
BOOK PUBLISHING TOOL

Performance Co-Pilot

PCP 3
pcp-programmers-guide

Performance Co-Pilot Programmer's Guide
Edit ion 3

PCP 3 pcp-programmers-guide

Performance Co-Pilot Programmer's Guide
Edit ion 3

Performance Co-Pilo t
Red Hat PCP
pcp@oss.sgi.com

Legal Notice

Copyright © 2014 This material may only be distributed subject to the terms and conditions set
forth in the GNU Free Documentation License (GFDL), V1.2 or later (the latest version is
presently available at http://www.gnu.org/licenses/fdl.txt).

Abstract
This guide describes how to use the APIs o ffered by the Performance Co-Pilo t (PCP)
performance analysis too lkit.

http://www.gnu.org/licenses/fdl.txt

. .

. .

. .

. .

Table of Contents

T able of Cont ent s

⁠About T his Guide
⁠1. What This Guid e Co ntains
⁠2. Aud ience fo r This Guid e
⁠3. Related Reso urces
⁠4. Man Pag es
⁠5. Web Site
⁠6. Co nventio ns
⁠7. Read er Co mments

⁠Chapt er 1. Programming Performance Co- Pilot
⁠1.1. PCP Architecture

⁠1.1.1. Distrib uted Co llectio n
⁠1.1.2. Name Sp ace
⁠1.1.3. Distrib uted PMNS
⁠1.1.4. Retro sp ective So urces o f Perfo rmance Metrics

⁠1.2. Overview o f Co mp o nent So ftware
⁠1.2.1. Ap p licatio n and Ag ent Develo p ment

⁠1.3. PMDA Develo p ment
⁠1.3.1. Overview
⁠1.3.2. Build ing a PMDA

⁠1.3.2.1. In-Pro cess (DSO) Metho d
⁠1.3.2.2. Daemo n Pro cess Metho d

⁠1.4. Client Develo p ment and PMAPI
⁠1.5. Lib rary Reentrancy and Thread ed Ap p licatio ns

⁠Chapt er 2. Writ ing a PMDA
⁠2.1. Imp lementing a PMDA
⁠2.2. PMDA Architecture

⁠2.2.1. Overview
⁠2.2.2. DSO PMDA
⁠2.2.3. Daemo n PMDA
⁠2.2.4. Caching PMDA

⁠2.3. Do mains, Metrics, and Instances
⁠2.3.1. Overview
⁠2.3.2. Do mains
⁠2.3.3. Metrics

⁠2.3.3.1. Data Structures
⁠2.3.3.2. Semantics

⁠2.3.4. Instances
⁠2.3.4.1. Instance Id entificatio n
⁠2.3.4.2. N Dimensio nal Data
⁠2.3.4.3. Data Structures

⁠2.4. O ther Issues
⁠2.4.1. Extracting the Info rmatio n
⁠2.4.2. Latency and Thread s o f Co ntro l
⁠2.4.3. Name Sp ace
⁠2.4.4. PMDA Help Text
⁠2.4.5. Manag ement o f Evo lutio n within a PMDA

⁠2.5. PMDA Interface
⁠2.5.1. Overview

⁠2.5.1.1. Trivial PMDA

2

6
6
6
6
7
7
7
8

9
9

10
11
11
12
12
12
13
13
14
14
14
14
15

16
16
17
17
18
19
20
20
20
21
22
22
24
25
25
26
26
28
29
29
30
31
32
33
33
34

T able of Cont ent s

5

. .

⁠2.5.1.1. Trivial PMDA
⁠2.5.1.2. Simp le PMDA
⁠2.5.1.3. s imp le_sto re in the Simp le PMDA
⁠2.5.1.4. Return Co d es fo r p md aFetch Callb acks

⁠2.5.2. PMDA Structures
⁠2.6. Initial iz ing a PMDA

⁠2.6.1. Overview
⁠2.6.2. Co mmo n Initializatio n

⁠2.6.2.1. Trivial PMDA
⁠2.6.2.2. Simp le PMDA

⁠2.6.3. Daemo n Initializatio n
⁠2.7. Testing and Deb ug g ing a PMDA

⁠2.7.1. Overview
⁠2.7.2. Deb ug g ing Info rmatio n
⁠2.7.3. d b p md a Deb ug Util i ty

⁠2.8. Integ ratio n o f a PMDA
⁠2.8.1. Install ing a PMDA
⁠2.8.2. Up g rad ing a PMNS to Inc lud e Metrics fro m a New PMDA
⁠2.8.3. Remo ving a PMDA
⁠2.8.4. Co nfig uring PCP To o ls

⁠Chapt er 3. PMAPI- - T he Performance Met rics API
⁠3.1. Naming and Id entifying Perfo rmance Metrics
⁠3.2. Perfo rmance Metric Instances
⁠3.3. Current PMAPI Co ntext
⁠3.4. Perfo rmance Metric Descrip tio ns
⁠3.5. Perfo rmance Metrics Values
⁠3.6. Perfo rmance Event Metrics

⁠3.6.1. Event Mo nito r Co nsid eratio ns
⁠3.6.2. Event Co llecto r Co nsid eratio ns

⁠3.7. PMAPI Pro g ramming Style and Interactio n
⁠3.7.1. Variab le Leng th Arg ument and Results Lis ts
⁠3.7.2. Pytho n Sp ecific Issues
⁠3.7.3. PMAPI Erro r Hand ling

⁠3.8. PMAPI Pro ced ural Interface
⁠3.8.1. PMAPI Name Sp ace Services

⁠3.8.1.1. p mGetChild ren Functio n
⁠3.8.1.2. p mGetChild renStatus Functio n
⁠3.8.1.3. p mGetPMNSLo catio n Functio n
⁠3.8.1.4. p mLo ad NameSp ace Functio n
⁠3.8.1.5. p mLo o kup Name Functio n
⁠3.8.1.6. p mNameAll Functio n
⁠3.8.1.7. p mNameID Functio n
⁠3.8.1.8. p mTraversePMNS Functio n
⁠3.8.1.9. p mUnlo ad NameSp ace Functio n

⁠3.8.2. PMAPI Metrics Descrip tio n Services
⁠3.8.2.1. p mLo o kup Desc Functio n
⁠3.8.2.2. p mLo o kup InDo mText Functio n
⁠3.8.2.3. p mLo o kup Text Functio n

⁠3.8.3. PMAPI Instance Do main Services
⁠3.8.3.1. p mGetInDo m Functio n
⁠3.8.3.2. p mLo o kup InDo m Functio n
⁠3.8.3.3. p mNameInDo m Functio n

⁠3.8.4. PMAPI Co ntext Services

34
35
37
39
40
42
43
43
43
44
45
46
46
47
48
48
48
51
51
51

53
53
53
55
55
58
60
62
64
65
65
65
66
67
67
67
68
68
69
69
69
70
70
70
71
71
71
72
72
72
72
73
73

PCP 3 Performance Co- Pilot ™ Programmer's Guide

6

⁠3.8.4. PMAPI Co ntext Services
⁠3.8.4.1. p mNewCo ntext Functio n
⁠3.8.4.2. p mDestro yCo ntext Functio n
⁠3.8.4.3. p mDup Co ntext Functio n
⁠3.8.4.4. p mUseCo ntext Functio n
⁠3.8.4.5. p mWhichCo ntext Functio n
⁠3.8.4.6. p mAd d Pro fi le Functio n
⁠3.8.4.7. p mDelPro fi le Functio n
⁠3.8.4.8. p mSetMo d e Functio n
⁠3.8.4.9. p mReco nnectCo ntext Functio n
⁠3.8.4.10. p mGetCo ntextHo stName Functio n

⁠3.8.5. PMAPI Timezo ne Services
⁠3.8.5.1. p mNewCo ntextZo ne Functio n
⁠3.8.5.2. p mNewZo ne Functio n
⁠3.8.5.3. p mUseZo ne Functio n
⁠3.8.5.4. p mWhichZo ne Functio n

⁠3.8.6. PMAPI Metrics Services
⁠3.8.6.1. p mFetch Functio n
⁠3.8.6.2. p mFreeResult Functio n
⁠3.8.6.3. p mSto re Functio n

⁠3.8.7. PMAPI Fetchg ro up Services
⁠3.8.7.1. Fetchg ro up setup
⁠3.8.7.2. Fetchg ro up o p eratio n
⁠3.8.7.3. Fetchg ro up shutd o wn

⁠3.8.8. PMAPI Reco rd -Mo d e Services
⁠3.8.8.1. p mReco rd Ad d Ho st Functio n
⁠3.8.8.2. p mReco rd Co ntro l Functio n
⁠3.8.8.3. p mReco rd Setup Functio n

⁠3.8.9. PMAPI Archive-Sp ecific Services
⁠3.8.9.1. p mGetArchiveLab el Functio n
⁠3.8.9.2. p mGetArchiveEnd Functio n
⁠3.8.9.3. p mGetInDo mArchive Functio n
⁠3.8.9.4. p mLo o kup InDo mArchive Functio n
⁠3.8.9.5. p mNameInDo mArchive Functio n
⁠3.8.9.6. p mFetchArchive Functio n

⁠3.8.10. PMAPI Time Co ntro l Services
⁠3.8.11. PMAPI Ancil lary Sup p o rt Services

⁠3.8.11.1. p mGetCo nfig Functio n
⁠3.8.11.2. p mErrStr Functio n
⁠3.8.11.3. p mExtractValue Functio n
⁠3.8.11.4. p mCo nvScale Functio n
⁠3.8.11.5. p mUnitsStr Functio n
⁠3.8.11.6. p mIDStr Functio n
⁠3.8.11.7. p mInDo mStr Functio n
⁠3.8.11.8. p mTyp eStr Functio n
⁠3.8.11.9. p mAto mStr Functio n
⁠3.8.11.10. p mNumb erStr Functio n
⁠3.8.11.11. p mPrintValue Functio n
⁠3.8.11.12. p mflush Functio n
⁠3.8.11.13. p mp rintf Functio n
⁠3.8.11.14. p mSo rtInstances Functio n
⁠3.8.11.15. p mParseInterval Functio n
⁠3.8.11.16. p mParseMetricSp ec Functio n

⁠3.9. PMAPI Pro g ramming Issues and Examp les

73
74
75
75
75
76
76
76
76
78
79
79
79
80
80
80
81
81
82
82
83
83
84
85
85
85
86
86
88
89
89
90
90
90
91
91
92
92
92
93
94
95
95
95
96
96
97
97
98
98
99
99
99

100

⁠About T his Guide

7

. .

. .

. .

⁠3.9. PMAPI Pro g ramming Issues and Examp les
⁠3.9.1. Symb o lic Asso ciatio n b etween a Metric 's Name and Value
⁠3.9.2. Initial iz ing New Metrics
⁠3.9.3. Iterative Pro cessing o f Values
⁠3.9.4. Acco mmo d ating Pro g ram Evo lutio n
⁠3.9.5. Hand ling PMAPI Erro rs
⁠3.9.6. Co mp iling and Linking PMAPI Ap p licatio ns

⁠Chapt er 4. Inst rument ing Applicat ions
⁠4.1. Ap p licatio n and Perfo rmance Co -Pilo t Relatio nship
⁠4.2. Perfo rmance Instrumentatio n and Samp ling
⁠4.3. MMV PMDA Desig n
⁠4.4. Memo ry Map p ed Values API

⁠4.4.1. Starting and Sto p p ing Instrumentatio n
⁠4.4.2. Getting a Hand le o n Map p ed Values
⁠4.4.3. Up d ating Map p ed Values
⁠4.4.4. Elap sed Time Measures

⁠4.5. Perfo rmance Instrumentatio n and Tracing
⁠4.6. Trace PMDA Desig n

⁠4.6.1. Ap p licatio n Interactio n
⁠4.6.2. Samp ling Techniq ues

⁠4.6.2.1. Simp le Perio d ic Samp ling
⁠4.6.2.2. Ro ll ing -Wind o w Perio d ic Samp ling
⁠4.6.2.3. Ro ll ing -Wind o w Perio d ic Samp ling Examp le

⁠4.6.3. Co nfig uring the Trace PMDA
⁠4.7. Trace API

⁠4.7.1. Transactio ns
⁠4.7.2. Po int Tracing
⁠4.7.3. Ob servatio ns and Co unters
⁠4.7.4. Co nfig uring the Trace Lib rary

⁠Appendix A. Acronyms

⁠Index

100
100
101
102
103
103
105

106
107
107
108
108
108
111
112
113
113
114
114
114
115
115
116
117
118
118
118
119
119

121

121

PCP 3 Performance Co- Pilot ™ Programmer's Guide

8

About This Guide

This guide describes how to program the Performance Co-Pilot (PCP) performance analysis toolkit.
PCP provides a systems-level suite of tools that cooperate to deliver distributed performance
monitoring and performance management services spanning hardware platforms, operating systems,
service layers, database internals, user applications and distributed architectures.

PCP is an open source, cross-platform software package - customizations, extensions, source code
inspection, and tinkering in general is actively encouraged.

“About This Guide” includes short descriptions of the chapters in this book, directs you to additional
sources of information, and explains typographical conventions.

1. What This Guide Contains

This guide contains the following chapters:

Chapter 1, Programming Performance Co-Pilot, contains a thumbnail sketch of how to program the
various PCP components.

Chapter 2, Writing a PMDA, describes how to write Performance Metrics Domain Agents (PMDAs)
for PCP.

Chapter 3, PMAPI--The Performance Metrics API, describes the interface that allows you to design
custom performance monitoring tools.

Chapter 4, Instrumenting Applications, introduces techniques, tools and interfaces to assist with
exporting performance data from within applications.

Appendix A, Acronyms, provides a comprehensive list of the acronyms used in this guide, in the
PCP man pages, and in the release notes.

2. Audience for This Guide

The guide describes the programming interfaces to Performance Co-Pilot (PCP) for the following
intended audience:

Performance analysts or system administrators who want to extend or customize performance
monitoring tools available with PCP

Developers who wish to integrate performance data from within their applications into the PCP
framework

This book is written for those who are competent with the C programming language, the UNIX or the
Linux operating systems, and the target domain from which the desired performance metrics are to be
extracted. Familiarity with the PCP tool suite is assumed.

3. Related Resources

The Performance Co-Pilot User's and Administrator's Guide is a companion document to the Performance
Co-Pilot Programmer's Guide, and is intended for system administrators and performance analysts who
are directly using and administering PCP installations.

⁠Chapt er 1. Programming Performance Co- Pilot

9

The Performance Co-Pilot Tutorials and Case Studies provides a series of real-world examples of using
various PCP tools, and lessons learned from deploying the toolkit in production environments. It
serves to provide reinforcement of the general concepts discussed in the other two books with
additional case studies, and in some cases very detailed discussion of specifics of individual tools.

Additional resources include man pages and the project web site.

4. Man Pages

The operating system man pages provide concise reference information on the use of commands,
subroutines, and system resources. There is usually a man page for each PCP command or
subroutine. To see a list of all the PCP man pages, start from the following command:

 man PCPIntro

Each man page usually has a "SEE ALSO" section, linking to other, related entries.

To see a particular man page, supply its name to the man command, for example:

 man pcp

The man pages are arranged in different sections separating commands, programming interfaces,
and so on. For a complete list of manual sections on a platform enter the command:

 man man

When referring to man pages, this guide follows a standard convention: the section number in
parentheses follows the item. For example, pminfo(1) refers to the man page in section 1 for the
pminfo command.

5. Web Site

The following web site is accessible to everyone:

URL

Descript ion

ht tp://pcp.io

PCP is open source software released under the GNU General Public License (GPL) and
GNU Lesser General Public License (LGPL)

6. Convent ions

The following conventions are used throughout this document:
Convent ion

Meaning

${PCP_VARIABLE}

A brace-enclosed all-capital-letters syntax indicates a variable that has been sourced from
the global /etc/pcp.conf file. These special variables indicate parameters that affect all

PCP 3 Performance Co- Pilot ™ Programmer's Guide

10

http://pcp.io

PCP commands, and are likely to be different between platforms.

command

This fixed-space font denotes literal items such as commands, files, routines, path names,
signals, messages, and programming language structures.

variable

Italic typeface denotes variable entries and words or concepts being defined.

user input

This bold, fixed-space font denotes literal items that the user enters in interactive sessions.
(Output is shown in nonbold, fixed-space font.)

[]

Brackets enclose optional portions of a command or directive line.

. . .

Ellipses indicate that a preceding element can be repeated.

ALL CAPS

All capital letters denote environment variables, operator names, directives, defined
constants, and macros in C programs.

()

Parentheses that follow function names surround function arguments or are empty if the
function has no arguments; parentheses that follow commands surround man page section
numbers.

7. Reader Comments

If you have comments about the technical accuracy, content, or organization of this document,
contact the PCP maintainers using either the email address or the web site listed earlier.

We value your comments and will respond to them promptly.

⁠Chapt er 1. Programming Performance Co- Pilot

11

Chapter 1. Programming Performance Co-Pilot

Performance Co-Pilot (PCP) provides a systems-level suite of tools that cooperate to deliver
distributed, integrated performance management services. PCP is designed for the in-depth analysis
and sophisticated control that are needed to understand and manage the hardest performance
problems in the most complex systems.

