| v

ERLANG

Runtime_Tools

Copyright © 1999-2 2010 Ericsson AB. All Rights Reserved.
Runtime_Tools 1.8.3
August 2 2010

Copyright © 1999-2 2010 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

August 2 2010

Ericsson AB. All Rights Reserved.: Runtime_Tools | 1

1 Reference Manual

Runtime_Tools provides low footprint tracing/debugging tools suitable for inclusion in a production system.

2 | Ericsson AB. All Rights Reserved.: Runtime_Tools

runtime_tools

runtime_tools
Application

This chapter describes the Runtime_Tools application in OTP, which provides low footprint tracing/debugging tools
suitable for inclusion in a production system.

Configuration

There are currently no configuration parameters available for this application.

SEE ALSO
application(3)

Ericsson AB. All Rights Reserved.: Runtime_Tools | 3

dbg

dbg

Erlang module

This module implements a text based interface to thetrace/ 3 and thet race_pattern/ 2 BIFs. It makes it
possibleto trace functions, processes and messages on text based terminals. It can be used instead of, or as complement
to, the pman module.

For some examples of how to use dbg from the Erlang shell, see the simple example section.

The utilities are also suitable to usein system testing on large systems, where other tools have too much impact on the
system performance. Some primitive support for sequential tracing is aso included, see the advanced topics section.

Exports

fun2ms(Li teral Fun) -> MatchSpec
Types:

LiteralFun = fun() literal

MatchSpec =term()

Pseudo function that by means of a par se_t r ansf or mtrandates the literalf un() typed as parameter in the
function call to a match specification as described in the mat ch_spec manual of ERTS users guide. (with literal |
mean that the f un() needs to textually be written as the parameter of the function, it cannot be held in a variable
which in turn is passed to the function).

The parse transform is implemented in the module ns_t ransf or m and the source must include the file
ns_transform hrl in STDLIB for this pseudo function to work. Failing to include the hrl file in the source
will result in a runtime error, not a compile time ditto. The include file is easiest included by adding the line -
include lib("stdlib/include/ns_transformhrl"). tothesourcefile.

Thefun() isvery restricted, it can take only a single parameter (the parameter list to match), a sole variable or a
list. It needsto use thei s_ XXX guard tests and one cannot use language constructs that have no representation in
amatch_spec (likei f, case, r ecei ve etc). The return value from the fun will be the return value of the resulting
match_spec.

Example:

1> dbg: fun2ms(fun([M N]) when N > 3 -> return_trace() end).
[{["®$1","$2"],[{"'>,"$2",3}],[{return_trace}]}]

Variables from the environment can be imported, so that this works:

2> X=3.

3

3> dbg: fun2ms(fun([M N]) when N > X -> return_trace() end).
[{["$1","%$2"],[{"'>,"$2" ,{const,3}}],[{return_trace}]}]

Theimported variableswill be replaced by match_spec const expressions, which is consistent with the static scoping
for Erlang f un() s. Local or global function calls can not be in the guard or body of the fun however. Calls to builtin
match_spec functions of courseis allowed:

4 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

4> dbg: fun2ms(fun([M N) when N > X, is_atomm(M -> return_trace() end).

Error: fun containing local erlang function calls ('is_atonmmi called in guard) cannot be translated into nmat«
{error,transformerror}

5> dbg: fun2ms(fun([M N) when N > X, is_atom(M -> return_trace() end).

[{["'$1,"%$2"],[{" >, $2",{const,3}},{is_atom'$1'}],[{return_trace}]}]

As you can see by the example, the function can be called from the shell too. Thef un() needsto be literaly in the
call when used from the shell as well. Other means than the parse_transform are used in the shell case, but more or
less the same restrictions apply (the exception being records, as they are not handled by the shell).

Warning:

If the parse_transform is not applied to a module which calls this pseudo function, the call will fail in runtime
(withabadar g). Themoduledbg actually exports afunction with this name, but it should never really becalled
except for when using the function in the shell. If thepar se_t r ansf or mis properly applied by including the
ns_transform hrl header file, compiled code will never call the function, but the function call is replaced
by aliteral match_spec.

More information is provided by thens_t r ansf or mmanual pagein STDLIB.

h() -> ok
Givesalist of itemsfor brief online help.

h(ltem -> ok
Types:
Item = atom()
Gives abrief help text for functionsin the dbg module. The available items can be listed with dbg: h/ 0

p(ltem -> {ok, MatchDesc} | {error, term()}
Equivalenttop(ltem [n]).

p(ltem Flags) -> {ok, MitchDesc} | {error, term()}
Types.
MatchDesc = [M atchNum]
MatchNum = {matched, node(), integer ()} | {matched, node(), 0, RPCError}
RPCError =term()
Traces | t emin accordance to the value specified by Fl ags. The variation of | t emislisted below:
e Ifthel t emisapi d(), the corresponding processistraced. The process may be aremote process (on another
Erlang node). The node must be in the list of traced nodes (seen/ 1 andt r acer/ 0/ 2/ 3).

e Ifthel t emistheatomal | , al processesin the system aswell as all processes created hereafter are to be
traced. This also affects all nodes added withthen/ 1 ort racer/ 0/ 2/ 3 function.

