
GNATColl: GNAT Reusable Components
Version gpl-2011

AdaCore

Copyright c© 2007-2011, AdaCore
This document may be copied, in whole or in part, in any form or by
any means, as is or with alterations, provided that (1) alterations are
clearly marked as alterations and (2) this copyright notice is included
unmodified in any copy.

Table of Contents

1 Introduction . 1

2 Building the GNAT Reusable Components . . . 3
2.1 Configuring the build environment . 3
2.2 Building GNATColl . 5
2.3 Installing GNATColl . 6

3 Embedding script languages 7
3.1 Supported languages . 8

3.1.1 The Shell language . 8
3.1.2 The Python language . 10
3.1.3 Classes exported to all languages . 12

3.2 Scripts API . 13
3.2.1 Initializing the scripting module . 14

3.2.1.1 Create the scripts repository . 14
3.2.1.2 Loading the scripting language . 15
3.2.1.3 Exporting standard classes . 16

3.2.2 Creating interactive consoles . 16
3.2.3 Exporting classes and methods . 18

3.2.3.1 Classes diagram . 19
3.2.3.2 Exporting functions . 21
3.2.3.3 Exporting classes . 23
3.2.3.4 Reusing class instances . 27

3.2.4 Executing startup scripts . 30
3.2.5 Debugging scripts . 30

4 Logging information . 31
4.1 Configuring traces . 31
4.2 Using the traces module . 33
4.3 Log decorators . 35
4.4 Defining custom trace streams . 38
4.5 Logging to syslog . 39
4.6 Dynamically disabling features . 40

5 Monitoring memory . 43

i

GNATColl: GNAT Reusable Components

6 Reading and Writing Files . 47

7 Searching strings . 51

8 The templates module . 53

9 Managing Email . 55
9.1 Message formats . 55
9.2 Parsing messages . 56
9.3 Parsing mailboxes . 57
9.4 Creating messages . 58

10 Ravenscar Patterns . 59
10.1 Tasks . 59
10.2 Servers . 59
10.3 Timers . 59

11 Managing Memory: The storage pools 61

12 Manipulating Files . 63
12.1 Filesystems abstraction . 63

12.1.1 file names encoding . 64
12.2 Remote filesystems . 65

12.2.1 Filesystem factory . 65
12.2.2 Transport layer . 66

12.3 Virtual files . 67
12.4 GtkAda support for virtual files . 67

13 Three state logic . 69

14 Geometry . 71

15 Reference counting . 73

16 Configuration files . 77

17 Projects . 81

ii

18 Database interface . 83
18.1 Supported database systems . 83
18.2 Database schema monitoring . 85

18.2.1 Textual description of database schema 88
18.2.2 Default output of gnatcoll db2ada . 90

18.3 Writing queries . 91
18.4 Executing queries . 94
18.5 Prepared queries . 96
18.6 Getting results . 99
18.7 Writing your own cursors . 100
18.8 Creating your own SQL types . 102
18.9 Query logs . 103
18.10 Tasks and databases . 104
18.11 Creating and inspecting databases . 104

Index . 107

iii

GNATColl: GNAT Reusable Components

iv

Chapter 1: Introduction

1 Introduction
The GNATColl library provides a number of modules that can be reused
in your own applications to add extra features or help implementation.

The modules that are currently provided are:

Script languages
This module allows you to embed one or more scripting lan-
guages in your application, thus providing extensibility to
users (see Chapter 3 [Embedding script languages], page 7)

1

GNATColl: GNAT Reusable Components

2

Chapter 2: Building the GNAT Reusable Components

2 Building the GNAT Reusable
Components

The compilation process tries to be as flexible as possible. You can choose
what modules to build, what features they should have,. . . This flexibil-
ity comes at the cost of a certain complexity in the build architecture,
but that should be mostly transparent to you.

GNATColl requires a fairly recent Ada05 compatible com-
piler. If you do not have such a compiler, please contact
sales@adacore.com

Since you are reading this documentation, it is assumed you have been
able to unpack the package in a temporary directory. In the following
instructions, we will assume the following: prefix is the directory in
which you would like to install GNATColl.

2.1 Configuring the build environment
The first step is to configure the build environment. This is done by
running the configure command in the root directory of the GNATColl
tree.

Some parts of GNATColl need access to a subset of the GNAT sources.
This is in particular the case for GNATCOLL.Projects, which reuses the
same parser as the GNAT tools.

GNATColl will look for those sources in two different ways:
• If you have a copy of the GNAT sources, create a link called

‘gnat_src’ that points to the directory containing those sources. This
link should be created in the toplevel GNATColl directory.

• Otherwise, recent versions of GNAT come with an additional gnat_
util.gpr project file, installed along with it. This project contains
the required subset of the sources. If you have an older version of
GNAT, you could also chose to install gnat_util independently.

• If none of the above is satisfied, GNATColl will not include support
for GNATCOLL.Projects.

configure accepts lots of arguments, among which the following ones
are most useful:

--prefix=prefix
This specifies the directory in which GNATColl should be
installed.

3

mailto:sales@adacore.com

GNATColl: GNAT Reusable Components

--enable-shared
--disable-shared

If none of these switches is specified, GNATColl will try to
build both static and shared libraries (if the latter are sup-
ported on your system). The compilation needs to be done
twice, since the compilation options might not be the same
in both cases.
If you only intend to ever use static libraries, you can use
--disable-shared to only build static libraries.
When you link GNATColl with your own application, the
default is to link with the static libraries. You can change this
default, which becomes the shared libraries if you explicitly
specify --enable-shared. However, even if the default are
the static libraries, you can still override that (see below the
LIBRARY_TYPE variable).

--with-python=directory
--without-python

This specifies where GNATColl should find python. If for in-
stance the python executable is in ‘/usr/bin’, the directory
to specify is ‘/usr’. In most cases, however, configure will
be able to detect this automatically, so this is only useful if
python is installed in unusual directories. If you specify the
second option, support for python will not be build in.

--enable-shared-python
This specifies that the python library should be searched
directly in directory/lib, and thus will in general by the
shared library. By default, configure will search in a different
directory of the python installation, and is more likely to
find the static library instead (which makes distributing your
application easier). There is no guarantee though that either
the shared or the static will be used, since it depends on how
python was installed on your system.

--disable-gtk
If this switch is specified, then no package depending on the
gtk+ graphical toolkit will be built.

--disable-pygtk
If this switch is specified, then support for pygtk (see Sec-
tion 3.1.2 [The Python language], page 10) will not be build.
The support for this python module will also be automati-
cally disabled if python was not found or if you configured
with --without-python.

4

Chapter 2: Building the GNAT Reusable Components

--disable-syslog
If this switch is specified, then support for syslog (see Sec-
tion 4.5 [Logging to syslog], page 39) will not be build. This
support allows sending the traces from all or part of your ap-
plication to the system logger, rather than to files or stdout.

--with-postgresql=<dir>
--without-postgresql

GNATColl embeds a set of packages to query a database en-
gine. configure attempts to find which systems are installed
on your system, and build support for those. But you can also
explicitly disable for those if you need.
If the directory in which PostgreSQL is installed contains
spaces, you should use a syntax like

./configure --with-postgres="/Program Files/PostgreSQL/8.4"

Generally speaking, we do not recommend using paths with
spaces since there are often more difficulties in such a setup.

Special support exists in GNATColl for the gtk+ graphical toolkit.
configure will attempt to find the installation directory for this toolkit
by using the pkg-config command, which must therefore be available
through your PATH environment variable. It also needs to find the
‘gtkada.gpr’ project file either because it is part of the implicit search
path for project files, or because you have put the corresponding direc-
tory in the environment variable GPR_PROJECT_PATH. If either of these
two requirements fail, the modules of GNATColl that depend on GtkAda
will not be built.

./configure --prefix=/usr/local/gnatcoll --without-python

If all goes well (i.e. all required dependencies are found on the sys-
tem), configure will generate a number of files, including ‘Makefile’,
‘Makefile.conf’ and ‘gnatcoll_shared.gpr’.

2.2 Building GNATColl
If configure has run successfully, it generates a Makefile to allow you to
build the rest of GNATColl. This is done by simply typing the following
command:

make

Depending on the switches passed to configure, this will either build
both static and shared libraries, or static only (see the --disable-shared
configure switch).

Optionally, you can also build the examples and/or the automatic test
suite, with the following commands:

make examples

5

GNATColl: GNAT Reusable Components

make test

The latter will do a local installation of gnatcoll in a subdirectory
called ‘local_install’, and use this to run the tests. This ensures that
the installation process of gnatcoll works properly.

2.3 Installing GNATColl
Installing the library is done with the following command:

make install

Note that this makefile target does not try to recompile GNATColl,
so you must build it first. This will install both the shared and the static
libraries if both were build.

As mentioned in the description of the configure switches, your ap-
plication will by default be linked with the static library, unless you
specified the --enable-shared switch.

However, you can always choose later on which kind of library to
use for GNATColl by setting the environment variable LIBRARY_TYPE to
either "relocatable" or "static".

Your application can now use the GNATColl code through a project
file, by adding a with clause to ‘gnatcoll.gpr’, ‘gnatcoll_gtk.gpr’ or
‘gnatcoll_python.gpr’. The second one will also force your application
to be linked with the gtk+ libraries, but provides additional capabilities
as documented in each of the modules.

6

Chapter 3: Embedding script languages

3 Embedding script languages

In a lot of contexts, you want to give the possibility to users to extend your
application. This can be done in several ways: define an Ada API from
which they can build dynamically loadable modules, provide the whole
source code to your application and let users recompile it, interface with
a simpler scripting languages,. . .

Dynamically loadable modules can be loaded on demand, as their
name indicate. However, they generally require a relatively complex
environment to build, and are somewhat less portable. But when your
users are familiar with Ada, they provide a programming environment
in which they are comfortable. As usual, changing the module requires
recompilation, re-installation,...

Providing the source code to your application is generally even more
complex for users. This requires an even more complex setup, your
application is generally too big for users to dive into, and modifications
done by one users are hard to provide to other users, or will be lost when
you distribute a new version of your application.

The third solution is to embed one or more scripting languages in your
application, and export some functions to it. This often requires your
users to learn a new language, but these languages are generally rela-
tively simple, and since they are interpreted they are easier to learn in an
interactive console. The resulting scripts can easily be redistributed to
other users or even distributed with future versions of your application.

The module in GNATColl helps you implement the third solution.
It was used extensively in the GPS programming environment for its
python interface.

Each of the scripting language is optional
This module can be compiled with any of these languages as an op-

tional dependency (except for the shell language, which is always built-
in, but is extremely minimal, and doesn’t have to be loaded at run time
anyway). If the necessary libraries are found on the system, GNATColl
will be build with support for the corresponding language, but your ap-
plication can chose at run time whether or not to activate the support
for a specific language.

Optional support is provided for the gtk+ library
. Likewise, extensions are provided if the gtk+ libraries were found

on your system. These provide a number of Ada subprograms that help
interface with code using this library, and help export the corresponding
classes. This support for gtk+ is also optional, and you can still build
GNATColl even if gtk+ wasn’t installed on your system (or if your appli-

7

GNATColl: GNAT Reusable Components

cation is text-only, in which case you likely do not want to depend at link
time on graphical libraries).

Use a scripting language to provide an automatic testing
framework for your application.

The GPS environment uses python command for its automatic test suite,
including graphical tests such as pressing on a button, selecting a
menu,. . .

3.1 Supported languages
The module provides built-in support for several scripting languages,
and other languages can "easily" be added. Your application does not
change when new languages are added, since the interface to export
subprograms and classes to the scripting languages is language-neutral,
and will automatically export to all known scripting languages.

Support is provided for the following languages:

Shell
This is a very simple-minded scripting language, which
doesn’t provide flow-control instructions (see Section 3.1.1
[The Shell language], page 8).

Python
Python (http://www.python.org) is an advanced scripting
language that comes with an extensive library. It is fully
object-oriented (see Section 3.1.2 [The Python language],
page 10).

3.1.1 The Shell language
The shell language was initially developed in the context of the GPS
programming environment, as a way to embed scripting commands in
XML configuration files.

In this language, you can execute any of the commands exported by
the application, passing any number of arguments they need. Argu-
ments to function calls can, but need not, be quoted. Quoting is only
mandatory when they contain spaces, newline characters, or double-
quotes (’"’). To quote an argument, surround it by double-quotes, and
precede each double-quote it contains by a backslash character. Another
way of quoting is similar to what python provides, which is to triple-quote
the argument, i.e. surround it by ’"""’ on each side. In such a case, any
special character (in particular other double-quotes or backslashes) lose
their special meaning and are just taken as part of the argument. This

8

http://www.python.org

Chapter 3: Embedding script languages

is in particular useful when you do not know in advance the contents of
the argument you are quoting.� �

Shell> function_name arg1 "arg 2" """arg 3"""
 	
Commands are executed as if on a stack machine: the result of a

command is pushed on the stack, and later commands can reference
it using % following by a number. By default, the number of previous
results that are kept is set to 9, and this can only be changed by modifying
the source code for GNATColl. The return values are also modified by
commands executed internally by your application, and that might have
no visible output from the user’s point of view. As a result, you should
never assume you know what %1,. . . contain unless you just executed a
command in the same script.� �

Shell> function_name arg1 Shell> function2_name %1
 	
In particular, the %1 syntax is used when emulating object-oriented

programming in the shell. A method of a class is just a particular
function that contains a ’.’ in its name, and whose first implicit argument
is the instance on which it applies. This instance is generally the result
of calling a constructor in an earlier call. Assuming, for instance, that
we have exported a class "Base" to the shell from our Ada core, we could
use the following code:� �

Shell> Base arg1 arg2 Shell> Base.method %1 arg1 arg2
 	
to create an instance and call one of its methods. Of course, the shell

is not the best language for object-oriented programming, and better
languages should be used instead.

When an instance has associated properties (which you can export
from Ada using Set_Property), you access the properties by prefixing
its name with ":̈� �

Shell> Base arg1 arg2 # Build new instance Shell> @id %1 # Access its "id" field Shell> @id %1 5 # Set its "id" field
 	
Some commands are automatically added to the shell when this

scripting language is added to the application. These are

[Function]load file
Loads the content of file from the disk, and execute each of its
lines as a Shell command. This can for instance be used to load
scripts when your application is loaded

9

GNATColl: GNAT Reusable Components

[Function]echo arg...
This function takes any number of argument, and prints them in
the console associated with the language. By default, when in
an interactive console, the output of commands is automatically
printed to the console. But when you execute a script through
load above, you need to explicitly call echo to make some output
visible.

[Function]clear_cache
This frees the memory used to store the output of previous com-
mands. Calling %1 afterward will not make sense until further
commands are executed.

3.1.2 The Python language
Python is an interpreted, object-oriented language. See
http://www.python.org for more information, including tutorials, on
this language.

Python support is optional in GNATColl. If it hasn’t been
installed on your system, GNATColl will be compiled without it,
but that will not impact applications using GNATColl, since the
same packages (and the same API therein) are provided in both
cases. Of course, if python support wasn’t compiled in, these
packages will do nothing.

In addition to the API common to all languages (see Section 3.2 [Scripts
API], page 13), GNATColl also comes with a low-level interface to the
python library. This interface is available in the ‘GNATCOLL.Python’
package. In general, it is much simpler to use the common API rather
than this specialized one, though, since otherwise you will need to take
care of lots of details like memory management, conversion to and from
python types,. . .

All functions exported to python are available in a specific
namespace

All functions exported to python through GNATColl are available in
a single python module, whose name you must specify when adding
support for python. This is done to avoid namespace pollution. You
can further organize the subprograms through python classes to provide
more logical namespaces.

As in Ada, python lets you use named parameters in subprogram
calls, and thus let’s you change the order of arguments on the command
line. This is fully supported by GNATColl, although your callbacks will
need to specify the name of the parameters for this to work fine.

10

http://www.python.org

Chapter 3: Embedding script languages

� �
>>> func_name (arg1, arg2) >>> func_name (arg2=arg2, arg1=arg1)‘
 	
Some commands and types are always exported by GNATColl, since

they are needed by most application, or even internally by GNATColl
itself.

[Exception]Unexpected_Exception
[Exception]Exception
[Exception]Missing_Arguments
[Exception]Invalid_Argument

A number of exceptions are added automatically, so that the in-
ternal state of your application is reflected in python. These are
raised on unexpected uncaught Ada exceptions, when your call-
backs return explicit errors, or when a function call is missing
some arguments.

[Function]exec_in_console command
This function can be used in your script when you need to modify
the contents of the python interpreter itself.
When you run a python script, all its commands (including the
global variables) are within the context of the script. Therefore,
you cannot affect variables which are used for instance in the rest
of your application or in the python console. With this function,
command will be executed as if it had been typed in the python
console.

exec_in_console ("sys.ps1 = ’foo’")
⇒ foo> # Prompt was changed in the console

PyGtk is a python extension that provides an interface to the popular
gtk+ library. It gives access to a host of functions for writing graphical
interfaces from python. GNATColl interfaces nicely with this extension
if it is found.

PyGtk support is also optional. It will be activated in your
application if the four following conditions are met: Python
was detected on your system, PyGtk was also detected when
GNATColl is built, PyGtk is detected dynamically when your
application is launched and your code is calling the Init_PyGtk_
Support function

When PyGtk is detected, you can add the following method to any of
the classes you export to python:

[Method on AnyClass]pywidget
This function returns an instance of a PyGtk class corresponding to
the graphical object represented by AnyClass. In general, it makes

11

GNATColl: GNAT Reusable Components

sense when AnyClass is bound, in your Ada code, to a GtkAda
object. As a result, the same graphical element visible to the
user on the screen is available from three different programming
languages: C, Ada and Python. All three can manipulate it in the
same way

3.1.3 Classes exported to all languages
In addition to the functions exported by each specific scripting language,
as described above, GNATColl exports the following to all the scripting
languages. These are exported when your Ada code calls the Ada pro-
cedure GNATCOLL.Scripts.Register_Standard_Classes, which should
done after you have loaded all the scripting languages.