PCP provides unparalleled power to quickly isolate and understand performance behavior, resource
utilization, activity levels and performance bottlenecks.

Performance data may be collected and exported from multiple sources, most notably the hardware
platform, the operating system kernel, layered services, and end-user applications.

There are several ways to extend PCP by programming certain of its components:

 By writing a Performance Metrics Domain Agent (PMDA) to collect performance metrics from an
uncharted performance domain (Chapter 2, Writing a PMDA)

 By creating new analysis or visualization tools using documented functions from the
Performance Metrics Application Programming Interface (PMAPI) (Chapter 3, PMAPI--The
Performance Metrics API)

 By adding performance instrumentation to an application using facilities from PCP libraries,
which offer both sampling and event tracing models.

Finally, the topic of customizing an installation is covered in the chapter on customizing and
extending PCP service in the Performance Co-Pilot User's and Administrator's Guide.

1.1. PCP Architecture

This section gives a brief overview of PCP architecture. For an explanation of terms and acronyms,
refer to Appendix A, Acronyms.

PCP consists of numerous monitoring and collecting tools. Monitoring tools such as pmval
and pminfo report on metrics, but have minimal interaction with target systems. Collection
tools, called PMDAs, extract performance values from target systems, but do not provide user
interfaces.

Systems supporting PCP services are broadly classified into two categories:

Collector

Hosts that have the PMCD and one or more PMDAs running to collect and export
performance metrics

Monitor

Hosts that import performance metrics from one or more collector hosts to be consumed by
tools to monitor, manage, or record the performance of the collector hosts

Each PCP enabled host can operate as a collector, or a monitor, or both.

Figure 1.1, “PCP Global Process Architecture” shows the architecture of PCP. The monitoring tools
consume and process performance data using a public interface, the Performance Metrics
Application Programming Interface (PMAPI).

PCP 3 Performance Co- Pilot ™ Programmer's Guide

12

Below the PMAPI level is the PMCD process, which acts in a coordinating role, accepting requests
from clients, routing requests to one or more PMDAs, aggregating responses from the PMDAs, and
responding to the requesting client.

Each performance metric domain (such as the operating system kernel or a database management
system) has a well-defined name space for referring to the specific performance metrics it knows how
to collect.

PMDA PMDA PMDAPMDA

pmcd

Mo nito r

Ker nel DB MS L ayer ed
s er vi c e

XYZ

End -us er
ap p l i c ati o n

AB C

Mo nito r

PMAPI PMAPI

Figure 1.1. PCP G lobal Process Architecture

1.1.1. Dist ributed Collect ion

The performance metrics collection architecture is distributed, in the sense that any monitoring tool
may be executing remotely. However, a PMDA is expected to be running on the operating system for
which it is collecting performance measurements; there are some notable PMDAs such as Cisco and
Cluster that are exceptions, and collect performance data from remote systems.

As shown in Figure 1.2, “Process Structure for Distributed Operation” , monitoring tools communicate
only with PMCD. The PMDAs are controlled by PMCD and respond to requests from the monitoring
tools that are forwarded by PMCD to the relevant PMDAs on the collector host.

⁠Chapt er 1. Programming Performance Co- Pilot

13

PMDA PMDA PMDAPMDA

p mc d

PMDA

Mo ni to r Mo ni to r Mo ni to r

p mc d

Remo te Ho s t L o c al Ho s t

Figure 1.2. Process St ructure for Dist ributed Operat ion

The host running the monitoring tools does not require any collection tools, including PMCD, since
all requests for metrics are sent to the PMCD process on the collector host.

The connections between monitoring tools and PMCD processes are managed in libpcp, below the
PMAPI level; see the PMAPI(3) man page. Connections between PMDAs and PMCD are managed by
the PMDA functions; see the PMDA(3) and pmcd(1) man pages. There can be multiple monitor
clients and multiple PMDAs on the one host, but there may be only one PMCD process.

1.1.2. Name Space

Each PMDA provides a domain of metrics, whether they be for the operating system, a database
manager, a layered service, or an application module. These metrics are referred to by name inside
the user interface, and with a numeric Performance Metric Identifier (PMID) within the underlying
PMAPI.

The PMID consists of three fields: the domain, the cluster, and the item number of the metric. The
domain is a unique number assigned to each PMDA. For example, two metrics with the same domain
number must be from the same PMDA. The cluster and item numbers allow metrics to be easily
organized into groups within the PMDA, and provide a hierarchical taxonomy to guarantee
uniqueness within each PMDA.

The Performance Metrics Name Space (PMNS) describes the exported performance metrics, in
particular the mapping from PMID to external name, and vice-versa.

1.1.3. Dist ributed PMNS

Performance metric namespace (PMNS) operations are directed by default to the host or archive that
is the source of the desired performance metrics.

In Figure 1.2, “Process Structure for Distributed Operation” , both Performance Metrics Collection
Daemon (PMCD) processes would respond to PMNS queries from monitoring tools by referring to
their local PMNS. If different PMDAs were installed on the two hosts, then the PMNS used by each
PMCD would be different, to reflect variations in available metrics on the two hosts.

PCP 3 Performance Co- Pilot ™ Programmer's Guide

14

Although extremely rarely used, the -n pmnsfile command line option may be used with many PCP
monitoring tools to force use of a local PMNS file in preference to the PMNS at the source of the
metrics.

1.1.4. Ret rospect ive Sources of Performance Met rics

The distributed collection architecture described in the previous section is used when PMAPI clients
are requesting performance metrics from a real-time or live source.

The PMAPI also supports delivery of performance metrics from a historical source in the form of a
PCP archive log. Archive logs are created using the pmlogger utility, and are replayed in an
architecture as shown in Figure 1.3, “Architecture for Retrospective Analysis” .

PCP Archive Log

Monitor

PMAPI

PCP Archive Log

Figure 1.3. Architecture for Ret rospect ive Analysis

1.2. Overview of Component Software

Performance Co-Pilot (PCP) is composed of text-based tools, optional graphical tools, and related
commands. Each tool or command is fully documented by a man page. These man pages are named
after the tools or commands they describe, and are accessible through the man command. For
example, to see the pminfo(1) man page for the pminfo command, enter this command:

man pminfo

A list of PCP developer tools and commands, grouped by functionality, is provided in the following
section.

1.2.1. Applicat ion and Agent Development

The following PCP tools aid the development of new programs to consume performance data, and
new agents to export performance data within the PCP framework:

chkhelp

⁠Chapt er 1. Programming Performance Co- Pilot

15

Checks the consistency of performance metrics help database files.

dbpmda

Allows PMDA behavior to be exercised and tested. It is an interactive debugger for PMDAs.

mmv

Is used to instrument applications using Memory Mapped Values (MMV). These are values
that are communicated with pmcd instantly, and very efficiently, using a shared memory
mapping. It is a program instrumentation library.

newhelp

Generates the database files for one or more source files of PCP help text.

pmapi

Defines a procedural interface for developing PCP client applications. It is the Performance
Metrics Application Programming Interface (PMAPI).

pmclient

Is a simple client that uses the PMAPI to report some high-level system performance metrics.
The source code for pmclient is included in the distribution.

pmda

Is a library used by many shipped PMDAs to communicate with a pmcd process. It can
expedite the development of new and custom PMDAs.

pmgenmap

Generates C declarations and cpp macros to aid the development of customized programs
that use the facilities of PCP. It is a program development tool.

1.3. PMDA Development

A collection of Performance Metrics Domain Agents (PMDAs) are provided with PCP to extract
performance metrics. Each PMDA encapsulates domain-specific knowledge and methods about
performance metrics that implement the uniform access protocols and functional semantics of the
PCP. There is one PMDA for the operating system, another for process specific statistics, one each
for common DBMS products, and so on. Thus, the range of performance metrics can be easily
extended by implementing and integrating new PMDAs. Chapter 2, Writing a PMDA, is a step-by-step
guide to writing your own PMDA.

1.3.1. Overview

Once you are familiar with the PCP and PMDA frameworks, you can quickly implement a new PMDA
with only a few data structures and functions. This book contains detailed discussions of PMDA
architecture and the integration of PMDAs into the PCP framework. This includes integration with
PMCD. However, details of extracting performance metrics from the underlying instrumentation vary
from one domain to another and are not covered in this book.

PCP 3 Performance Co- Pilot ™ Programmer's Guide

16

A PMDA is responsible for a set of performance metrics, in the sense that it must respond to requests
from PMCD for information about performance metrics, instance domains, and instantiated values.
The PMCD process generates requests on behalf of monitoring tools that make requests using
PMAPI functions.

You can incorporate new performance metrics into the PCP framework by creating a PMDA, then
reconfiguring PMCD to communicate with the new PMDA.

1.3.2. Building a PMDA

A PMDA interacts with PMCD across one of several well-defined interfaces and protocol mechanisms.
These implementation options are described in the Performance Co-Pilot User's and Administrator's
Guide.

Note

It is strongly recommended that code for a new PMDA be based on the source of one of the
existing PMDAs below the ${PCP_PMDAS_DIR} directory.

1.3.2.1. In-Pro cess (DSO) Met ho d

This method of building a PMDA uses a Dynamic Shared Object (DSO) that is attached by PMCD,
using the platform-specific shared library manipulation interfaces such as dlopen(3), at
initialization time. This is the highest performance option (there is no context switching and no
interprocess communication (IPC) between the PMCD and the PMDA), but is operationally intractable
in some situations. For example, difficulties arise where special access permissions are required to
read the instrumentation behind the performance metrics (pmcd does not run as root), or where the
performance metrics are provided by an existing process with a different protocol interface. The DSO
PMDA effectively executes as part of PMCD; so great care is required when crafting a PMDA in this
manner. Calls to exit(1) in the PMDA, or a library it uses, would cause PMCD to exit and end
monitoring of that host. Other implications are discussed in Section 2.2.3, “Daemon PMDA” .

1.3.2.2. Daemo n Pro cess Met ho d

Functionally, this method may be thought of as a DSO implementation with a standard main routine
conversion wrapper so that communication with PMCD uses message passing rather than direct
procedure calls. For some very basic examples, see the ${PCP_PMDAS_DIR}/trivial/trivial.c
and ${PCP_PMDAS_DIR}/simple/simple.c source files.

The daemon PMDA is actually the most common, because it allows multiple threads of control,
greater (different user) privileges when executing, and provides more resilient error encapsulation
than the DSO method.

Note

Of particular interest for daemon PMDA writers, the ${PCP_PMDAS_DIR}/simple PMDA has
implementations in C, Perl and Python.

1.4. Client Development and PMAPI

⁠Chapt er 2. Writ ing a PMDA

17

Application developers are encouraged to create new PCP client applications to monitor, display,
and analyze performance data in a manner suited to their particular site, application suite, or
information processing environment.

PCP client applications are programmed using the Performance Metrics Application Programming
Interface (PMAPI), documented in Chapter 3, PMAPI--The Performance Metrics API. The PMAPI, which
provides performance tool developers with access to all of the historical and live distributed services
of PCP, is the interface used by the standard PCP utilities.

1.5. Library Reent rancy and Threaded Applicat ions

While the core PCP library (libpcp) is thread safe, the layered PMDA library (libpcp_pmda) is not.
This is a deliberate design decision to trade-off commonly required performance and efficiency
against the less common requirement for multiple threads of control to call the PCP libraries.

The simplest and safest programming model is to designate at most one thread to make calls into the
PCP PMDA library.

PCP 3 Performance Co- Pilot ™ Programmer's Guide

18

Chapter 2. Writing a PMDA

This chapter constitutes a programmer's guide to writing a Performance Metrics Domain Agent
(PMDA) for Performance Co-Pilot (PCP).

The presentation assumes the developer is using the standard PCP libpcp_pmda library, as
documented in the PMDA(3) and associated man pages.

2.1. Implement ing a PMDA

The job of a PMDA is to gather performance data and report them to the Performance Metrics
Collection Daemon (PMCD) in response to requests from PCP monitoring tools routed to the PMDA
via PMCD.

An important requirement for any PMDA is that it have low latency response to requests from PMCD.
Either the PMDA must use a quick access method and a single thread of control, or it must have
asynchronous refresh and two threads of control: one for communicating with PMCD, the other for
updating the performance data.

The PMDA is typically acting as a gateway between the target domain (that is, the performance
instrumentation in an application program or service) and the PCP framework. The PMDA may
extract the information using one of a number of possible export options that include a shared
memory segment or mmap file; a sequential log file (where the PMDA parses the tail of the log file to
extract the information); a snapshot file (the PMDA rereads the file as required); or application-
specific communication services (IPC).

Note

The choice of export methodology is typically determined by the source of the instrumentation
(the target domain) rather than by the PMDA.

Procedure 2.1, “Creating a PMDA” describes the suggested steps for designing and implementing a
PMDA:

Procedure 2.1. Creat ing a PMDA

1. Determine how to extract the metrics from the target domain.

2. Select an appropriate architecture for the PMDA (daemon or DSO, IPC, pthreads or single
threaded).

3. Define the metrics and instances that the PMDA will support.

4. Implement the functionality to extract the metric values.

5. Assign Performance Metric Identifiers (PMIDs) for the metrics, along with names for the metrics
in the Performance Metrics Name Space (PMNS). These concepts will be further expanded in
Section 2.3, “Domains, Metrics, and Instances”

6. Specify the help file and control data structures for metrics and instances that are required by
the standard PMDA implementation library functions.

7. Write code to supply the metrics and associated information to PMCD.

⁠Chapt er 2. Writ ing a PMDA

19

8. Implement any PMDA-specific callbacks, and PMDA initialization functions.

9. Exercise and test the PMDA with the purpose-built PMDA debugger; see the dbpmda(1) man
page.

10. Install and connect the PMDA to a running PMCD process; see the pmcd(1) man page.

11. Configure or develop tools to use the new metrics. For examples of visualization tools, see
the pmchart(1) and pmgadgets(1) man pages. For examples of text-based tools, see the
pminfo(1) and pmval(1) man pages.

12. Where appropriate, define pmie rule templates suitable for alerting or notification systems.
For more information, see the pmie(1) and pmieconf(1) man pages.

13. Where appropriate, define pmlogger configuration templates suitable for creating PCP
archives containing the new metrics. For more information, see the pmlogconf(1) and
pmlogger(1) man pages.

2.2. PMDA Architecture

This section discusses the two methods of connecting a PMDA to a PMCD process:

As a separate process using some interprocess communication (IPC) protocol.

As a dynamically attached library (that is, a dynamic shared object or DSO).

2.2.1. Overview

All PMDAs are launched and controlled by the PMCD process on the local host. PMCD receives
requests from the monitoring tools and forwards them to the PMDAs. Responses, when required, are
returned through PMCD to the clients. The requests fall into a small number of categories, and the
PMDA must handle each request type. For a DSO PMDA, each request type corresponds to a method
in the agent. For a daemon PMDA, each request translates to a message or protocol data unit (PDU)
that may be sent to a PMDA from PMCD.

For a daemon PMDA, the following request PDUs must be supported:
PDU_FETCH

Request for metric values (see the pmFetch(3) man page.)

PDU_PROFILE

A list of instances required for the corresponding metrics in subsequent fetches (see the
pmAddProfile(3) man page).

PDU_INSTANCE_REQ

Request for a particular instance domain for instance descriptions (see the
pmGetInDom(3) man page).

PDU_DESC_REQ

Request for metadata describing metrics (see the pmLookupDesc(3) man page).

PDU_TEXT_REQ

Request for metric help text (see the pmLookupText(3) man page).

PCP 3 Performance Co- Pilot ™ Programmer's Guide

20

PDU_RESULT

Values to store into metrics (see the pmStore(3) man page).

The following request PDUs may optionally be supported:
PDU_PMNS_NAMES

Request for metric names, given one or more identifiers (see the pmLookupName(3) man
page.)

PDU_PMNS_CHILD

A list of immediate descendent nodes of a given namespace node (see the
pmGetChildren(3) man page).

PDU_PMNS_TRAVERSE

Request for a particular sub-tree of a given namespace node (see the
pmTraversePMNS(3) man page).

PDU_PMNS_IDS

Perform a reverse name lookup, mapping a metric identifier to a name (see the
pmNameID(3) man page).

PDU_AUTH

Handle connection attributes (key/value pairs), such as client credentials and other
authentication information (see the __pmParseHostAttrsSpec(3) man page).

Each PMDA is associated with a unique domain number that is encoded in the domain field of metric
and instance identifiers, and PMCD uses the domain number to determine which PMDA can handle
the components of any given client request.

2.2.2. DSO PMDA

Each PMDA is required to implement a function that handles each of the request types. By
implementing these functions as library functions, a PMDA can be implemented as a dynamically
shared object (DSO) and attached by PMCD at run time with a platform-specific call, such as
dlopen; see the dlopen(3) man page. This eliminates the need for an IPC layer (typically a pipe)
between each PMDA and PMCD, because each request becomes a function call rather than a
message exchange. The required library functions are detailed in Section 2.5, “PMDA Interface” .

A PMDA that interacts with PMCD in this fashion must abide by a formal initialization protocol so that
PMCD can discover the location of the library functions that are subsequently called with function
pointers. When a DSO PMDA is installed, the PMCD configuration file, ${PCP_PMCDCONF_PATH}, is
updated to reflect the domain and name of the PMDA, the location of the shared object, and the name
of the initialization function. The initialization sequence is discussed in Section 2.6, “ Initializing a
PMDA” .