« |fthel t emisthe atom new, no currently existing processes are affected, but every process created after the
call is.This also affects al nodes added withthen/ 1 ort r acer/ 0/ 2/ 3 function.

e Ifthel t emistheatom exi st i ng, al existing processes are traced, but new processes will not be
affected. This aso affects all nodes added withthen/ 1 ort racer/ 0/ 2/ 3 function.

Ericsson AB. All Rights Reserved.: Runtime_Tools | 5

dbg

e Ifthel t emisan atom other thanal | , newor exi st i ng, the process with the corresponding registered name
is traced. The process may be a remote process (on another Erlang node). The node must be added with then/ 1
ortracer/ 0/ 2/ 3 function.

* Ifthel t emisan integer, the process<0. | t em 0> istraced.
« |Ifthel temisatuple{ X, Y, Z},theprocess<X. Y. Z> istraced.
e Ifthel t emisastring "<X.Y.Z>" asreturned frompi d_t o_I| i st/ 1, the process<X. Y. Z> istraced.

FI ags can be asingle atom, or alist of flags. The available flags are:
s (send)
Traces the messages the process sends.
r (receive)
Traces the messages the process receives.
m (messages)
Traces the messages the process receives and sends.
c (call)
Traces global function calls for the process according to the trace patterns set in the system (see tp/2).
p (procs)
Traces process related events to the process.
Sos (set on spawn)
Letsall processes created by the traced process inherit the trace flags of the traced process.
sol (set on |ink)
L ets another process, P2, inherit the trace flags of the traced process whenever the traced process links to P2.
sofs (set on first spawn)
Thisisthe same assos, but only for the first process spawned by the traced process.
sofl (set on first link)
Thisisthesameassol , but only for thefirst call tol i nk/ 1 by the traced process.

al |

Setsdl flags.
cl ear

Clearsal flags.

Thelist can aso include any of theflagsallowediner | ang: trace/ 3

The function returns either an error tuple or atuple{ ok, Li st}.TheLi st consistsof specifications of how many
processes that matched (in the case of a pure pid() exactly 1). The specification of matched processesis{ mat ched,
Node, N}. If the remote processor call,r pc, to aremote node fails, ther pc error message is delivered as afourth
argument and the number of matched processes are 0. Note that the result { ok, List} may contain alist wherer pc
calsto one, severa or even al nodes failed.

c(Md, Fun, Args)
Equivalenttoc(Mod, Fun, Args, all).

6 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

c(Mod, Fun, Args, Flags)

Evaluatesthe expression appl y(Mod, Fun, Args) withthetraceflagsin FI ags set. Thisisaconvenient way
to trace processes from the Erlang shell.

i() -> ok
Displaysinformation about all traced processes.

t p(Mbdul e, Mat chSpec)
Same astp({Module,' ',' "}, MatchSpec)

t p(Mbdul e, Funct i on, Mat chSpec)
Same as tp({ Module, Function, ' '}, MatchSpec)

t p(Modul e, Function, Arity, MatchSpec)
Same as tp({ Module, Function, Arity}, MatchSpec)

tp({Modul e, Function, Arity}, MatchSpec) -> {ok, MtchDesc} | {error, term()}
Types.

Module=atom() |'_'

Function =atom() | '_'

Arity = integer() |'_

MatchSpec = integer () | atom() | [] | match_spec()

MatchDesc = [M atchinfo]

Matchlnfo = {saved, integer ()} | MatchNum

MatchNum = {matched, node(), integer ()} | {matched, node(), 0, RPCError}
This function enables call trace for one or more functions. All exported functions matching the { Modul e,

Function, Arity} argument will be concerned, but the mat ch_spec() may further narrow down the set of
function calls generating trace messages.

For a description of the mat ch_spec() syntax, please turn to the User's guide part of the online documentation
for the runtime system (erts). The chapter Match Specification in Erlang explains the general match specification
"language”.

TheModule, Function and/or Arity partsof thetuple may be specified astheatom' ' whichisa"wild-card" matching
all modules/functiong/arities. Note, if the Moduleisspecifiedas' ' , the Function and Arity parts have to be specified
as' 'too. The same holds for the Functions relation to the Arity.

All nodes added withn/ 1 or t racer/ 0/ 2/ 3 will be affected by this call, and if Moduleisnot ' _' the module
will be loaded on all nodes.

The function returns either an error tuple or atuple{ ok, Li st}.TheLi st consistsof specifications of how many
functions that matched, in the same way as the processes are presented in the return value of p/ 2.

There may be atuple { saved, N} inthereturn value, if the MatchSpec is other than []. The integer N may then
be used in subsequent calls to this function and will stand as an "alias’ for the given expression. There are also built-
in aliases named with atoms (seeaso| t p/ 0 below).