[Class]Console
Console is a name that you can chose yourself when you call the
above Ada procedure. It will be assumed to be Console in the rest
of this document.
This class provides an interface to consoles. A console is an in-
put/output area in your application (whether it is a text area in a
graphical application, or simply standard text I/O in text mode).
In particular, the python standard output streams sys.stdin,
sys.stdout and sys.stderr are redirected to an instance of that
class. If you want to see python’s error messages or usual out-
put in your application, you must register that class, and de-
fine a default console for your scripting language through calls
to GNATCOLL.Scripts.Set_Default_Console.
You can later add new methods to this class, which would be specific
to your application. Or you can derive this class into a new class
to achieve a similar goal.

[Method on Console]write text
This method writes text to the console associated with the class
instance. See the examples delivered with GNATColl for examples
on how to create a graphical window and make it into a Console.

[Method on Console]clear
Clears the contents of the console.

[Method on Console]flush
Does nothing currently, but is needed for compatibility with
python. Output through Console instances is not buffered any-
way.

[Method on Console]Boolean isatty
Whether the console is a pseudo-terminal. This is always wrong
in the case of GNATColl.

12

Chapter 3: Embedding script languages

[Method on Console]string read [size]
Reads at most size bytes from the console, and returns the result-
ing string.

[Method on Console]string readline [size]
Reads at most size lines from the console, and returns them as a
single string.

3.2 Scripts API
This section will give an overview of the API used in the scripts module.
The reference documentation for this API is in the source files them-
selves. In particular, each ‘.ads’ file fully documents all its public API.

As described above, GNATColl contains several levels of API. In
particular, it provides a low-level interface to python, in the packages
GNATCOLL.Python. This interface is used by the rest of GNATColl, but
is likely too low-level to really be convenient in your applications, since
you need to take care of memory management and type conversions by
yourself.

Instead, GNATColl provides a language-neutral Ada API. Using this
API, it is transparent for your application whether you are talking to
the Shell, to python, or to another language integrated in GNATColl.
The code remains exactly the same, and new scripting languages can be
added in later releases of GNATColl without requiring a change in your
application. This flexibility is central to the design of GNATColl.

In exchange for that flexibility, however, there are language-specific
features that cannot be performed through the GNATColl API. At
present, this includes for instance exporting functions that return hash
tables. But GNATColl doesn’t try to export the greatest set of features
common to all languages. On the contrary, it tries to fully support all
the languages, and provide reasonable fallback for languages that do not
support that feature. For instance, named parameters (which are a part
of the python language) are fully supported, although the shell language
doesn’t support them. But that’s an implementation detail transparent
to your own application.

Likewise, your application might decide to always load the python
scripting language. If GNATColl wasn’t compiled with python support,
the corresponding Ada function still exists (and thus your code still com-
piles), although of course it does nothing. But since the rest of the code
is independent of python, this is totally transparent for your application.

GNATColl comes with some examples, which you can use
as a reference when building your own application. See the
‘scripts/examples’ directory.

13

GNATColl: GNAT Reusable Components

Interfacing your application with the scripting module is a multistep
process:
• You must initialize GNATColl and decide which features to load
• You can create an interactive console for the various languages, so

that users can perform experiments interactively. This is optional,
and you could decide to keep the scripting language has a hidden
implementation detail (or just for automatic testing purposes for
instance)

• You can export some classes and methods. This is optional, but it
doesn’t really make sense to just embed a scripting language and
export nothing to it. In such a case, you might as well spawn a
separate executable.

• You can load start up scripts or plug-ins that users have written
to extend your application.

3.2.1 Initializing the scripting module
GNATColl must be initialized properly in order to provide added value
to your application. This cannot be done automatically simply by de-
pending on the library, since this initialization requires multiple-step
that must be done at specific moments in the initialization of your whole
application.

This initialization does not depend on whether you have build sup-
port for python or for gtk+ in GNATColl. The same packages and sub-
programs are available in all cases, and therefore you do not need con-
ditional compilation in your application to support the various cases.

3.2.1.1 Create the scripts repository
The type GNATCOLL.Scripts.Scripts_Repository will contain various
variables common to all the scripting languages, as well as a list of the
languages that were activated. This is the starting point for all other
types, since from there you have access to everything. You will have only
one variable of this type in your application, but it should generally be
available from all the code that interfaces with the scripting language.

Like the rest of GNATColl, this is a tagged type, which you can extend
in your own code. For instance, the GPS programming environment is
organized as a kernel and several optional modules. The kernel pro-
vides the core functionality of GPS, and should be available from most
functions that interface with the scripting languages. Since these func-
tions have very specific profiles, we cannot pass additional arguments to
them. One way to work around this limitation is to store the additional
arguments (in this case a pointer to the kernel) in a class derived from
Scripts_Repository_Data.

14

Chapter 3: Embedding script languages

As a result, the code would look like� �
with GNATCOLL.Scripts;
Repo : Scripts_Repository := new Scripts_Repository_Record;
 	

or, in the more complex case of GPS described above:� �
type Kernel_Scripts_Repository is new
Scripts_Repository_Data with record
Kernel : ...;
end record;
Repo : Scripts_Repository := new Kernel_Scripts_Repository’
(Scripts_Repository_Data with Kernel => ...);
 	

3.2.1.2 Loading the scripting language
The next step is to decide which scripting languages should be made
available to users. This must be done before any function is exported,
since only functions exported after a language has been loaded will be
made available in that language.

If for instance python support was build into GNATColl,
and if you decide not to make it available to users, your ap-
plication will still be linked with ‘libpython’. It is therefore
recommended although not mandatory to only build those lan-
guages that you will use

This is done through a simple call to one or more subprograms. The
following example registers both the shell and python languages� �

with GNATCOLL.Scripts.Python;
with GNATCOLL.Scripts.Shell;
Register_Shell_Scripting (Repo);
Register_Python_Scripting (Repo, "MyModule");
 	

[Procedure]Register_Shell_Scripting Repo
This adds support for the shell language. Any class or function
that is now exported through GNATColl will be made available in
the shell

15

GNATColl: GNAT Reusable Components

[Procedure]Register_Python_Scripting Repo Module_Name
This adds support for the python language. Any class or function
exported from now on will be made available in python, in the
module specified by Module_Name

3.2.1.3 Exporting standard classes
To be fully functional, GNATColl requires some predefined classes to
be exported to all languages (see Section 3.1.3 [Classes exported to all
languages], page 12). For instance, the Console class is needed for
proper interactive with the consoles associated with each language.

These classes are created with the following code:� �
Register_Standard_Classes (Repo, "Console");
 	
This must be done only after all the scripting languages were loaded

in the previous step, since otherwise the new classes would not be visible
in the other languages.

[Procedure]Register_Standard_Classes Repo Console_Class
The second parameter Console_Class is the name of the class that
is bound to a console, and thus provides input/output support. You
can chose this name so that it matches the classes you intend to
export later on from your application.

3.2.2 Creating interactive consoles
The goal of the scripting module in GNATColl is to work both in text-
only applications and graphical applications that use the gtk+ toolkit.
However, in both cases applications will need a way to capture the output
of scripting languages and display them to the user (at least for errors,
to help debugging scripts), and possibly emulate input when a script is
waiting for such input.

GNATColl solved this problem by using an abstract class
GNATCOLL.Scripts.Virtual_Console_Record that defines an API
for these consoles. This API is used throughout GNATCOLL.Scripts
whenever input or output has to be performed.

The ‘examples/’ directory in the GNATColl package shows
how to implement a console in text mode and in graphical mode.

If you want to provide feedback or interact with users, you will
need to provide an actual implementation for these Virtual_Console,
specific to your application. This could be a graphical text win-
dow, or based on Ada.Text_IO. The full API is fully documented in

16

Chapter 3: Embedding script languages

‘gnatcoll-scripts.ads’, but here is a list of the main subprograms
that need to be overriden.

[Method on Virtual_Console]Insert_Text Txt
[Method on Virtual_Console]Insert_Log Txt
[Method on Virtual_Console]Insert_Error Txt

These are the various methods for doing output. Error messages
could for instance be printed in a different color. Log messages
should in general be directed elsewhere, and not be made visible
to users unless in special debugging modes.

[Method on Virtual_Console]Insert_Prompt Txt
This method must display a prompt so that the user knows input
is expected. Graphical consoles will in general need to remember
where the prompt ended so that they also know where the user
input starts

[Method on Virtual_Console]Set_As_Default_Console Script
This method is called when the console becomes the default console
for a scripting language. They should in general keep a pointer on
that language, so that when the user presses 〈enter〉 they know which
language must execute the command

[Method on Virtual_Console]String Read Size Whole_Line
Read either several characters or whole lines from the console.
This is called when the user scripts read from their stdin.

[Method on Virtual_Console]Set_Data_Primitive Instance
[Method on Virtual_Console]Get_Instance Console

These two methods are responsible for storing an instance of
Console into a GNATCOLL.Scripts.Class_Instance. Such an in-
stance is what the user manipulates from his scripting language.
But when he executes a method, the Ada callback must know how
to get the associated Virtual_Console back to perform actual op-
erations on it.
These methods are implemented using one of the
GNATCOLL.Scripts.Set_Data and GNATCOLL.Scripts.Get_
Data operations when in text mode, or pos-
sibly GNATCOLL.Scripts.Gtkada.Set_Data and
GNATCOLL.Scripts.Gtkada.Get_Data when manipulating
graphical GtkAda objects.

There are lots of small details to take into account when writing a
graphical console. The example in ‘examples/gtkconsole.ads’ should
provide a good starting point. However, it doesn’t handle things like
history of commands, preventing the user from moving the cursor to

17

GNATColl: GNAT Reusable Components

previous lines,. . . which are all small details that need to be right for
the user to feel comfortable with the console.

Once you have created one or more of these console, you can set them
as the default console for each of the scripting languages. This way,
any input/output done by scripts in this language will interact with that
console, instead of being discarded. This is done through code similar to:� �
Console := GtkConsole.Create (...);
Set_Default_Console
(Lookup_Scripting_Language (Repo, "python"),
Virtual_Console (Console));
 	
Creating a new instance of "Console", although allowed, will by de-

fault create an unusable console. Indeed, depending on your application,
you might want to create a new window, reuse an existing one, or do many
other things when the user does� �
c = Console()
 	
As a result, GNATColl does not try to guess the correct behavior, and

thus does not export a constructor for the console. So in the above python
code, the default python constructor is used. But this constructor does
not associate c with any actual Virtual_Console, and thus any call to
a method of c will result in an error.

To make it possible for users to create their own consoles, you need
to export a Constructor_Method (see below) for the Console class. In
addition to your own processing, this constructor needs also to call� �

declare
Inst : constant Class_Instance := Nth_Arg (Data, 1);
begin
C := new My_Console_Record; -- or your own type
GNATCOLL.Scripts.Set_Data (Inst, C); end

 	
3.2.3 Exporting classes and methods
Once all scripting languages have been loaded, you can start exporting
new classes and functions to all the scripting languages. It is important
to realize that through a single Ada call, they are exported to all loaded
scripting languages, without further work required on your part.

18

Chapter 3: Embedding script languages

3.2.3.1 Classes diagram

The following diagram shows the dependencies between the major
data types defined in ‘GNATCOLL.Scripts’. Most of these are abstract
classes that are implemented by the various scripting languages. Here
is a brief description of the role of each type:

[Class]Scripts_Repository
As we have seen before, this is a type of which there is a sin-
gle instance in your whole application, and whose main role is to
give access to each of the scripting languages (Lookup_Scripting_
Language function), and to make it possible to register each ex-
ported function only once (it then takes care of exporting it to each
scripting language).

[Class]Scripting_Language
Instances of this type represent a specific language. It provides
various operations to export subprograms, execute commands, cre-
ate the other types described below,... There should exists a single
instance of this class per supported language.
This class interacts with the script interpreter (for instance
python), and all code executed in python goes through this type,
which then executes your Ada callbacks to perform the actual op-
eration.
It is also associated with a default console, as described above, so
that all input and output of the scripts can be made visible to the
user.

19

GNATColl: GNAT Reusable Components

[Class]Callback_Data
This type is an opaque tagged type that provides a language-
independent interface to the scripting language. It gives for
instance access to the various parameters passed to your sub-
program (Nth_Arg functions), allows you to set the return value
(Set_Return_Value procedure), or raise exceptions (Set_Error_
Msg procedure),. . .

[Record]Class_Type
This type is not tagged, and cannot be extended. It basically rep-
resents a class in any of the scripting languages, and is used to
create new instances of that class from Ada.

[Class]Class_Instance
A class instance represents a specific instance of a class. In general,
such an instance is strongly bound to an instance of an Ada type.
For instance, if you have a Foo type in your application that you
wish to export, you would create a Class_Type called "Foo", and
then the user can create as many instances as he wants of that
class, each of which is associated with different values of Foo in
Ada.

Another more specific example is the predefined Console class.
As we have seen before, this is a Virtual_Console in Ada. You
could for instance have two graphical windows in your application,
each of which is a Virtual_Console. In the scripting language,
this is exported as a class named Console. The user can create
two instances of those, each of which is associated with one of
your graphical windows. This way, executing Console.write on
these instances would print the string on their respective graphical
window.

Some scripting languages, in particular python, allow you to store
any data within the class instances. In the example above, the
user could for instance store the time stamp of the last output in
each of the instances. It is therefore important that, as much as
possible, you always return the same Class_Instance for a given
Ada object. See the following python example:� �
myconsole = Console ("title") # Create new console
myconsole.mydata = "20060619" # Any data, really
myconsole = Console ("title2") # Create another window
myconsole = Console ("title") # Must be same as first,
print myconsole.mydata # so that this prints "20060619"
 	

20

Chapter 3: Embedding script languages

[Class]Instance_Property
As we have seen above, a Class_Instance is associated in general
with an Ada object. This Instance_Property tagged type should
be extended for each Ada type you want to be able to store in
a Class_Instance. You can then use the Set_Data and Get_Data
methods of the Class_Instance to get and retrieve that associated
Ada object.

[Class]Subprogram_Record
This class represents a callback in the scripting language, that is
some code that can be executed when some conditions are met.
The exact semantic here depends on each of the programming
languages. For instance, if you are programming in python, this is
the name of a python method to execute. If you are programming
in shell, this is any shell code.
The idea here is to blend in as smoothly as possible with the usual
constructs of each language. For instance, in python one would
prefer to write the second line rather than the third:� �
def on_exit(): pass
set_on_exit_callback (on_exit) # Yes, python style
set_on_exit_callback ("on_exit") # No
 	

The last line (using a string as a parameter) would be extremely
unusual in python, and would for instance force you to qualify the
subprogram name with the name of its namespace (there would be
no implicit namespace resolution).
To support this special type of parameters, the Subprogram_Record
type was created in Ada.

Although the exact way they are all these types are created is largely
irrelevant to your specific application in general, it might be useful for
you to override part of the types to provide more advanced features.
For instance, GPS redefines its own Shell language, that has basically
the same behavior as the Shell language described above but whose
Subprogram_Record in fact execute internal GPS actions rather than
any shell code.

3.2.3.2 Exporting functions
All functions that you export to the scripting languages will result in a
call to an Ada subprogram from your own application. This subprogram
must have the following profile:

21

GNATColl: GNAT Reusable Components

� �
procedure Handler
(Data : in out Callback_Data’Class;
Command : String);
 	
The first parameter Data gives you access to the parameters of the

subprogram as passed from the scripting language, and the second pa-
rameter Command is the name of the command to execute. The idea
behind this second parameter is that a single Ada procedure might han-
dle several different script function (for instance because they require
common actions to be performed).

[Function]Register_Command Repo Command Min_Args Max_Args
Handler

Each of the shell functions is then exported through a call to
Register_Command. In its simplest form, this procedure takes the
following arguments. Repo is the scripts repository, so that the
command is exported to all the scripting languages. Command is
the name of the command. Min_Args and Max_Args are the mini-
mum and maximum number of arguments. Most language allow
option parameters, and this is how you specify them. Handler is
the Ada procedure to call to execute the command.

Here is a simple example. It implements a function called Add, which
takes two integers in parameter, and returns their sum.� �
Arg1_C : aliased constant String := "arg1";
Arg2_C : aliased constant String := "arg2";
procedure Sum
(Data : in out Callback_Data’Class;
Command : String)
is
Arg1, Arg2 : Integer;
begin
Name_Parameters ((1 => Arg1_C’Access, 2 => Arg2_C’Access));
Arg1 := Nth_Arg (Data, 1);
Arg2 := Nth_Arg (Data, 2);
Set_Return_Value (Data, Arg1 + Arg2);
end Sum;

Register_Command (Repo, "sum", 2, 2, Sum’Access);
 	
Not the most useful function to export! Still, it illustrates a number

of important concepts.

22

Chapter 3: Embedding script languages

Automatic parameters types
When the command is registered, the number of arguments is specified.
This means that GNATColl will check on its own whether the right
number of arguments is provided. But the type of these arguments
is not specified. Instead, your callback should proceed as if they were
correct, and try to retrieve them through one of the numerous Nth_Arg
functions. In the example above, we assume they are integer. But if one
of them was passed as a string, an exception would be raised and sent
back to the scripting language to display a proper error message to the
user. You have nothing special to do here.

