form, so the image immediately
can make recursive calls for the actions on the diagonal blocks, and then to the lower p-part. For the
image the method ‘BlockLowerTriangular’ is used.

Note that this method is implemented in a way such that it can also be used as a method for a
projective group G. In that case the recognition info record has the ! .projective component bound
to true and this information is passed down to image and kernel.

recog 35

6.3.10 Scalar
TODO

6.4 Methods for projective groups

The following table gives an overview over the installed methods and their rank (higher rank means
higher priority, the method is tried earlier, see Chapter 4). Note that the recognition for matrix group
switches to projective recognition rather soon in the recognition process such that most recognition
methods in fact are installed as methods for projective groups.

3000 | TrivialGroup check if all generators are scalar multiples of the identity matrix 6.1.3
1300 | ProjDeterminant find homomorphism to non-zero scalars mod d-th powers 6.4.19
1250 | FewGensAbelian if very few generators, check IsAbelian and if yes, do KnownNilpotent | 6.1.1
1200 | Reduciblelso use MeatAxe to find a composition series, do base change 6.3.9
1100 | NotAbsolutelyIrred | write over a bigger field with smaller degree 6.4.18
1050 | ClassicalNatural check whether it is a classical group in its natural representation 6.4.9
1000 | Subfield write over a smaller field with same degree 6.4.23
900 | C3C5 compute a normal subgroup of derived and resolve C3 and C5 6.4.7
850 | Cé find either an (imprimitive) action or a symplectic one 6.4.8
840 | D247 play games to find a normal subgroup 6.4.11
820 | SporadicsByOrders generate a few random elements and compute the proj. orders 6.4.21
810 | A1tSymBBByDegree try BB recognition for dim+1 and/or dim+2 if sensible 6.4.1
800 | TensorDecomposable | find a tensor decomposition 6.4.24
700 | FindE1lmOfEvenNormal | find D2, D4 or D7 by finding an element of an even normal subgroup | 6.4.13
600 | LowIndex find an (imprimitive) action on subspaces 6.4.17
550 | ComputeSimpleSocle | compute simple socle of almost simple group 6.4.10
500 | ThreeLargeElOrders | look at three large element orders 6.4.25
400 | LieTypeNonConstr do non-constructive recognition of Lie type groups 6.4.16
100 | StabilizerChainProj | last resort: compute a stabilizer chain (projectively) 6.4.22

Table: Projective group find homomorphism methods

6.4.1 AltSymBBByDegree

This method is a black box constructive (?) recognition of alternating and symmetric groups.
This algorithm is probably based on the paper [BLGN'05].

6.4.2 BiggerScalarsOnly

TODO

6.4.3 BlockScalarProj

This method is only called by a hint. Alongside with the hint it gets a block decomposition respected
by the matrix group G to be recognised and the promise that all diagonal blocks of all group elements
will only be scalar matrices. This method simply norms the last diagonal block in all generators by

recog 36

multiplying with a scalar and then delegates to BlockScalar (see 6.3.3) and matrix group mode to do
the recognition.

6.4.4 Blocks
TODO

6.4.5 BlocksBackToMats
TODO

6.4.6 BlocksModScalars

This method is only called when hinted from above. In this method it is understood that G should
neither be recognised as a matrix group nor as a projective group. Rather, it treats all diagonal blocks
modulo scalars which means that two matrices are considered to be equal, if they differ only by a scalar
factor in corresponding diagonal blocks, and this scalar can be different for each diagonal block. This
means that the kernel of the homomorphism mapping to a node which is recognised using this method
will have only scalar matrices in all diagonal blocks.

This method does the balanced tree approach mapping to subsets of the diagonal blocks and finally
using projective recognition to recognise single diagonal block groups.

6.4.7 C3Cb5
TODO
648 C6

This method is designed for the handling of the Aschbacher class C6 (normaliser of an extraspecial
group). If the input G< PGL(d,q) does not satisfy d = r" and r|q — 1 for some prime r and integer n
then the method returns NeverApplicable. Otherwise, it returns either a homomorphism of G into
Sp(2n,r), or a homomorphism into the C2 permutation action of G on a decomposition of GF (¢q)?, or
fail.

6.4.9 ClassicalNatural
TODO

6.4.10 ComputeSimpleSocle

This method randomly computes the non-abelian simple socle and stores it along with additional
information if it is called for an almost simple group. Once the non-abelian simple socle is computed
the function does not need to be called again for this node and therefore returns NeverApplicable.