As superuser, install the simple PMDA as a DSO, as shown in Example 2.1, “Simple PMDA as a
DSO” , and observe the changes in the PMCD configuration file. The output may differ slightly
depending on the operating system you are using, any other PMDAs you have installed or any
PMCD access controls you have in place.

Example 2.1. Simple PMDA as a DSO

⁠Chapt er 2. Writ ing a PMDA

21

 cat ${PCP_PMCDCONF_PATH}
Performance Metrics Domain Specifications

This file is automatically generated during the build
Name Id IPC IPC Params File/Cmd
pmcd 2 dso pmcd_init
${PCP_PMDAS_DIR}/pmcd/pmda_pmcd.so
linux 60 dso linux_init
${PCP_PMDAS_DIR}/linux/pmda_linux.so
proc 3 pipe binary
${PCP_PMDAS_DIR}/linux/pmda_proc.so -d 3
simple 254 dso simple_init
${PCP_PMDAS_DIR}/simple/pmda_simple.so

As can be seen from the contents of ${PCP_PMCDCONF_PATH}, the DSO version of the simple PMDA
is in a library named pmda_simple.so and has an initialization function called simple_init. The
domain of the simple PMDA is 254, as shown in the column headed Id.

Note

For some platforms the DSO file name will not be pmda_simple.so. On Mac OS X it is
pmda_simple.dylib and on Windows it is pmda_simple.dll.

2.2.3. Daemon PMDA

A DSO PMDA provides the most efficient communication between the PMDA and PMCD. This
approach has some disadvantages resulting from the DSO PMDA being the same process as PMCD:

An error or bug that causes a DSO PMDA to exit also causes PMCD to exit, which affects all
connected client tools.

There is only one thread of control in PMCD; as a result, a computationally expensive PMDA, or
worse, a PMDA that blocks for I/O, adversely affects the performance of PMCD.

PMCD runs as the "pcp" user; so all DSO PMDAs must also run as this user.

A memory leak in a DSO PMDA also causes a memory leak for PMCD.

Consequently, many PMDAs are implemented as a daemon process.

The libpcp_pmda library is designed to allow simple implementation of a PMDA that runs as a
separate process. The library functions provide a message passing layer acting as a generic
wrapper that accepts PDUs, makes library calls using the standard DSO PMDA interface, and sends
PDUs. Therefore, you can implement a PMDA as a DSO and then install it as either a daemon or a
DSO, depending on the presence or absence of the generic wrapper.

The PMCD process launches a daemon PMDA with fork and execv (or CreateProcess on
Windows). You can easily connect a pipe to the PMDA using standard input and output. The PMCD
process may also connect to a daemon PMDA using IPv4 or IPv6 TCP/IP, or UNIX domain sockets if
the platform supports that; see the tcp(7), ip(7), ipv6(7) or unix(7) man pages.

As superuser, install the simple PMDA as a daemon process as shown in Example 2.2, “Simple
PMDA as a Daemon” . Again, the output may differ due to operating system differences, other PMDAs
already installed, or access control sections in the PMCD configuration file.

PCP 3 Performance Co- Pilot ™ Programmer's Guide

22

Example 2.2. Simple PMDA as a Daemon

The specification for the simple PMDA now states the connection type of pipe to PMCD and the
executable image for the PMDA is ${PCP_PMDAS_DIR}/simple/pmdasimple, using domain
number 253.

cd ${PCP_PMDAS_DIR}/simple
./Install
...
Install simple as a daemon or dso agent? [daemon] daemon
PMCD should communicate with the daemon via pipe or socket? [pipe]
pipe
...
cat ${PCP_PMCDCONF_PATH}
Performance Metrics Domain Specifications

This file is automatically generated during the build
Name Id IPC IPC Params File/Cmd
pmcd 2 dso pmcd_init
${PCP_PMDAS_DIR}/pmcd/pmda_pmcd.so
linux 60 dso linux_init
${PCP_PMDAS_DIR}/linux/pmda_linux.so
proc 3 pipe binary
${PCP_PMDAS_DIR}/linux/pmda_proc.so -d 3
simple 253 pipe binary
${PCP_PMDAS_DIR}/simple/pmdasimple -d 253

2.2.4. Caching PMDA

When either the cost or latency associated with collecting performance metrics is high, the PMDA
implementer may choose to trade off the currency of the performance data to reduce the PMDA
resource demands or the fetch latency time.

One scheme for doing this is called a caching PMDA, which periodically instantiates values for the
performance metrics and responds to each request from PMCD with the most recently instantiated (or
cached) values, as opposed to instantiating current values on demand when the PMCD asks for
them.

The Cisco PMDA is an example of a caching PMDA. For additional information, see the contents of
the ${PCP_PMDAS_DIR}/cisco directory and the pmdacisco(1) man page.

2.3. Domains, Met rics, and Instances

This section defines metrics and instances, discusses how they should be designed for a particular
target domain, and shows how to implement support for them.

The examples in this section are drawn from the trivial and simple PMDAs. Refer to the
${PCP_PMDAS_DIR}/trivial and ${PCP_PMDAS_DIR}/simple directories, respectively, where
both binaries and source code are available.

2.3.1. Overview

⁠Chapt er 2. Writ ing a PMDA

23

Domains are autonomous performance areas, such as the operating system or a layered service or a
particular application. Metrics are raw performance data for a domain, and typically quantify activity
levels, resource utilization or quality of service. Instances are sets of related metrics, as for multiple
processors, or multiple service classes, or multiple transaction types.

PCP employs the following simple and uniform data model to accommodate the demands of
performance metrics drawn from multiple domains:

Each metric has an identifier that is unique across all metrics for all PMDAs on a particular host.

Externally, metrics are assigned names for user convenience--typically there is a 1:1 relationship
between a metric name and a metric identifier.

The PMDA implementation determines if a particular metric has a singular value or a set of (zero
or more) values. For instance, the metric hinv.ndisk counts the number of disks and has only
one value on a host, whereas the metric disk.dev.total counts disk I/O operations and has
one value for each disk on the host.

If a metric has a set of values, then members of the set are differentiated by instances. The set of
instances associated with a metric is an instance domain. For example, the set of metrics
disk.dev.total is defined over an instance domain that has one member per disk spindle.

The selection of metrics and instances is an important design decision for a PMDA implementer. The
metrics and instances for a target domain should have the following qualities:

Obvious to a user

Consistent across the domain

Accurately representative of the operational and functional aspects of the domain

For each metric, you should also consider these questions:

How useful is this value?

What units give a good sense of scale?

What name gives a good description of the metric's meaning?

Can this metric be combined with another to convey the same useful information?

As with all programming tasks, expect to refine the choice of metrics and instances several times
during the development of the PMDA.

2.3.2. Domains

Each PMDA must be uniquely identified by PMCD so that requests from clients can be efficiently
routed to the appropriate PMDA. The unique identifier, the PMDA's domain, is encoded within the
metrics and instance domain identifiers so that they are associated with the correct PMDA, and so
that they are unique, regardless of the number of PMDAs that are connected to the PMCD process.

The default domain number for each PMDA is defined in ${PCP_VAR_DIR}/pmns/stdpmid. This
file is a simple table of PMDA names and their corresponding domain number. However, a PMDA
does not have to use this domain number--the file is only a guide to help avoid domain number
clashes when PMDAs are installed and activated.

PCP 3 Performance Co- Pilot ™ Programmer's Guide

24

The domain number a PMDA uses is passed to the PMDA by PMCD when the PMDA is launched.
Therefore, any data structures that require the PMDA's domain number must be set up when the
PMDA is initialized, rather than declared statically. The protocol for PMDA initialization provides a
standard way for a PMDA to implement this run-time initialization.

Tip

Although uniqueness of the domain number in the ${PCP_PMCDCONF_PATH} control file used
by PMCD is all that is required for successful starting of PMCD and the associated PMDAs,
the developer of a new PMDA is encouraged to add the default domain number for each new
PMDA to the ${PCP_VAR_DIR}/pmns/stdpmid.local file and then to run the
Make.stdpmid script in ${PCP_VAR_DIR}/pmns to recreate
${PCP_VAR_DIR}/pmns/stdpmid; this file acts as a repository for documenting the known
default domain numbers.

2.3.3. Met rics

A PMDA provides support for a collection of metrics. In addition to the obvious performance metrics,
and the measures of time, activity and resource utilization, the metrics should also describe how the
target domain has been configured, as this can greatly affect the correct interpretation of the
observed performance. For example, metrics that describe network transfer rates should also
describe the number and type of network interfaces connected to the host (hinv.ninterface,
network.interface.speed, network.interface.duplex, and so on)

In addition, the metrics should describe how the PMDA has been configured. For example, if the
PMDA was periodically probing a system to measure quality of service, there should be metrics for
the delay between probes, the number of probes attempted, plus probe success and failure counters.
It may also be appropriate to allow values to be stored (see the pmstore(1) man page) into the
delay metric, so that the delay used by the PMDA can be altered dynamically.

2.3.3.1. Dat a St ruct ures

Each metric must be described in a pmDesc structure; see the pmLookupDesc(3) man page:

typedef struct {
 pmID pmid; /* unique identifier */
 int type; /* base data type */
 pmInDom indom; /* instance domain */
 int sem; /* semantics of value */
 pmUnits units; /* dimension and units */
} pmDesc;

This structure contains the following fields:

pmid

A unique identifier, Performance Metric Identifier (PMID), that differentiates this metric from
other metrics across the union of all PMDAs

type

A data type indicator showing whether the format is an integer (32 or 64 bit, signed or
unsigned); float; double; string; or arbitrary aggregate of binary data

indom

⁠Chapt er 2. Writ ing a PMDA

25

An instance domain identifier that links this metric to an instance domain

sem

An encoding of the value's semantics (counter, instantaneous, or discrete)

units

A description of the value's units based on dimension and scale in the three orthogonal
dimensions of space, time, and count (or events)

Note

This information can be observed for metrics from any active PMDA using pminfo command
line options, for example:

 $ pminfo -d -m network.interface.out.drops

 network.interface.out.drops PMID: 60.3.11
 Data Type: 64-bit unsigned int InDom: 60.3 0xf000003
 Semantics: counter Units: count

Symbolic constants of the form PM_TYPE_*, PM_SEM_*, PM_SPACE_*, PM_TIME_*, and
PM_COUNT_* are defined in the <pcp/pmapi.h> header file. You may use them to initialize the
elements of a pmDesc structure. The pmID type is an unsigned integer that can be safely cast to a
__pmID_int structure, which contains fields defining the metric's (PMDA's) domain, cluster, and
item number as shown in Example 2.3, “ __pmID_int Structure” :

Example 2.3. __pmID_int St ructure

typedef struct {
 int flag:1;
 unsigned int domain:9;
 unsigned int cluster:12;
 unsigned int item:10;
} __pmID_int;

For additional information, see the <pcp/impl.h> file.

The flag field should be ignored. The domain number should be set at run time when the PMDA is
initialized. The PMDA_PMID macro defined in <pcp/pmapi.h> can be used to set the cluster and
item fields at compile time, as these should always be known and fixed for a particular metric.

Note

The three components of the PMID should correspond exactly to the three-part definition of the
PMID for the corresponding metric in the PMNS described in Section 2.4.3, “Name Space” .

A table of pmdaMetric structures should be defined within the PMDA, with one structure per metric

PCP 3 Performance Co- Pilot ™ Programmer's Guide

26

as shown in Example 2.4, “ pmdaMetric Structure” .

Example 2.4. pmdaMetric St ructure

typedef struct {
 void *m_user; /* for users external use */
 pmDesc m_desc; /* metric description */
} pmdaMetric;

This structure contains a pmDesc structure and a handle that allows PMDA-specific structures to be
associated with each metric. For example, m_user could be a pointer to a global variable containing
the metric value, or a pointer to a function that may be called to instantiate the metric's value.

The trivial PMDA, shown in Example 2.5, “Trivial PMDA” , has only a singular metric (that is, no
instance domain):

Example 2.5. Trivial PMDA

static pmdaMetric metrictab[] = {
/* time */
 { NULL,
 { PMDA_PMID(0, 1), PM_TYPE_U32, PM_INDOM_NULL, PM_SEM_INSTANT,
 PMDA_PMUNITS(0, 1, 0, 0, PM_TIME_SEC, 0) }, },
};

This single metric (trivial.time) has the following:

A PMID with a cluster of 0 and an item of 1. Note that this is not yet a complete PMID, the
domain number which identifies the PMDA will be combined with it at runtime.

An unsigned 32-bit integer (PM_TYPE_U32)

A singular value and hence no instance domain (PM_INDOM_NULL)

An instantaneous semantic value (PM_SEM_INSTANT)

Dimension “ time” and the units “seconds”

2.3.3.2. Semant ics

The metric's semantics describe how PCP tools should interpret the metric's value. The following are
the possible semantic types:

Counter (PM_SEM_COUNTER)

 Instantaneous value (PM_SEM_INSTANT)

Discrete value (PM_SEM_DISCRETE)

A counter should be a value that monotonically increases (or monotonically decreases, which is less
likely) with respect to time, so that the rate of change should be used in preference to the actual
value. Rate conversion is not appropriate for metrics with instantaneous values, as the value is a
snapshot and there is no basis for assuming any values that might have been observed between

⁠Chapt er 2. Writ ing a PMDA

27

snapshots. Discrete is similar to instantaneous; however, once observed it is presumed the value will
persist for an extended period (for example, system configuration, static tuning parameters and most
metrics with non-numeric values).

For a given time interval covering six consecutive timestamps, each spanning two units of time, the
metric values in Example 2.6, “Effect of Semantics on a Metric” are exported from a PMDA (“N/A”
implies no value is available):

Example 2.6. Ef fect o f Semant ics on a Metric

Timestamps: 1 3 5 7 9 11
Value: 10 30 60 80 90 N/A

The default display of the values would be as follows:

Timestamps: 1 3 5 7 9 11
Semantics:
Counter N/A 10 15 10 5 N/A
Instantaneous 10 30 60 80 90 N/A
Discrete 10 30 60 80 90 90

Note that these interpretations of metric semantics are performed by the monitor tool, automatically,
before displaying a value and they are not transformations that the PMDA performs.

2.3.4. Instances

Singular metrics have only one value and no associated instance domain. Some metrics contain a
set of values that share a common set of semantics for a specific instance, such as one value per
processor, or one value per disk spindle, and so on.

Note

The PMDA implementation is solely responsible for choosing the instance identifiers that
differentiate instances within the instance domain. The PMDA is also responsible for ensuring
the uniqueness of instance identifiers in any instance domain, as described in Section 2.3.4.1,
“ Instance Identification” .

2.3.4.1. Inst ance Ident ificat io n

Consistent interpretation of instances and instance domains require a few simple rules to be followed
by PMDA authors. The PMDA library provides a series of pmdaCache routines to assist.

Each internal instance identifier (numeric) must be a unique 31-bit number.

The external instance name (string) must be unique.

When the instance name contains a space, the name to the left of the first space (the short name)
must also be unique.

Where an external instance name corresponds to some object or entity, there is an expectation
that the association between the name and the object is fixed.

PCP 3 Performance Co- Pilot ™ Programmer's Guide

28

It is preferable, although not mandatory, for the association between and external instance name
(string) and internal instance identifier (numeric) to be persistent.

2.3.4.2. N Dimensio nal Dat a

Where the performance data can be represented as scalar values (singular metrics) or one-
dimensional arrays or lists (metrics with an instance domain), the PCP framework is more than
adequate. In the case of metrics with an instance domain, each array or list element is associated
with an instance from the instance domain.

To represent two or more dimensional arrays, the coordinates must be one of the following:

Mapped onto one dimensional coordinates.

Enumerated into the Performance Metrics Name Space (PMNS).

For example, this 2 x 3 array of values called M can be represented as instances 1,..., 6 for a metric M:

 M[1] M[2] M[3]
 M[4] M[5] M[6]

Or they can be represented as instances 1, 2, 3 for metric M1 and instances 1, 2, 3 for metric M2:

 M1[1] M1[2] M1[3]
 M2[1] M2[2] M2[3]

The PMDA implementer must decide and consistently export this encoding from the N-dimensional
instrumentation to the 1-dimensional data model of the PCP.

In certain special cases (for example, such as for a histogram), it may be appropriate to export an
array of values as raw binary data (the type encoding in the descriptor is PM_TYPE_AGGREGATE).
However, this requires the development of special PMAPI client tools, because the standard PCP
tools have no knowledge of the structure and interpretation of the binary data. The usual issues of
platform-depdendence must also be kept in mind for this case - endianness, word-size, alignment
and so on - the (possibly remote) special PMAPI client tools may need this information in order to
decode the data successfully.

2.3.4.3. Dat a St ruct ures

If the PMDA is required to support instance domains, then for each instance domain the unique
internal instance identifier and external instance identifier should be defined using a pmdaInstid
structure as shown in Example 2.7, “ pmdaInstid Structure” :

Example 2.7. pmdaInstid St ructure

typedef struct {
 int i_inst; /* internal instance identifier */
 char *i_name; /* external instance identifier */
} pmdaInstid;

The i_inst instance identifier must be a unique integer within a particular instance domain.