Support for named parameters
Some languages (especially python) support named parameters, ie pa-
rameters can be specified in any order on the command line, as long as
they are properly identified (very similar to Ada’s own capabilities). In
the example above, the call to Name_Parameters is really optional, but
adds this support for your own functions as well. You just have to specify
the name of the parameters, and GNATColl will then ensure that when
you call Nth_Arg the parameter number 1 is really "arg1". For scripting
languages that do not support named parameters, this has no effect.

Your code can then perform as complex a code as needed, and finally
return a value (or not) to the scripting language, through a call to Set_
Return_Value.

After the above code has been executed, your users can go to the
python console and type for instance

from MyModule import * # MyModule is the name we declared above
print sum (1,2)
⇒ 3
print sum ()
error Wrong number of parameters
print sum ("1", 2)
error Parameter 1 should be an integer
print sum (arg2=2, arg1=1)
⇒ 3

3.2.3.3 Exporting classes
Whenever you want to make an Ada type accessible through the scripting
languages, you should export it as a class. For object-oriented languages,
this would map to the appropriate concept. For other languages, this
provides a namespace, so that each method of the class now takes an
additional first parameter which is the instance of the class, and the
name of the method is prefixed by the class name.

23

GNATColl: GNAT Reusable Components

Creating a new class is done through a call to New_Class, as shown
in the example below.� �
MyClass : Class_Type;
MyClass := GNATCOLL.Scripts.New_Class (Repo, "MyClass");
 	
At this stage, nothing is visible in the scripting language, but all

the required setup has been done internally so that you can now add
methods to this class.

You can then register the class methods in the same way that you reg-
istered functions. An additional parameter Class exists for Register_
Command. A method is really just a standard function that has an implicit
first parameter which is a Class_Instance. This extra parameter should
not be taken into account in Min_Args and Max_Args. You can also de-
clare the method as a static method, ie one that doesn’t take this extra
implicit parameter, and basically just uses the class as a namespace.

Some special method names are available. In particular,
Constructor_Method should be used for the constructor of a class. It is
a method that receives, as its first argument, a class instance that has
just been created. It should associate that instance with the Ada object
it represents.

Here is a simple example that exports a class. Each instance of this
class is associated with a string, passed in parameter to the constructor.
The class has a single method print, which prints its string parameter
prefixed by the instance’s string. To start with, here is a python example
on what we want to achieve:

c1 = MyClass ("prefix1")
c1.print ("foo")
⇒ "prefix1 foo"
c2 = MyClass () # Using a default prefix
c2.print ("foo")
⇒ "default foo"

Here is the corresponding Ada code.

24

Chapter 3: Embedding script languages

� �
with GNATCOLL.Scripts.Impl;
procedure Handler
(Data : in out Callback_Data’Class; Command : String)
is
Inst : Class_Instance := Nth_Arg (Data, 1, MyClass);
begin
if Command = Constructor_Method then
Set_Data (Inst, MyClass, Nth_Arg (Data, 2, "default"));
elsif Command = "print" then
Insert_Text
(Get_Script (Data), null,
String’(Get_Data (Inst)) & " " & Nth_Arg (Data, 2));
end if;
end Handler;

Register_Command
(Repo, Constructor_Method, 0, 1, Handler’Access, MyClass);
Register_Command
(Repo, "print", 1, 1, Handler’Access, MyClass);

 	
This example also demonstrates a few concepts: the constructor is

declared as a method that takes one optional argument. The default
value is in fact passed in the call to Nth_Arg and is set to "default". In the
handler, we know there is always a first argument which is the instance
on which the method applies. The implementation for the constructor
stores the prefix in the instance itself, so that several instances can have
different prefixes (we can’t use global variables, of course, since we don’t
know in advance how many instances will exist). The implementation
for print inserts code in the default console for the script (we could of
course use Put_Line or any other way to output data), and computes the
string to output by concatenating the instance’s prefix and the parameter
to print.

Note that Set_Data and Get_Data take the class in parameter, in
addition to the class instance. This is needed for proper handling of
multiple inheritance: say we have a class C that extends two classes A
and B. The Ada code that deals with A associates an integer with the
class instance, whereas the code that deals with B associates a string.
Now, if you have an instance of C but call a method inherited from A,
and if Get_Data didn’t specify the class, there would be a risk that a
string would be returned instead of the expected integer. In fact, the
proper solution here is that both A and B store their preferred data at the

25

GNATColl: GNAT Reusable Components

same time in the instances, but only fetch the one they actually need.
Therefore instances of C are associated with two datas.

Here is a more advanced example that shows how to export an Ada
object. Let’s assume we have the following Ada type that we want to
make available to scripts:� �

type MyType is record
Field : Integer;
end record;
 	
As you can see, this is not a tagged type, but could certainly be. There

is of course no procedure Set_Data in ‘GNATCOLL.Scripts’ that enables
us to store MyType in a Class_Instance. This example shows how to
write such a procedure. The rest of the code would be similar to the first
example, with a constructor that calls Set_Data, and methods that call
Get_Data.� �

type MyPropsR is new Instance_Property_Record with record
Val : MyType;
end record;
type MyProps is access all MyPropsR’Class;

procedure Set_Data
(Inst : Class_Instance; Val : MyType)
is
begin
Set_Data (Inst, Get_Name (MyClass), MyPropsR’(Val => Val));
end Set_Data;

function Get_Data (Inst : Class_Instance) return MyType is
Data : MyProps := MyProps (Instance_Property’
(Get_Data (Inst, Get_Name (MyClass))));
begin
return Data.Val;
end Get_Data;
 	
Several aspects worth noting in this example. Each data is associated

with a name, not a class as in the previous example. That’s in fact the
same thing, and mostly for historical reasons. We have to create our
own instance of Instance_Property_Record to store the data, but the
implementation presents no special difficulty. In fact, we don’t absolutely
need to create Set_Data and Get_Data and could do everything inline

26

Chapter 3: Embedding script languages

in the method implementation, but it is cleaner this way and easier to
reuse.

GNATColl is fully responsible for managing the lifetime of the data
associated with the class instances and you can override the procedure
Destroy if you need special memory management.

3.2.3.4 Reusing class instances
We mentioned above that it is more convenient for users of your exported
classes if you always return the same class instance for the same Ada
object (for instance a graphical window should always be associated with
the same class instance), so that users can associate their own internal
data with them.

GNATColl provides a few types to facilitate this. In passing, it is
worth noting that in fact the Ada objects will be associated with a single
instance per scripting language, but each language has its own instance.
Data is not magically transferred from python to shell!

There are two cases to distinguish here:
• The Ada object derives from a GtkAda object

In such a case, the package ‘GNATCOLL.Scripts.GtkAda’ provides
three procedures that automatically associate the instance with the
object, and can return the class instance associated with any given
GtkAda object, or can return the GtkAda object stored in the in-
stance. There is nothing else to do that to call Set_Data as we
have seen above. See below for a brief discussion on the Factory
design pattern. The internal handling is complex, since python for
instance has ref-counted types, and so does gtk+. For the memory to
be correctly freed when no longer needed, GNATColl must properly
takes care of these reference counting. The result is that the class
instance will never be destroyed while the gtk+ object exists, but the
gtk+ object might be destroyed while the class instance still exists
(in which case no further operation on that instance is possible).

• The Ada object does not derive from a GtkAda object
In such a case, you should store the list of associated instances with
your object. The type GNATCOLL.Scripts.Instance_List_Access
is meant for that purpose, and provides two Set and Get primitives
to retrieve existing instances.
There is one catch however, related to memory management. The
instances must continue to exist as long as the Ada object exist (and
not be destroyed for instance when the python variables goes out
of scope). GNATColl mostly takes care of that for you, but requires
a little bit of help still: when you implement a new Instance_
Property_Record as in the example above, you must also override

27

GNATColl: GNAT Reusable Components

its primitive Get_Instances to return the Instance_List_Access.
That’s it.

The final aspect to consider here is how to return existing instances.
This cannot be done from the constructor method, since when it is called
it has already received the created instance (this is forced by python,
and was done the same for other languages for compatibility reasons).
There are two ways to work around that limitation:

• Static get methods

With each of your classes, you can export a static method generally
called get that takes in parameter a way to identify an existing
instance, and either return it or create a new one. It is also recom-
mended to disable the constructor, ie force it to raise an error. Let’s
examine the python code as it would be used:

ed = Editor ("file.adb") # constructor
⇒ Error, cannot construct instances
ed = Editor.get ("file.adb")
⇒ Create a new instance
ed2 = Editor.get ("file.adb")
⇒ Return existing instance
ed == ed2
⇒ True

The corresponding Ada code would be something like:

28

Chapter 3: Embedding script languages

� �
type MyType is record

Val : Integer;
Inst : Instance_List_Access;
end record;
type MyTypeAccess is access all MyType;
procedure Handler
(Data : in out Callback_Data’Class; Cmd : String)
is
Inst : Class_Instance;
Tmp : MyTypeAccess;
begin
if Cmd = Constructor_Method then
Set_Error_Msg (Data, "cannot construct instances");
elsif Cmd = "get" then
Tmp := check_if_exists (Nth_Arg (Data, 1));
if Tmp = null then
Tmp := create_new_mytype (Nth_Arg (Data, 1));
Tmp.Inst := new Instance_List;
end if;
Inst := Get (Tmp.Inst.all, Get_Script (Data));
if Inst = null then
Inst := New_Instance (Get_Script (Data), MyClass);
Set (Tmp.Inst.all, Get_Script (Data), Inst);
Set_Data (Inst, Tmp);
end if; return Inst;
end if;
end Handler;
 	

• Factory classes
The standard way to do this in python, which applies to other lan-
guages as well, is to use the Factory design pattern. For this, we
need to create one class (MyClassImpl) and one factory function
(MyClass).
The python code now looks like

ed = MyClass ("file.adb") # Create new instance
⇒ ed is of type MyClassImpl
ed = MyClass ("file.adb") # return same instance
ed.do_something()

It is important to realize that in the call above, we are not calling the
constructor of a class, but a function. At the Ada level, the function
has basically the same implementation as the one we gave for get

29

GNATColl: GNAT Reusable Components

above. But the python code looks nicer because we do not have these
additional .get() calls. The name of the class MyClassImpl doesn’t
appear anywhere in the python code, so this is mostly transparent.
However, if you have more than one scripting language, in particular
for the shell, the code looks less nice in this case:

MyClass "file.adb"
⇒ <MyClassImpl_Instance_0x12345>
MyClassImpl.do_something %1

and the new name of the class is visible in the method call.

3.2.4 Executing startup scripts
The final step in starting up your application is to load extensions or
plug-ins written in one of the scripting languages.

There is not much to be said here, except that you should use the
GNATCOLL.Scripts.Execute_File procedure to do so.

3.2.5 Debugging scripts

GNATColl provides a convenient hook to debug your script. By de-
fault, a script (python for instance) will call your Ada callback, which
might raise errors. Most of the time, the error should indeed be re-
ported to the user, and you can thus raise a standard exception, or call
Set_Error_Msg.

BUt if you wish to know which script was executing the command, it
is generally not doable. You can however activate a trace (see Chapter 4
[Logging information], page 31) called "PYTHON.TB" (for "traceback"),
which will output the name of the command that is being executed, as
well as the full traceback within the python scripts. This will help you
locate which script is raising an exception.

30

Chapter 4: Logging information

4 Logging information

Most applications need to log various kinds of information: error mes-
sages, information messages or debug messages among others. These
logs can be displayed and stored in a number of places: standard output,
a file, the system logger, an application-specific database table,. . .

The package ‘GNATCOLL.Traces’ addresses the various needs, except
for the application-specific database, which of course is specific to your
business and needs various custom fields in any case, which cannot be
easily provided through a general interface.

This module is organized around two tagged types (used through
access types, in fact, so the latter are mentioned below as a shortcut):

Trace_Handle
This type defines a handle (similar to a file descriptor in other
contexts) which is latter used to output messages. An appli-
cation will generally define several handles, which can be en-
abled or disabled separately, therefore limiting the amount
of logging.

Trace_Stream
Streams are the ultimate types responsible for the output
of the messages. One or more handles are associated with
each stream. The latter can be a file, the standard output,
a graphical window, a socket,. . . New types of streams can
easily be defined in your application.

4.1 Configuring traces

As mentioned above, an application will generally create several
Trace_Handle (typically one per module in the application). When new
features are added to the application, the developers will generally need
to add lots of traces to help investigate problems once the application
is installed at a customer’s site. The problem here is that each module
might output a lot of information, thus confusing the logs; this also does
not help debugging.

The GNATCOLL.Traces package allows the user to configure which
handles should actually generate logs, and which should just be silent
and not generate anything. Depending on the part of the application
that needs to be investigated, one can therefore enable a set of handles
or another, to be able to concentrate on that part of the application.

This configuration is done at two levels:

31

GNATColl: GNAT Reusable Components

• either in the source code itself, where some trace_handle might
be disabled or enabled by default. This will be described in more
details in later sections.

• or in a configuration file which is read at runtime, and overrides the
defaults set in the source code.

The configuration file is found in one of three places, in the following
order:
• The file name is specified in the source code in the call to Parse_

Config_File.
• If no file name was specified in that call, the environment variable

ADA_DEBUG_FILE might point to a configuration file.
• If the above two attempts did not find a suitable configuration file,

the current directory is searched for a file called .gnatdebug. Fi-
nally, the user’s home directory will also be searched for that file.

In all cases, the format of the configuration file is the same. Its goal
is to associate the name of a trace_handle with the name of a trace_
stream on which it should be displayed.

Streams are identified by a name. You can provide additional streams
by creating a new tagged object (see Section 4.4 [Defining custom trace
streams], page 38). Here are the various possibilities to reference a
stream:

"name" where name is a string made of letters, digits and slash (’/’)
characters. This is the name of a file to which the traces
should be redirected. The previous contents of the file is dis-
carded. If the name of the file is a relative path, it is relative
to the location of the configuration file, not necessarily to the
current directory when the file is parsed. If you used ">>"
instead of ">" to redirect to that stream, the initial content
of the file is not overridden, and new traces are appended to
the file instead.

"&1" This syntax is similar to the one used on Unix shells, and
indicates that the output should be displayed on the standard
output for the application. If the application is graphical, and
in particular on Windows platforms, it is possible that there
is no standard output!

"&2" Similar to the previous one, but the output is sent to standard
error.

"&syslog"
See Section 4.5 [Logging to syslog], page 39.

32

Chapter 4: Logging information

Comments in a configuration file must be on a line of their own, and
start with --. Empty lines are ignored. The rest of the lines represent
configurations, as in:
• If a line contains the single character "+", it activates all trace_

handle by default. This means the rest of the configuration file
should disable those handles that are not needed. The default is
that all handles are disabled by default, and the configuration file
should activate the ones it needs. The Ada source code can change
the default status of each handles, as well

• If the line starts with the character ">", followed by a stream name
(as defined above), this becomes the default stream. All handles
will be displayed on that stream, unless otherwise specified. If the
stream does not exist, it defaults to standard output.

• Otherwise, the first token on the line is the name of a handle. If that
is the only element on the line, the handle is activated, and will be
displayed on the default stream.
Otherwise, the next element on the line should be a "=" sign, fol-
lowed by either "yes" or "no", depending on whether the handle
should resp. be enabled or disabled.
Finally, the rest of the line can optionally contain the ">" character
followed by the name of the stream to which the handle should be
directed.

Here is a short example of a configuration file. It activates all handles
by default, and defines four handles: two of them are directed to the
default stream (standard error), the third one to a file on the disk, and
the last one to the system logger syslog (if your system supports it,
otherwise to the default stream, ie standard error).� �

+
>&2
MODULE1
MODULE2=yes
SYSLOG=yes >&syslog:local0:info
FILE=yes >/tmp/file

-- decorators (see below)
DEBUG.COLORS=yes
 	

4.2 Using the traces module
If you need or want to parse an external configuration file as de-

scribed in the first section, the code that initializes your application

33

GNATColl: GNAT Reusable Components

should contain a call to GNATCOLL.Traces.Parse_Config_File. As doc-
umented, this takes in parameter the name of the configuration file to
parse. When none is specified, the algorithm specified in the previous
section will be used to find an appropriate configuration.� �
GNATCOLL.Traces.Parse_Config_File;
 	
The code, as written, will end up looking for a file ‘.gnatdebug’ in the

current directory.

You then need to declare each of the trace_handle that your ap-
plication will use. The same handle can be declared several times, so
the recommended approach is to declare locally in each package body
the handles it will need, even if several bodies actually need the same
handle. That helps to know which traces to activate when debugging a
package, and limits the dependencies of packages on a shared package
somewhere that would contain the declaration of all shared handles.

[Function]Trace_Handle Create Name Default Stream Factory
Finalize

This function creates (or return an existing) a trace_handle with
the specified Name. Its default activation status can also be spec-
ified (through Default), although the default behavior is to get it
from the configuration file. If a handle is created several times,
only the first call that is executed can define the default activation
status, the following calls will have no effect.

Stream is the name of the stream to which it should be directed.
Here as well, it is generally better to leave things to the configura-
tion file, although in some cases you might want to force a specific
behavior.

Factory is used to create your own child types of trace_handle
(see Section 4.3 [Log decorators], page 35).

Here is an example with two package bodies that define their own
handles, which are later used for output.