6.4.11 D247
TODO

recog 37

6.4.12 DoBaseChangeForBlocks
TODO

6.4.13 FindElmOfEvenNormal
TODO

6.4.14 KroneckerKernel
TODO

6.4.15 KroneckerProduct
TODO

6.4.16 LieTypeNonConstr

Recognise quasi-simple group of Lie type when characteristic is given. Based on [BKPS02] and
[ABO1].

6.4.17 LowIndex

This method is designed for the handling of the Aschbacher class C2 (stabiliser of a decomposition of
the underlying vector space), but may succeed on other types of input as well. Given G < PGL(d,q),
the output is either the permutation action of G on a short orbit of subspaces or fail. In the current
setup, “short orbit” is defined to have length at most 4d.

6.4.18 NotAbsolutelyIrred

If an irreducible projective group G acts absolutely irreducibly then this method returns
NeverApplicable. If G is not absolutely irreducible then a homomorphism into a smaller dimen-
sional representation over an extension field is defined. A hint is handed down to the image that no
test for absolute irreducibility has to be done any more. Another hint is handed down to the kernel
indicating that the only possible kernel elements can be elements in the centraliser of G in PGL(d, q)
that come from scalar matrices in the extension field.

6.4.19 ProjDeterminant

The method defines a homomorphism from a projective group G< PGL(d,q) to the cyclic group
GF(q)* /D, where D is the set of dth powers in GF(g)*. The image of a group element g € G is the
determinant of a matrix representative of g, modulo D.

6.4.20 PrototypeForC2C4
TODO/FIXME: PrototypeForC2C4 is not used anywhere

recog 38

6.4.21 SporadicsByOrders

This method prints a list of sporadic simple groups that G possibly could be. Therefore it checks
whether G has elements of orders that do not appear in sporadic groups and otherwise checks whether
the most common ("killer") orders of the sporadic groups appear. Afterwards it creates hints that come
out of a table for the sporadic simple groups.

6.4.22 StabilizerChainProj

This method computes a stabiliser chain and a base and strong generating set using projective actions.
This is a last resort method since for bigger examples no short orbits can be found in the natural action.
The strong generators are the nice generator in this case and expressing group elements in terms of the
nice generators ist just sifting along the stabiliser chain.

6.4.23 Subfield
TODO

6.4.24 TensorDecomposable

TODO/FIXME: it is unclear if the following description actually belongs to this method, so be cau-
tious!

This method currently tries to find one tensor factor by powering up commutators of random
elements to elements of prime order. This seems to work quite well provided that the two tensor
factors are not “linked” too much such that there exist enough elements that act with different orders
on both tensor factors.

This method and its description needs some improvement.

6.4.25 ThreelLargeElOrders

In the case when the input group G< PGL(d, p°) is suspected to be simple but not alternating, this
method takes the three largest element orders from a sample of pseudorandom elements of G. From
these element orders, it tries to determine whether G is of Lie type or sporadic, and the characteristic
of G if it is of Lie type. In the case when G is of Lie type of characteristic different from p or G is
sporadic, the method also provides a short list of the possible isomorphism types of G.

This recognition method is based on the paper [KS09].

Chapter 7

Examples

TODO

39

References

[ABO1]

[BB99]

[BBS09]

[BHLGO15]

[BKO1]

[BKO6]

[BKPS02]

[BLGN 03]

[BLGN105]

[BLS97]

Christine Altseimer and Alexandre V. Borovik. Probabilistic recognition of orthogo-
nal and symplectic groups. In Groups and computation, Il (Columbus, OH, 1999),
volume 8§, page 1-20. de Gruyter, Berlin, 2001. 37

Laszl6 Babai and Robert Beals. A polynomial-time theory of black box groups. I. In
Groups St. Andrews 1997 in Bath, I, volume 260 of London Math. Soc. Lecture Note
Ser., page 30—64. Cambridge Univ. Press, Cambridge, 1999. 5

Lészl6 Babai, Robert Beals, and Akos Seress. Polynomial-time theory of matrix
groups. In STOC’09—Proceedings of the 2009 ACM International Symposium on The-
ory of Computing, page 55-64. ACM, New York, 2009. 5

Henrik Bidrnhielm, Derek Holt, C. R. Leedham-Green, and E. A. O’Brien. A practical
model for computation with matrix groups. J. Symbolic Comput., 68(part 1):27-60,
2015. https://doi.org/10.1016/j.jsc.2014.08.006. 5