The complete instance domain description is specified in a pmdaIndom structure as shown in
Example 2.8, “ pmdaIndom Structure” :

⁠Chapt er 2. Writ ing a PMDA

29

Example 2.8. pmdaIndom St ructure

typedef struct {
 pmInDom it_indom; /* indom, filled in */
 int it_numinst; /* number of instances */
 pmdaInstid *it_set; /* instance identifiers */
} pmdaIndom;

The it_indom element contains a pmInDom that must be unique across every PMDA. The other
fields of the pmdaIndom structure are the number of instances in the instance domain and a pointer
to an array of instance descriptions.

Example 2.9, “ __pmInDom_int Structure” shows that the pmInDom can be safely cast to
__pmInDom_int, which specifies the PMDA's domain and the instance number within the PMDA:

Example 2.9. __pmInDom_int St ructure

typedef struct {
 int flag:1;
 unsigned int domain:9; /* the administrative PMD */
 unsigned int serial:22; /* unique within PMD */
} __pmInDom_int;

As with metrics, the PMDA domain number is not necessarily known until run time; so the domain
field must be set up when the PMDA is initialized.

For information about how an instance domain may also be associated with more than one metric,
see the pmdaInit(3) man page.

The simple PMDA, shown in Example 2.10, “Simple PMDA” , has five metrics and two instance
domains of three instances.

Example 2.10. Simple PMDA

/*
 * list of instances
 */
static pmdaInstid color[] = {
 { 0, “red” }, { 1, “green” }, { 2, “blue” }
};
static pmdaInstid *timenow = NULL;
static unsigned int timesize = 0;
/*
 * list of instance domains
 */
static pmdaIndom indomtab[] = {
#define COLOR_INDOM 0
 { COLOR_INDOM, 3, color },
#define NOW_INDOM 1
 { NOW_INDOM, 0, NULL },

PCP 3 Performance Co- Pilot ™ Programmer's Guide

30

};
/*
 * all metrics supported in this PMDA - one table entry for each
 */
static pmdaMetric metrictab[] = {
/* numfetch */
 { NULL,
 { PMDA_PMID(0, 0), PM_TYPE_U32, PM_INDOM_NULL, PM_SEM_INSTANT,
 PMDA_PMUNITS(0, 0, 0, 0, 0, 0) }, },
/* color */
 { NULL,
 { PMDA_PMID(0, 1), PM_TYPE_32, COLOR_INDOM, PM_SEM_INSTANT,
 PMDA_PMUNITS(0, 0, 0, 0, 0, 0) }, },
/* time.user */
 { NULL,
 { PMDA_PMID(1, 2), PM_TYPE_DOUBLE, PM_INDOM_NULL,
PM_SEM_COUNTER,
 PMDA_PMUNITS(0, 1, 0, 0, PM_TIME_SEC, 0) }, },
/* time.sys */
 { NULL,
 { PMDA_PMID(1,3), PM_TYPE_DOUBLE, PM_INDOM_NULL, PM_SEM_COUNTER,
 PMDA_PMUNITS(0, 1, 0, 0, PM_TIME_SEC, 0) }, },
/* now */
 { NULL,
 { PMDA_PMID(2,4), PM_TYPE_U32, NOW_INDOM, PM_SEM_INSTANT,
 PMDA_PMUNITS(0, 0, 0, 0, 0, 0) }, },
};

The metric simple.color is associated, via COLOR_INDOM, with the first instance domain listed in
indomtab. PMDA initialization assigns the correct domain portion of the instance domain identifier
in indomtab[0].it_indom and metrictab[1].m_desc.indom. This instance domain has three
instances: red, green, and blue.

The metric simple.now is associated, via NOW_INDOM, with the second instance domain listed in
indomtab. PMDA initialization assigns the correct domain portion of the instance domain identifier
in indomtab[1].it_indom and metrictab[4].m_desc.indom. This instance domain is
dynamic and initially has no instances.

All other metrics are singular, as specified by PM_INDOM_NULL.

In some cases an instance domain may vary dynamically after PMDA initialization (for example,
simple.now), and this requires some refinement of the default functions and data structures of the
libpcp_pmda library. Briefly, this involves providing new functions that act as wrappers for
pmdaInstance and pmdaFetch while understanding the dynamics of the instance domain, and
then overriding the instance and fetch methods in the pmdaInterface structure during PMDA
initialization.

For the simple PMDA, the wrapper functions are simple_fetch and simple_instance, and
defaults are over-ridden by the following assignments in the simple_init function:

dp->version.any.fetch = simple_fetch;
dp->version.any.instance = simple_instance;

2.4. Other Issues

⁠Chapt er 2. Writ ing a PMDA

31

Other issues include extracting the information, latency and threads of control, Name Space, PMDA
help text, and management of evolution within a PMDA.

2.4.1. Ext ract ing the Informat ion

A suggested approach to writing a PMDA is to write a standalone program to extract the values from
the target domain and then incorporate this program into the PMDA framework. This approach
avoids concurrent debugging of two distinct problems:

 Extraction of the data

Communication with PMCD

These are some possible ways of exporting the data from the target domain:

Accumulate the performance data in a public shared memory segment.

Write the performance data to the end of a log file.

Periodically rewrite a file with the most recent values for the performance data.

Implement a protocol that allows a third party to connect to the target application, send a request,
and receive new performance data.

If the data is in the operating system kernel, provide a kernel interface (preferred) to export the
performance data.

Most of these approaches require some further data processing by the PMDA.

2.4.2. Latency and T hreads of Cont rol

The PCP protocols expect PMDAs to return the current values for performance metrics when
requested, and with short delay (low latency). For some target domains, access to the underlying
instrumentation may be costly or involve unpredictable delays (for example, if the real performance
data is stored on some remote host or network device). In these cases, it may be necessary to
separate probing for new performance data from servicing PMCD requests.

An architecture that has been used successfully for several PMDAs is to create one or more child
processes to obtain information while the main process communicates with PMCD.

At the simplest deployment of this arrangement, the two processes may execute without
synchronization. Threads have also been used as a more portable multithreading mechanism; see
the pthreads(7) man page.

By contrast, a complex deployment would be one in which the refreshing of the metric values must be
atomic, and this may require double buffering of the data structures. It also requires coordination
between parent and child processes.

Warning

Since certain data structures used by the PMDA library are not thread-aware, only one PMDA
thread of control should call PMDA library functions - this would typically be the thread
servicing requests from PMCD.

One caveat about this style of caching PMDA--in this (special) case it is better if the PMDA converts

PCP 3 Performance Co- Pilot ™ Programmer's Guide

32

counts to rates based upon consecutive periodic sampling from the underlying instrumentation. By
exporting precomputed rate metrics with instantaneous semantics, the PMDA prevents the PCP
monitor tools from computing their own rates upon consecutive PMCD fetches (which are likely to
return identical values from a caching PMDA). The finer points of metric semantics are discussed in
Section 2.3.3.2, “Semantics”

2.4.3. Name Space

The PMNS file defines the name space of the PMDA. It is a simple text file that is used during
installation to expand the Name Space of the PMCD process. The format of this file is described by
the pmns(5) man page and its hierarchical nature, syntax, and helper tools are further described in
the Performance Co-Pilot User's and Administrator's Guide.

Client processes will not be able to access the PMDA metrics if the PMNS file is not installed as part
of the PMDA installation procedure on the collector host. The installed list of metric names and their
corresponding PMIDs can be found in ${PCP_VAR_DIR}/pmns/root.

Example 2.11, “ pmns File for the Simple PMDA” shows the simple PMDA, which has five metrics:

Three metrics immediately under the simple node

Two metrics under another non-terminal node called simple.time

Example 2.11. pmns File for the Simple PMDA

simple {
 numfetch SIMPLE:0:0
 color SIMPLE:0:1
 time
 now SIMPLE:2:4
}
simple.time {
 user SIMPLE:1:2
 sys SIMPLE:1:3
}

Metrics that have different clusters do not have to be specified in different subtrees of the PMNS.
Example 2.12, “Alternate pmns File for the Simple PMDA” shows an alternative PMNS for the simple
PMDA:

Example 2.12. Alternate pmns File for the Simple PMDA

simple {
 numfetch SIMPLE:0:0
 color SIMPLE:0:1
 usertime SIMPLE:1:2
 systime SIMPLE:1:3
}

In this example, the SIMPLE macro is replaced by the domain number listed in
${PCP_VAR_DIR}/pmns/stdpmid for the corresponding PMDA during installation (for the
simple PMDA, this would normally be the value 253).

⁠Chapt er 2. Writ ing a PMDA

33

If the PMDA implementer so chooses, all or a subset of the metric names and identifiers can be
specified programatically. In this situation, a special asterisk syntax is used to denote those subtrees
which are to be handles this way. Example 2.13, “Dynamic metrics pmns File for the Simple PMDA”
shows this dynamic namespace syntax, for all metrics in the simple PMDA:

Example 2.13. Dynamic metrics pmns File for the Simple PMDA

simple SIMPLE:*:*

In this example, like the one before, the SIMPLE macro is replaced by the domain number, and all
(simple.*) metric namespace operations must be handled by the PMDA. This is in contrast to the
static metric name model earlier, where the host-wide PMNS file is updated and used by PMCD,
acting on behalf of the agent.

2.4.4. PMDA Help T ext

For each metric defined within a PMDA, the PMDA developer is strongly encouraged to provide both
terse and extended help text to describe the metric, and perhaps provide hints about the expected
value ranges.

The help text is used to describe each metric in the visualization tools and pminfo with the -T
option. The help text, such as the help text for the simple PMDA in Example 2.14, “Help Text for the
Simple PMDA” , is specified in a specially formatted file, normally called help. This file is converted to
the expected run-time format using the newhelp command; see the newhelp(1) man page.
Converted help text files are usually placed in the PMDA's directory below ${PCP_PMDAS_DIR} as
part of the PMDA installation procedure.

Example 2.14. Help Text for the Simple PMDA

The two instance domains and five metrics have a short and a verbose description. Each entry
begins with a line that starts with the character “@” and is followed by either the metric name
(simple.numfetch) or a symbolic reference to the instance domain number (SIMPLE.1),
followed by the short description. The verbose description is on the following lines, terminated by
the next line starting with “@” or end of file:

@ SIMPLE.0 Instance domain “colour” for simple PMDA
Universally 3 instances, “red” (0), “green” (1) and “blue” (3).

@ SIMPLE.1 Dynamic instance domain “time” for simple PMDA
An instance domain is computed on-the-fly for exporting current time
information. Refer to the help text for simple.now for more details.

@ simple.numfetch Number of pmFetch operations.
The cumulative number of pmFetch operations directed to “simple” PMDA.

This counter may be modified with pmstore(1).

@ simple.color Metrics which increment with each fetch
This metric has 3 instances, designated “red”, “green” and “blue”.

The value of the metric is monotonic increasing in the range 0 to

PCP 3 Performance Co- Pilot ™ Programmer's Guide

34

255, then back to 0. The different instances have different starting
values, namely 0 (red), 100 (green) and 200 (blue).

The metric values my be altered using pmstore(1).

@ simple.time.user Time agent has spent executing user code
The time in seconds that the CPU has spent executing agent user code.

@ simple.time.sys Time agent has spent executing system code
The time in seconds that the CPU has spent executing agent system
code.

@ simple.now Time of day with a configurable instance domain
The value reflects the current time of day through a dynamically
reconfigurable instance domain. On each metric value fetch request,
the agent checks to see whether the configuration file in
${PCP_PMDAS_DIR}/simple/simple.conf has been modified - if it has then
the file is re-parsed and the instance domain for this metric is again
constructed according to its contents.

This configuration file contains a single line of comma-separated time
tokens from this set:
 “sec” (seconds after the minute),
 “min” (minutes after the hour),
 “hour” (hour since midnight).

An example configuration file could be: sec,min,hour
and in this case the simple.now metric would export values for the
three instances “sec”, “min” and “hour” corresponding respectively to
the components seconds, minutes and hours of the current time of day.

The instance domain reflects each token present in the file, and the
values reflect the time at which the PMDA processes the fetch.

2.4.5. Management of Evolut ion within a PMDA

Evolution of a PMDA, or more particularly the underlying instrumentation to which it provides access,
over time naturally results in the appearance of new metrics and the disappearance of old metrics.
This creates potential problems for PMAPI clients and PCP tools that may be required to interact with
both new and former versions of the PMDA.

The following guidelines are intended to help reduce the complexity of implementing a PMDA in the
face of evolutionary change, while maintaining predictability and semantic coherence for tools using
the PMAPI, and for end users of those tools.

Try to support as full a range of metrics as possible in every version of the PMDA. In this context,
support means responding sensibly to requests, even if the underlying instrumentation is not
available.

 If a metric is not supported in a given version of the underlying instrumentation, the PMDA should
respond to pmLookupDesc requests with a pmDesc structure whose type field has the special
value PM_TYPE_NOSUPPORT. Values of fields other than pmid and type are immaterial, but
Example 2.15, “ Setting Values” is typically benign:

⁠Chapt er 2. Writ ing a PMDA

35

Example 2.15. Set t ing Values

pmDesc dummy = {
 .pmid = PMDA_PMID(3,0), /* pmid, fill this in */
 .type = PM_TYPE_NOSUPPORT, /* this is the important
part */
 .indom = PM_INDOM_NULL, /* singular,causes no
problems */
 .sem = 0, /* no semantics */
 .units = PMDA_PMUNITS(0,0,0,0,0,0) /* no units */
};

 If a metric lacks support in a particular version of the underlying instrumentation, the PMDA
should respond to pmFetch requests with a pmResult in which no values are returned for the
unsupported metric. This is marginally friendlier than the other semantically acceptable option of
returning an illegal PMID error or PM_ERR_PMID.

 Help text should be updated with annotations to describe different versions of the underlying
product, or product configuration options, for which a specific metric is available. This is so
pmLookupText can always respond correctly.

 The pmStore operation should fail with return status of PM_ERR_PERMISSION if a user or
application tries to amend the value of an unsupported metric.

 The value extraction, conversion, and printing functions (pmExtractValue, pmConvScale,
pmAtomStr, pmTypeStr, and pmPrintValue) return the PM_ERR_CONV error or an appropriate
diagnostic string, if an attempt is made to operate on a value for which type is
PM_TYPE_NOSUPPORT.

If performance tools take note of the type field in the pmDesc structure, they should not
manipulate values for unsupported metrics. Even if tools ignore type in the metric's description,
following these development guidelines ensures that no misleading value is ever returned; so
there is no reason to call the extraction, conversion, and printing functions.

2.5. PMDA Interface

This section describes an interface for the request handling callbacks in a PMDA. This interface is
used by PMCD for communicating with DSO PMDAs and is also used by daemon PMDAs with
pmdaMain.

2.5.1. Overview

Both daemon and DSO PMDAs must handle multiple request types from PMCD. A daemon PMDA
communicates with PMCD using the PDU protocol, while a DSO PMDA defines callbacks for each
request type. To avoid duplicating this PDU processing (in the case of a PMDA that can be installed
either as a daemon or as a DSO), and to allow a consistent framework, pmdaMain can be used by a
daemon PMDA as a wrapper to handle the communication protocol using the same callbacks as a
DSO PMDA. This allows a PMDA to be built as both a daemon and a DSO, and then to be installed
as either.

To further simplify matters, default callbacks are declared in <pcp/pmda.h>:

 pmdaFetch

PCP 3 Performance Co- Pilot ™ Programmer's Guide

36

 pmdaProfile

 pmdaInstance

 pmdaDesc

 pmdaText

 pmdaStore

 pmdaPMID

 pmdaName

 pmdaChildren

 pmdaAttribute

Each callback takes a pmdaExt structure as its last argument. This structure contains all the
information that is required by the default callbacks in most cases. The one exception is pmdaFetch,
which needs an additional callback to instantiate the current value for each supported combination
of a performance metric and an instance.

Therefore, for most PMDAs all the communication with PMCD is automatically handled by functions
in libpcp.so and libpcp_pmda.so.

2.5.1.1. T rivial PMDA

The trivial PMDA uses all of the default callbacks as shown in Example 2.16, “Request Handling
Callbacks in the Trivial PMDA” . The additional callback for pmdaFetch is defined as
trivial_fetchCallBack:

Example 2.16. Request Handling Callbacks in the Trivial PMDA

static int
trivial_fetchCallBack(pmdaMetric *mdesc, unsigned int inst,
pmAtomValue *atom)
{
 __pmID_int *idp = (__pmID_int *)&(mdesc->m_desc.pmid);

 if (idp->cluster != 0 || idp->item != 0)
 return PM_ERR_PMID;
 if (inst != PM_IN_NULL)
 return PM_ERR_INST;
 atom->l = time(NULL);
 return 0;
}

This function checks that the PMID and instance are valid, and then places the metric value for the
current time into the pmAtomValue structure.

The callback is set up by a call to pmdaSetFetchCallBack in trivial_init. As a rule of thumb,
the API routines with named ending with CallBack are helpers for the higher PDU handling routines
like pmdaFetch. The latter are set directly using the PMDA Interface Structures, as described in
Section 2.5.2, “PMDA Structures” .