34

Chapter 4: Logging information

� �
package body Pkg1 is
Me : constant Trace_Handle := Create ("PKG1");
Log : constant Trace_Handle := Create ("LOG", Stream => "@syslog");
end Pkg1;
package body Pkg2 is
Me : constant Trace_Handle := Create ("PKG2");
Log : constant Trace_Handle := Create ("LOG", Stream => "@syslog");
end Pkg2;

 	
Once the handles have been declared, output is a matter of calling

the GNATCOLL.Traces.Trace procedure, as in the following sample:� �
Trace (Me, "I am here");
 	

Check whether the handle is active
As we noted before, handles can be disabled. In that case, your applica-
tion should not spend time preparing the output string, since that would
be wasted time. In particular, using the standard Ada string concate-
nation operator requires allocating temporary memory. It is therefore
recommended, when the string to display is complex, to first test whether
the handle is active. This is done with the following code:� �

if Active (Me) then
Trace (Me, A & B & C & D & E);
end if;
 	
An additional subprogram can be used to test for assertions (pre-

conditions or post-conditions in your program), and output a message
whether the assertion is met or not.� �

Assert (Me, A = B, "A is not equal to B");
 	
If the output of the stream is done in color, a failed assertion is dis-

played with a red background to make it more obvious.

4.3 Log decorators
Speaking of color, a number of decorators are defined by

GNATCOLL.Traces. Their goal is not to be used for outputting

35

GNATColl: GNAT Reusable Components

information, but to configure what extra information should be
output with all log messages. They are activated through the same
configuration file as the traces, with the same syntax (i.e either "=yes"
or "=no").

Here is an exhaustive list:

DEBUG.ABSOLUTE_TIME
If this decorator is activated in the configuration file, the
absolute time when Trace is called is automatically added to
the output, when the streams supports it (in particular, this
has no effect for syslog, which already does this on its own).

DEBUG.ELAPSED_TIME
If this decorator is activated, then the elapsed time since the
last call to Trace for the same handle is also displayed.

DEBUG.STACK_TRACE
If this decorator is activated, then the stack trace is also dis-
played. It can be converted to a symbolic stack trace through
the use of the external application addr2line, but that would
be too costly to do this automatically for each message.

DEBUG.LOCATION
If this decorator is activated, the location of the call to Trace
is automatically displayed. This is a file:line:column informa-
tion. This works even when the executable wasn’t compiled
with debug information

DEBUG.ENCLOSING_ENTITY
Activate this decorator to automatically display the name of
the subprogram that contains the call to Trace.

DEBUG.COLORS
If this decorator is activated, the messages will use colors for
the various fields, if the stream supports it (syslog doesn’t).

DEBUG.COUNT
This decorator displays two additional numbers on each line:
the first is the number of times this handle was used so
far in the application, the second is the total number of
traces emitted so far. These numbers can for instance be
used to set conditional breakpoints on a specific trace (break
on gnat.traces.log or gnat.traces.trace and check the
value of Handle.Count. It can also be used to refer to a
specific line in some comment file.

DEBUG.FINALIZE_TRACES
This handle is activated by default, and indicates whether
GNATCOLL.Traces.Finalize should have any effect. This

36

Chapter 4: Logging information

can be set to False when debugging, to ensure that traces are
available during the finalization of your application.

Here is an example of output where several decorators were activated.
In this example, the output is folded on several lines, but in reality
everything is output on a single line.� �

[MODULE] 6/247 User Message (2007-07-03 13:12:53.46)
(elapsed: 2ms)(loc: gnatcoll-traces.adb:224)
(entity:GNATCOLL.Traces.Log)
(callstack: 40FD9902 082FCFDD 082FE8DF)
 	
Depending on your application, there are lots of other possible dec-

orators that could be useful (for instance the current thread, or the
name of the executable when you have several of them,. . .). Since
GNATCOLL.Traces cannot provide all possible decorators, it provides sup-
port, through tagged types, so that you can create your own decorators.

This needs you to override the Trace_Handle_Record tagged type.
Since this type is created through calls to GNATCOLL.Traces.Create.
This is done by providing an additional Factory parameter to Create;
this is a function that allocates and returns the new handle.

Then you can override either (or both) of the primitive operations
Pre_Decorator and Post_Decorator. The following example creates a
new type of handles, and prints a constant string just after the module
name:� �

type My_Handle is new Trace_Handle_Record with null record;
procedure Pre_Decorator
(Handle : in out My_Handle;
Stream : in out Trace_Stream_Record’Class;
Message : String) is
begin
Put (Stream, "TEST");
Pre_Decorator (Trace_Handle_Record (Handle), Stream, Message);
end;

function Factory return Trace_Handle is
begin
return new My_Handle;
end;

Me : Trace_Handle := Create ("MODULE", Factory => Factory’Access);

 	

37

GNATColl: GNAT Reusable Components

As we will see below (see Section 4.6 [Dynamically disabling features],
page 40), you can also make all or part of your decorators conditional
and configurable through the same configuration file as the trace handles
themselves.

4.4 Defining custom trace streams

We noted above that several predefined streams exist, to output to a
file, to standard output or to standard error. Depending on your specific
needs, you might want to output to other media. For instance, in a
graphical application, you could have a window that shows the traces
(perhaps in addition to filing them in a file, since otherwise the window
would disappear along with its contents if the application crashes); or
you could write to a socket (or even a CORBA ORB) to communicate with
another application which is charge of monitoring your application.

GNATCOLL.Traces provides the type Trace_Stream_Record, which
can be overridden to redirect the traces to your own streams.

Let’s assume for now that you have defined a new type of stream
(called "mystream"). To keep the example simple, we will assume this
stream also redirects to a file. For flexibility, however, you want to let the
user configure the file name from the traces configuration file. Here is an
example of a configuration file that sets the default stream to a file called
‘foo’, and redirects a specific handle to another file called ‘bar’. Note how
the same syntax that was used for standard output and standard error
is also reused (ie the stream name starts with the "&" symbol, to avoid
confusion with standard file names).� �

>&mystream:foo
MODULE=yes >&mystream:bar
 	
You need of course to do a bit of coding in Ada to create the stream.

This is done by creating a new child of Trace_Stream_Record, and over-
ride the two primitive operations Put and Newline (at least). In this
implementation, and because GNATCOLL.Traces.Trace takes care of not
outputting two messages at the same time, we can just output to the
file as characters are made available. In some other cases, however,
the implementation will need to buffer the characters until the end of
line is seen, and output the line with a single call. See for instance the
implementation of GNATCOLL.Traces.Syslog, which needs to do exactly
that.

38

Chapter 4: Logging information

� �
type My_Stream is new Trace_Stream_Record with record
File : access File_Type;
end record;
procedure Put
(Stream : in out My_Stream; Str : String) is
begin
Put (Stream.File.all, Str);
end Put;
procedure Newline (Stream : in out My_Stream) is
begin
New_Line (Stream.File.all);
end Newline;

 	
The above code did not open the file itself, as you might have noticed,

nor did it register the name "mystream" so that it can be used in the
configuration file. All this is done by creating a factory, ie a function
in charge of creating the new stream. This function receives in param-
eter the argument specified by the user in the configuration file (after
the ":" character, if any), and must return a newly allocated stream.
This function is also never called twice with the same argument, since
GNATCOLL.Traces automatically reuses an existing stream when one
with the same name and arguments already exists.� �

function Factory (Args : String) return Trace_Stream is
Str : access My_Stream := new My_Stream;
begin
Str.File := new File_Type;
Open (Str.File, Out_File, Args);
return Str;
end Factory;

Register_Stream_Factory ("mystream", Factory’Access);
 	
4.5 Logging to syslog

Among the predefined streams, GNATColl gives access to the system
logger syslog. This is a standard utility on all Unix systems, but is not
available on other systems. When you compile GNATColl, you should
specify the switch --enable-syslog to configure to activate the support.
If either this switch wasn’t specified, or configure could not find the rele-

39

GNATColl: GNAT Reusable Components

vant header files anyway, then support for syslog will not be available.
In this case, the package GNATCOLL.Traces.Syslog is still available, but
contains a single function that does nothing. If your configuration files
redirect some trace handles to "syslog", they will instead be redirect to
the default stream or to standard output.

Activating support for syslog requires the following call in your ap-
plication:� �
GNATCOLL.Traces.Syslog.Register_Syslog_Stream;
 	
This procedure is always available, whether your system supports or

not syslog, and will simply do nothing if it doesn’t support syslog. This
means that you do not need to have conditional code in your application
to handle that, and you can let GNATColl take care of this.

After the above call, trace handles can be redirected to a stream
named "syslog".

The package GNATCOLL.Traces.Syslog also contains a low-level in-
terface to syslog, which, although fully functional, you should probably
not use, since that would make your code system-dependent.

Syslog itself dispatches its output based on two criteria: the
facility, which indicates what application emitted the message, and
where it should be filed, and the level which indicates the urgency
level of the message. Both of these criteria can be specified in the
GNATCOLL.Traces configuration file, as follows:� �

MODULE=yes >&syslog:user:error
 	
The above configuration will redirect to a facility called user,

with an urgency level error. See the enumeration types in
‘gnatcoll-traces-syslog.ads’ for more information on valid facilities
and levels.

4.6 Dynamically disabling features

Although the trace handles are primarily meant for outputting mes-
sages, they can be used in another context. The goal is to take advantage
of the external configuration file, without reimplementing a similar fea-
ture in your application. Since the configuration file can be used to
activated or de-activated a handle dynamically, you can then have con-
ditional sections in your application that depends on that handle, as in
the following example:

40

Chapter 4: Logging information

� �
CONDITIONAL=yes
 	

and in the Ada code:� �
package Pkg is
Me : constant Trace_Handle := Create ("CONDITIONAL");
begin
if Active (Me) then
... conditional code
end if;
end Pkg;

 	
In particular, this can be used if you write your own decorators, as

explained above.

41

GNATColl: GNAT Reusable Components

42

Chapter 5: Monitoring memory

5 Monitoring memory

The GNAT compiler allocates and deallocates all memory either
through type-specific debug pools that you have defined yourself, or de-
faults to the standard malloc and free system calls. However, it calls
those through an Ada proxy, in the package System.Memory that you can
also replace in your own application if need be.

gnatcoll provides such a possible replacement. Its implementation
is also based on malloc and free, but if you so chose you can activate
extra monitoring capabilities to help you find out which parts of your
program is allocating the most memory, or where memory is allocated at
any moment in the life of your application.

This package is called GNATCOLL.Memory. To use it requires a bit of
preparation in your application:
• You need to create your own version of ‘s-memory.adb’ with the

template below, and put it somewhere in your source path. This file
should contain the following bit of code� �

with GNATCOLL.Memory;
package body System.Memory is
package M renames GNATCOLL.Memory;

function Alloc (Size : size_t) return System.Address is
begin
return M.Alloc (M.size_t (Size));
end Alloc;

procedure Free (Ptr : System.Address)
renames M.Free;

function Realloc
(Ptr : System.Address;
Size : size_t)
return System.Address is
begin
return M.Realloc (Ptr, M.size_t (Size));
end Realloc;
end System.Memory;

 	
• You then need to compile your application with the extra switch -a

passed to gnatmake or gprbuild, so that this file is appropriately
compiled and linked with your application

43

GNATColl: GNAT Reusable Components

• If you only do this, the monitor is disabled by default. This basi-
cally has zero overhead for your application (apart from the initial
small allocation of some internal data). When you call the procedure
GNATCOLL.Memory.Configure to activate the monitor, each memory
allocation or deallocation will result in extra overhead that will slow
down your application a bit. But at that point you can then get ac-
cess to the information stored in the monitor

We actually recommend that the activation of the monitor be based
on an environment variable or command line switch of your application,
so that you can decide at any time to rerun your application with the
monitor activated, rather than have to go through an extra recompila-
tion.

All allocations and deallocations are monitor automatically when
this module is activated. However, you can also manually call
GNATCOLL.Memory.Mark_Traceback to add a dummy entry in the in-
ternal tables that matches the current stack trace. This is helpful for
instance if you want to monitor the calls to a specific subprogram, and
know both the number of calls, and which callers executed it how many
times. This can help find hotspots in your application to optimize the
code.

The information that is available through the monitor is the list of
all chunks of memory that were allocated in Ada (this does not include
allocations done in other languages like C). These chunks are grouped
based on the stack trace at the time of their invocation, and this package
knows how many times each stack trace executed each allocation.

As a result, you can call the function GNATCOLL.Memory.Dump to dump
on the standard output various types of data, sorted. To limit the output
to a somewhat usable format, Dump asks you to specify how many blocks
it should output.
Memory usage

Blocks are sorted based on the amount of memory they have
allocated and is still allocated. This helps you find which
part of your application is currently using the most memory.

Allocations count
Blocks are sorted based on the number of allocation that
are still allocated. This helps you find which part of your
application has done the most number of allocations (since
malloc is a rather slow system call, it is in general a good idea
to try and reduce the number of allocations in an application).

Total number of allocations
This is similar to the above, but includes all allocations ever
done in this block, even if memory has been deallocated since
then.

44

Chapter 5: Monitoring memory

Marked blocks
These are the blocks that were created through your calls to
GNATCOLL.Memory.Mark_Traceback. They are sorted by the
number of allocation for that stacktrace, and also shows you
the total number of such allocations in marked blocks. This
is useful to monitor and analyze calls to specific places in
your code

45

GNATColl: GNAT Reusable Components

46

Chapter 6: Reading and Writing Files

6 Reading and Writing Files
Most applications need to efficiently read files from the disk. Some

also need in addition to modify them and write them back. The Ada
run-time profiles several high-level functions to do so, most notably in
the ‘Ada.Text_IO’ package. However, these subprograms require a lot of
additional housekeeping in the run-time, and therefore tend to be slow.

GNAT provides a number of low-level functions in its ‘GNAT.OS_Lib’
package. These are direct import of the usual C system calls read(),
write() and open(). These are much faster, and suitable for most
applications.

However, if you happen to manipulate big files (several megabytes
and much more), these functions are still slow. The reason is that to use
read you basically need a few other system calls: allocate some memory
to temporarily store the contents of the file, then read the whole contents
of the file (even if you are only going to read a small part of it, although
presumably you would use lseek in such a case).

On most Unix systems, there exists an additional system call mmap()
which basically replaces open, and makes the contents of the file imme-
diately accessible, in the order of a few micro-seconds. You do not need
to allocate memory specifically for that purpose. When you access part
of the file, the actual contents is temporarily mapped in memory by the
system. To modify the file, you just modify the contents of the memory,
and do not worry about writing the file back to the disk.

When your application does not need to read the whole contents of the
file, the speed up can be several orders of magnitude faster than read().
Even when you need to read the whole contents, using mmap() is still
two or three times faster, which is especially interesting on big files.

GNATColl’s GNATCOLL.Mmap package provides a high-level abstrac-
tion on top of the mmap system call. As for most other packages in
GNATColl, it also nicely handles the case where your system does not
actually support mmap, and will in that case fallback on using read and
write transparently. In such a case, your application will perform a
little slower, but you do not have to modify your code to adapt it to the
new system.

Due to the low-level C API that is needed underneath, the various
subprograms in this package do not directly manipulate Ada strings
with valid bounds. Instead, a new type Str_Access was defined. It does
not contain the bounds of the string, and therefore you cannot use the
usual ’First and ’Last attributes on that string. But there are other
subprograms that provide those values.

Here is how to read a whole file at once. This is what your code will use
in most cases, unless you expect to read files bigger than Integer’Last

47

GNATColl: GNAT Reusable Components

bytes long. In such cases you need to read chunks of the file separately.
The mmap system call is such that its performance does not depend on
the size of the file your are mapping. Of course, this could be a problem
if GNATCOLL.Mmap falls back on calling read, since in that case it needs
to allocate as much memory as your file. Therefore in some cases you
will also want to only read chunks of the file at once.� �

declare
File : Mapped_File;
Str : Str_Access;
begin
File := Open_Read ("/tmp/file_on_disk");
Read (File); – read the whole file
Str := Data (File);
for S in 1 .. Last (File) loop
Put (Str (S));
end loop;
Close (File);
end;

 	

To read only a chunk of the file, your code would look like the follow-
ing. At the low-level, the system call will always read chunks multiple
of a size called the page size. Although GNATCOLL.Mmap takes care of
rounding the numbers appropriately, it is recommended that you pass
parameters that are multiples of that size. That optimizes the number of
system calls you will need to do, and therefore speeds up your application
somewhat.

48

Chapter 6: Reading and Writing Files

� �
declare
File : Mapped_File;
Str : Str_Access;
Offs : Long_Integer := 0;
Page : constant Integer := Get_Page_Size;
begin
File := Open_Read ("/tmp/file_on_disk");
while Offs < Length (File) loop
Read (File, Offs, Length => Long_Integer (Page) * 4);
Str := Data (File);

– Print characters for this chunk:
for S in Integer (Offs - Offset (File)) + 1 .. Last (File) loop
Put (Str (S));
end loop;

Offs := Offs + Long_Integer (Last (File));
end loop;
Close (File);

 	
There are a number of subtle details in the code above. Since the sys-

tem call only manipulates chunk of the file on boundaries multiple of the
code size, there is no guarantee that the part of the file we actually read
really starts exactly at Offs. If could in fact start before, for rounding
issues. Therefore when we loop over the contents of the buffer, we make
sure to actually start at the Offs-th character in the file.

In the particular case of this code, we make sure we only manipulate
multiples of the page size, so we could in fact replace the loop with the
simpler� �

for S in 1 .. Last (File) loop

 	
If you intend to modify the contents of the file, not that GNATCOLL.Mmap

currently gives you no way to change the size of the file. The only
difference compared to the code used for reading the file is the call to
open the file, which should be� �

File := Open_Write ("/tmp/file_on_disk");
 	

49

GNATColl: GNAT Reusable Components

Modifications to Str are automatically reflected in the file. However,
there is no guarantee this saving is done immediately. It could be done
only when you call Close. This is in particular always the case when
your system does not support mmap and GNATCOLL.Mmap had to fallback
on calls to read.