If an error is returned, it can be due to errorsin compilation of the match specification. Such errors are presented as a
list of tuples{error, string()} wherethestringisatextual explanation of the compilation error. An example:

Ericsson AB. All Rights Reserved.: Runtime_Tools | 7

dbg

(x@) 4> dbg:tp({dbg,Itp,0},[{[].[],[{nmessage, two, argunents}, {noexist}]}]).
{error,
[{error, "Special form'nessage' called with wong nunber of
argunents in {nmessage, two, argunents}."},
{error,"Function noexist/1 does_not_exist."}]}

t pl (Modul e, Mat chSpec)
Sameastpl({Module, ' ',' '}, MatchSpec)

t pl (Modul e, Functi on, Mat chSpec)
Same as tpl({Module, Function, ' '}, MatchSpec)

t pl (Modul e, Function, Arity, ©MatchSpec)
Same as tpl ({ Module, Function, Arity}, MatchSpec)

tpl ({Modul e, Function, Arity}, MatchSpec) -> {ok, MatchDesc} | {error,
term()}

This function works ast p/ 2, but enables tracing for local calls (and local functions) as well as for global calls (and
functions).

ctp()

ct p(Modul e)
Same as ctp({Module, ' ',' })

ct p(Modul e, Functi on)
Same as ctp({ Module, Function, ' '})

ctp(Modul e, Function, Arity)
Same as ctp({ Module, Function, Arity})

ctp({Mdul e, Function, Arity}) -> {ok, MatchDesc} | {error, term()}
Types.

Module=atom() |'_'

Function =atom() |'_'

Arity =integer() |’

MatchDesc = [MatchNum]

MatchNum = {matched, node(), integer ()} | {matched, node(), 0, RPCError}

This function disables call tracing on the specified functions. The semantics of the parameter is the same as for the
corresponding function specificationint p/ 2 or t pl / 2. Both local and global call traceis disabled.

The return value reflects how many functions that matched, and is constructed as described in t p/ 2. No tuple
{saved, N} ishowever ever returned (for obvious reasons).

8 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

ctpl ()

ct pl (Modul e)
Same asctpl({Module, ' ',* ")

ct pl (Modul e, Function)
Same as ctpl({ Module, Function, ' '})

ctpl (Modul e, Function, Arity)
Same as ctpl({ Module, Function, Arity})

ctpl ({Modul e, Function, Arity}) -> {ok, MatchDesc} | {error, tern()}
Thisfunction worksasct p/ 1, but only disablestracing set up witht pl / 2 (not witht p/ 2).

ctpg()
Sameasctpg({'_',"","_'})

ct pg(Modul e)
Same as ctpg({Module, ' '," '})

ct pg(Modul e, Functi on)
Same as ctpg({ Module, Function, *_'})

ct pg(Modul e, Function, Arity)
Same as ctpg({ Module, Function, Arity})

ctpg({Mdul e, Function, Arity}) -> {ok, MatchDesc} | {error, term()}
Thisfunction worksasct p/ 1, but only disables tracing set up witht p/ 2 (not witht pl / 2).

ltp() -> ok

Use this function to recall all match specifications previously used in the session (i. e. previously saved during calls
tot p/ 2, and built-in match specifications. Thisisvery useful, as acomplicated match_spec can be quite awkward to
write. Note that the match specifications are lost if st op/ 0 iscalled.

Match specifications used can be saved in afile (if a read-write file system is present) for use in later debugging
sessions, seewt p/ 1 andrtp/ 1

dtp() -> ok

Use this function to "forget" al match specifications saved during callsto t p/ 2. Thisis useful when one wants to
restore other match specifications from afilewithr t p/ 1. Usedt p/ 1 to delete specific saved match specifications.

dtp(N) -> ok
Types:

Ericsson AB. All Rights Reserved.: Runtime_Tools | 9

dbg

N = integer ()
Use this function to "forget" a specific match specification saved during callstot p/ 2.

wt p(Name) -> ok | {error, IOError}
Types:
Name = string()
[OError =term()
This function will save all match specifications saved during the session (during callsto t p/ 2) and built-in match

specifications in a text file with the name designated by Narre. The format of the file is textual, why it can be edited
with an ordinary text editor, and then restored with r t p/ 1.

Each match spec in the file ends with afull stop (.) and new (syntactically correct) match specifications can be added
to the file manually.

The function returns ok or an error tuple where the second element contains the 1/0 error that made the writing
impossible.

rtp(Name) -> ok | {error, Error}
Types:
Name = string()
Error =term()
This function reads match specifications from afile (possibly) generated by thewt p/ 1 function. It checks the syntax
of all match specificationsand verifiesthat they are correct. The error handling principleis"al or nothing", i. e. if some

of the match specifications are wrong, none of the specifications are added to the list of saved match specifications
for the running system.

The match specifications in the file are merged with the current match specifications, so that no duplicates are
generated. Usel t p/ 0 to see what numbers were assigned to the specifications from the file.

The function will return an error, either due to 1/0 problems (like a non existing or non readable file) or due to file
format problems. The errorsfrom abad format file arein amore or lesstextual format, which will give ahint to what's
causing the problem.

n(Nodenane) -> {ok, Nodenane} | {error, Reason}
Types:
Nodename = atom()
Reason = term()
Thedbg server keepsalist of nodes where tracing should be performed. Whenever at p/ 2 cal or ap/ 2 call ismade,

itisexecuted for al nodesin thislist including the local node (except for p/ 2 with aspecificpi d() asfirst argument,
in which case the command is executed only on the node where the designated process resides).