Peter A. Brooksbank and William M. Kantor. On constructive recognition of a black
box PSL(d,q). In Groups and computation, III (Columbus, OH, 1999), volume 8 of
Ohio State Univ. Math. Res. Inst. Publ., page 95-111. de Gruyter, Berlin, 2001. 5

Peter A. Brooksbank and William M. Kantor. Fast constructive recogni-
tion of black box orthogonal groups. J. Algebra, 300(1):256-288, 2006.
https://doi.org/10.1016/j.jalgebra.2006.02.024. 5

Lész16 Babai, William M. Kantor, Péter P. Palfy, and Akos Seress. Black-box recogni-
tion of finite simple groups of lie type by statistics of element orders. J. Group Theory,
5(4):383-401, 2002. https://doi.org/10.1515/jgth.2002.010. 37

Robert Beals, Charles R. Leedham-Green, Alice C. Niemeyer, Cheryl E. Praeger,
and Akos Seress. A black-box group algorithm for recognizing finite symmet-
ric and alternating groups. 1. Trans. Amer. Math. Soc., 355(5):2097-2113, 2003.
https://doi.org/10.1090/S0002-9947-03-03040-X. 5

Robert Beals, Charles R. Leedham-Green, Alice C. Niemeyer, Cheryl E. Praeger, and
Akos Seress. Constructive recognition of finite alternating and symmetric groups act-

ing as matrix groups on their natural permutation modules. J. Algebra, 292(1):4-46,
2005. https://doi.org/10.1016/j.jalgebra.2005.01.035. 5, 35

Laszl6 Babai, Eugene M. Luks, and Akos Seress. Fast management
of permutation groups. L SIAM J. Comput., 26(5):1310-1342, 1997.
https://doi.org/10.1137/S0097539794229417. 5

40

[BNS06]

[BroO1]

[Bro03]

[Bro0g]

[BSO1]

[CFL97]

[CLG97a]

[CLGI97b]

[CLGI98]

[CLGO1]

[CLGM95]

[CLGOO06]

recog 41

Peter Brooksbank, Alice C. Niemeyer, and Akos Seress. A reduction algorithm for
matrix groups with an extraspecial normal subgroup. In Finite geometries, groups, and
computation, page 1-16. Walter de Gruyter, Berlin, 2006. 5

Peter A. Brooksbank. A constructive recognition algorithm for the matrix group
Q(d,q). In Groups and computation, Il (Columbus, OH, 1999), volume 8 of Ohio
State Univ. Math. Res. Inst. Publ., page 79-93. de Gruyter, Berlin, 2001. 5

Peter A. Brooksbank. Fast constructive recognition of black-box unitary groups. LMS
J. Comput. Math., 6:162—197, 2003. https://doi.org/10.1112/S1461157000000437. 5

Peter A. Brooksbank. Fast constructive recognition of black box symplectic groups. J.
Algebra, 320(2):885-909, 2008. https://doi.org/10.1016/j.jalgebra.2008.03.021. 5

Lészl6 Babai and Aner Shalev. Recognizing simplicity of black-box groups and the
frequency of p-singular elements in affine groups. In Groups and computation, 111
(Columbus, OH, 1999), volume 8 of Ohio State Univ. Math. Res. Inst. Publ., page
39-62. de Gruyter, Berlin, 2001. 5

Gene Cooperman, Larry Finkelstein, and Steve Linton. Constructive recognition of
a black box group isomorphic to GL(n,2). In Groups and computation, II (New
Brunswick, NJ, 1995), volume 28 of DIMACS Ser. Discrete Math. Theoret. Comput.
Sci., page 85-100. Amer. Math. Soc., Providence, RI, 1997. 5

Frank Celler and C. R. Leedham-Green. Calculating the order of an invertible matrix.
In Groups and computation, Il (New Brunswick, NJ, 1995), volume 28 of DIMACS Ser.
Discrete Math. Theoret. Comput. Sci., page 55-60. Amer. Math. Soc., Providence, RI,
1997. 5

Frank Celler and C. R. Leedham-Green. A non-constructive recognition algorithm
for the special linear and other classical groups. In Groups and computation, 1l (New
Brunswick, NJ, 1995), volume 28 of DIMACS Ser. Discrete Math. Theoret. Comput.
Sci., page 61-67. Amer. Math. Soc., Providence, RI, 1997. 5