50

Chapter 7: Searching strings

7 Searching strings

Although the Ada standard provides a number of string-
searching subprograms (most notably in the Ada.Strings.Fixed,
Ada.Strings.Unbounded and Ada.Strings.Bounded packages through
the Index functions), these subprograms do not in general provide the
most efficient algorithms for searching strings.

The package GNATCOLL.Boyer_Moore provides one such optimize algo-
rithm, although there exists several others which might be more efficient
depending on the pattern.

It deals with string searching, and does not handle regular expres-
sions for instance.

This algorithm needs to preprocess its key (the searched string), but
does not need to perform any specific analysis of the string to be searched.
Its execution time can be sub-linear: it doesn’t need to actually check
every character of the string to be searched, and will skip over some
of them. The worst case for this algorithm has been proved to need
approximately 3 * N comparisons, hence the algorithm has a complexity
of O(n).

The longer the key, the faster the algorithm in general, since that
provides more context as to how many characters can be skipped when
a non-matching character is found..

We will not go into the details of the algorithm, although a general de-
scription follows: when the pattern is being preprocessed, Boyer-Moore
computes how many characters can be skipped if an incorrect match is
found at that point, depending on which character was read. In addi-
tion, this algorithm tries to match the key starting from its end, which
in general provides a greater number of characters to skip.

For instance, if you are looking for "ABC" in the string "ABDEFG"
at the first position, the algorithm will compare "C" and "D". Since "D"
does not appear in the key "ABC", it knows that it can immediately skip
3 characters and start the search after "D".

Using this package is extremely easy, and it has only a limited API.

51

GNATColl: GNAT Reusable Components

� �
declare
Str : constant String := "ABDEABCFGABC";
Key : Pattern;
Index : Integer;
begin
Compile (Key, "ABC");
Index := Search (Key, Str);
end

 	
Search will either return -1 when the pattern did not match, or the

index of the first match in the string. In the example above, it will return
5.

If you want to find the next match, you have to pass a substring to
search, as in� �

Index := Search (Key, Str (6 .. Str’Last));

 	

52

Chapter 8: The templates module

8 The templates module
This module provides convenient subprograms for replacing specific sub-
strings with other values. It is typically used to replace substrings like
"%{version}" in a longer string with the actual version, at run time.

This module is not the same as the templates parser provided in the
context of AWS, the Ada web server, where external files are parsed and
processed to generate other files. The latter provides advanced features
like filters, loops,. . .

The substrings to be replaced always start with a specific delimiter,
which is set to % by default, but can be overridden in your code. The
name of the substring to be replaced is then the identifier following that
delimiter, with the following rules:
• If the character following the delimiter is the delimiter itself, then

the final string will contain a single instance of that delimiter, and
no further substitution is done for that delimiter. An example of
this is "%%".

• If the character immediately after the delimiter is a curly brace ({),
then the name of the identifier is the text until the next closing curly
brace. It can then contain any character expect a closing curly brace.
An example of this is "%{long name}"

• If the first character after the delimiter is a digit, then the name
of the identifier is the number after the delimiter. An example of
this is "%12". As a special case, if the first non-digit character is
the symbol -, it is added as part of the name of the identifier, as in
"%1-". One use for this feature is to indicate you want to replace it
with all the positional parameters %1%2%3%4. For instance, if you
are writing the command line to spawn an external tool, to which
the user can pass any number of parameter, you could specify that
command line as "tool -o %1 %2-" to indicate that all parameters
should be concatenated on the command line.

• If the first character after the delimiter is a letter, the identifier
follows the same rules as for Ada identifiers, and can contain any
letter, digit, or underscore character. An example of this is "%ab_12".
For readability, it is recommended to use the curly brace notation
when the name is complex, but that is not mandatory.

• Otherwise the name of the identifier is the single character following
the delimiter

For each substring matching the rules above, the Substitute subpro-
gram will look for possible replacement text in the following order:
• If the Substrings parameter contains an entry for that name, the

corresponding value is used.

53

GNATColl: GNAT Reusable Components

• Otherwise, if a callback was specified, it is called with the name
of the identifier, and should return the appropriate substitution (or
raise an exception if no such substitution makes sense).

• A default value provided in the substring itself
• When no replacement string was found, the substring is kept un-

modified

54

Chapter 9: Managing Email

9 Managing Email

GNATColl provides a set of packages for managing and processing
email messages. Through this packages, you can extract the various
messages contained in an existing mailbox, extract the various compo-
nents of a message, editing previously parsed messages, or create new
messages from scratch.

This module fully supports MIME-encoded messages, with attach-
ments.

This module currently does not provide a way to send the mes-
sage through the SMTP protocol. Rather, it is used to create an
in-memory representation of the message, which you can then con-
vert to a string, and pass this to a socket. See for instance
the AWS library (http://www.adacore.com/home/gnatpro/add-on_
technologies/web_technologies) which contains the necessary sub-
programs to connect with an SMTP server.

9.1 Message formats

The format of mail messages is defined through numerous RFC docu-
ments. GNATColl tries to conform to these as best as possible. Basically,
a message is made of two parts:

•The headers
These are various fields that indicate who sent the message,
when, to whom, and so on

•The payload (aka body)
This is the actual contents of the message. It can either be a
simple text, or made of one or more attachments in various
formats. These attachments can be HTML text, images, or
any binary file. Since email transfer is done through various
servers, the set of bytes that can be sent is generally limited
to 7 bit characters. Therefore, the attachments are generally
encoded through one of the encoding defined in the various
MIME RFCs, and they need to be decoded before the original
file can be manipulated again.

GNATColl gives you access to these various components, as will be
seen in the section see Section 9.2 [Parsing messages], page 56.

The package ‘GNATCOLL.Email.Utils’ contains various subprograms
to decode MIME-encoded streams, which you can use independently
from the rest of the packages in the email module.

55

http://www.adacore.com/home/gnatpro/add-on_technologies/web_technologies
http://www.adacore.com/home/gnatpro/add-on_technologies/web_technologies

GNATColl: GNAT Reusable Components

The headers part of the message contains various pieces of informa-
tion about the message. Most of the headers have a well-defined se-
mantics and format. However, a user is free to add new headers, which
will generally start with X- prefix. For those fields where the format is
well-defined, they contain various pieces of information:

•Email addresses
The From, TO or CC fields, among others, contain list of re-
cipients. These recipients are the usual email addresses.
However, the format is quite complex, because the full name
of the recipient can also be specified, along with comments.
The package ‘GNATCOLL.Email.Utils’ provides various sub-
programs for parsing email addresses and list of recipients.

•Dates The Date header indicates when the message was sent. The
format of the date is also precisely defined in the RFC, and
the package ‘GNATCOLL.Email.Utils’ provides subprograms
for parsing this date (or, on the contrary, to create a string
from an existing time).

•Text The Subject header provides a brief overview of the mes-
sage. It is a simple text header. However, one complication
comes from the fact that the user might want to use ex-
tended characters not in the ASCII subset. In such cases,
the Subject (or part of it) will be MIME-encoded. The pack-
age ‘GNATCOLL.Email.Utils’ provides subprograms to de-
code MIME-encoded strings, with the various charsets.

9.2 Parsing messages
There are two ways a message is represented in memory: initially,

it is a free-form String. The usual Ada operations can be used on the
string, of course, but there is no way to extract the various components of
the message. For this, the message must first be parsed into an instance
of the Message type.

This type is controlled, which means that the memory will be freed
automatically when the message is no longer needed.

The package ‘GNATCOLL.Email.Parser’ provides various subpro-
grams that parse a message (passed as a string), and create a Message
out of it. Parsing a message might be costly in some cases, for instance
if a big attachment needs to be decoded first. In some cases, your ap-
plication will not need that information (for instance you might only be
looking for a few of the headers of the message, and not need any infor-
mation from the body). This efficiency concern is why there are multiple
parsers. Some of them will ignore parts of the message, and thus be
more efficient if you can use them.

56

Chapter 9: Managing Email

Once a Message has been created, the subprograms in
GNATCOLL.Email can be used to access its various parts. The documen-
tation for these subprograms is found in the file gnatcoll-email.ads
directly, and is not duplicated here.

9.3 Parsing mailboxes
Most often, a message is not found on its own (unless you are for

instance writing a filter for incoming messages). Instead, the messages
are stored in what is called a mailbox. The latter can contain thousands
of such messages.

There are traditionally multiple formats that have been used for mail-
boxes. At this stage, GNATColl only supports one of them, the mbox
format. In this format, the messages are concatenated in a single file,
and separated by a newline.

The package GNATCOLL.Email.Mailboxes provides all the types and
subprograms to manipulate mailboxes. Tagged types are used, so that
new formats of mailboxes can relatively easily be added later on, or in
your own application.

Here is a small code example that opens an mbox on the disk, and
parses each message it contains� �

declare
Box : Mbox;
Curs : Cursor;
Msg : Message;
begin
Open (Box, Filename => "my_mbox");
Curs := Mbox_Cursor (First (Box));
while Has_Element (Curs) loop
Get_Message (Curs, Box, Msg);
if Msg /= Null_Message then
...
end if;
Next (Curs, Box); end loop;
end;

 	
As you can see, the mailbox needs to be opened first. Then we get

an iterator (called a cursor, to match the Ada2005 containers naming
scheme), and we then parse each message. The if test is optional,
but recommended: the message that is returned might be null if the
mailbox was corrupted and the message could not be parsed. There are

57

GNATColl: GNAT Reusable Components

still chances that the next message will be readable, so only the current
message should be ignored.

9.4 Creating messages
The subprograms in GNATCOLL.Email can also be used to create a mes-

sage from scratch. Alternatively, if you have already parsed a message,
you can alter it, or easily generate a reply to it (using the Reply_To sub-
program. The latter will preset some headers, so that message threading
is preserved in the user’s mailers.

58

Chapter 10: Ravenscar Patterns

10 Ravenscar Patterns

GNATColl provides a set of patterns for concurrent programming
using Ravenscar-compliant semantics only. The core goal of the GNAT-
COLL.Ravenscar (sub) packages is to ease the development of high-
integrity multitasking applications by factorizing common behavior into
instantiable, Ravenscar-compliant, generic packages. Instances of such
generic packages guarantee predictable timing behavior and thus permit
the application of most common timing analysis techniques.

10.1 Tasks
The GNATCOLL.Ravenscar.Simple_Cyclic_Task generic package lets in-
stantiate a cyclic tasks executing the same operation at regular time in-
tervals; on the other side, the GNATCOLL.Ravenscar.Simple_Sporadic_
Task task lets instantiate sporadic tasks enforcing a minimum inter-
release time.

10.2 Servers
Servers present a more sophisticated run-time semantics than tasks:
for example, they can fulfill different kind of requests (see multiple
queues servers). Gnat.Ravenscar.Sporadic_Server_With_Callback
and Gnat.Ravenscar.Timed_Out_Sporadic_Server are particularly in-
teresting. The former shows how synchronous inter-task communication
can be faked in Ravenscar (the only form of communication permitted by
the profile is through shared resources): the server receives a request to
fulfill, computes the result and returns it by invoking a call-back. The
latter enforces both a minimum and a maximum inter-release time: the
server automatically releases itself and invokes an appropriate handler
if a request is not posted within a given period of time.

10.3 Timers
Gnat.Ravenscar.Timers.One_Shot_Timer is the Ravenscar implemen-
tation of time-triggered event through Ada 2005 Timing Events.

59

GNATColl: GNAT Reusable Components

60

Chapter 11: Managing Memory: The storage pools

11 Managing Memory: The storage
pools

Ada gives full control to the user for memory management. That
allows for a number of optimization in your application. For instance,
if you need to allocate a lot of small chunks of memory, it is generally
more efficient to allocate a single large chunk, which is later divided into
smaller chunks. That results in a single system call, which speeds up
your application.

This can of course be done in most languages. However, that generally
means you have to remember not to use the standard memory allocations
like malloc or new, and instead call one of your subprograms. If you ever
decide to change the allocation strategy, or want to experiment with
several strategies, that means updating your code in several places.

In Ada, when you declare the type of your data, you also specify
through a ’Storage_Pool attribute how the memory for instances of
that type should be allocated. And that’s it. You then use the usual new
keyword to allocate memory.

GNATColl provides a number of examples for such storage pools,
with various goals. There is also one advanced such pool in the GNAT
run-time itself, called GNAT.Debug_Pools, which allows you to control
memory leaks and whether all accesses do reference valid memory loca-
tion (and not memory that has already been deallocated).

In GNATColl, you will find the following storage pools:

•GNATCOLL.Storage_Pools.Alignment
This pool gives you full control over the alignment of your
data. In general, Ada will only allow you to specify align-
ments up to a limited number of bytes, because the compiler
must only accept alignments that can be satisfied in all con-
texts, in particular on the stack.
This package overcomes that limitation, by allocating larger
chunks of memory than needed, and returning an address
within that chunk which is properly aligned.

61

GNATColl: GNAT Reusable Components

62

Chapter 12: Manipulating Files

12 Manipulating Files

Ada was meant from the beginning to be a very portable language,
across architectures. As a result, most of the code you write on one
machine has good chances of working as is on other machines. There re-
mains, however, some areas that are somewhat system specific. The Ada
run-time, the GNAT specific run-time and GNATColl all try to abstract
some of those operations to help you make your code more portable.

One of these areas is related to the way files are represented and ma-
nipulated. Reading or writing to a file is system independent, and taken
care of by the standard run-time. Other differences between systems
include the way file names are represented (can a given file be accessed
through various casing or not, are directories separated with a backslash
or a forward slash, or some other mean, and a few others). The GNAT
run-time does a good job at providing subprograms that work on most
types of filesystems, but the relevant subprograms are split between sev-
eral packages and not always easy to locate. GNATColl groups all these
functions into a single convenient tagged type hierarchy. In addition,
it provides the framework for transparently manipulating files on other
machines.

Another difference is specific to the application code: sometimes, a
subprogram needs to manipulate the base name (no directory informa-
tion) of a file, whereas sometimes the full file name is needed. It is
somewhat hard to document this in the API, and certainly fills the code
with lots of conversion from full name to base name, and sometimes re-
verse (which, of course, might be an expansive computation). To make
this easier, GNATColl provides a type that encapsulates the notion of
a file, and removes the need for the application to indicate whether it
needs a full name, a base name, or any other part of the file name.

12.1 Filesystems abstraction

There exists lots of different filesystems on all machines. These in-
clude such things as FAT, VFAT, NTFS, ext2, VMS,. . . . However, all
these can be grouped into three families of filesystems:
• windows-based filesystems

On such filesystems, the full name of a file is split into three parts:
the name of the drive (c:, d:,. . .), the directories which are separated
by a backslash, and the base name. Such filesystems are sometimes
inaccurately said to be case insensitive: by that, one means that the
same file can be accessed through various casing. However, a user is
generally expecting a specific casing when a file name is displayed,

63

GNATColl: GNAT Reusable Components

and the application should strive to preserve that casing (as opposed
to, for instance, systematically convert the file name to lower cases).
A special case of a windows-based filesystems is that emulated by
the cygwin development environment. In this case, the filesystem
is seen as if it was unix-based (see below), with one special quirk to
indicate the drive letter (the file name starts with "/cygwin/c/").

• unix-based filesystems
On such filesystems, directories are separated by forward slashed.
File names are case sensitive, that is a directory can contain both
"foo" and "Foo", which is not possible on windows-based filesystems.

• vms filesystem
This filesystem represents path differently than the other two, using
brackets to indicate parent directories

A given machine can actually have several file systems in parallel,
when a remote disk is mounted through NFS or samba for instance.
There is generally no easy way to guess that information automatically,
and it generally does not matter since the system will convert from the
native file system to that of the remote host transparently (for instance,
if you mount a windows disk on a unix machine, you access its files
through forward slash- separated directory names).

GNATColl abstracts the differences between these filesystems
through a set of tagged types in the GNATCOLL.Filesystem package and
its children. Such a type has primitive operations to manipulate the
names of files (retrieving the base name from a full name for instance),
to check various attributes of the file (is this a directory, a symbolic
link, is the file readable or writable), or to manipulate the file itself
(copying, deleting, reading and writing). It provides similar operations
for directories (creating or deleting paths, reading the list of files in a
directory,. . .).

It also provides information on the system itself (the list of available
drives on a windows machine for instance).

The root type Filesystem_Record is abstract, and is specialized in
various child types. A convenient factory is provided to return the filesys-
tem appropriate for the local machine (Get_Local_Filesystem), but you
might chose to create your own factory in your application if you have
specialized needs (see Section 12.2 [Remote filesystems], page 65).

12.1.1 file names encoding
One delicate part when dealing with filesystems is handling files whose
name cannot be described in ASCII. This includes names in asian lan-
guages for instance, or names with accented letters.

64

Chapter 12: Manipulating Files

There is unfortunately no way, in general, to know what the encoding
is for a filesystem. In fact, there might not even be such an encoding
(on linux, for instance, one can happily create a file with a chinese name
and another one with a french name in the same directory). As a result,
GNATColl always treats file names as a series of bytes, and does not try
to assume any specific encoding for them. This works fine as long as
you are interfacing the system (since the same series of bytes that was
returned by it is also used to access the file later on).

However, this becomes a problem when the time comes to display the
name for the user (for instance in a graphical interface). At that point,
you need to convert the file name to a specific encoding, generally UTF-8
but not necessarily (it could be ISO-8859-1 in some cases for instance).