This function adds a remote node (Nodenan®) to the list of nodes where tracing is performed. It starts a tracer
process on the remote node, which will send all trace messages to the tracer process on the local node (viathe Erlang
distribution). If no tracer processis running on the local node, the error reasonno_| ocal _tracer isreturned. The
tracer process on the local node must be started with thet r acer / 0/ 2 function.

If Nodenan® isthelocal node, the error reason cant _add_| ocal _node isreturned.

If atrace port (seet r ace_por t / 2) isrunning on thelocal node, remote nodes can not be traced with atracer process.
Theerrorreasoncant _trace_renote_pid_to_| ocal port isreturned. A trace port can however be started
on the remote node with thet r acer / 3 function.

10 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

The function will also return an error if the node Nodenane is not reachable.

cn(Nodenane) -> ok
Types:
Nodename = atom()

Clearsanode from the list of traced nodes. Subsequent callstot p/ 2 and p/ 2 will not consider that node, but tracing
already activated on the node will continue to be in effect.

Returns ok, cannot fail.

In() -> ok

Shows the list of traced nodes on the console.

tracer() -> {ok, pid()} | {error, already_started}

This function starts a server on the local node that will be the recipient of all trace messages. All subsequent callsto
p/ 2 will result in messages sent to the newly started trace server.

A trace server started in this way will simply display the trace messages in a formatted way in the Erlang shell (i. e.
useio:format). Seet r acer/ 2 for adescription of how the trace message handler can be customized.

To start asimilar tracer on aremote node, usen/ 1.

tracer(Type, Data) -> {ok, pid()} | {error, Error}
Types:
Type = port | process
Data = PortGenerator | Handler Spec
Handler Spec = {Handler Fun, InitialData}
Handler Fun = fun() (two arguments)
InitialData = term()
PortGenerator = fun() (no arguments)
Error =term()
Thisfunction startsatracer server with additional parametersonthelocal node. Thefirst parameter, the Ty pe, indicates

if trace messages should be handled by areceiving process (pr ocess) or by atracer port (por t). For adescription
about tracer portsseet race_port/ 2.

If Type is a process, a message handler function can be specified (Handl er Spec). The handler function, which
should be af un taking two arguments, will be called for each trace message, with the first argument containing the
message as it is and the second argument containing the return value from the last invocation of the fun. The initial
value of the second parameter is specified inthe | ni ti al Dat a part of the Handl er Spec. The Handl er Fun
may chose any appropriate action to take when invoked, and can save a state for the next invocation by returning it.

If Type isaport, then the second parameter should be a fun which takes no arguments and returns a newly opened
trace port when called. Such afunis preferably generated by callingt r ace_port/ 2.

If an error is returned, it can either be due to a tracer server already running ({ err or, al ready_started}) or
dueto the Handl er Fun throwing an exception.

To start asimilar tracer on aremote node, uset r acer/ 3.

tracer (Nodenane, Type, Data) -> {ok, Nodenane} | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Runtime_Tools | 11

dbg

Nodename = atom()

This function isequivalent to t r acer / 2, but acts on the given node. A tracer is started on the node (Nodenan®)
and the node is added to the list of traced nodes.

Note:

This function is not equivalent to n/ 1. While n/ 1 starts a process tracer which redirects al trace information
to aprocess tracer on the local node (i.e. the trace control node), t r acer / 3 starts atracer of any type whichis
independent of the tracer on the trace control node.

For details, seet r acer / 2.

trace_port(Type, Paraneters) -> fun()
Types.
Type=ip |file
Parameters = Filename | WrapFilesSpec | | PPortSpec
Filename = string() | [string()] | atom()
WrapFilesSpec = {Filename, wrap, Suffix} | {Filename, wrap, Suffix, WrapSize} | {Filename, wrap,
Suffix, WrapSize, WrapCnt}
Suffix = string()
WrapSize = integer () >=0 | {time, WrapTime}
WrapTime=integer() >=1
WrapCnt = integer() >=1
| pPortSpec = PortNumber | {PortNumber, QueSize}
PortNumber = integer ()
QueSize = integer()
This function creates a trace port generating fun. The fun takes no arguments and returns a newly opened trace

port. The return value from this function is suitable as a second parameter to tracer/2, i. e. dbg: t r acer (port,
dbg:trace_port(ip, 4711)).

A trace port is an Erlang port to a dynamically linked in driver that handles trace messages directly, without the
overhead of sending them as messages in the Erlang virtual machine.

Twotracedriversare currently implemented, thef i | e andthei p tracedrivers. Thefiledriver sendsall trace messages
into one or severa binary files, from where they later can be fetched and processed with thetrace_client/ 2
function. The ip driver opens a TCP/IP port where it listens for connections. When a client (preferably started by
calingtrace_client/ 2 on another Erlang node) connects, all trace messages are sent over the IP network for
further processing by the remote client.

Using atrace port significantly lowers the overhead imposed by using tracing.