⁠Chapt er 2. Writ ing a PMDA

37

2.5.1.2. Simple PMDA

The simple PMDA callback for pmdaFetch is more complicated because it supports more metrics,
some metrics are instantiated with each fetch, and one instance domain is dynamic. The default
pmdaFetch callback, shown in Example 2.17, “Request Handling Callbacks in the Simple PMDA” , is
replaced by simple_fetch in simple_init, which increments the number of fetches and updates
the instance domain for INDOM_NOW before calling pmdaFetch:

Example 2.17. Request Handling Callbacks in the Simple PMDA

static int
simple_fetch(int numpmid, pmID pmidlist[], pmResult **resp, pmdaExt
*pmda)
{
 numfetch++;
 simple_timenow_check();
 simple_timenow_refresh();
 return pmdaFetch(numpmid, pmidlist, resp, pmda);
}

The callback for pmdaFetch is defined as simple_fetchCallBack. The PMID is extracted from the
pmdaMetric structure, and if valid, the appropriate field in the pmAtomValue structure is set. The
available types and associated fields are described further in Section 3.4, “Performance Metric
Descriptions” and Example 3.16, “ pmAtomValue Structure” .

Note

Note that PMID validity checking need only check the cluster and item numbers, the domain
number is guaranteed to be valid and the PMDA should make no assumptions about the
actual domain number being used at this point.

The simple.numfetch metric has no instance domain and is easily handled first as shown in
Example 2.18, “ simple.numfetch Metric” :

Example 2.18. simple.numfetch Met ric

static int
simple_fetchCallBack(pmdaMetric *mdesc, unsigned int inst, pmAtomValue
*atom)
{
 int i;
 static int oldfetch;
 static double usr, sys;
 __pmID_int *idp = (__pmID_int *)&(mdesc->m_desc.pmid);

 if (inst != PM_IN_NULL &&
 !(idp->cluster == 0 && idp->item == 1) &&
 !(idp->cluster == 2 && idp->item == 4))
 return PM_ERR_INST;

PCP 3 Performance Co- Pilot ™ Programmer's Guide

38

 if (idp->cluster == 0) {
 if (idp->item == 0) { /* simple.numfetch */
 atom->l = numfetch;
 }

In Example 2.19, “ simple.color Metric” , the inst parameter is used to specify which instance is
required for the simple.color metric:

Example 2.19. simple.color Met ric

 else if (idp->item == 1) { /* simple.color */
 switch (inst) {
 case 0: /* red */
 red = (red + 1) % 256;
 atom->l = red;
 break;
 case 1: /* green */
 green = (green + 1) % 256;
 atom->l = green;
 break;
 case 2: /* blue */
 blue = (blue + 1) % 256;
 atom->l = blue;
 break;
 default:
 return PM_ERR_INST;
 }
 }
 else
 return PM_ERR_PMID;

In Example 2.20, “ simple.time Metric” , the simple.time metric is in a second cluster and has a
simple optimization to reduce the overhead of calling times twice on the same fetch and return
consistent values from a single call to times when both metrics simple.time.user and
simple.time.sys are requested in a single pmFetch. The previous fetch count is used to
determine if the usr and sys values should be updated:

Example 2.20. simple.time Met ric

 else if (idp->cluster == 1) { /* simple.time */
 if (oldfetch < numfetch) {
 __pmProcessRunTimes(&usr, &sys);
 oldfetch = numfetch;
 }
 if (idp->item == 2) /* simple.time.user */
 atom->d = usr;
 else if (idp->item == 3) /* simple.time.sys */
 atom->d = sys;
 else
 return PM_ERR_PMID;
 }

⁠Chapt er 2. Writ ing a PMDA

39

In Example 2.21, “ simple.now Metric” , the simple.now metric is in a third cluster and uses inst
again to select a specific instance from the INDOM_NOW instance domain. The values associated with
instances in this instance domain are managed using the pmdaCache(3) helper routines, which
provide efficient interfaces for managing more complex instance domains:

Example 2.21. simple.now Met ric

 else if (idp->cluster == 2) {
 if (idp->item == 4) { /* simple.now */
 struct timeslice *tsp;
 sts = pmdaCacheLookup(*now_indom, inst, NULL, (void
*)&tsp);
 if (sts != PMDA_CACHE_ACTIVE) {
 if (sts < 0)
 __pmNotifyErr(LOG_ERR, "pmdaCacheLookup failed:
inst=%d: %s",
 inst, pmErrStr(sts));
 return PM_ERR_INST;
 }
 atom->l = tsp->tm_field;
 }
 else
 return PM_ERR_PMID;
 }

2.5.1.3. simple_store in t he Simple PMDA

The simple PMDA permits some of the metrics it supports to be modified by pmStore as shown in
Example 2.22, “ simple_store in the Simple PMDA” . For additional information, see the
pmstore(1) and pmStore(3) man pages.

Example 2.22. simple_store in the Simple PMDA

The pmdaStore callback (which returns PM_ERR_PERMISSION to indicate no metrics can be
altered) is replaced by simple_store in simple_init. This replacement function must take the
same arguments so that it can be assigned to the function pointer in the pmdaInterface
structure.

The function traverses the pmResult and checks the cluster and unit of each PMID to ensure that
it corresponds to a metric that can be changed. Checks are made on the values to ensure they are
within range before being assigned to variables in the PMDA that hold the current values for
exported metrics:

static int
simple_store(pmResult *result, pmdaExt *pmda)
{
 int i, j, val, sts = 0;
 pmAtomValue av;
 pmValueSet *vsp = NULL;
 __pmID_int *pmidp = NULL;

PCP 3 Performance Co- Pilot ™ Programmer's Guide

40

 /* a store request may affect multiple metrics at once */
 for (i = 0; i < result->numpmid; i++) {
 vsp = result->vset[i];
 pmidp = (__pmID_int *)&vsp->pmid;
 if (pmidp->cluster == 0) { /* storable metrics are cluster 0
*/
 switch (pmidp->item) {
 case 0: /* simple.numfetch */
 val = vsp->vlist[0].value.lval;
 if (val < 0) {
 sts = PM_ERR_SIGN;
 val = 0;
 }
 numfetch = val;
 break;
 case 1: /* simple.color */
 /* a store request may affect multiple instances at
once */
 for (j = 0; j < vsp->numval && sts == 0; j++) {
 val = vsp->vlist[j].value.lval;
 if (val < 0) {
 sts = PM_ERR_SIGN;
 val = 0;
 } if (val > 255) {
 sts = PM_ERR_CONV;
 val = 255;
 }

The simple.color metric has an instance domain that must be searched because any or all
instances may be specified. Any instances that are not supported in this instance domain should
cause an error value of PM_ERR_INST to be returned as shown in Example 2.23, “ simple.color
and PM_ERR_INST Errors” :

Example 2.23. simple.color and PM_ERR_INST Errors

 switch (vsp->vlist[j].inst) {
 case 0: /* red */
 red = val;
 break;
 case 1: /* green */
 green = val;
 break;
 case 2: /* blue */
 blue = val;
 break;
 default:
 sts = PM_ERR_INST;
 }

Any other PMIDs in cluster 0 that are not supported by the simple PMDA should result in an error
value of PM_ERR_PMID as shown in Example 2.24, “ PM_ERR_PMID Errors” :

⁠Chapt er 2. Writ ing a PMDA

41

Example 2.24. PM_ERR_PMID Errors

 default:
 sts = PM_ERR_PMID;
 break;
 }
 }

Any metrics that cannot be altered should generate an error value of PM_ERR_PERMISSION, and
metrics not supported by the PMDA should result in an error value of PM_ERR_PMID as shown in
Example 2.25, “ PM_ERR_PERMISSION and PM_ERR_PMID Errors” :

Example 2.25. PM_ERR_PERMISSION and PM_ERR_PMID Errors

 else if ((pmidp->cluster == 1 &&
 (pmidp->item == 2 || pmidp->item == 3)) ||
 (pmidp->cluster == 2 && pmidp->item == 4)) {
 sts = PM_ERR_PERMISSION;
 break;
 }
 else {
 sts = PM_ERR_PMID;
 break;
 }
 }
 return sts;
}

The structure pmdaExt pmda argument is not used by the simple_store function above.

Note

When using storable metrics, it is important to consider the implications. It is possible
pmlogger is actively sampling the metric being modified, for example, which may cause
unexpected results to be persisted in an archive. Consider also the use of client credentials,
available via the attribute callback of the pmdaInterface structure, to appropriately limit
access to any modifications that might be made via your storable metrics.

2.5.1.4. Ret urn Co des fo r pmdaFetch Callbacks

In PMDA_INTERFACE_1 and PMDA_INTERFACE_2, the return codes for the pmdaFetch callback
function are defined:

Value

Meaning

< 0

Error code (for example, PM_ERR_PMID, PM_ERR_INST or PM_ERR_AGAIN)

PCP 3 Performance Co- Pilot ™ Programmer's Guide

42

0

Success

In PMDA_INTERFACE_3 and all later versions, the return codes for the pmdaFetch callback function
are defined:

Value

Meaning

< 0

Error code (for example, PM_ERR_PMID, PM_ERR_INST)

0

Metric value not currently available

> 0

Success

2.5.2. PMDA St ructures

PMDA structures used with the pcp_pmda library are defined in <pcp/pmda.h>. Example 2.26, “
pmdaInterface Structure Header” and Example 2.28, “ pmdaExt Stucture” describe the
pmdaInterface and pmdaExt structures.

Example 2.26. pmdaInterface St ructure Header

The callbacks must be specified in a pmdaInterface structure:

typedef struct {
 int domain; /* set/return performance metrics domain id here
*/
 struct {
 unsigned int pmda_interface : 8; /* PMDA DSO version */
 unsigned int pmapi_version : 8; /* PMAPI version */
 unsigned int flags : 16; /* optional feature flags */
 } comm; /* set/return communication and version info
*/
 int status; /* return initialization status here */
 union {
 ...

This structure is passed by PMCD to a DSO PMDA as an argument to the initialization function. This
structure supports multiple (binary-compatible) versions--the second and subsequent versions have
support for the pmdaExt structure. Protocol version one is for backwards compatibility only, and
should not be used in any new PMDA.

To date there have been six revisions of the interface structure:

Version two added the pmdaExt structure, as mentioned above.

⁠Chapt er 2. Writ ing a PMDA

43

Version three changed the fetch callback return code semantics, as mentioned in Section 2.5.1.4,
“Return Codes for pmdaFetch Callbacks” .

Version four added support for dynamic metric names, where the PMDA is able to create and
remove metric names on-the-fly in response to changes in the performance domain (pmdaPMID,
pmdaName, pmdaChildren interfaces)

Version five added support for per-client contexts, where the PMDA is able to track arrival and
disconnection of PMAPI client tools via PMCD (pmdaGetContext helper routine). At the same
time, support for PM_TYPE_EVENT metrics was implemented, which relies on the per-client context
concepts (pmdaEvent* helper routines).

Version six added support for authenticated client contexts, where the PMDA is informed of user
credentials and other PMCD attributes of the connection between individual PMAPI clients and
PMCD (pmdaAttribute interface)

Example 2.27. pmdaInterface St ructure, Latest Version

 ...
 union {
 ...
 /*
 * PMDA_INTERFACE6
 */
 struct {
 pmdaExt *ext;
 int (*profile)(pmdaInProfile *, pmdaExt *);
 int (*fetch)(int, pmID *, pmResult **, pmdaExt *);
 int (*desc)(pmID, pmDesc *, pmdaExt *);
 int (*instance)(pmInDom, int, char *, pmdaInResult **,
pmdaExt *);
 int (*text)(int, int, char **, pmdaExt *);
 int (*store)(pmResult *, pmdaExt *);
 int (*pmid)(const char *, pmID *, pmdaExt *);
 int (*name)(pmID, char ***, pmdaExt *);
 int (*children)(const char *, int, char ***, int **,
pmdaExt *);
 int (*attribute)(int, int, const char *, int, pmdaExt
*);
 } six;
 } version;
} pmdaInterface;

Note

Each new interface version is always defined as a superset of those that preceded it, only
adds fields at the end of the new structure in the union, and is always binary backwards-
compatible. And thus it shall remain. For brevity, we have shown only the latest
interface version (six) above, but all prior versions still exist, build, and function. In other
words, PMDAs built against earlier versions of this header structure (and PMDA library)
function correctly with the latest version of the PMDA library.

PCP 3 Performance Co- Pilot ™ Programmer's Guide

44

Example 2.28. pmdaExt Stucture

Additional PMDA information must be specified in a pmdaExt structure:

typedef struct {
 unsigned int e_flags; /* PMDA_EXT_FLAG_* bit field */
 void *e_ext; /* used internally within libpcp_pmda
*/
 char *e_sockname; /* socket name to pmcd */
 char *e_name; /* name of this pmda */
 char *e_logfile; /* path to log file */
 char *e_helptext; /* path to help text */
 int e_status; /* =0 is OK */
 int e_infd; /* input file descriptor from pmcd */
 int e_outfd; /* output file descriptor to pmcd */
 int e_port; /* port to pmcd */
 int e_singular; /* =0 for singular values */
 int e_ordinal; /* >=0 for non-singular values */
 int e_direct; /* =1 if pmid map to meta table */
 int e_domain; /* metrics domain */
 int e_nmetrics; /* number of metrics */
 int e_nindoms; /* number of instance domains */
 int e_help; /* help text comes via this handle */
 __pmProfile *e_prof; /* last received profile */
 pmdaIoType e_io; /* connection type to pmcd */
 pmdaIndom *e_indoms; /* instance domain table */
 pmdaIndom *e_idp; /* instance domain expansion */
 pmdaMetric *e_metrics; /* metric description table */
 pmdaResultCallBack e_resultCallBack; /* to clean up pmResult after
fetch */
 pmdaFetchCallBack e_fetchCallBack; /* to assign metric values in
fetch */
 pmdaCheckCallBack e_checkCallBack; /* callback on receipt of a
PDU */
 pmdaDoneCallBack e_doneCallBack; /* callback after PDU is
processed */
 /* added for PMDA_INTERFACE_5 */
 int e_context; /* client context id from pmcd */
 pmdaEndContextCallBack e_endCallBack; /* callback after client
context closed */
} pmdaExt;

The pmdaExt structure contains filenames, pointers to tables, and some variables shared by several
functions in the pcp_pmda library. All fields of the pmdaInterface and pmdaExt structures can be
correctly set by PMDA initialization functions; see the pmdaDaemon(3), pmdaDSO(3),
pmdaGetOptions(3), pmdaInit(3), and pmdaConnect(3) man pages for a full description of
how various fields in these structures may be set or used by pcp_pmda library functions.

2.6. Init ializ ing a PMDA

Several functions are provided to simplify the initialization of a PMDA. These functions, if used, must
be called in a strict order so that the PMDA can operate correctly.

⁠Chapt er 2. Writ ing a PMDA

45

2.6.1. Overview

The initialization process for a PMDA involves opening help text files, assigning callback function
pointers, adjusting the metric and instance identifiers to the correct domains, and much more. The
initialization of a daemon PMDA also differs significantly from a DSO PMDA, since the
pmdaInterface structure is initialized by main or the PMCD process, respectively.

2.6.2. Common Init ializat ion

As described in Section 2.2.2, “DSO PMDA” , an initialization function is provided by a DSO PMDA
and called by PMCD. Using the standard PMDA wrappers, the same function can also be used as
part of the daemon PMDA initialization. This PMDA initialization function performs the following
tasks:

Assigning callback functions to the function pointer interface of pmdaInterface

Assigning pointers to the metric and instance tables from pmdaExt

Opening the help text files

Assigning the domain number to the instance domains

Correlating metrics with their instance domains

If the PMDA uses the common data structures defined for the pcp_pmda library, most of these
requirements can be handled by the default pmdaInit function; see the pmdaInit(3) man page.

Because the initialization function is the only initialization opportunity for a DSO PMDA, the common
initialization function should also perform any DSO-specific functions that are required. A default
implementation of this functionality is provided by the pmdaDSO function; see the pmdaDSO(3) man
page.

2.6.2.1. T rivial PMDA

Example 2.29, “ Initialization in the Trivial PMDA” shows the trivial PMDA, which has no instances
(that is, all metrics have singular values) and a single callback. This callback is for the pmdaFetch
function called trivial_fetchCallBack; see the pmdaFetch(3) man page:

Example 2.29. In it ializ at ion in the Trivial PMDA

static char *username;
static int isDSO = 1; /* ==0 if I am a daemon */

void trivial_init(pmdaInterface *dp)
{
 if (isDSO)
 pmdaDSO(dp, PMDA_INTERFACE_2, “trivial DSO”,
 “${PCP_PMDAS_DIR}/trivial/help”);
 else
 __pmSetProcessIdentity(username);

 if (dp->status != 0)
 return;

PCP 3 Performance Co- Pilot ™ Programmer's Guide

46

 pmdaSetFetchCallBack(dp, trivial_fetchCallBack);
 pmdaInit(dp, NULL, 0,
 metrictab, sizeof(metrictab)/sizeof(metrictab[0]));
}

The trivial PMDA can execute as either a DSO or daemon PMDA. A default installation installs it as a
daemon, however, and the main routine clears isDSO and sets username accordingly.