Since GNATColl cannot guess whether the file names have a specific
encoding on the file system, or what encoding you might wish in the
end, it lets you take care of the conversion. To do so, you can use
either of the two subprograms Locale_To_Display and Set_Locale_
To_Display_Encoder

12.2 Remote filesystems
Once the abstract for filesystems exists, it is tempting to use it to

access files on remote machines. There are of course lots of differences
with filesystems on the local machine: their names are manipulated
similarly (although you need to somehow indicate on which host they
are to be found), but any operation of the file itself needs to be done on
the remote host itself, as it can’t be done through calls to the system’s
standard C library.

Note that when we speak of disks on a remote machine, we indicate
disks that are not accessible locally, for instance through NFS mounts
or samba. In such cases, the files are accessed transparently as if they
were local, and all this is taken care of by the system itself, no special
layer is needed at the application level.

GNATColl provides an extensive framework for manipulating such
remote files. It knows what commands need to be run on the remote
host to perform the operations ("cp" or "copy", "stat" or "dir /a-d",...)
and will happily perform these operations when you try to manipulate
such files.

There are however two operations that your own application needs to
take care of to take full advantage of remote files.

12.2.1 Filesystem factory
GNATColl cannot know in advance what filesystem is running on the
remote host, so it does not try to guess it. As a result, your application

65

GNATColl: GNAT Reusable Components

should have a factory that creates the proper instance of a Filesystem_
Record depending on the host. Something like:� �

type Filesystem_Type is (Windows, Unix);
function Filesystem_Factory
(Typ : Filesystem_Type;
Host : String)
return Filesystem_Access
is
FS : Filesystem_Access;
begin
if Host = "" then
case Typ is
when Unix =>
FS := new Unix_Filesystem_Record;
when Windows =>
FS := new Windows_Filesystem_Record;
end case;
else
case Typ is
when Unix =>
FS := new Remote_Unix_Filesystem_Record;
Setup (Remote_Unix_Filesystem_Record (FS.all),
Host => Host,
Transport => ...); – see below
when Windows =>
FS := new Remote_Windows_Filesystem_Record;
Setup (Remote_Windows_Filesystem_Record (FS.all),
Host => Host,
Transport => ...);
end case;
end if;

Set_Locale_To_Display_Encoder
(FS.all, Encode_To_UTF8’Access);
return FS;
end Filesystem_Factory;
 	

12.2.2 Transport layer
There exists lots of protocols to communicate with a remote machine, so
as to be able to perform operations on it. These include protocols such as
rsh, ssh or telnet. In most of these cases, a user name and password

66

Chapter 12: Manipulating Files

is needed (and will likely be asked to the user). Furthermore, you might
not want to use the same protocol to connect to different machines.

GNATColl does not try to second guess your intention here. It
performs all its remote operations through a tagged type defined in
GNATCOLL.Filesystem.Transport. This type is abstract, and must be
overridden in your application. For instance, GPS has a full support for
choosing which protocol to use on which host, what kind of filesystem is
running on that host, to recognize password queries from the transport
protocol,. . . . All these can be encapsulated in the transport protocol.

Once you have created one or more children of Filesystem_
Transport_Record, you associate them with your instance of the filesys-
tem through a call to the Setup primitive operation of the filesystem.
See the factory example above.

12.3 Virtual files

As we have seen, the filesystem type abstracts all the operations
for manipulating files and their names. There is however another as-
pect when dealing with file names in an application: it is often unclear
whether a full name (with directories) is expected, or whether the base
name itself is sufficient. There are also some aspects about a file that
can be cached to improve the efficiency.

For these reasons, GNATColl provides a new type
GNATCOLL.VFS.Virtual_File which abstracts the notion of file.
It provides lots of primitive operations to manipulate such files (which
are of course implemented based on the filesystem abstract, so support
files on remote hosts among other advantages), and encapsulate the
base name and the full name of a file so that your API becomes clearer
(you are not expecting just any string, but really a file).

This type is reference counted: it takes care of memory management
on its own, and will free its internal data (file name and cached data)
automatically when the file is no longer needed. This has of course a
slight efficiency cost, due to controlled types, but we have found in the
context of GPS that the added flexibility was well worth it.

12.4 GtkAda support for virtual files

If you are programming a graphical interface to your application, and
the latter is using the Virtual_File abstraction all other the place, it
might be a problem to convert back to a string when you store a file
name in a graphical element (for instance in a tree model if you display
an explorer-like interface in your application).

67

GNATColl: GNAT Reusable Components

Thus, GNATColl provides the GNATCOLL.VFS.GtkAda package, which
is only build if GtkAdawas detected when GNATColl was compiled, which
allows you to encapsulate a Virtual_File into a GValue, and therefore
to store it in a tree model.

68

Chapter 13: Three state logic

13 Three state logic

Through the package GNATCOLL.Tribooleans, GNATColl provides a
type that extends the classical Boolean type with an Indeterminate
value.

There are various cases where such a type is useful. One example
we have is when a user is doing a search (on a database or any set of
data), and can specify some optional boolean criteria ("must the contact
be french?"). He can choose to only see french people ("True"), to see no
french people at all ("False"), or to get all contacts ("Indeterminate").
With a classical boolean, there is no way to cover all these cases.

Of course, there are more advanced use cases for such a type. To
support these cases, the Tribooleans package overrides the usual logical
operations "and", "or", "xor", "not" and provides an Equal function.

See the specs of the package to see the truth tables associated with
those operators.

69

GNATColl: GNAT Reusable Components

70

Chapter 14: Geometry

14 Geometry

GNATColl provides the package GNATCOLL.Geometry. This pack-
age includes a number of primitive operations on geometric figures like
points, segments, lines, circles, rectangles and polygons. In particular,
you can compute their intersections, the distances,. . .

This package is generic, so that you can specify the type of coordinates
you wish to handle.� �

declare
package Float_Geometry is new GNATCOLL.Geometry (Float);
use Float_Geometry;

P1 : constant Point := (1.0, 1.0);
P2 : constant Point := (2.0, 3.0);
begin
Put_Line ("Distance P1-P2 is" & Distance (P1, P2)’Img);
-- Will print 2.23607
end;

 	
Or some operations involving a polygon:� �
declare
P3 : constant Point := (3.7, 2.0);
P : constant Polygon :=
((2.0, 1.3), (4.1, 3.0), (5.3, 2.6), (2.9, 0.7), (2.0, 1.3));
begin
Put_Line ("Area of polygon:" & Area (P)); -- 3.015
Put_Line ("P3 inside polygon ? " & Inside (P3, P)’Img); -- True
end;

 	

71

GNATColl: GNAT Reusable Components

72

Chapter 15: Reference counting

15 Reference counting

Memory management is often a difficulty in defining an API. Should
we let the user be responsible for freeing the types when they are no
longer needed, or can we do it automatically on his behalf ?

The latter approach is somewhat more costly in terms of efficiency
(since we need extra house keeping to know when the type is no longer
needed), but provides an easier to use API.

Typically, such an approach is implemented using reference count-
ing: all references to an object increment a counter. When a reference
disappears, the counter is decremented, and when it finally reaches 0,
the object is destroyed.

This approach is made convenient in Ada using controlled types.
However, there are a number of issues to take care of to get things
exactly right. In particular, the Ada Reference Manual specifies that
Finalize should be idempotent: it could be called several times for a
given object, in particular when exceptions occur.

An additional difficulty is task-safety: incrementing and decrement-
ing the counter should be task safe, since the controlled object might
be referenced from several task (the fact that other methods on the ob-
ject are task safe or not is given by the user application, and cannot be
ensures through the reference counting mecanism).

To make things easier, GNATColl provides the package
GNATCOLL.Refcount. This package contains a generic child package.

To use it, you need to create a new tagged type that extends
GNATCOLL.Refcount.Refcounted, so that it has a counter. Here is an
example.� �

with GNATCOLL.Refcount; use GNATCOLL.Refcount;

package My_Pkg is
type My_Type is new Refcounted with record
Field1 : ...; – Anything
end record;

package My_Type_Ptr is new Smart_Pointers (My_Type);
end My_Pkg;

 	
The code above makes a Ref available. This is similar in semantics

to an access type, although it really is a controlled type. Every time you

73

GNATColl: GNAT Reusable Components

assign the Ref, the counter is incremented. When the Ref goes out of
scope, the counter is decremented, and the object is potentially freed.

Here an example of use of the package:� �
declare
R : Ref;
Tmp : My_Type := ...;
begin
Set (R, Tmp); – Increment counter
Get (R).Field1 := ...; – Access referenced object
end
– R out of scope, so decrement counter, and free Tmp

 	
Although reference counting solves most of the issues with memory

management, it can get tricky: when there is a cycle between two refer-
ence counted objects (one includes a reference to the other, and the other
a reference to the first), their counter can never become 0, and thus they
are never freed.

There is in particular when common design where this can severly
interfer: imagine you want to have a Map, associating a name with a
reference counted object. Typically, the map would be a cache of some
sort. While the object exists, it should be referenced in the map. So we
would like the Map to store a reference to the object. But that means the
object will then never be freed while the map exists either, and memory
usage will only increase.

The solution to this issue is to use weak references. These hold a
pointer to an object, but do not increase its counter. As a result, the
object can eventually be freed. At that point, the internal data in the
weak reference is reset to null, although the weak reference object itself
is still valid.

Here is an example� �
with GNATCOLL.Refcount.Weakref;

use GNATCOLL.Refcount.Weakref;

type My_Type is new Weak_Refcounted with...;

package Pointers is new Weakref_Pointers (My_Type);

 	
The above code can be used instead of the code in the first example,

and provides the same capability (smart pointers, reference counted

74

Chapter 15: Reference counting

types,...). However, the type My_Type is slightly bigger, but can be used
to create weak references.� �

WR : Weak_Ref;

declare
R : Ref;
Tmp : My_Type := ...;
begin
Set (R, Tmp); – Increment counter
WR := Get_Weak_Ref (R); – Get a weak reference

Get (R).Field1 := ...; – Access referenced object
Get (Get (WR)).Field1 := ...; – Access through weak ref
end
– R out of scope, so decrement counter, and free Tmp

if Get (WR) /= Null_Ref then – access to WR still valid
– Always true, since Tmp was freed
end if;

 	
The example above is very simplified. Imagine, however, that you

store WR in a map. Even when R is deallocated, the contents of the map
remains accessible without a Storage_Error (although using Get will
return Null_Ref, as above).

For task-safety issues, Get on a weak-reference returns a smart
pointer. Therefore, this ensures that the object is never freed while
that smart pointer object. As a result, we recommend the following
construct in your code:� �

declare
R : constant Ref := Get (WR);
begin
if R /= Null_Ref then
– Get (R) never becomes null while in this block
end if;
end;

 	

75

GNATColl: GNAT Reusable Components

76

Chapter 16: Configuration files

16 Configuration files
gnatcoll provides a general framework for reading and manipulating

configuration files. These files are in general static configuration for
your application, and might be different from the preferences that a
user might change interactively. However, it is possible to use them for
both cases.

There are lots of possible formats for such configuration files: you
could chose to use an XML file (but these are in general hard to edit
manually), a binary file, or any other format. One format that is found
very often is the one used by a lot of Windows applications (the ‘.ini’
file format).

GNATCOLL.Config is independent from the actual format you are
using, and you can add your own parsers compatible with the
GNATCOLL.Config API. Out of the box, support is provided for ‘.ini’
files, so let’s detail this very simply format.� �

A single-line comment
[Section1]
key1 = value
key2=value2

[Section2]
key1 = value3

 	
Comments are (by default) started with ’#’ signs, but you can config-

ure that and use any prefix you want. The (key, value) pairs are then
organized into optional sections (if you do not start a section before the
first key, that key will be considered as part of the "" section). A section
then extends until the start of the next section.

The values associated with the various keys can be strings, integers
or booleans. Spaces on the left and right of the values and keys are
trimmed, and therefore irrelevant.

Support is providing for interpreting the values as file or directory
names. In such a case, if a relative name is specified in the configuration
file it will be assumed to be relative to the location of the configuration
file (by default, but you can also configure that).

GNATCOLL.Config provides an abstract iterator over a config stream
(in general, that stream will be a file, but you could conceptually read it
from memory, a socket, or any other location). A specific implementation
is provided for file-based streams, which is further specialized to parse
‘.ini’ files.

77

GNATColl: GNAT Reusable Components

Reading all the values from a configuration file is done with a loop
similar to:� �

declare
C : INI_Parser;
begin
Open (C, "settings.txt");
while not At_End (C) loop
Put_Line ("Found key " & Key (C) & " with value " & Value (C));
Next (C);
end loop;
end;

 	
This can be made slightly lighter by using the Ada05 dotted notation.

You would only use such a loop in your application if you intend
to store the values in various typed constants in your application. But
GNATCOLL.Config provides a slightly easier interface for this, in the form
of a Config_Pool. Such a pool is filled by reading a configuration file,
and then the values associated with each key can be read at any point
during the lifetime of your application. You can also explicitely override
the values when needed.� �

Config : Config_Pool; -- A global variable

declare
C : INI_Parser;
begin
Open (C, "settings.txt");
Fill (Config, C);
end;

Put_Line (Config.Get ("section.key")); -- Ada05 dotted notation

 	
Again, the values are by default read as strings, but you can interpret

them as integers, booleans or files.

A third layer is provided in GNATCOLL.Config. This solves the issue
of possible typos in code: in the above example, we could have made a
typo when writting "section.key". That would only be detected at run
time. Another issue is that we might decide to rename the key in the
configuration file. We would then have to go through all the application
code to find all the places where this key is references (and that can’t be

78

Chapter 16: Configuration files

based on cross-references generated by the compiler, since that’s inside
a string).

To solve this issue, it is possible to declare a set of constants that
represent the keys, and then use these to access the values, solving the
two problems above:� �

Section_Key1 : constant Config_Key := Create ("Key1", "Section");
Section_Key2 : constant Config_Key := Create ("Key2", "Section");

Put_Line (Section_Key1.Get);

 	
You then access the value of the keys using the Ada05 dotted notation,

providing a very natural syntax. When and if the key is renamed, you
then have a single place to change.

79

GNATColl: GNAT Reusable Components

80

Chapter 17: Projects

17 Projects

The package GNATCOLL.Projects provides an extensive interface to
parse, manipulate and edit project files (‘.gpr’ files).

Although the interface is best used using the Ada05 notation, it is
fully compatible with Ada95.

Here is a quick example on how to use the interface, although the
spec file itself contains much more detailed information on all the sub-
programs related to the manipulation of project files.� �

with GNATCOLL.Projects; use GNATCOLL.Projects;
with GNATCOLL.VFS; use GNATCOLL.VFS;

Tree : Project_Tree;
Files : File_Array_Access;

Tree.Load (GNATCOLL.VFS.Create (+"path_to_project.gpr"));

– List the source files for project and all imported projects

Files := Tree.Root_Project.Source_Files (Recursive => True);
for F in Files’Range loop
Put_Line ("File is: " & Files (F).Display_Full_Name);
end loop;

 	

81

GNATColl: GNAT Reusable Components

82

Chapter 18: Database interface

18 Database interface

GNATColl provides an interface to various database systems. Cur-
rently, only PostgreSQL and MySQL are supported, but adding a new
back-end is a matter of extending a tagged type and overriding the ap-
propriate subprograms.

This interface was designed with several goals in mind: type-safety,
integrity with regards to changes to the database schema, ease of writing
queries and performance. A paper was published at the Ada-Europe
conference in 2008 which describes the various steps we went through
in the design of this library. The rest of this chapter describes the current
status of the library, not its history.

18.1 Supported database systems

This library abstracts the specifics of the various database engines
it supports. Ideally, a goal written for one database could be ported
almost transparently to another engine. This is not completely doable in
practice, since each system has its own SQL specifics, and unless you are
writing things very carefully, the interpretation of your queries might
be different from one system to the next.

However, the Ada code should remain untouched if you change the
engine. Various engines are supported out of the box (PostgreSQL and
Sqlite), although new ones can be added by overriding the appropriate
SQL type (Database_Connection). When you compile GNATColl, the
build scripts will try and detect what systems are installed on your
machine, and only build support for those. It is possible, if no database
was installed on your machine at that time, that the database interface
API is available (and your application compiles), but no connection can
be done to database at run time.

In your code, you will need to create a connection to the database
system that you wish to interact with. One possible implementation is

83

GNATColl: GNAT Reusable Components

� �
function Connection_Factory
(Desc : GNATCOLL.SQL.Exec.Database_Description)
return GNATCOLL.SQL.Exec.Database_Connection
is
DBMS : constant String := Get_DBMS (Desc);
begin
if DBMS = DBMS_Postgresql then
return GNATCOLL.SQL.Postgres.Build_Postgres_Connection;
elsif DBMS = DBMS_Sqlite then
return GNATCOLL.SQL.Sqlite.Build_Sqlite;
else
return null;
end if;
end Connection_Factory;

declare
DB_Descr : GNATCOLL.SQL.Exec.Database_Description;
DB : GNATCOLL.SQL.Exec.Database_Connection;
begin

GNATCOLL.SQL.Exec.Setup_Database
(Description => DB_Descr,
Database => "dbname");

DB := GNATCOLL.SQL.Exec.Get_Task_Connection
(Description => DB_Descr,
Factory => Connection_Factory’Access,
Username => "myself");
end

 	
The code acts in three steps:
• Describe connection parameters The call to Setup_Database pro-

vides the required parameters to establish a connection to a data-
base server which might possibly be running on a remote host. In
this call, one specifies the name of the database, the user login and
password, and the type of database. At this point, no connection or
exchange of information has been done, the Database_Description
type stores this information for later.