Thefile trace driver expects a filename or awrap files specification as parameter. A file iswritten with a high degree
of buffering, why all trace messages are not guaranteed to be saved in the file in case of a system crash. That is the
priceto pay for low tracing overhead.

A wrap files specification isused to limit the disk space consumed by thetrace. Thetraceiswritten to alimited number
of files each with alimited size. The actual filenamesare Fi | ename ++ SeqCnt ++ Suffi x, where SeqCnt
countsasadecimal string from 0 to W apCnt and then around again from 0. When atrace term written to the current
filemakesit longer than W apSi ze, that fileisclosed, if the number of filesin thiswrap traceisasmany asW apCnt

12 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

the oldest file is deleted then a new file is opened to become the current. Thus, when a wrap trace has been stopped,
there are at most W apCnt trace files saved with asize of at least W apSi ze (but not much bigger), except for the
last file that might even be empty. The default valuesare W apSi ze = 128*1024 and W apCnt = 8.

The SeqCnt values in the filenames are all in the range O through W apCnt with a gap in the circular sequence.
The gap is needed to find the end of the trace.

If theW apSi ze isspecifiedas{ti me, WapTi ne}, the current fileis closed when it has been open more than
W apTi me milliseconds, regardless of it being empty or not.

Theip trace driver has a queue of QueSi ze messages waiting to be delivered. If the driver cannot deliver messages
asfast asthey are produced by the runtime system, a special message is sent, which indicates how many messages that
are dropped. That message will arrive at the handler function specifiedintrace_cl i ent/ 3 asthetuple{ dr op,
N} where Nisthe number of consecutive messages dropped. In case of heavy tracing, drop's are likely to occur, and
they surely occur if no client is reading the trace messages.

flush_trace_port()

Equivalenttof | ush_trace_port (node()).

flush_trace_port(Nodenane) -> ok | {error, Reason}
Equivaenttot race_port _control (Nodenaneg, fl ush).

trace_port_control (Operation)
Equivalenttot race_port _control (node(), Operati on).

trace_port_control (Nodenane, Qperation) -> ok | {ok, Result} | {error, Reason}
Types:
Nodename = atom()

Thisfunction is used to do a control operation on the active trace port driver on the given node (Nodenane). Which
operations that are allowed as well as their return values are depending on which trace driver that is used.

Returns either ok or { ok, Resul t} if the operation was successful, or { error, Reason} if the current tracer
isaprocess or if it isaport not supporting the operation.

The allowed valuesfor Oper at i on are:
flush

This function is used to flush the internal buffers held by atrace port driver. Currently only the file trace driver
supports this operation. Returns ok .

get |isten_port

Returns{ ok, | pPort} wherel pPort isthe|P port number used by the driver listen socket. Only theip trace
driver supports this operation.

trace_client(Type, Paraneters) -> pid()
Types:
Type=ip |file|follow_file
Parameters = Filename | WrapFilesSpec | | PClientPortSpec
Filename = string() | [string()] | atom()
WrapFilesSpec = seetrace port/2
Suffix = string()

Ericsson AB. All Rights Reserved.: Runtime_Tools | 13

dbg

I pClientPortSpec = PortNumber | {Hostname, PortNumber}
PortNumber = integer ()
Hostname = string()

This function starts atrace client that reads the output created by atrace port driver and handlesit in mostly the same
way as atracer process created by thet r acer / 0 function.

If Type is fil e, the client reads all trace messages stored in the file named Fi | enanme or specified by
W apFi | esSpec (must be the same as used when creating the trace, see trace_port/2) and let's the default handler
function format the messages on the console. This is one way to interpret the data stored in afile by the file trace
port driver.

If Typeisfoll ow fil e, theclient behavesasinthefi | e case, but keepstrying to read (and process) more data
from the file until stoppedby st op_trace_cli ent/ 1. WapFi | esSpec isnot allowed as second argument for
thisType.

If Typeisi p, theclient connectsto the TCP/IP port Por t Nurber onthehost Host nane, from whereit readstrace
messages until the TCP/IP connection is closed. If no Host name is specified, the local host is assumed.

Asan example, one can | et trace messages be sent over the network to another Erlang node (preferably not distributed),
where the formatting occurs:

Onthe node st ack there's an Erlang node ant @t ack, in the shell, type the following:

ant @t ack> dbg: tracer(port, dbg:trace_port(ip,4711)).
<0.17. 0>

ant @t ack> dbg: p(sel f(), send).

{ok, 1}

All trace messages are now sent to the trace port driver, which in turn listens for connections on the TCP/IP port 4711.
If we want to see the messages on another node, preferably on another host, we do like this:

-> dbg:trace_client(ip, {"stack", 4711}).
<0. 42. 0>

If we now send a message from the shell on the node ant @t ack, where al sends from the shell are traced:

ant @tack> self() ! hello.
hel | o

The following will appear at the console on the node that started the trace client:

(<0.23.0>) <0.23.0>! hello
(<0.23.0>) <0.22.0> ! {shell _rep,<0.23.0>, {value,hello,[],[]}}

Thelast line is generated due to internal message passing in the Erlang shell. The processid's will vary.
trace_client(Type, Paraneters, Handl erSpec) -> pid()

Types:
Type=ip |file|follow file

14 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

Parameters = Filename | WrapFilesSpec | | PClientPortSpec

Filename = string() | [string()] | atom()

WrapFilesSpec = seetrace port/2

Suffix = string()

I pClientPortSpec = PortNumber | {Hostname, PortNumber}

PortNumber = integer ()

Hostname = string()

Handler Spec = {Handler Fun, InitialData}

Handler Fun = fun() (two arguments)

InitialData = term()
Thisfunction works exactly ast r ace_cl i ent / 2, but allows you to write your own handler function. The handler
function works mostly asthe one described int r acer / 2, but will also have to be prepared to handle trace messages

of theform { dr op, N}, where Nis the number of dropped messages. This pseudo trace message will only occur
if theip trace driver is used.