F. Celler and C. R. Leedham-Green. A constructive recognition algorithm for the
special linear group. In The atlas of finite groups: ten years on (Birmingham, 1995),
volume 249 of London Math. Soc. Lecture Note Ser., page 11-26. Cambridge Univ.
Press, Cambridge, 1998. https://doi.org/10.1017/CB0O9780511565830.007. 5

Marston Conder and Charles R. Leedham-Green. Fast recognition of classical groups
over large fields. In Groups and computation, 11l (Columbus, OH, 1999), volume 8 of
Ohio State Univ. Math. Res. Inst. Publ., page 113—-121. de Gruyter, Berlin, 2001. 5

Frank Celler, Charles R. Leedham-Green, Scott H. Murray, Alice C. Niemeyer, and

E. A. O’Brien. Generating random elements of a finite group. Comm. Algebra,
23(13):4931-4948, 1995. https://doi.org/10.1080/00927879508825509. 5

M. D. E. Conder, C. R. Leedham-Green, and E. A. O’Brien. Constructive
recognition of PSL(2,q). Trans. Amer. Math. Soc., 358(3):1203-1221, 2006.
https://doi.org/10.1090/S0002-9947-05-03756-6. 5

[CNRDO9]

[DLGLO13]

[DLGO15]

[GH97]

[GLGOO06]

[HLGOR96a]

[HLGORY96D]

[HLO™08]

[HR94]

[1LOO]

[JLNP13]

[KK15]

[KM13]

[KM15]

recog 42

Jon FE Carlson, Max Neunhoffer, and Colva M. Roney-Dougal. A polynomial-
time reduction algorithm for groups of semilinear or subfield class. J. Algebra,
322(3):613-637, 2009. https://doi.org/10.1016/j.jalgebra.2009.04.022. 5

Heiko Dietrich, C. R. Leedham-Green, Frank Liibeck, and E. A. O’Brien. Constructive
recognition of classical groups in even characteristic. J. Algebra, 391:227-255, 2013.
https://doi.org/10.1016/j.jalgebra.2013.04.031. 5

Heiko Dietrich, C. R. Leedham-Green, and E. A. O’Brien. Effective black-
box constructive recognition of classical groups. J. Algebra, 421:460-492, 2015.
https://doi.org/10.1016/j.jalgebra.2014.08.039. 5

S. P. Glasby and R. B. Howlett. Writing representations over minimal fields. Comm.
Algebra, 25(6):1703-1711, 1997. https://doi.org/10.1080/00927879708825947. 5

S. P. Glasby, C. R. Leedham-Green, and E. A. O’Brien. Writing pro-
jective representations over subfields. J. Algebra, 295(1):51-61, 2006.
https://doi.org/10.1016/j.jalgebra.2005.03.037. 5

Derek F. Holt, C. R. Leedham-Green, E. A. O’Brien, and Sarah Rees. Comput-
ing matrix group decompositions with respect to a normal subgroup. J. Algebra,
184(3):818-838, 1996. https://doi.org/10.1006/jabr.1996.0286. 5

Derek FE. Holt, C. R. Leedham-Green, E. A. O’Brien, and Sarah Rees.
Testing matrix groups for primitivity. J. Algebra, 184(3):795-817, 1996.
https://doi.org/10.1006/jabr.1996.0285. 5

P. E. Holmes, S. A. Linton, E. A. O’Brien, A. J. E. Ryba, and R. A. Wilson. Con-
structive membership in black-box groups. J. Group Theory, 11(6):747-763, 2008.
https://doi.org/10.1515/JGT.2008.047. 5

Derek F. Holt and Sarah Rees. Testing modules for irreducibility. J. Austral. Math.
Soc. Ser. A, 57(1):1-16, 1994. 5

Gébor Ivanyos and Klaus Lux. Treating the exceptional cases of the MeatAxe. FEx-
periment. Math., 9(3):373-381, 2000. http://projecteuclid.org/euclid.em/1045604672.
5

Sebastian Jambor, Martin Leuner, Alice C. Niemeyer, and Wilhelm Plesken. Fast
recognition of alternating groups of unknown degree. J. Algebra, 392:315-335, 2013.
https://doi.org/10.1016/j.jalgebra.2013.06.005. 5

William M. Kantor and Martin Kassabov. Black box groups isomorphic to PGL(2,2°).
J. Algebra, 421:16-26, 2015. https://doi.org/10.1016/j.jalgebra.2014.08.014. 5