• Connect to the database The call to Get_Task_Connection estab-
lishes the actual connection. As will be seen later, the recommended
practice when the database backend supports it is to establish one
connection per thread in your application, and keep it alive even if

84

Chapter 18: Database interface

the thread is reused for another reason later on. An example is a
web server which has a pool of tasks, and uses the first available
one to reply to a request. The function Get_Task_Connection will
reuse the connection to the database that was already established
in this thread, or create a new one through the Factory callback if
none was created yet.
This call is the only one that is needed in the various tasks of your
application, you obviously do not need to repeat the call to Setup_
Database.

• Create the connection If the current task is not associated with a
connection, one needs to be created. GNATColl does this through a
factory callback, instead of just doing it on its own, so that your ap-
plication can create its own child types for a Database_Connection,
and thus store additional data in that child type. This is also a conve-
nient way to support multiple database backends without with-ing
all the corresponding code in your application (in the example above,
the application only ever supports PostgreSQL, and therefore does
not need to elaborate the MySQL packages for instance).

18.2 Database schema monitoring
As stated in the introduction, one of the goals of this library is to

make sure the application’s code follows changes in the schema of your
database. The schema is the list of tables and fields in your database,
and the relationship between those tables.

To reach this goal, an external tool, ‘gnatcoll_db2ada’ is provided
with GNATColl, and should be spawned as the first step of the build
process, or at least whenever the database schema changes. It generates
an Ada package (Database) which reflects the current schema of the
database.

This tool supports a number of command line parameters (the com-
plete list of which is available through the ‘-h’ switch). The most impor-
tant of those switches are:

-dbhost host
-dbname name
-dbuser user
-dbpasswd passwd
-dbtype type

These parameters specify the connection parameters for the
database. To find out the schema, ‘gnatcoll_db2ada’ needs
to connect to that database and do a number of read-only
queries. The user does not need to have write permission on
the database

85

GNATColl: GNAT Reusable Components

-dbmodel file
This parameter can replace the above -dbname,... It specifies
the name of a text file that contains the description of the
database, therefore avoiding the need for already having a
database up-and-running to generate the Ada interface.
The format of this text file is the same as generated by the
-text switch (note also that the parser doesn’t try to check
for all possible types of errors, so if you have a syntax error
in your file you might end up with an exception).
This switch is not compatible with -enum and -vars that
really need an access to the database.

-enum table,id,name,prefix,base
This parameter can be repeated several times if needed. It
identifies one of the special tables of the database that acts
as an enumeration type. It is indeed often the case that one
or more tables in the database have a role similar to Ada’s
enumeration types, ie contains a list of values for informa-
tion like the list of possible priorities, a list of countries,...
Such lists are only manipulated by the maintainer of the
database, not interactively, and some of their values have
impact on the application’s code (for instance, if a ticket has
an urgent priority, we need to send a reminder every day –
but the application needs to know what an urgent priority
is). In such a case, it is convenient to generate these values
as constants in the generated package. The output will be
similar to:� �

subtype Priority_Id is Integer;
Priority_High : constant Priority_Id := 3;
Priority_Medium : constant Priority_Id := 2;
Priority_Low : constant Priority_Id := 1;
Priority_High_Internal : constant Priority_Id := 4;
 	

This code would be extracted from a database table called, for
instance, ticket_priorities, which contains the following:� �

table ticket_priorities:
name | priority | category
high | 3 | customer
medium | 2 | customer
low | 1 | customer
high_internal | 4 | internal

 	

86

Chapter 18: Database interface

To generate the above Ada code, you need to pass the follow-
ing parameter to ‘gnatcoll_db2ada’:� �
-enum ticket_priorities,Priority,Priority,Integer
 	

where the second parameter is the name of the field in the
table, and the first is the prefix to add in front of the name
to generate the Ada constant’s name. The last parameter
should be either Integer or String, which influences the
way the value of the Ada constant is generated (surrounded
or not by quotes).

-var name,table,field,criteria,comment
This is similar to the -enum switch, but extracts a single
value from the database. Although applications should try
and depend as little as possible on such specific values, it is
sometimes unavoidable.
For instance, if we have a table in the table with the following
contents:� �

table staff
staff_id | login
0 | unassigned
1 | user1

 	
We could extract the id that helps detect unassigned tickets
with the following command line:� �
-var no_assign_id,staff,staff_id,"login=’unassigned’","help"
 	

which generates� �
No_Assigne_Id : constant := 0;
– help
 	

The application should use this constant rather than some
hard-coded string "unassigned" or a named constant with
the same value. The reason is that presumably the login will
be made visible somewhere to the user, and we could decide
to change it (or translate it to another language). In such a
case, the application would break. On the other hand, using

87

GNATColl: GNAT Reusable Components

the constant 0 which we just extracted will remain valid,
whatever the actual text we display for the user.

-text

Instead of creating Ada files to represent the database
schema, this switch will ask gnatcoll_db2ada to dump the
schema as text. This is in a form hopefully easy to parse auto-
matically, in case you have tools that need the schema infor-
mation from your database in a DBMS-independent manner.
See below for a description of the format.

-createdb
Instead of the usual default output, gnatcoll_db2ada will
output a set of SQL commands that can be used to re-create
the set of all tables in your schema. This does not create the
database itself (which might require special rights depending
on your DBMS), only the tables.

18.2.1 Textual description of database schema
gnatcoll_db2ada can either automatically extracts the database
schema from a running instance of your DBMS (see -dbname), or get the
schema from a text file (see -dbmodel). In the latter case, it can then
create the database for you.

This text file is better since you have more control over names (for
instance for foreign keys) and is slightly higher level.

This file is a collection of paragraphs, each of which relates to one
table or one SQL view in your database. The paragraphs start with a
line containing:� �

table ::= ’|’ (’ABSTRACT’)? (’TABLE’|’VIEW’) [’(’ supertable ’)’]
’|’ <name> ’|’ <name_row>

 	
"name" is the name of the table. The third pipe and third column

are optional, and should be used to specify the name for the element
represented by a single row. For instance, if the table is called "books",
the third column could contain "book". This is mostly used when gen-
erating high-level Ada code, an upcoming feature not yet available in
GNATCOLL.

If the first line starts with the keyword ABSTRACT, then no instance
of that table actually exists in the database. This is used in the context
of table inheritance, so define shared fields only once among multiple
tables.

88

Chapter 18: Database interface

The keyword TABLE can be followed by the name of a table from which
it inherits the fields. Currently, that supertable must be abstract, and
the fields declared in that table are simply duplicated in the new table.
For instance:� �

| ABSTRACT TABLE | parent | | |
| field1 | INTEGER | | |

| TABLE mytable(parent) | | | | |
| id | INTEGER | PK | | |

 	
The table mytable in fact has two columns, id and field1.
Each line must then start with a pipe character ("|"), and contain a

number of pipe-separated fields. The order of the fields is always given
by the following grammar:� �

fields ::= ’|’ <name> ’|’ <type>
’|’ (’PK’|’’|’NULL’|’NOT NULL’|’INDEX’) ’|’ [default] ’|’ [doc] ’|’

 	
The type of the fields is the SQL type ("INTEGER", "TEXT",...). The

tool will automatically convert these to Ada when generating Ada code. A
special type ("AUTOINCREMENT") is an integer that is automatically
incremented according to available ids in the table. The exact type used
will depend on the specific DBMS.

If the field is a foreign key (that is a value that must correspond to a
row in another table), you can use the special syntax� �

fk_type ::= ’FK’ <table_name> (<revert_name>)
 	
As you can see, the type of the field is not specified explicitly, but will

always be that of the foreign table’s primary key. With this syntax, the
foreign table must have a single field for its primary key.

In the future, gnatcoll will include a tool that generates an Ada API
that completly hides the underlying SQL commands. The "revert name"
argument is used in the context of that tool. Although you are encour-
aged to provide one, this is currently optional and will have no impact
on the output of the tool.

"revert name" is the name that will be generated in the Ada code for
the reverse relationship. For instance: assume a book is always found
in a library. If we have two tables "books" and "libraries", we would

89

GNATColl: GNAT Reusable Components

have one foreign key from "books" to "libraries", which, for each book,
indicates to which library it belongs. As a result, in the generated code,
it would be easy to use "mybook.Library" to get that library. But given a
library, we also want to be able to retrieve all its books with code similar
to "mylibrary.Books". The foreign key would be declared as such in the
books table:� �

table books | library | FK libraries(books) | NOT NULL | | where the book is |
 	
If the "revert name" is empty (the parenthesis are shown), no revert

relationship is generated. If the parenthesis and the revert name are
both omitted, a default name is generated.

The third column in the fields definition indicates whether we have
a primary key ("PK"), which must never be null. In other cases, the
column indicates whether the column can have null values (the default,
or explicitly "NULL"), or not ("NOT NULL"). If "INDEX" is specified,
an index will be created for that particular column. These are similar to
the corresponding SQL constraints.

Multiple keywords can be used if they are separated by commas.
Thus, "NOT NULL, INDEX" indicates a column that must be set by the
user, and for which an index is created to speed up look ups.

The fourth column gives the default value for the field, and is given
in SQL.

The fifth column contains documentation for the field (if any). This
documentation will be included in the generated code, so that IDEs can
provide useful tooltips when navigating your application’s code.

After all the fields have been defined, you can specify extract con-
straints on the table. In particular, if you have a foreign key to a table
that uses a tuple as its primary key, you can define that foreign key as� �

FK ::= ’|’ "FK:" ’|’ <table> ’|’ <field_names>* ’|’ <field_names>* ’|’

table tableA | FK: | tableB | fieldA1, fieldA2 | fieldB1, fieldB2 |
 	
18.2.2 Default output of gnatcoll db2ada
From the command line arguments, gnatcoll_db2ada will generate an
Ada package, which contains one type per table in the database. Each of
these types has a similar structure. The implementation details are not
shown here, since they are mostly irrelevant and might change. Cur-
rently, a lot of this code are types with discriminants. The latter are

90

Chapter 18: Database interface

access-to-string, to avoid duplicating strings in memory and allocat-
ing and freeing memory for these. This provides a better performance.� �

package Database is
type T_Ticket_Priorities (...) is new SQL_Table (...) with record
Priority : SQL_Field_Integer;
Name : SQL_Field_Text;
end record;

overriding function FK (Self : T_Ticket_Priorities; Foreign : SQL_Table’Class)
return SQL_Criteria;

Ticket_Priorities : constant T_Ticket_Priorities (...);
end Database;
 	
It provides a default instance of that type, which can be used to

write queries (see the next section). This type overrides one primitive
operation which is used to compute the foreign keys between that table
and any other table in the database (see Section 18.3 [Writing queries],
page 91).

Note that the fields which are generated for the table (our example
reuses the previously seen table ticket_priorities) are typed, which
as we will see provides a simple additional type safety for our SQL
queries.

18.3 Writing queries

The second part of the database support in GNATColl is a set of Ada
subprograms which help write SQL queries. Traditional ways to write
such queries have been through embedded SQL (which requires a pre-
processing phase and complicate the editing of source files in Ada-aware
editors), or through simple strings that are passed as is to the server.
In the latter case, the compiler can not do any verification on the string,
and errors such a missing parenthesis or misspelled table or field names
will not be detected until the code executes the query.

GNATColl tries to make sure that code that compiles contains syntac-
tically correct SQL queries and only reference existing tables and fields.
This of course does not ensure that the query is semantically correct, but
helps detect trivial errors as early as possible.

Such queries are thus written via calls to Ada subprograms, as in the
following example.

91

GNATColl: GNAT Reusable Components

� �
with GNATCOLL.SQL; use GNATCOLL.SQL;

with Database; use Database;
declare
Q : SQL_Query;
begin
Q := SQL_Select
(Fields => Max (Ticket_Priorities.Priority)
& Ticket_Priorities.Category,
From => Ticket_Priorities,
Where => Ticket_Priorities.Name /= "low",
Group_By => Ticket_Priorities.Category);
end
 	
The above example will return, for each type of priority (internal or

customer) the highest possible value. The interest of this query is left to
the user...

This is very similar to an actual SQL query. Field and table
names come from the package that was automatically generated by the
gnatcoll_db2ada tool, and therefore we know that our query is only ref-
erencing existing fields. The syntactic correctness is ensured by standard
Ada rules. The SQL_Select accepts several parameters corresponding
to the usual SQL attributes like GROUP BY, HAVING, ORDER BY and LIMIT.

The From parameter could be a list of tables if we need to join them
in some ways. Such a list is created with the overridden "&" operator,
just as for fields which you can see in the above example. GNATColl also
provides a Left_Join function to join two tables when the second might
have no matching field (see the SQL documentation).

Similar functions exist for SQL_Insert, SQL_Update and SQL_Delete.
Each of those is extensively documented in the ‘gnatcoll-sql.ads’ file.

It is worth noting that we do not have to write the query all at once.
In fact, we could build it depending on some other criteria. For instance,
imagine we have a procedure that does the query above, and omits the
priority specified as a parameter, or shows all priorities if the empty
string is passed. Such a procedure could be written as

92

Chapter 18: Database interface

� �
procedure List_Priorities (Omit : String := "") is
Q : SQL_Query;
C : SQL_Criteria := No_Criteria;
begin
if Omit /= "" then
C := Ticket_Priorities.Name /= Omit;
end if;
Q := SQL_Select
(Fields => ..., – as before
Where => C);
end;
 	
With such a code, it becomes easier to create queries on the fly than

it would be with directly writing strings.
The above call has not sent anything to the database yet, only created

a data structure in memory (more precisely a tree). In fact, we could be
somewhat lazy when writing the query and rely on auto-completion, as
in the following example:� �

Q := SQL_Select
(Fields => Max (Ticket_Priorities.Priority)
& Ticket_Priorities.Category,
Where => Ticket_Priorities.Name /= "low");

Auto_Complete (Q);
 	
This query is exactly the same as before. However, we did not have

to specify the list of tables (which GNATColl can compute on its own by
looking at all the fields referenced in the query), nor the list of fields in
the GROUP BY clause, which once again can be computed automatically
by looking at those fields that are not used in a SQL aggregate function.
This auto-completion helps the maintenance of those queries.

There is another case where GNATColl makes it somewhat easier to
write the queries, and that is to handle joins between tables. If your
schema was build with foreign keys, GNATColl can take advantage of
those.

For instance, imagine we have a table ticket. These tickets have
a priority, which is an integer id pointing to the ticket_priorities
table we saw previously. In SQL, this means that the ticket table has
a foreign key on the ticket_priorities table, which implies that any
priority set for a ticket must exist in the second table. Using an id
instead of the actual name of the priority in the ticket table means that

93

GNATColl: GNAT Reusable Components

it is easy to change the name of the priority, without impacting the rest
of the database.

Imagine, now, that a query needs to list all tickets with their priorities.
Since we want to show the output to the user, we do not want to show
the internal id, but the actual name of the priority. This would be done
with a query similar to:� �

Q := SQL_Select
(Fields => Ticket.Number & Ticket_Priorities.Name,
From => Ticket & Ticket_Priorities,
Where => Ticket.Priority = Ticket_Priorities.Priority);
 	
In fact, with the auto-completion, we could write it as� �
Q := SQL_Select
(Fields => Ticket.Number & Ticket_Priorities.Name,
Where => Ticket.Priority = Ticket_Priorities.Priority);
 	
The WHERE clause comes straight from the definition of the foreign

key. It can be shorten using the FK primitive operation that we saw was
generated in the Database package. The following example uses the
Ada05 dotted notation for the call to FK, but that is not mandatory, of
course.� �

Q := SQL_Select
(Fields => Ticket.Number & Ticket_Priorities.Name,
Where => Ticket.FK (Ticket_Priorities));
 	
One advantage is that we avoid possible errors in writing the join,

and if at some point the foreign key between the two tables involves
more fields, for instance, the query remains valid and we do not have to
change our code.

18.4 Executing queries

Once we have our query in memory, we need to pass it on to the
database server itself, and retrieve the results.

Executing is done through the GNATCOLL.SQL.Exec package, as in the
following example:

94

Chapter 18: Database interface

� �
declare
R : Forward_Cursor;
begin
Execute (Connection => DB, Result => R, Query => Q); end;
 	
This reuses the connection we have established previously (DB), and

sends it the query. The result of that query is then stored in R, to be used
later.

There are several versions of Execute. In particular, there are ver-
sions which do not have the R parameter. Some queries do not return
anything useful to our application (for instance a INSERT query), and
thus we can simplify the call.

Execute has an extra parameter Use_Cache, set to False by default.
If this parameter is true, and the exact same query has already been
executed before, its result will be reused without even contacting the
database server. The cache is automatically invalidated every hour in
any case. This cache is mostly useful for tables that act like enumeration
types, as we have seen before when discussing the -enum parameter
to ‘gnatcoll_db2ada’. In this case, the contents of the table changes
very rarely, and the cache can provide important speedups, whether the
server is local or distant. However, we recommend that you do actual
measurements to know whether this is indeed beneficial for you. You can
always invalidated the current cache with a call to Invalidate_Cache
to force the query to be done on the database server.

If for some reason the connection to the database is no longer valid
(a transient network problem for instance), GNATColl will attempt to
reconnect and re-execute your query transparently, so that your appli-
cation does not need to handle this case.