The trivial_init routine provides the opportunity to do any extra DSO or daemon setup before
calling the library pmdaInit. In the example, the help text is setup for DSO mode and the daemon is
switched to run as an unprivileged user (default is root, but it is generally good form for PMDAs to
run with the least privileges possible). If dp->status is non-zero after the pmdaDSO call, the PMDA
will be removed by PMCD and cannot safely continue to use the pmdaInterface structure.

2.6.2.2. Simple PMDA

In Example 2.30, “ Initialization in the Simple PMDA” , the simple PMDA uses its own callbacks to
handle PDU_FETCH and PDU_RESULT request PDUs (for pmFetch and pmStore operations
respectively), as well as providing pmdaFetch with the callback simple_fetchCallBack.

Example 2.30. In it ializ at ion in the Simple PMDA

static int isDSO = 1; /* =0 I am a daemon */
static char *username;

void simple_init(pmdaInterface *dp)
{
 if (isDSO)
 pmdaDSO(dp, PMDA_INTERFACE_2, “simple DSO”,
 “${PCP_PMDAS_DIR}/simple/help”);
 else
 __pmSetProcessIdentity(username);

 if (dp->status != 0)
 return;

 dp->version.any.fetch = simple_fetch;
 dp->version.any.store = simple_store;
 dp->version.any.instance = simple_instance;
 pmdaSetFetchCallBack(dp, simple_fetchCallBack);
 pmdaInit(dp, indomtab, sizeof(indomtab)/sizeof(indomtab[0]),
 metrictab, sizeof(metrictab)/sizeof(metrictab[0]));
}

Once again, the simple PMDA may be installed either as a daemon PMDA or a DSO PMDA. The
static variable isDSO indicates whether the PMDA is running as a DSO or as a daemon. A daemon
PMDA always changes the value of this variable to 0 in main, for PMDAs that can operate in both
modes.

⁠Chapt er 2. Writ ing a PMDA

47

Remember also, as described earlier, simple_fetch is dealing with a single request for (possibly
many) values for metrics from the PMDA, and simple_fetchCallBack is its little helper, dealing
with just one metric and one instance (optionally, if the metric happens to have an instance domain)
within that larger request.

2.6.3. Daemon Init ializat ion

In addition to the initialization function that can be shared by a DSO and a daemon PMDA, a
daemon PMDA must also meet the following requirements:

Create the pmdaInterface structure that is passed to the initialization function

Parse any command-line arguments

Open a log file (a DSO PMDA uses PMCD's log file)

Set up the IPC connection between the PMDA and the PMCD process

Handle incoming PDUs

All these requirements can be handled by default initialization functions in the pcp_pmda library; see
the pmdaDaemon(3), pmdaGetOptions(3), pmdaOpenLog(3), pmdaConnect(3), and
pmdaMain(3) man pages.

Note

Optionally, a daemon PMDA may wish to reduce or change its privilege level, as seen in
Example 2.29, “ Initialization in the Trivial PMDA” and Example 2.30, “ Initialization in the
Simple PMDA” . Some performance domains require the extraction process to run as a
specific user in order to access the instrumentation. Many domains require the default root
level of access for a daemon PMDA.

The simple PMDA specifies the command-line arguments it accepts using pmdaGetOptions, as
shown in Example 2.31, “ main in the Simple PMDA” . For additional information, see the
pmdaGetOptions(3) man page.

Example 2.31. main in the Simple PMDA

static pmLongOptions longopts[] = {
 PMDA_OPTIONS_HEADER(“Options”),
 PMOPT_DEBUG,
 PMDAOPT_DOMAIN,
 PMDAOPT_LOGFILE,
 PMDAOPT_USERNAME,
 PMOPT_HELP,
 PMDA_OPTIONS_TEXT(“\nExactly one of the following options may
appear:”),
 PMDAOPT_INET,
 PMDAOPT_PIPE,
 PMDAOPT_UNIX,
 PMDAOPT_IPV6,
 PMDA_OPTIONS_END
};

PCP 3 Performance Co- Pilot ™ Programmer's Guide

48

static pmdaOptions opts = {
 .short_options = “D:d:i:l:pu:U:6:?”,
 .long_options = longopts,
};

int
main(int argc, char **argv)
{
 pmdaInterface dispatch;

 isDSO = 0;
 __pmSetProgname(argv[0]);
 __pmGetUsername(&username);
 pmdaDaemon(&dispatch, PMDA_INTERFACE_2, pmProgname, SIMPLE,
 “simple.log”, “${PCP_PMDAS_DIR}/simple/help”);

 pmdaGetOptions(argc, argv, &opts, &dispatch);
 if (opts.errors) {
 pmdaUsageMessage(&opts);
 exit(1);
 }
 if (opts.username)
 username = opts.username;

 pmdaOpenLog(&dispatch);
 simple_init(&dispatch);
 simple_timenow_check();
 pmdaConnect(&dispatch);
 pmdaMain(&dispatch);

 exit(0);
}

The conditions under which pmdaMain will return are either unexpected error conditions (often from
failed initialisation, which would already have been logged), or when PMCD closes the connection to
the PMDA. In all cases the correct action to take is simply to exit cleanly, possibly after any final
cleanup the PMDA may need to perform.

2.7. Test ing and Debugging a PMDA

Ensuring the correct operation of a PMDA can be difficult, because the responsibility of providing
metrics to the requesting PMCD process and simultaneously retrieving values from the target domain
requires nearly real-time communication with two modules beyond the PMDA's control. Some tools
are available to assist in this important task.

2.7.1. Overview

Thoroughly testing a PMDA with PMCD is difficult, although testing a daemon PMDA is marginally
simpler than testing a DSO PMDA. If a DSO PMDA exits, PMCD also exits because they share a
single address space and control thread.

The difficulty in using PMCD to test a daemon PMDA results from PMCD requiring timely replies from
the PMDA in response to request PDUs. Although a timeout period can be set in
${PCP_PMCDOPTIONS_PATH}, attaching a debugger (such as gdb) to the PMDA process might

⁠Chapt er 2. Writ ing a PMDA

49

cause an already running PMCD to close its connection with the PMDA. If timeouts are disabled,
PMCD could wait forever to connect with the PMDA.

If you suspect a PMDA has been terminated due to a timeout failure, check the PMCD log file, usually
${PCP_LOG_DIR}/pmcd/pmcd.log.

A more robust way of testing a PMDA is to use the dbpmda tool, which is similar to PMCD except that
dbpmda provides complete control over the PDUs that are sent to the PMDA, and there are no time
limits--it is essentially an interactive debugger for exercising a PMDA. See the dbpmda(3) man page
for details.

In addition, careful use of PCP debugging flags can produce useful information concerning a
PMDA's behavior; see the PMAPI(3) and pmdbg(1) man pages for a discussion of the PCP
debugging and tracing framework.

2.7.2. Debugging Informat ion

You can activate debugging flags in PMCD and most other PCP tools with the -D command-line
option. Supported flags can be listed with the pmdbg command; see the pmdbg(1) man page.
Setting the debug flag for PMCD in ${PCP_PMCDOPTIONS_PATH} might generate too much
information to be useful, especially if there are other clients and PMDAs connected to the PMCD
process.

The PMCD debugging flag can also be changed dynamically by storing a new value into the metric
pmcd.control.debug:

pmstore pmcd.control.debug 5

Most of the pcp_pmda library functions log additional information if the DBG_TRACE_LIBPMDA flag is
set within the PMDA; see the PMDA(3) man page. The command-line argument -D is trapped by
pmdaGetOptions to set the global debugging control variable pmDebug. Adding tests within the
PMDA for the DBG_TRACE_APPL0, DBG_TRACE_APPL1, and DBG_TRACE_APPL2 trace flags permits
different levels of information to be logged to the PMDA's log file.

All diagnostic, debugging, and tracing output from a PMDA should be written to the standard error
stream. By convention, all debugging information is enclosed by preprocessor #ifdef PCP_DEBUG
statements so that they can be compiled out of the program at a later stage, if required, although this
is rarely done in practice.

Adding this segment of code to the simple_store metric causes a timestamped log message to be
sent to the current log file whenever pmstore attempts to change simple.numfetch and pmDebug
has the DBG_TRACE_APPL0 flag set as shown in Example 2.32, “ simple.numfetch in the Simple
PMDA” :

Example 2.32. simple.numfetch in the Simple PMDA

 case 0: /* simple.numfetch */
 x
 val = vsp->vlist[0].value.lval;
 if (val < 0) {
 sts = PM_ERR_SIGN;
 val = 0;
 }
#ifdef PCP_DEBUG

PCP 3 Performance Co- Pilot ™ Programmer's Guide

50

 if (pmDebug & DBG_TRACE_APPL0) {
 __pmNotifyErr(LOG_DEBUG,
 "simple: %d stored into numfetch", val);
 }
#endif
 numfetch = val;
 break;

For a description of pmstore, see the pmstore(1) man page.

2.7.3. dbpmda Debug Ut ilit y

The dbpmda utility provides a simple interface to the PDU communication protocol. It allows daemon
and DSO PMDAs to be tested with most request types, while the PMDA process may be monitored
with a debugger, tracing utilities, and other diagnostic tools. The dbpmda(1) man page contains a
sample session with the simple PMDA.

2.8. Integrat ion of a PMDA

Several steps are required to install (or remove) a PMDA from a production PMCD environment
without affecting the operation of other PMDAs or related visualization and logging tools.

The PMDA typically would have its own directory below ${PCP_PMDAS_DIR} into which several files
would be installed. In the description in Section 2.8.1, “ Installing a PMDA” , the PMDA of interest is
assumed to be known by the name newbie, hence the PMDA directory would be
${PCP_PMDAS_DIR}/newbie.

Note

Any installation or removal of a PMDA involves updating files and directories that are typically
well protected. Hence the procedures described in this section must be executed as the
superuser.

2.8.1. Installing a PMDA

A PMDA is fully installed when these tasks are completed:

Help text has been installed in a place where the PMDA can find it, usually in the PMDA directory
${PCP_PMDAS_DIR}/newbie.

The name space has been updated in the ${PCP_VAR_DIR}/pmns directory.

The PMDA binary has been installed, usually in the directory ${PCP_PMDAS_DIR}/newbie.

The ${PCP_PMCDCONF_PATH} file has been updated.

The PMCD process has been restarted or notified (with a SIGHUP signal) that the new PMDA
exists.

The Makefile should include an install target to compile and link the PMDA (as a DSO, or a
daemon or both) in the PMDA directory. The clobber target should remove any files created as a
by-product of the install target.

⁠Chapt er 2. Writ ing a PMDA

51

You may wish to use ${PCP_PMDAS_DIR}/simple/Makefile as a template for constructing a new
PMDA Makefile; changing the assignment of IAM from simple to newbie would account for most
of the required changes.

The Install script should make use of the generic procedures defined in the script
${PCP_SHARE_DIR}/lib/pmdaproc.sh, and may be as straightforward as the one used for the
trivial PMDA, shown in Example 2.33, “ Install Script for the Trivial PMDA” :

Example 2.33. Install Script for the Trivial PMDA

. ${PCP_DIR}/etc/pcp.env

. ${PCP_SHARE_DIR}/lib/pmdaproc.sh

iam=trivial
pmda_interface=2
forced_restart=false

pmdaSetup
pmdainstall
exit 0

The variables, shown in Table 2.1, “Variables to Control Behavior of Generic pmdaproc.sh
Procedures” , may be assigned values to modify the behavior of the pmdaSetup and pmdainstall
procedures from ${PCP_SHARE_DIR}/lib/pmdaproc.sh.

Table 2.1. Variab les to Contro l Behavior of Generic pmdaproc.sh Procedures

Shell Variab le Use Default
$iam Name of the PMDA; assignment to this variable is

mandatory.

Example: iam=newbie

$dso_opt Can this PMDA be installed as a DSO? false

$daemon_opt Can this PMDA be installed as a daemon? true

$perl_opt Is this PMDA a perl script? false

$python_opt Is this PMDA a python script? false

$forced_restart Must this PMDA run as root or some other non-
default user? (requires PMCD restart)

true

$pipe_opt If installed as a daemon PMDA, is the default IPC via
pipes?

true

$socket_opt If installed as a daemon PMDA, is the default IPC via
an Internet socket?

false

$socket_inet_def If installed as a daemon PMDA, and the IPC method
uses an Internet socket, the default port number.

$ipc_prot IPC style for PDU exchanges involving a daemon
PMDA; binary or text.

binary

$check_delay Delay in seconds between installing PMDA and
checking if metrics are available.

3

$args Additional command-line arguments passed to a
daemon PMDA.

PCP 3 Performance Co- Pilot ™ Programmer's Guide

52

$pmda_interface Version of the libpcp_pmda library required, used
to determine the version for generating help text files.

1

$pmns_source The name of the PMNS file (by default relative to the
PMDA directory).

pmns

$pmns_name First-level name for this PMDA's metrics in the
PMNS.

$iam

$help_source The name of the help file (by default relative to the
PMDA directory).

help

$pmda_name The name of the executable for a daemon PMDA. pmda$iam

$dso_name The name of the shared library for a DSO PMDA. pmda$iam.$d
so_suffix

$dso_entry The name of the initialization function for a DSO
PMDA.

${iam}_init

$domain The numerical PMDA domain number (from
domain.h).

$SYMDOM The symbolic name of the PMDA domain number
(from domain.h).

Shell Variab le Use Default

In addition, the variables do_pmda and do_check will be set to reflect the intention to install the
PMDA (as opposed to install just the PMNS) and to check the availability of the metrics once the
PMDA is installed. By default, each variable is true; however, the command-line options -N and -Q
to Install may be used to set the variables to false, as follows: do_pmda (-N) and do_check (-N
or -Q).

The variables may also have their assignments changed by the user's response to the common
prompt as shown in Example 2.34, “Changing Variable Assignments” :

Example 2.34. Changing Variable Assignments

You will need to choose an appropriate configuration for installation
of the ... Performance Metrics Domain Agent (PMDA).
 collector collect performance statistics on this system
 monitor allow this system to monitor local and/or remote systems
 both collector and monitor configuration for this system

Obviously, for anything but the most trivial PMDA, after calling the pmdaSetup procedure, the
Install script should also prompt for any PMDA-specific parameters, which are typically
accumulated in the args variable and used by the pmdainstall procedure.

The detailed operation of the pmdainstall procedure involves the following tasks:

Using default assignments, and interaction where ambiguity exists, determine the PMDA type
(DSO or daemon) and the IPC parameters, if any.

Copy the $pmns_source file, replacing symbolic references to SYMDOM by the desired numeric
domain number from domain.

Merge the PMDA's name space into the PCP name space at the non-leaf node identified by
$pmns_name.

If any pmchart views can be found (files with names ending in “ .pmchart”), copy these to the
standard directory (${PCP_VAR_DIR}/config/pmchart) with the “ .pmchart” suffix removed.

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

53

Create new help files from $help_source after replacing symbolic references to SYMDOM by the
desired numeric domain number from domain.

Terminate the old daemon PMDA, if any.

Use the Makefile to build the appropriate executables.

Add the PMDA specification to PMCD's configuration file (${PCP_PMCDCONF_PATH}).

Notify PMCD. To minimize the impact on the services PMCD provides, sending a SIGHUP to
PMCD forces it to reread the configuration file and start, restart, or remove any PMDAs that have
changed since the file was last read. However, if the newly installed PMDA must run using a
different privilege level to PMCD then PMCD must be restarted. This is because PMCD runs
unprivileged after initially starting the PMDAs.

Check that the metrics from the new PMDA are available.

There are some PMDA changes that may trick PMCD into thinking nothing has changed, and not
restarting the PMDA. Most notable are changes to the PMDA executable. In these cases, you may
need to explicitly remove the PMDA as described in Section 2.8.3, “Removing a PMDA” , or more
drastically, restart PMCD as follows:

${PCP_RC_DIR}/pcp start

The files ${PCP_PMDAS_DIR}/*/Install provide a wealth of examples that may be used to
construct a new PMDA Install script.

2.8.2. Upgrading a PMNS to Include Met rics from a New PMDA

When invoked with a -N command-line option, the PMDA Install script may be used to update the
PMNS without installing the PMDA. This functionality is rarely, if ever, used in modern versions of
PCP, but allows one to populate the local PMNS with the names of the performance metrics from a
PMDA installed on a remote host. The -N option can also install pmchart views useful on a
monitoring system, although this also is rarely used now with each platforms package management
tools handling this task.

2.8.3. Removing a PMDA

The simplest way to stop a PMDA from running, apart from killing the process, is to remove the entry
from ${PCP_PMCDCONF_PATH} and signal PMCD (with SIGHUP) to reread its configuration file. To
completely remove a PMDA requires the reverse process of the installation, including an update of
the Performance Metrics Name Space (PMNS).

This typically involves a Remove script in the PMDA directory that uses the same common
procedures as the Install script described Section 2.8.1, “ Installing a PMDA” .

The ${PCP_PMDAS_DIR}/*/Remove files provide a wealth of examples that may be used to
construct a new PMDA Remove script.

2.8.4. Configuring PCP T ools

Most PCP tools have their own configuration file format for specifying which metrics to view or to log.
By using canned configuration files that monitor key metrics of the new PMDA, users can quickly see
the performance of the target system, as characterized by key metrics in the new PMDA.