W. M. Kantor and K. Magaard. Black box exceptional groups of Lie type. Trans.
Amer. Math. Soc., 365(9):4895-4931, 2013. https://doi.org/10.1090/S0002-9947-
2013-05822-9. 5

William M. Kantor and Kay Magaard. Black box exceptional groups of Lie type II. J.
Algebra, 421:524-540, 2015. https://doi.org/10.1016/j.jalgebra.2014.09.003. 5

[KS09]

[LGO1]

[LGO97a]

[LGO97b]

[LGOO02]

[LGO09]

[LMOO07]

[LNPS06]

[LOO07]

[LO16]

[Neu09]

[NieO5]

[NP92]

[NP97]

recog 43

William M. Kantor and Akos Seress. Large element orders and the char-
acteristic of Lie-type simple groups. J. Algebra, 322(3):802-832, 20009.
https://doi.org/10.1016/j.jalgebra.2009.05.004. 38

Charles R. Leedham-Green. The computational matrix group project. In Groups and
computation, III (Columbus, OH, 1999), volume 8 of Ohio State Univ. Math. Res. Inst.
Publ., page 229-247. de Gruyter, Berlin, 2001. 5

C. R. Leedham-Green and E. A. O’Brien. Recognising tensor products
of matrix groups. Internat. J. Algebra Comput., 7(5):541-559, 1997.
https://doi.org/10.1142/S0218196797000241. 5

C. R. Leedham-Green and E. A. O’Brien. Tensor products are projective geometries.
J. Algebra, 189(2):514-528, 1997. https://doi.org/10.1006/jabr.1996.6881. 5

C. R. Leedham-Green and E. A. O’Brien. Recognising tensor-induced matrix groups.
J. Algebra, 253(1):14-30, 2002. https://doi.org/10.1016/S0021-8693(02)00041-8. 5

C. R. Leedham-Green and E. A. O’Brien. Constructive recognition of
classical groups in odd characteristic. J. Algebra, 322(3):833-881, 2009.
https://doi.org/10.1016/j.jalgebra.2009.04.028. 5

F. Liibeck, K. Magaard, and E. A. O’Brien. Constructive recognition of SL3(g). J.
Algebra, 316(2):619-633, 2007. https://doi.org/10.1016/j.jalgebra.2007.01.020. 5

Maska Law, Alice C. Niemeyer, Cheryl E. Praeger, and Akos Seress. A reduction algo-
rithm for large-base primitive permutation groups. LMS J. Comput. Math., 9:159-173,
2006. https://doi.org/10.1112/S1461157000001236. 5, 31

Martin W. Liebeck and E. A. O’Brien. Finding the characteristic of a group of Lie type.
J. Lond. Math. Soc. (2), 75(3):741-754, 2007. https://doi.org/10.1112/jlms/jdm028. 5

Martin W. Liebeck and E. A. O’Brien. Recognition of finite exceptional
groups of Lie type. Trans. Amer. Math. Soc., 368(9):6189-6226, 2016.
https://doi.org/10.1090/tran/6534. 5

Max Neunhoffer. Constructive Recognition of Finite Groups. Habilitation thesis,
RWTH Aachen, 2009. https://github.com/neunhoef/habil. 5

Alice C. Niemeyer. Constructive recognition of normalizers of small extra-
special matrix groups. Internat. J. Algebra Comput., 15(2):367-394, 2005.
https://doi.org/10.1142/S021819670500230X. 5

Peter M. Neumann and Cheryl E. Praeger. A recognition algorithm for
special linear groups. Proc. London Math. Soc. (3), 65(3):555-603, 1992.
https://doi.org/10.1112/plms/s3-65.3.555. 5

Alice C. Niemeyer and Cheryl E. Praeger. Implementing a recognition algorithm for
classical groups. In Groups and computation, Il (New Brunswick, NJ, 1995), volume 28
of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., page 273-296. Amer. Math.
Soc., Providence, RI, 1997. 5

[NP98]

[NP99]

[NS06]

[O’B0O6]

[O’B11]

[Pak00]

[Par84]

[Pra99]

[Ser03]

recog 44

Alice C. Niemeyer and Cheryl E. Praeger. A recognition algorithm for classi-
cal groups over finite fields. Proc. London Math. Soc. (3), 77(1):117-169, 1998.
https://doi.org/10.1112/S0024611598000422. 5