If your query produces an error (whether it is invalid, or any other
reason), a flag is toggled in the Connection parameter, which you can
query through the Success subprogram. As a result, a possible contin-
uation of the above code is:� �

if Success (DB) then
...
else
... an error occurred
end if

 	
GNATColl also tries to be helpful in the way it handles SQL transac-

tions. Such transactions are a way to execute your query in a sandbox,

95

GNATColl: GNAT Reusable Components

ie without affecting the database itself until you decide to COMMIT the
query. Should you decide to abort it (or ROLLBACK as they say for SQL),
then it is just as if nothing happened. As a result, it is in general recom-
mended to do all your changes to the database from within a transaction.
If one of the queries fail because of invalid parameters, you just rollback
and report the error to the user. The database is still left in a consis-
tent state. As an additional benefit, executing within a transaction is
sometimes faster, as is the case for PostgreSQL for instance.

To help with this, GNATColl will automatically start a transaction
the first time you edit the database. It is then your responsibility to
either commit or rollback the transaction when you are done modifying.
A lot of database engines (among which PostgreSQL) will not accept any
further change to the database if one command in the transaction has
failed. To take advantage of this, GNATColl will therefore not even send
the command to the server if it is in a failure state.

Here is code sample that modifies the database:� �
Execute (DB, SQL_Insert (...));

– The code above starts a transaction and inserts a new row

Execute (DB, SQL_Insert (...));
– Executed in the same transaction

Commit_Or_Rollback (DB);
– Commit if both insertion succeeded, rollback otherwise
– You can still check Success(DB) afterward if needed
 	

18.5 Prepared queries
The previous section showed how to execute queries and statements.

But these were in fact relatively inefficient.
With most DBMS servers, it is possible to compile the query once on

the server, and then reuse that prepared query to significantly speed up
later searches when you reuse that prepared statement.

It is of course pretty rare to run exactly the same query or statement
multiple times with the same values. For instance, the following query
would not give much benefit if it was prepared, since you are unlikely to
reuse it exactly as is later on.� �

SELECT * FROM data WHERE id=1

 	

96

Chapter 18: Database interface

SQL (and GNATColl) provide a way to parameterize queries. Instead
of hard-code the value 1 in the example above, you would in fact use a
special character (unfortunately specific to the DBMS you are interfacing
to) to indicate that the value will be provided when the query is actually
executed. For instance, sqlite would use:� �

SELECT * FROM data WHERE id=?

 	
You can write such a query in a DBMS-agnostic way by using GNAT-

Coll. Assuming you have automatically generated ‘database.ads’ by
using gnatcoll_db2ada, here is the corresponding Ada code:� �

with Database; use Database;

Q : constant SQL_Query :=
SQL_Select
(Fields => Data.Id & Data.Name
From => Data,
Where => Data.Id = Integer_Param (1));

 	
GNATColl provides a number of functions (one per type of field) to

indicate that the value is currently unbound. Integer_Param, Text_
Param, Boolean_Param,. . . all take a single argument, which is the index
of the corresponding parameter. A query might need several parameters,
and each should have a different index. On the other hand, the same
parameter could be used in several places in the query.

Although the query above could be executed as is by providing the
values for the parameters, it is more efficient, as we mentioned at the
beginning, to compile it on the server. In theory, this preparation is done
within the context of a database connection (thus cannot be done for a
global variable, where we do not have connections yet, and where the
query might be executed by any connection later on).

GNATColl will let you indicate that the query should be prepared.
This basically sets up some internal data, but does not immediately
compile it on the server. The first time the query is executed in a given
connection, though, it will first be compiled. The result of this compila-
tion will be reused for that connection from then on. If you are using a
second connection, it will do its own compilation of the query.

So in our example we would add the following global variable:

97

GNATColl: GNAT Reusable Components

� �
P : constant Prepared_Statement :=
Prepare (Q, On_Server => True);

 	
Two comments about this code:
• You do not have to use global variables. You can prepare the state-

ment locally in a subprogram. A Prepared_Statement is a reference
counted type, that will automatically free the memory on the server
when it goes out of scope.

• Here, we prepared the statement on the server. If we had specified
On_Server => False, we would still have sped things up, since Q
would be converted to a string that can be sent to the DBMS, and
from then on reused that string (note that this conversion is specific
to each DBMS, since they don’t always represent things the same
way, in particular parameters, as we have seen above).

Now that we have a prepared statement, we can simply execute it. If
the statement does not require parameters, the usual Fetch and Execute
subprograms have versions that work exactly the same with prepared
statements. They also accept a Params parameter that contains the
parameter to pass to the server. A number of "+" operators are provided
to create those parameters.� �

declare
F : Forward_Cursor;
begin
F.Fetch (DB, P, Params => (1 => +2));
F.Fetch (DB, P, Params => (1 => +3));
end;

 	
Note that for string parameters, the "+" operator takes an access to a

string. This is for efficiency, to avoid allocating memory and copying the
string, and is safe because the parameters are only needed while Fetch
executes (even for a Forward_Cursor.

There is one last property on Prepared_Statements: when you pre-
pare them, you can pass a Use_Cache => True parameter. When this
is used, the result of the query will be cached by GNATColl, and reuse
when the query is executed again later. This is the fastest way to get the
query, but should be used with care, since it will not detect changes in
the database. The local cache is automatically invalidated every hour, so
the query will be performed again at most one hour later. Local caching

98

Chapter 18: Database interface

is disabled when you execute a query with parameters. In this case,
prepare the query on the server which will still be reasonably fast.

Finally, here are some examples of timings. The exact timing are ir-
relevant, but it is interesting to look at the different between the various
scenarios. Each of them performs 100 000 simple queries similar to the
one used in this section.� �

Not preparing the query, using Direct_Cursor:
4.05s

Not preparing the query, using Forward_Cursor, and only
retrieving the first row:
3.69s

Preparing the query on the client (On_Server => False),
with a Direct_Cursor. This saves the whole GNATCOLL.SQL
manipulations and allocations:
2.50s

Preparing the query on the server, using Direct_Cursor:
0.55s

Caching the query locally (Use_Cache => True):
0.13s

 	
18.6 Getting results

One you have executed a SELECT query, you generally need to examine
the rows that were returned by the database server. This is done in a
loop, as in� �

while Has_Row (R) loop
Put_Line ("Max priority=" & Integer_Value (R, 0)’Img
& " for category=" & Value (R, 1));
Next (R);
end loop;
 	
You can only read one row at a time, and as soon as you have moved

to the next row, there is no way to access a previously fetched row.
This is the greatest common denominator between the various database

99

GNATColl: GNAT Reusable Components

systems. In particular, it proves efficient, since only one row needs to be
kept in memory at any point in time.

For each row, we then call one of the Value or *Value functions which
return the value in a specific row and a specific column.

18.7 Writing your own cursors

The cursor interface we just saw is low-level, in that you get access
to each of the fields one by one. Often, when you design your own
application, it is better to abstract the database interface layer as much
as possible. As a result, it is often better to create record or other Ada
types to represent the contents of a row.

Fortunately, this can be done very easily based on the low-level inter-
face provided by GNATCOLL. Here is a code example that shows how
this can be done.� �

type My_Row is record
Id : Integer;
Name : Unbounded_String;
end record;

type My_Cursor is new Forward_Cursor with null record;
function Element (Self : My_Cursor) return My_Row;
function Do_Query return My_Cursor;

 	
The idea is that you create a function that does the query for you

(based on some parameters that are not show here), and then returns
a cursor over the resulting set of rows. For each row, you can use the
Element function to get an Ada record for easier manipulation.

Let’s first see how these types would be used in practice:� �
declare
C : My_Cursor := Do_Query (...);
begin
while Has_Row (C) loop
Put_Line ("Id = " & Element (C).Id);
Next (C);
end loop;
end;
 	

100

Chapter 18: Database interface

So the loop itself is the same as before, except we no longer access each
of the individual fields directly. This means that if the query changes to
return more fields (or the same fields in a differente order for instance),
the code in your application does not need to change.

The specific implementation of the subprograms could be similar to
the following subprograms (we do not detail the writing of the SQL query
itself, which of course is specific to your application)� �

function Do_Query return My_Cursor is
Q : constant SQL_Query :=;
R : My_Cursor;
begin
Execute (DB, R, Q);
return R;
end Do_Query;

function Element (Self : My_Cursor) return My_Row is
begin
return My_Row’
(Id => Integer_Value (Self, 0),
Name => To_Unbounded_String (Value (Self, 1)));
end Element;
 	
There is one more complex case though. It might happen that an

element needs access to several rows to fill the Ada record. For instance,
if we are writing a CRM application and query the contacts and the
companies they work for, it is possible that a contact works for several
companies. The result of the SQL query would then look like this:� �

contact_id | company_id
1 | 100
1 | 101
2 | 100

 	
The sample code shown above will not work in this case, since Element

is not allowed to modify the cursor. In such a case, we need to take a
slightly different approach.

101

GNATColl: GNAT Reusable Components

� �
type My_Cursor is new Forward_Cursor with null record;

function Do_Query return My_Cursor; – as before
procedure Element_And_Next
(Self : in out My_Cursor; Value : out My_Row);

 	
where Element_And_Next will fill Value and call Next as many times

as needed. On exit, the cursor is left on the next row to be processed.
The usage then becomes� �

while Has_Row (R) loop
Element_And_Next (R, Value);
end loop;

 	
To prevent the user from using Next incorrectly, you should proba-

bly override Next with a procedure that does nothing (or raises a Pro-
gram Error maybe). Make sure that in Element_And_Next you are call-
ing the inherited function, not the one you have overridden, though.

There is still one more catch. The user might depend on the two
subprograms Rows_Count and Processed_Rows to find out how many
rows there were in the query. In practice, he will likely be interested in
the number of distinct contacts in the tables (2 in our example) rather
than the number of rows in the result (3 in the example). You thus need
to also override those two subprograms to return correct values.

18.8 Creating your own SQL types

GNATColl comes with a number of predefined types that you can use
in your queries. ‘gnatcoll_db2ada’ will generate a file using any of these
predefined types, based on what is defined in your actual database.

But sometimes, it is convenient to define your own SQL types to better
represent the logic of your application. For instance, you might want to
define a type that would be for a Character field, rather than use the
general SQL_Field_Text, just so that you can write statements like:

102

Chapter 18: Database interface

� �
declare
C : Character := ’A’;
Q : SQL_Query;
begin
Q := SQL_Select (.., Where => Table.Field = C);
end

 	
This is fortunately easily achieved by instantiating one generic pack-

age, as such� �
with GNATCOLL.SQL_Impl; use GNATCOLL.SQL_Impl;

function To_SQL (C : Character) return String is
begin
return "’" & C & "’";
end To_SQL;

package Character_Fields is new Field_Types (Character, To_SQL);
type SQL_Field_Character is new Character_Fields.Field
with null record;

 	
This automatically makes available both the field type (which you

can use in your database description, as ‘gnatcoll_db2ada’ would do,
but also all comparison operators like <, >, =, and so on, both to compare
with another character field, or with Character Ada variable. Likewise,
this makes available the assignment operator = so that you can create
INSERT statements in the database.

Finally, the package Character_Fields contain other generic pack-
ages which you can instantiate to bind SQL operators and functions that
are either predefined in SQL and have no equivalent in GNATColl yet, or
that are functions that you have created yourself on your DBMS server.

See the specs of GNATCOLL.SQL_Impl for more details. This package
is only really useful when writing your own types, since otherwise you
just have to use GNATCOLL.SQL to write the actual queries.

18.9 Query logs
In Chapter 4 [Logging information], page 31 we discovered the logging

module of GNATColl. The database interface uses this module to log the
queries that are sent to the server.

103

GNATColl: GNAT Reusable Components

If you activate traces in your application, the user can then activate
one of the following trace handles to get more information on the ex-
change that exists between the database and the application. As we saw
before, the output of these traces can be sent to the standard output, a
file, the system logs,...

The following handles are provided:
• SQL.ERROR This stream is activated by default. Any error re-

turned by the database (connection issues, failed transactions,...)
will be logged on this stream

• SQL This stream logs all queries that are not SELECT queries, ie
mostly all queries that actually modify the database

• SQL.SELECT This stream logs all select queries. It is separated
from SQL because very often you will be mostly interested in the
queries that impact the database, and logging all selects can gener-
ate a lot of output.

18.10 Tasks and databases

As we saw before, the database interface can be used in multi-tasking
applications. In such a case, it is recommended that each thread has its
own connection to the database, since that is more efficient and you do
not have to handle locking.

However, this assumes that the database server itself is thread safe,
which most often is the case, but not for sqlite for instance. In such a
case, you can only connect one per application to the database, and you
will have to manage a queue of queries somehow.

18.11 Creating and inspecting databases

The API described earlier in this chapter allows you to query and
modify and existing database. However, you first need to create that
database.

In most cases, this creation needs to be done by a system admin-
istrator with the appropriate rights, and thus will be done as part of
the deployement of your application, not the application itself. This is
particularly true for client-server databases like PostgreSQL.

But in some simpler cases where the database is only manipulated
by your application, and potentially only needs to exist while your appli-
cation is running (often the case for sqlite), your application could be
responsible for creating the database.

104

Chapter 18: Database interface

The package GNATCOLL.SQL.Inspect provides a number of subpro-
grams to do so, as well as to query the schema of the database (which
tables exist, what are their fields,...)

The database schema is represented by a specific data structure in
memory. This structure can be initialized through different means:
• either by parsing a file.

The format of this file was described above (see Section 18.2 [Data-
base schema monitoring], page 85).

• or by querying an existing database.
This is not the case we are interested in here, but provides a simple
way to get started with GNATColl. In particular, you could query
your existing database, then dump the schema into a file compatible
with the GNATCOLL format. From then on, you would manipulate
that file if you need to perform changes in your schema.
This technics is not as accurate as using file. For instance, there
is no way to guess that a table only exists to implement a many-
to-many relationship between two other tables. The file provides a
high-level view that describes this.

Once you have the schema in memory, you can perform various ac-
tions:
• dump it into a file

Of course, this is only useful if the schema was loaded from some
other means.

• create a database with it
GNATColl will emit the appropriate SQL commands to create the
corresponding tables in the database. For this, you will need a
connection to the database (see the examples above). Note that in
the case of sqlite, the database need not exist first, and it will be
automatically created if needed.

This input/output mechanism is implemented through an abstract
Schema_IO tagged type, with various concrete implementations (either
File_Schema_IO to read or write from/to a file, or DB_Schema_IO to read
or write from/to a database).

See the specs for more detail on these subprograms.

105

GNATColl: GNAT Reusable Components

106

Chapter 18: Index

Index

.

.gnatdebug . 32

A
ADA DEBUG FILE 32

B
Boyer-Moore . 51

C
class diagram, script module 19
clear on Console . 12
clear_cache . 10
Create . 34

D
decorator, log . 35

E
echo . 10
email . 55
encoding . 55
Exception . 11
exec_in_console . 11

F
flush on Console . 12

G
Get_Instance on Virtual_Console . . . 17
gnat sources . 3
gnat.traces.syslog . 39
gnat util . 3
gnatcoll-python.ads 10
GNATCOLL.Email 56
GNATCOLL.Email.Mailboxes 57
GNATCOLL.Email.Parser 56
GNATCOLL.Email.Utils 55
GNATCOLL.Projects 3

GNATCOLL.Python 10

I
Insert_Error on Virtual_Console . . . 17

Insert_Log on Virtual_Console 17

Insert_Prompt on Virtual_Console . . 17

Insert_Text on Virtual_Console 17

Invalid_Argument 11

isatty on Console 12

L
load . 9

M
MIME . 55

Missing_Arguments 11

mmap. 47

P
projects . 3

pygtk . 11

Python . 10

pywidget on AnyClass 11

R
ravenscar . 59

read on Console . 13

Read on Virtual_Console 17

readline on Console 13

reference counting 73

reference, weak . 74

Register_Command 22

Register_Python_Scripting 16

Register_Shell_Scripting 15

Register_Standard_Classes 16

107

GNATColl: GNAT Reusable Components

S
search . 51

Set_As_Default_Console on
Virtual_Console 17

Set_Data_Primitive on Virtual_Console

. 17

syslog . 39

T

templates . 53
test driver . 8
testing your application 8

U
Unexpected_Exception 11

W
write on Console . 12

108

	Introduction
	Building the GNAT Reusable Components
	Configuring the build environment
	Building GNATColl
	Installing GNATColl

	Embedding script languages
	Supported languages
	The Shell language
	The Python language
	Classes exported to all languages

	Scripts API
	Initializing the scripting module
	Create the scripts repository
	Loading the scripting language
	Exporting standard classes

	Creating interactive consoles
	Exporting classes and methods
	Classes diagram
	Exporting functions
	Exporting classes
	Reusing class instances

	Executing startup scripts
	Debugging scripts

	Logging information
	Configuring traces
	Using the traces module
	Log decorators
	Defining custom trace streams
	Logging to syslog
	Dynamically disabling features

	Monitoring memory
	Reading and Writing Files
	Searching strings
	The templates module
	Managing Email
	Message formats
	Parsing messages
	Parsing mailboxes
	Creating messages

	Ravenscar Patterns
	Tasks
	Servers
	Timers

	Managing Memory: The storage pools
	Manipulating Files
	Filesystems abstraction
	file names encoding

	Remote filesystems
	Filesystem factory
	Transport layer

	Virtual files
	GtkAda support for virtual files

	Three state logic
	Geometry
	Reference counting
	Configuration files
	Projects
	Database interface
	Supported database systems
	Database schema monitoring
	Textual description of database schema
	Default output of gnatcoll_db2ada

	Writing queries
	Executing queries
	Prepared queries
	Getting results
	Writing your own cursors
	Creating your own SQL types
	Query logs
	Tasks and databases
	Creating and inspecting databases

	Index