Any configuration files that are created should be kept with the PMDA and installed into the

PCP 3 Performance Co- Pilot ™ Programmer's Guide

54

appropriate directories when the PMDA is installed.

As with all PCP customization, some of the most valuable tools can be created by defining views,
scenes, and control-panel layouts that combine related performance metrics from multiple PMDAs or
multiple hosts.

Metrics suitable for on-going logging can be specified in templated pmlogger configuration files for
pmlogconf to automatically add to the pmlogger_daily recorded set; see the pmlogger(1),
pmlogconf(1) and pmlogger_daily(1) man pages.

Parameterized alarm configurations can be created using the pmieconf facilities; see the
pmieconf(1) and pmie(1) man pages.

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

55

Chapter 3. PMAPI--The Performance Metrics API

This chapter describes the Performance Metrics Application Programming Interface (PMAPI) provided
with Performance Co-Pilot (PCP).

The PMAPI is a set of functions and data structure definitions that allow client applications to access
performance data from one or more Performance Metrics Collection Daemons (PMCDs) or from PCP
archive logs. The PCP utilities are all written using the PMAPI.

The most common use of PCP includes running performance monitoring utilities on a workstation
(the monitoring system) while performance data is retrieved from one or more remote collector
systems by a number of PCP processes. These processes execute on both the monitoring system
and the collector systems. The collector systems are typically servers, and are the targets for the
performance investigations.

In the development of the PMAPI the most important question has been, “How easily and quickly will
this API enable the user to build new performance tools, or exploit existing tools for newly available
performance metrics?” The PMAPI and the standard tools that use the PMAPI have enjoyed a
symbiotic evolution throughout the development of PCP.

It will be convenient to differentiate between code that uses the PMAPI and code that implements the
services of the PMAPI. The former will be termed “above the PMAPI” and the latter “below the PMAPI.”

3.1. Naming and Ident ifying Performance Met rics

Across all of the supported performance metric domains, there are a large number of performance
metrics. Each metric has its own description, format, and semantics. PCP presents a uniform interface
to these metrics above the PMAPI, independent of the source of the underlying metric data. For
example, the performance metric hinv.physmem has a single 32-bit unsigned integer value,
representing the number of megabytes of physical memory in the system, while the performance
metric disk.dev.total has one 32-bit unsigned integer value per disk spindle, representing the
cumulative count of I/O operations involving each associated disk spindle. These concepts are
described in greater detail in Section 2.3, “Domains, Metrics, and Instances” .

For brevity and efficiency, internally PCP avoids using names for performance metrics, and instead
uses an identification scheme that unambiguously associates a single integer with each known
performance metric. This integer is known as a Performance Metric Identifier, or PMID. For functions
using the PMAPI, a PMID is defined and manipulated with the typedef pmID.

Below the PMAPI, the integer value of the PMID has an internal structure that reflects the details of the
PMCD and PMDA architecture, as described in Section 2.3.3, “Metrics” .

Above the PMAPI, a Performance Metrics Name Space (PMNS) is used to provide a hierarchic
classification of external metric names, and a one-to-one mapping of external names to internal
PMIDs. A more detailed description of the PMNS can be found in the Performance Co-Pilot User's and
Administrator's Guide.

The default PMNS comes from the performance metrics source, either a PMCD process or a PCP
archive. This PMNS always reflects the available metrics from the performance metrics source

3.2. Performance Met ric Instances

PCP 3 Performance Co- Pilot ™ Programmer's Guide

56

When performance metric values are returned across the PMAPI to a requesting application, there
may be more than one value for a particular metric; for example, independent counts for each CPU,
or each process, or each disk, or each system call type, and so on. This multiplicity of values is not
enumerated in the Name Space, but rather when performance metrics are delivered across the PMAPI.

The notion of metric instances is really a number of related concepts, as follows:

A particular performance metric may have a set of associated values or instances.

The instances are differentiated by an instance identifier.

An instance identifier has an internal encoding (an integer value) and an external encoding (a
corresponding external name or label).

The set of all possible instance identifiers associated with a performance metric on a particular
host constitutes an instance domain.

Several performance metrics may share the same instance domain.

Consider Example 3.1, “Metrics Sharing the Same Instance Domain” :

Example 3.1. Metrics Sharing the Same Instance Domain

 $ pminfo -f filesys.free

filesys.free
 inst [1 or “/dev/disk0”] value 1803
 inst [2 or “/dev/disk1”] value 22140
 inst [3 or “/dev/disk2”] value 157938

The metric filesys.free has three values, currently 1803, 22140, and 157938. These values are
respectively associated with the instances identified by the internal identifiers 1, 2 and 3, and the
external identifiers /dev/disk0, /dev/disk1, and /dev/disk2. These instances form an instance
domain that is shared by the performance metrics filesys.capacity, filesys.used,
filesys.free, filesys.mountdir, and so on.

Each performance metric is associated with an instance domain, while each instance domain may be
associated with many performance metrics. Each instance domain is identified by a unique value, as
defined by the following typedef declaration:

 typedef unsigned long pmInDom;

The special instance domain PM_INDOM_NULL is reserved to indicate that the metric has a single
value (a singular instance domain). For example, the performance metric mem.freemem always has
exactly one value. Note that this is semantically different to a performance metric like
kernel.percpu.cpu.sys that has a non-singular instance domain, but may have only one value
available; for example, on a system with a single processor.

In the results returned above the PMAPI, each individual instance within an instance domain is
identified by an internal integer instance identifier. The special instance identifier PM_IN_NULL is
reserved for the single value in a singular instance domain. Performance metric values are delivered
across the PMAPI as a set of instance identifier and value pairs.

The instance domain of a metric may change with time. For example, a machine may be shut down,
have several disks added, and be rebooted. All performance metrics associated with the instance

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

57

domain of disk devices would contain additional values after the reboot. The difficult issue of
transient performance metrics means that repeated requests for the same PMID may return different
numbers of values, or some changes in the particular instance identifiers returned. This means
applications need to be aware that metric instantiation is guaranteed to be valid only at the time of
collection.

Note

Some instance domains are more dynamic than others. For example, consider the instance
domains behind the performance metrics proc.memory.rss (one instance per process),
swap.free (one instance per swap partition) and kernel.percpu.cpu.intr (one instance
per CPU).

3.3. Current PMAPI Context

When performance metrics are retrieved across the PMAPI, they are delivered in the context of a
particular source of metrics, a point in time, and a profile of desired instances. This means that the
application making the request has already negotiated across the PMAPI to establish the context in
which the request should be executed.

A metric's source may be the current performance data from a particular host (a live or real-time
source), or an archive log of performance data collected by pmlogger at some remote host or earlier
time (a retrospective or archive source). The metric's source is specified when the PMAPI context is
created by calling the pmNewContext function. This function returns an opaque handle which can
be used to identify the context.

The collection time for a performance metric is always the current time of day for a real-time source, or
current position for an archive source. For archives, the collection time may be set to an arbitrary time
within the bounds of the archive log by calling the pmSetMode function.

The last component of a PMAPI context is an instance profile that may be used to control which
particular instances from an instance domain should be retrieved. When a new PMAPI context is
created, the initial state expresses an interest in all possible instances, to be collected at the current
time. The instance profile can be manipulated using the pmAddProfile and pmDelProfile
functions.

The current context can be changed by passing a context handle to pmUseContext. If a live context
connection fails, the pmReconnectContext function can be used to attempt to reconnect it.

3.4. Performance Met ric Descript ions

For each defined performance metric, there is associated metadata encoded in a performance metric
description (pmDesc structure) that describes the format and semantics of the performance metric.
The pmDesc structure, in Example 3.2, “ pmDesc Structure” , provides all of the information required to
interpret and manipulate a performance metric through the PMAPI. It has the following declaration:

Example 3.2. pmDesc St ructure

/* Performance Metric Descriptor */
typedef struct {
 pmID pmid; /* unique identifier */

PCP 3 Performance Co- Pilot ™ Programmer's Guide

58

 int type; /* base data type (see below) */
 pmInDom indom; /* instance domain */
 int sem; /* semantics of value (see below) */
 pmUnits units; /* dimension and units (see below) */
} pmDesc;

The type field in the pmDesc structure describes various encodings of a metric's value. Its value will
be one of the following constants:

/* pmDesc.type - data type of metric values */
#define PM_TYPE_NOSUPPORT -1 /* not in this version */
#define PM_TYPE_32 0 /* 32-bit signed integer */
#define PM_TYPE_U32 1 /* 32-bit unsigned integer */
#define PM_TYPE_64 2 /* 64-bit signed integer */
#define PM_TYPE_U64 3 /* 64-bit unsigned integer */
#define PM_TYPE_FLOAT 4 /* 32-bit floating point */
#define PM_TYPE_DOUBLE 5 /* 64-bit floating point */
#define PM_TYPE_STRING 6 /* array of char */
#define PM_TYPE_AGGREGATE 7 /* arbitrary binary data */
#define PM_TYPE_AGGREGATE_STATIC 8 /* static pointer to aggregate */
#define PM_TYPE_EVENT 9 /* packed pmEventArray */
#define PM_TYPE_UNKNOWN 255 /* used in pmValueBlock not pmDesc */

By convention PM_TYPE_STRING is interpreted as a classic C-style null byte terminated string.

Event records are encoded as a packed array of strongly-typed, well-defined records within a
pmResult structure, using a container metric with a value of type PM_TYPE_EVENT.

If the value of a performance metric is of type PM_TYPE_STRING, PM_TYPE_AGGREGATE,
PM_TYPE_AGGREGATE_STATIC, or PM_TYPE_EVENT, the interpretation of that value is unknown to
many PCP components. In the case of the aggregate types, the application using the value and the
Performance Metrics Domain Agent (PMDA) providing the value must have some common
understanding about how the value is structured and interpreted. Strings can be manipulated using
the standard C libraries. Event records contain timestamps, event flags and event parameters, and
the PMAPI provides support for unpacking an event record - see the pmUnpackEventRecords(3)
man page for details. Further discussion on event metrics and event records can be found in
Section 3.6, “Performance Event Metrics” .

PM_TYPE_NOSUPPORT indicates that the PCP collection framework knows about the metric, but the
corresponding service or application is either not configured or is at a revision level that does not
provide support for this performance metric.

The semantics of the performance metric is described by the sem field of a pmDesc structure and uses
the following constants:

/* pmDesc.sem - semantics of metric values */
#define PM_SEM_COUNTER 1 /* cumulative count, monotonic increasing */
#define PM_SEM_INSTANT 3 /* instantaneous value continuous domain */
#define PM_SEM_DISCRETE 4 /* instantaneous value discrete domain */

Each value for a performance metric is assumed to be drawn from a set of values that can be
described in terms of their dimensionality and scale by a compact encoding, as follows:

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

59

The dimensionality is defined by a power, or index, in each of three orthogonal dimensions:

Space, Time, and Count (dimensionless). For example, I/O throughput is Space1.Time-1, while the

running total of system calls is Count1, memory allocation is Space1, and average service time

per event is Time1.Count-1.

In each dimension, a number of common scale values are defined that may be used to better
encode ranges that might otherwise exhaust the precision of a 32-bit value. For example, a metric

with dimension Space1.Time-1 may have values encoded using the scale megabytes per second.

This information is encoded in the pmUnits data structure, shown in Example 3.3, “ pmUnits and
pmDesc Structures” . It is embedded in the pmDesc structure :

The structures are as follows:

Example 3.3. pmUnits and pmDesc St ructures

/*
 * Encoding for the units (dimensions and
 * scale) for Performance Metric Values
 *
 * For example, a pmUnits struct of
 * { 1, -1, 0, PM_SPACE_MBYTE, PM_TIME_SEC, 0 }
 * represents Mbytes/sec, while
 * { 0, 1, -1, 0, PM_TIME_HOUR, 6 }
 * represents hours/million-events
 */
typedef struct {
 int pad:8;
 int scaleCount:4; /* one of PM_COUNT_* below */
 int scaleTime:4; /* one of PM_TIME_* below */
 int scaleSpace:4; /* one of PM_SPACE_* below */
 int dimCount:4; /* event dimension */
 int dimTime:4; /* time dimension */
 int dimSpace:4; /* space dimension
} pmUnits; /* dimensional units and scale of value */
/* pmUnits.scaleSpace */
#define PM_SPACE_BYTE 0 /* bytes */
#define PM_SPACE_KBYTE 1 /* Kilobytes (1024) */
#define PM_SPACE_MBYTE 2 /* Megabytes (1024^2) */
#define PM_SPACE_GBYTE 3 /* Gigabytes (1024^3) */
#define PM_SPACE_TBYTE 4 /* Terabytes (1024^4) */
/* pmUnits.scaleTime */
#define PM_TIME_NSEC 0 /* nanoseconds */
#define PM_TIME_USEC 1 /* microseconds */
#define PM_TIME_MSEC 2 /* milliseconds */
#define PM_TIME_SEC 3 /* seconds */
#define PM_TIME_MIN 4 /* minutes */
#define PM_TIME_HOUR 5 /* hours */
/*
 * pmUnits.scaleCount (e.g. count events, syscalls,
 * interrupts, etc.) -- these are simply powers of 10,
 * and not enumerated here.
 * e.g. 6 for 10^6, or -3 for 10^-3
 */
#define PM_COUNT_ONE 0 /* 1 */

PCP 3 Performance Co- Pilot ™ Programmer's Guide

60

3.5. Performance Met rics Values

An application may fetch (or store) values for a set of performance metrics, each with a set of
associated instances, using a single pmFetch (or pmStore) function call. To accommodate this,
values are delivered across the PMAPI in the form of a tree data structure, rooted at a pmResult
structure. This encoding is illustrated in Figure 3.1, “A Structured Result for Performance Metrics from
pmFetch” , and uses the component data structures in Example 3.4, “ pmValueBlock and pmValue
Structures” :

Example 3.4. pmValueBlock and pmValue St ructures

typedef struct {
 int inst; /* instance identifier */
 union {
 pmValueBlock *pval; /* pointer to value-block */
 int lval; /* integer value insitu */
 } value;
} pmValue;

pmResult
pmValueSet

pmValueSet

timestamp
numpmid (N)

pmValueSet[N] int (in-situ)
numval (M)
pmid

valfmt
inst

...

...

pmValue[M]

inst

...
...

numval (1)
pmid

valfmt

value
inst

value

pmValueBlock
type length

Figure 3.1. A St ructured Result for Performance Metrics f rom pmFetch

The internal instance identifier is stored in the inst element. If a value for a particular metric-instance
pair is a 32-bit integer (signed or unsigned), then it will be stored in the lval element. If not, the value
will be in a pmValueBlock structure, as shown in Example 3.5, “pmValueBlock Structure” , and will
be located via pval:

The pmValueBlock structure is as follows:

Example 3.5. pmValueBlock St ructure

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

61

typedef struct {
 unsigned int vlen : 24; /* bytes for vtype/vlen + vbuf */
 unsigned int vtype : 8; /* value type */
 char vbuf[1]; /* the value */
} pmValueBlock;

The length of the pmValueBlock (including the vtype and vlen fields) is stored in vlen. Despite
the prototype declaration of vbuf, this array really accommodates vlen minus sizeof(vlen) bytes.
The vtype field encodes the type of the value in the vbuf[] array, and is one of the PM_TYPE_*
macros defined in <pcp/pmapi.h>.

A pmValueSet structure, as shown in Example 3.6, “ pmValueSet Structure” , contains all of the
values to be returned from pmFetch for a single performance metric identified by the pmid field.

Example 3.6. pmValueSet St ructure

typedef struct {
 pmID pmid; /* metric identifier */
 int numval; /* number of values */
 int valfmt; /* value style, insitu or ptr */
 pmValue vlist[1]; /* set of instances/values */
} pmValueSet;

If positive, the numval field identifies the number of value-instance pairs in the vlist array (despite
the prototype declaration of size 1). If numval is zero, there are no values available for the
associated performance metric and vlist[0] is undefined. A negative value for numval indicates an
error condition (see the pmErrStr(3) man page) and vlist[0] is undefined. The valfmt field has
the value PM_VAL_INSITU to indicate that the values for the performance metrics should be located
directly via the lval member of the value union embedded in the elements of vlist; otherwise,
metric values are located indirectly via the pval member of the elements of vlist.

The pmResult structure, as shown in Example 3.7, “ pmResult Structure” , contains a time stamp
and an array of numpmid pointers to pmValueSet.

Example 3.7. pmResult St ructure

/* Result returned by pmFetch() */
typedef struct {
 struct timeval timestamp; /* stamped by collector */
 int numpmid; /* number of PMIDs */
 pmValueSet *vset[1]; /* set of value sets */
} pmResult

There is one pmValueSet pointer per PMID, with a one-to-one correspondence to the set of
requested PMIDs passed to pmFetch.

PCP 3 Performance Co- Pilot ™ Programmer's Guide

62

Along with the metric values, the PMAPI returns a time stamp with each pmResult that serves to
identify when the performance metric values were collected. The time is in the format returned by
gettimeofday and is typically very close to the time when the metric values were extracted from their
respective domains.