Alice C. Niemeyer and Cheryl E. Praeger. A recognition algorithm for non-generic
classical groups over finite fields. J. Austral. Math. Soc. Ser. A, 67(2):223-253, 1999.
5

Max Neunhoffer and Akos Seress. A data structure for a uniform approach to com-
putations with finite groups. In ISSAC 2006, page 254-261. ACM, New York, 2006.
https://doi.org/10.1145/1145768.1145811. 4

E. A. O’Brien. Towards effective algorithms for linear groups. In Finite geometries,
groups, and computation, page 163—-190. Walter de Gruyter, Berlin, 2006. 5

E. A. O’Brien. Algorithms for matrix groups. In Groups St Andrews 2009 in Bath. Vol-
ume 2, volume 388 of London Math. Soc. Lecture Note Ser., page 297-323. Cambridge
Univ. Press, Cambridge, 2011. 5

Igor Pak. The product replacement algorithm is polynomial. In 4/st An-
nual Symposium on Foundations of Computer Science (Redondo Beach, CA,
2000), page 476-485. IEEE Comput. Soc. Press, Los Alamitos, CA, 2000.
https://doi.org/10.1109/SFCS.2000.892135. 5

R. A. Parker. The computer calculation of modular characters (the meat-axe). In Com-
putational group theory (Durham, 1982), page 267-274. Academic Press, London,
1984. 5

Cheryl E. Praeger. Primitive prime divisor elements in finite classical groups.
In Groups St. Andrews 1997 in Bath, II, volume 261 of London Math. Soc.
Lecture Note Ser., page 605-623. Cambridge Univ. Press, Cambridge, 1999.
https://doi.org/10.1017/CBO9780511666148.024. 5

Akos Seress. Permutation group algorithms, volume 152 of Cambridge
Tracts in Mathematics. Cambridge University Press, Cambridge, 2003.
https://doi.org/10.1017/CB09780511546549. 5

Index

\in, 29
AddMethod, 25

CalcNiceGens, 17
calcnicegens, 16
CalcNiceGensGeneric, 17
CalcNiceGensHomNode, 17
CallMethods, 25

DisplayCompositionFactors, 29

fhmethsel, 15
findgensNmeth, 18
FindHomDbMatrix, 11
FindHomDbPerm, 10
FindHomDbProjective, 11
FindHomMethodsGeneric, 12
FindHomMethodsMatrix, 11
FindHomMethodsPerm, 10
FindHomMethodsProjective, 11
FindHomomorphism, 21
FindKernelDoNothing, 18

FindKernelFastNormalClosure, 18

FindKernelRandom, 18
forfactor, 19
forkernel, 19

gensN, 17
gensNslp, 19
Grp, 13

Homom, 13

immediateverification, 19
isequal, 20

IsLeaf, 13

isone, 20

IsReady, 13
IsRecognitionInfo, 13

45

methodsforfactor, 15
NiceGens, 14
order, 20
pregensfac, 14

RecogniseGeneric, 9
RecogniseGroup, 10
RecogniseMatrixGroup, 9
RecognisePermGroup, 9
RecogniseProjectiveGroup, 10
RecognitionInfoFamily, 12
RecognizeGeneric, 9
RecognizeGroup, 10
RecognizeMatrixGroup, 9
RecognizePermGroup, 9
RecognizeProjectiveGroup, 10
RIFac, 14

RIKer, 14

RIParent, 15

Size, 29

SLPforElement, 15
slpforelement, 15
SLPforElementFuncsGeneric, 12
SLPforElementFuncsMatrix, 11
SLPforElementFuncsPerm, 10

SLPforElementFuncsProjective, 11

SLPforElementGeneric, 23
SLPforNiceGens, 29
slptonice, 17
StdPresentation, 15

TryFindHomMethod, 12

ValidateHomomInput, 16
validatehomominput, 16

	Introduction
	Philosophy
	Overview over this manual
	Feedback and support
	Literature (temporary)

	Installation of the recog package
	Group recognition
	The recursive procedure
	Recognition info records
	Methods to find homomorphisms
	Conventions for the recognition of permutation groups
	Conventions for the recognition of matrix groups
	Conventions for the recognition of projective groups

	Method selection
	What are methods?
	How methods are called

	After successful recognition
	Functions and methods for recognition info records

	Methods for recognition
	Methods for generic groups
	Methods for permutation groups
	Methods for matrix groups
	Methods for projective groups

	Examples
	References
	Index