For tracetypef i | e, the pseudo trace messageend_of _t r ace will appear at the end of the trace. The return value
from the handler function isin this case ignored.

stop_trace_client(Pid) -> ok
Types:
Pid = pid()

This function shuts down a previously started trace client. The Pi d argument is the process id returned from the
trace_client/2ortrace_client/3cal.

get _tracer()
Equivalenttoget tracer (node()).

get _tracer (Nodenane) -> {ok, Tracer}
Types.

Nodename = atom()

Tracer = port() | pid()

Returns the process or port to which all trace messages are sent.

stop() -> stopped

Stopsthe dbg server and clearsall trace flagsfor all processesand all trace patternsfor all functions. Also shuts down
all trace clients and closes all trace ports.

Note that no trace patterns are affected by this function.

stop_clear() -> stopped
Same as stop/0, but also clears al trace patterns on local and global functions calls.

Simple examples - tracing from the shell

The simplest way of tracing from the Erlang shell is to use dbg: ¢/ 3 or dbg: ¢/ 4, eg. tracing the function
dbg: get _tracer/O0:

Ericsson AB. All Rights Reserved.: Runtime_Tools | 15

dbg

(tiger@urin)84> dbg: c(dbg, get _tracer,[]).

(<0.154.0>) <0.152.0> ! {<0.154.0>, {get_tracer,tiger@urin}}
(<0.154.0>) out {dbg,req, 1}

(<0.154.0>) << {dbg, {0k, <0.153.0>}}

(<0.154.0>) in {dbg,req, 1}

(<0.154.0>) << tineout

{ ok, <0. 153. 0>}

(tiger@urin)85>

Another way of tracing from the shell isto explicitly start atracer and then set the trace flags of your choice on the
processes you want to trace, e.g. trace messages and process events:

(tiger@urin)66> Pid = spawmn(fun() -> receive {From Msg} -> From! Mg end end).
<0. 126. 0>

(tiger@urin)67> dbg:tracer().

{ ok, <0. 128. 0>}

(tiger@urin)68> dbg: p(Pid,[mprocs]).
{ok, [{mat ched, ti ger @urin, 1}]}
(tiger@urin)69> Pid ! {self(), hello}.
(<0.126.0>) << {<0.116. 0>, hel | o}

{<0. 116. 0>, hel | o}

(<0.126.0>) << tineout

(<0.126.0>) <0.116.0> ! hello
(<0.126.0>) exit normal
(tiger@urin)70> flush().

Shel |l got hello

ok

(tiger@urin)71>

If yousetthecal | traceflag, you also have to set atrace pattern for the functions you want to trace:

(tiger@urin)77> dbg:tracer().

{0k, <0. 142. 0>}

(tiger@lurin)78> dbg: p(all,call).

{ok, [{mat ched, ti ger @urin, 3}]}

(tiger@lurin)79> dbg:tp(dbg, get_tracer,0,[]).

{ok, [{mat ched, ti ger @urin, 1}]}

(tiger@urin)80> dbg: get tracer().

(<0.116.0>) call dbg: get_tracer()

{ ok, <0. 143. 0>}

(tiger@urin)81> dbg:tp(dbg, get tracer,0,[{" _",[],[{return_trace}]}]).
{ok, [{mat ched, ti ger @lurin, 1}, {saved, 1}]}

(tiger@urin)82> dbg: get tracer().

(<0.116.0>) call dbg: get_tracer()

(<0.116.0>) returned from dbg: get tracer/0 -> {ok, <0.143. 0>}
{ ok, <0. 143. 0>}

(tiger@urin)83>

Advanced topics - combining with seq_trace

The dbg module is primarily targeted towards tracing through the er | ang: t race/ 3 function. It is sometimes
desired to trace messages in a more delicate way, which can be done with the help of theseq_t r ace module.

seq_t r ace implements sequential tracing (known in the AXE10 world, and sometimes called "forlopp tracing").
dbg can interpret messages generated from seq_t r ace and the same tracer function for both types of tracing can
be used. Theseq_t r ace messages can even be sent to atrace port for further analysis.

16 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

As a match specification can turn on sequential tracing, the combination of dbg and seq_t r ace can be quite
powerful. This brief example shows a session where sequential tracing is used:

1> dbg:tracer ().

{ ok, <0. 30. 0>}

2> {ok, Tracer} = dbg:get _tracer().

{ ok, <0. 31. 0>}

3> seq_trace: set_systemtracer(Tracer).

fal se

4> dbg: t p(dbg, get tracer, 0, [{[].[].[{set_seq_token, send, true}]}])
{ ok, [{mat ched, nonode@uohost, 1}, {saved, 1}]}

5> dbg: p(all,call).

{ ok, [{mat ched, nonode@uohost, 22}]}

6> dbg: get _tracer(), seq_trace:set_token([]).

(<0.25.0>) call dbg:get_tracer()

SeqTrace [0]: (<0.25.0>) <0.30.0>! {<0.25.0> get _tracer} [Serial: {2,4}]
SeqTrace [0]: (<0.30.0>) <0.25.0>! {dbg,{ok,<0.31.0>}} [Serial: {4,5}]
{1, 0,5, <0. 30. 0>, 4}

This session setsthe system_tracer to the same process as the ordinary tracer process (i. e. <0.31.0>) and setsthe trace
pattern for thefunctiondbg: get _t r acer to onethat hasthe action of setting a sequential token. When the function
is caled by atraced process (all processes are traced in this case), the process gets "contaminated” by the token and
seq_t r ace messages are sent both for the server request and the response. Theseq_trace: set _token([])
after the call clearstheseq_t r ace token, why no messages are sent when the answer propagates via the shell to the
console port. The output would otherwise have been more noisy.

Note of caution

When tracing function calls on a group leader process (an 10 process), there is risk of causing a deadlock. This will
happen if agroup leader process generates atrace message and the tracer process, by calling the trace handler function,
sends an 10 request to the same group leader. The problem can only occur if the trace handler prints to tty using an
i o functionsuchasf or mat / 2. Notethat whendbg: p(al |, cal |) iscalled, 10O processes are also traced. Here's
an example:

%6 Using a default line editing shel

1> dbg:tracer (process, {fun(Msg,) -> io:format("~p~n", [Msg]), O end, 0}).
{ ok, <0. 37. 0>}

2> dbg: p(all, [call]).

{ ok, [{mat ched, nonode@ohost, 25}] }

3> dbg: tp(nynod, [{" ", [1,[1}]).

{ ok, [{mat ched, nonode@uohost, 0}, {saved, 1}]}

4> nynod: % TAB pressed here

%hb - - Deadl ock --

Here's another example:

%6 Using a shell without line editing (ol dshell)
1> dbg: tracer (process)

{ ok, <0. 31. 0>}

2> dbg: p(all, [call])

{ ok, [{mat ched, nonode@ohost , 25}] }

3> dbg:tp(lists, [{" ", [].[1}]).

{ ok, [{mat ched, nonode@ohost, 0}, { saved, 1}]}

% - - Deadl ock --

Ericsson AB. All Rights Reserved.: Runtime_Tools | 17

dbg

The reason we get a deadlock in the first example is because when TAB is pressed to expand the function name,
the group leader (which handles character input) calls mynod: nodul e_i nf o() . This generates a trace message
which, in turn, causes the tracer process to send an 10 request to the group leader (by calingi o: f or mat / 2). We
end up in adeadlock.

In the second example we use the default trace handler function. This handler prints to tty by sending 10 requests to
theuser process. When Erlang is started in oldshell mode, the shell process will have user asits group leader and
so will the tracer process in this example. Since user calsfunctionsinl i st s we end up in adeadlock as soon as
thefirst 10 request is sent.

Here are afew suggestions for how to avoid deadlock:

» Don't trace the group leader of the tracer process. If tracing has been switched on for all processes,
cal dbg: p(Tracer GLPi d, cl ear) to stop tracing the group leader (Tr acer GLPi d).
process_i nfo(TracerPi d, group_| eader) tellsyouwhich processthisis (Tr acer Pi d isreturned
fromdbg: get _tracer/0).
» Don'ttracetheuser processif using the default trace handler function.
* Inyour own trace handler function, call er | ang: di spl ay/ 1 instead of ani o function or, if
user isnot used as group leader, print to user instead of the default group leader. Example:
i o:format (user, Str, Args).

18 | Ericsson AB. All Rights Reserved.: Runtime_Tools

erts_alloc_config

erts_alloc_config

Erlang module

Note:

erts_alloc_config is currently an experimental tool and might be subject to backward incompatible
changes.

erts alloc(3) is an Erlang Run-Time System internal memory allocator library. ert s_al | oc_confi g isintended
to be used to aid creation of an erts_alloc(3) configuration that is suitable for alimited number of runtime scenarios.
The configuration that ert s_al | oc_confi g produce is intended as a suggestion, and may need to be adjusted
manually.

The configuration is created based on information about a number of runtime scenarios. It is obviously impossible to
foresee every runtime scenario that can occur. The important scenarios are those that cause maximum or minimum
load on specific memory allocators. Load in this context is total size of memory blocks all ocated.

The current implementation of erts_al | oc_confi g concentrate on configuration of multi-block carriers.
Information gathered when aruntime scenario is saved is mainly current and maximum use of multi-block carriers. If
aparameter that change the use of multi-block carriersis changed, apreviously generated configuration isinvalid and
erts_all oc_confi g needsto be run again. It is mainly the single block carrier threshold that effects the use of
multi-block carriers, but other single-block carrier parameters might as well. If another value of asingle block carrier
parameter than the default is desired, use the desired value when runningert s_al | oc_confi g.

A configuration is created in the following way:

e Pass the + Mea config command-line flag to the Erlang runtime system you are going to use for creation of the
alocator configuration. It will disable features that prevent erts_al | oc_confi g from doing it's job. Note,
you should not use this flag when using the created configuration. Also note that it isimportant that you use the
same amount of schedulers when creating the configuration as you are going the use on the system using the
configuration.

* Runyour applications with different scenarios (the more the better) and save information about each scenario by
calling save_scenario/0. It may be hard to know when the applications are at an (for erts_al | oc_confi g)
important runtime scenario. A good approach may therefore beto call save _scenario/O repeatedly, e.g. once every
tenth second. Note that it is important that your applications reach the runtime scenarios that are important for
erts_al | oc_confi g when you are saving scenarios; otherwise, the configuration may perform bad.

* When you have covered all scenarios, call make _config/1 in order to create a configuration. The configuration is
written to afile that you have chosen. This configuration file can later be read by an Erlang runtime-system at
startup. Pass the command line argument -args file FileName to the erl(1) command.

e The configuration produced by erts_al | oc_confi g may need to be manually adjusted as already stated.
Do not modify thefile produced by ert s_al | oc_conf i g; instead, put your modificationsin another file and
load thisfile after the file produced by ert s_al | oc_confi g. That is, put the -args file FileName argument
that reads your modification file later on the command-line than the -args file FileName argument that reads
the configuration file produced by ert s_al | oc_confi g. If amemory alocation parameter appear multiple
times, the last version of will be used, i.e., you can override parameters in the configuration file produced by
erts_all oc_confi g.Doingit thisway simplifiesthingswhenyouwanttorerunerts_al | oc_confi g.

Ericsson AB. All Rights Reserved.: Runtime_Tools | 19

erts_alloc_config

Note:

The configuration created by erts_al | oc_confi g may perform bad, ever horrible, for runtime scenarios
that are very different from the ones saved when creating the configuration. You are, therefore, advised to
rerun erts_al l oc_confi g if the applications run when the configuration was made are changed, or if
the load on the applications have changed since the configuration was made. You are also advised to rerun
erts_al |l oc_confi g if the Erlang runtime system used is changed.

erts_al |l oc_confi g saves information about runtime scenarios and performs computations in a server that is
automatically started. The server register itself under thename' __erts_alloc_config_ '.

Exports

save_scenario() -> ok | {error, Error}
Types:
Error =term()

save_scenari o/ 0 savesinformation about the current runtime scenario. Thisinformation will later be used when
make_config/0, or make config/lis called.

Thefirst time save_scenari o/ 0 is called a server will be started. This server will save runtime scenarios. All
saved scenarios can be removed by calling stop/O.

make config() -> ok | {error, Error}
Types:

Error =term()
Thisisthe same as calling make_config(group_leader()).

make_confi g(Fil eNameOrl ODev) -> ok | {error, Error}
Types.

FileNameOr|ODev = string() | io_device()

Error =term()

make_confi g/ 1 usestheinformation previously saved by save scenario/O in order to produceanerts_al | oc
configuration. At least one scenario have had to be saved. All scenarios previously saved will be used when creating
the configuration.

If Fi |l eNameOr | ODev isastring(), make_confi g/ 1 will use Fi | eNameOr | CDev as afilename. A file
named Fi | eNameOr | ODev is created and the configuration will be written to that file. If Fi | eNanmeOr | QDev is
anio_device() (see the documentation of the module io), the configuration will be written to the io device.

stop() -> ok | {error, Error}
Types:

Error =term()
Stops the server that saves runtime scenarios.

See Also
erts alloc(3), erl(1), io(3)

20 | Ericsson AB. All Rights Reserved.: Runtime_Tools

	Runtime_Tools
	Reference Manual
	runtime_tools
	dbg
	fun2ms/1
	h/0
	h/1
	p/1
	p/2
	c/3
	c/4
	i/0
	tp/2
	tp/3
	tp/4
	tp/2
	tpl/2
	tpl/3
	tpl/4
	tpl/2
	ctp/0
	ctp/1
	ctp/2
	ctp/3
	ctp/1
	ctpl/0
	ctpl/1
	ctpl/2
	ctpl/3
	ctpl/1
	ctpg/0
	ctpg/1
	ctpg/2
	ctpg/3
	ctpg/1
	ltp/0
	dtp/0
	dtp/1
	wtp/1
	rtp/1
	n/1
	cn/1
	ln/0
	tracer/0
	tracer/2
	tracer/3
	trace_port/2
	flush_trace_port/0
	flush_trace_port/1
	trace_port_control/1
	trace_port_control/2
	trace_client/2
	trace_client/3
	stop_trace_client/1
	get_tracer/0
	get_tracer/1
	stop/0
	stop_clear/0

	erts_alloc_config
	save_scenario/0
	make_config/0
	make_config/1
	stop/0