Note

There is a question of exactly when individual metrics may have been collected, especially
given their origin in potentially different performance metric domains, and variability in metric
updating frequency by individual PMDAs. PCP uses a pragmatic approach, in which the
PMAPI implementation returns all metrics with values accurate as of the time stamp, to the
maximum degree possible, and PMCD demands that all PMDAs deliver values within a small
realtime window. The resulting inaccuracy is small, and the additional burden of accurate
individual timestamping for each returned metric value is neither warranted nor practical (from
an implementation viewpoint).

The PMAPI provides functions to extract, rescale, and print values from the above structures; refer to
Section 3.8.11, “PMAPI Ancillary Support Services” .

3.6. Performance Event Met rics

In addition to performance metric values which are sampled by monitor tools, PCP supports the
notion of performance event metrics which occur independently to any sampling frequency. These
event metrics (PM_TYPE_EVENT) are delivered using a novel approach which allows both sampled
and event trace data to be delivered via the same live wire protocol, the same on-disk archive format,
and fundamentally using the same PMAPI services. In other words, a monitor tool may be sample
and trace, simultaneously, using the PMAPI services discussed here.

Event metrics are characterised by certain key properties, distinguishing them from the other metric
types (counters, instantaneous, and discrete):

Occur at times outside of any monitor tools control, and often have a fine-grained timestamp
associated with each event.

Often have parameters associated with the event, which further describe each individual event, as
shown in Figure 3.2, “Sample write(2) syscall entry point encoding” .

May occur in very rapid succession, at rates such that both the collector and monitor sides may
not be able to track all events. This property requires the PCP protocol to support the notion of
"dropped" or "missed" events.

There may be inherent relationships between events, for example the start and commit (or
rollback) of a database transaction could be separate events, linked by a common transaction
identifier (which would likely also be one of the parameters to each event). Begin-end and parent-
child relationships are relatively common, and these properties require the PCP protocol to
support the notion of " flags" that can be associated with events.

These differences aside, the representation of event metrics within PCP shares many aspects of the
other metric types - event metrics appear in the Name Space (as do each of the event parameters),
each has an associated Performance Metric Identifier and Descriptor, may have an instance domain
associated with them, and may be recorded by pmlogger for subsequent replay.

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

63

write (7, "It was the best of times, ...", 4096);

PCP Metrics:
event.syscall.write_entry (PM_TYPE_EVENT)

event.syscall.params.fd (PM_TYPE_32)

event.syscall.params.user_buffer(PM_TYPE_AGGREGATE)

event.syscall.params.buffer_size(PM_TYPE_64, PM_SPACE_BYTE)

event.syscall.params.pid (PM_TYPE_32)

Figure 3.2. Sample write(2) syscall ent ry point encoding

Event metrics and their associated information (parameters, timestamps, flags, and so on) are
delivered to monitoring tools alongside sampled metrics as part of the pmResult structure seen
previously in Example 3.7, “ pmResult Structure” .

The semantics of pmFetch(3) specifying an event metric PMID are such that all events observed on
the collector since the previous fetch (by this specific monitor client) are to transfered to the monitor.
Each event will have the metadata described earlier encoded with it (timestamps, flags, and so on) for
each event. The encoding of the series of events involves a compound data structure within the
pmValueSet associated with the event metric PMID, as illustrated in Figure 3.3, “Result Format for
Event Performance Metrics from pmFetch” .

pmEventArray
pmRe sult

pmVa lue S e t

pmVa lue S e t

time s ta mp
numpmid (N)

pmVa lue S e t[N] numva l (M)
pmid

va lfmt
ins t

...

...

pmVa lue [M]

ins t

...
...

numva l (1)
pmid

va lfmt
ins t

type length
nrecords (X)

pm EventRecord[X]
...
...

pmEventRecord

pmEventRecord

t im estam p
flags

nparam s (Y)

pm EventParam eter[Y]
...
...

pm id

pm id

tim estam p
[MISSED] flag
[MISSED] count

va lue

va lue

Figure 3.3. Result Format for Event Performance Metrics f rom pmFetch

At the highest level, the "series of events" is encapsulated within a pmEventArray structure, as in
Example 3.8, “ pmEventArray and pmEventRecord Structures” :

Example 3.8. pmEventArray and pmEventRecord St ructures

typedef struct {
 __pmTimeval er_timestamp; /* 2 x 32-bit timestamp format */
 unsigned int er_flags; /* event record characteristics */

PCP 3 Performance Co- Pilot ™ Programmer's Guide

64

 int er_nparams; /* number of ea_param[] entries */
 pmEventParameter er_param[1];
} pmEventRecord;

typedef struct {
 unsigned int ea_len : 24; /* bytes for type/len + records */
 unsigned int ea_type : 8; /* value type */
 int ea_nrecords; /* number of ea_record entries */
 pmEventRecord ea_record[1];
} pmEventArray;

Note that in the case of dropped events, the pmEventRecord structure is used to convey the number
of events dropped - er_flags is used to indicate the presence of dropped events, and er_nparams is
used to hold a count. Unsurprisingly, the parameters (er_param) will be empty in this situation.

The pmEventParameter structure is as follows:

Example 3.9. pmEventParameter St ructure

typedef struct {
 pmID ep_pmid; /* parameter identifier */
 unsigned int ep_type; /* value type */
 int ep_len; /* bytes for type/len + vbuf */
 /* actual value (vbuf) here */
} pmEventParameter;

3.6.1. Event Monitor Considerat ions

In order to simplify the decoding of event record arrays, the PMAPI provides the
pmUnpackEventRecords function for monitor tools. This function is passed a pointer to a
pmValueSet associated with an event metric (within a pmResult) from a pmFetch(3). For a given
instance of that event metric, it returns an array of "unpacked" pmResult structures for each event.

The control information (flags and optionally dropped events) is included as derived metrics within
each result structure. As such, these values can be queried similarly to other metrics, using their
names - event.flags and event.missed. Note that these metrics will only exist after the first call
to pmUnpackEventRecords.

An example of decoding event metrics in this way is presented in Example 3.10, “Unpacking Event
Records from an Event Metric pmValueSet” :

Example 3.10. Unpacking Event Records f rom an Event Metric pmValueSet

enum { event_flags = 0, event_missed = 1 };
static char *metadata[] = { "event.flags", "event.missed" };
static pmID metapmid[2];

void dump_event(pmValueSet *vsp, int idx)
{
 pmResult **res;
 int r, sts, nrecords;

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

65

 nrecords = pmUnpackEventRecords(vsp, idx, &res);
 if (nrecords < 0)
 fprintf(stderr, " pmUnpackEventRecords: %s\n",
pmErrStr(nrecords));
 else
 printf(" %d event records\n", nrecords);

 if ((sts = pmLookupName(2, &metadata, &metapmid)) < 0) {
 fprintf(stderr, "Event metadata error: %s\n", pmErrStr(sts));
 exit(1);
 }

 for (r = 0; r < nrecords; r++)
 dump_event_record(res, r);

 if (nrecords >= 0)
 pmFreeEventResult(res);
}

void dump_event_record(pmResult *res, int r)
{
 int p;

 __pmPrintStamp(stdout, &res[r]->timestamp);
 if (res[r]->numpmid == 0)
 printf(" ==> No parameters\n");
 for (p = 0; p < res[r]->numpmid; p++) {
 pmValueSet *vsp = res[r]->vset[p];

 if (vsp->numval < 0) {
 int error = vsp->numval;
 printf("%s: %s\n", pmIDStr(vsp->pmid), pmErrStr(error));
 } else if (vsp->pmid == metapmid[event_flags]) {
 int flags = vsp->vlist[0].value.lval;
 printf(" flags 0x%x (%s)\n", flags,
pmEventFlagsStr(flags));
 } else if (vsp->pmid == metapmid[event_missed]) {
 int count = vsp->vlist[0].value.lval;
 printf(" ==> %d missed event records\n", count);
 } else {
 dump_event_record_parameters(vsp);
 }
 }
}

void dump_event_record_parameters(pmValueSet *vsp)
{
 pmDesc desc;
 char *name;
 int sts, j;

 if ((sts = pmLookupDesc(vsp->pmid, &desc)) < 0) {
 fprintf(stderr, "pmLookupDesc: %s\n", pmErrStr(sts));
 } else
 if ((sts = pmNameID(vsp->pmid, &name)) < 0) {

PCP 3 Performance Co- Pilot ™ Programmer's Guide

66

 fprintf(stderr, "pmNameID: %s\n", pmErrStr(sts));
 } else {
 printf("parameter %s", name);
 for (j = 0; j < vsp->numval; j++) {
 pmValue *vp = &vsp->vlist[j];
 if (vsp->numval > 1) {
 printf("[%d]", vp->inst);
 pmPrintValue(stdout, vsp->valfmt, desc.type, vp, 1);
 putchar('\n');
 }
 }
 free(name);
 }
}

3.6.2. Event Collector Considerat ions

There is a feedback mechanism that is inherent in the design of the PCP monitor-collector event
metric value exchange, which protects both monitor and collector components from becoming
overrun by high frequency event arrivals. It is important that PMDA developers are aware of this
mechanism and all of its implications.

Monitor tools can query new event arrival on whatever schedule they choose. There are no
guarantees that this is a fixed interval, and no way for the PMDA to attempt to dictate this interval (nor
should there be).

As a result, a PMDA that provides event metrics must:

Track individual client connections using the per-client PMDA extensions (PMDA_INTERFACE_5
or later).

Queue events, preferably in a memory-efficient manner, such that each interested monitor tool
(there may be more than one) is informed of those events that arrived since their last request.

Control the memory allocated to in-memory event storage. If monitors are requesting new events
too slowly, compared to event arrival on the collector, the "missed events" feedback mechanism
must be used to inform the monitor. This mechanism is also part of the model by which a PMDA
can fix the amount of memory it uses. Once a fixed space is consumed, events can be dropped
from the tail of the queue for each client, provided a counter is incremented and the client is
subsequently informed.

Note

It is important that PMDAs are part of the performance solution, and not part of the
performance problem! With event metrics, this is much more difficult to achieve than with
counters or other sampled values.

There is certainly elegance to this approach for event metrics, and the way they dovetail with other,
sampled performance metrics is unique to PCP. Notice also how the scheme naturally allows multiple
monitor tools to consume the same events, no matter what the source of events is. The downside to
this flexibility is increased complexity in the PMDA when event metrics are used.

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

67

This complexity comes in the form of event queueing and memory management, as well as per-client
state tracking. Routines are available as part of the pcp_pmda library to assist, however - refer to the
man page entries for pmdaEventNewQueue(3) and pmdaEventNewClient(3) for further details.

One final set of helper APIs is available to PMDA developers who incorporate event metrics. There is
a need to build the pmEventArray structure, introduced in Example 3.8, “ pmEventArray and
pmEventRecord Structures” . This can be done directly, or using the helper routine
pmdaEventNewArray(3). If the latter, simpler model is chosen, the closely related routines
pmdaEventAddRecord, pmdaEventAddParam and pmdaEventAddMissedRecord would also
usually be used.

Depending on the nature of the events being exported by a PMDA, it can be desirable to perform
f i ltering of events on the collector system. This reduces the amount of event traffic between monitor
and collector systems (which may be filtered further on the monitor system, before presenting results).
Some PMDAs have had success using the pmStore(3) mechanism to allow monitor tools to send a
filter to the PMDA - using either a special control metric for the store operation, or the event metric
itself. The filter sent will depend on the event metric, but it might be a regular expression, or a tracing
script, or something else.

This technique has also been used to enable and disable event tracing entirely. It is often
appropriate to make use of authentication and user credentials when providing such a facility
(PMDA_INTERFACE_6 or later).

3.7. PMAPI Programming Style and Interact ion

The following sections describe the PMAPI programming style:

Variable length argument and results lists

Python specific issues

PMAPI error handling

3.7.1. Variable Length Argument and Results Lists

All arguments and results involving a “ list of something” are encoded as an array with an associated
argument or function value to identify the number of elements in the array. This encoding scheme
avoids both the varargs approach and sentinel-terminated lists. Where the size of a result is known
at the time of a call, it is the caller's responsibility to allocate (and possibly free) the storage, and the
called function assumes that the resulting argument is of an appropriate size.

Where a result is of variable size and that size cannot be known in advance (for example,
pmGetChildren, pmGetInDom, pmNameInDom, pmNameID, pmLookupText, and pmFetch), the
underlying implementation uses dynamic allocation through malloc in the called function, with the
caller responsible for subsequently calling free to release the storage when no longer required. In
the case of the result from pmFetch, there is a function (pmFreeResult) to release the storage, due
to the complexity of the data structure and the need to make multiple calls to free in the correct
sequence. As a general rule, if the called function returns an error status, then no allocation is done,
the pointer to the variable sized result is undefined, and free or pmFreeResult should not be
called.

3.7.2. Python Specific Issues

PCP 3 Performance Co- Pilot ™ Programmer's Guide

68

A pcp client may be written in the python language by making use of the python bindings for PMAPI.
The bindings use the python ctypes module to provide an interface to the PMAPI C language data
structures. The primary imports that are needed by a client are:

cpmapi which provides access to PMAPI constants

import cpmapi as c_api

pmapi which provides access to PMAPI functions and data structures

from pcp import pmapi

pmErr which provides access to the python bindings exception handler

from pcp.pmapi import pmErr

pmgui which provides access to PMAPI record mode functions

from pcp import ppmgui

Creating and destroying a PMAPI context in the python environment is done by creating and
destroying an object of the pmapi class. This is done in one of two ways, either directly:

 context = pmapi.pmContext()

or by automated processing of the command line arguments (refer to the pmGetOptions man page
for greater detail).

 options = pmapi.pmOptions(...)
 context = pmapi.pmContext.fromOptions(options, sys.argv)

Most PMAPI C functions have python equivalents with similar, although not identical, call signatures.
Some of the python functions do not return native python types, but instead return native C types
wrapped by the ctypes library. In most cases these types are opaque, or nearly so; for example pmid:

 pmid = context.pmLookupName("mem.freemem")
 desc = context.pmLookupDescs(pmid)
 result = context.pmFetch(pmid)
 ...

See the comparison of a standalone C and python client application in Example 3.23, “PMAPI Error
Handling” .

3.7.3. PMAPI Error Handling

Where error conditions may arise, the functions that compose the PMAPI conform to a single, simple
error notification scheme, as follows:

The function returns an int. Values greater than or equal to zero indicate no error, and perhaps
some positive status: for example, the number of items processed.

Values less than zero indicate an error, as determined by a global table of error conditions and
messages.

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

69

A PMAPI library function along the lines of strerror is provided to translate error conditions into
error messages; see the pmErrStr(3) and pmErrStr_r(3) man pages. The error condition is
returned as the function value from a previous PMAPI call; there is no global error indicator (unlike
errno). This is to accommodate multi-threaded performance tools.

The available error codes may be displayed with the following command:

 pmerr -l

Where possible, PMAPI routines are made as tolerant to failure as possible. In particular, routines
which deal with compound data structures - results structures, multiple name lookups in one call and
so on, will attempt to return all data that can be returned successfully, and errors embedded in the
result where there were (partial) failures. In such cases a negative failure return code from the routine
indicates catastrophic failure, otherwise success is returned and indicators for the partial failures are
returned embedded in the results.

3.8. PMAPI Procedural Interface

The following sections describe all of the PMAPI functions that provide access to the PCP
infrastructure on behalf of a client application:

PMAPI Name Space services

PMAPI metric description services

PMAPI instance domain services

PMAPI context services

PMAPI timezone services

PMAPI metrics services

PMAPI fetchgroup services

PMAPI record-mode services

PMAPI archive-specific services

PMAPI time control services

PMAPI ancillary support services

3.8.1. PMAPI Name Space Services

The functions described in this section provide Performance Metrics Application Programming
Interface (PMAPI) Name Space services.

3.8.1.1. pmGetChildren Funct io n

int pmGetChildren(const char*name, char***offspring)
Python:
[name1, name2...] = pmGetChildren(name)

PCP 3 Performance Co- Pilot ™ Programmer's Guide

70

Given a full pathname to a node in the current PMNS, as identified by name, return through offspring a
list of the relative names of all the immediate descendents of name in the current PMNS. As a special
case, if name is an empty string, (that is, "" but not NULL or (char *)0), the immediate descendents
of the root node in the PMNS are returned.

For the python bindings a tuple containing the relative names of all the immediate descendents of
name in the current PMNS is returned.

Normally, pmGetChildren returns the number of descendent names discovered, or a value less
than zero for an error. The value zero indicates that the name is valid, and associated with a leaf
node in the PMNS.

The resulting list of pointers (offspring) and the values (relative metric names) that the pointers
reference are allocated by pmGetChildren with a single call to malloc, and it is the responsibility
of the caller to issue a free(offspring) system call to release the space when it is no longer required.
When the result of pmGetChildren is less than one, offspring is undefined (no space is allocated,
and so calling free is counterproductive).

The python bindings return a tuple containing the relative names of all the immediate descendents of
name, where name is a full pathname to a node in the current PMNS.

3.8.1.2. pmGetChildrenStatus Funct io n

int pmGetChildrenStatus(const char *name, char ***offspring, int
**status)
Python:
([name1, name2...],[status1, status2...]) = pmGetChildrenStatus(name)

The pmGetChildrenStatus function is an extension of pmGetChildren that optionally returns
status information about each of the descendent names.

Given a fully qualified pathname to a node in the current PMNS, as identified by name,
pmGetChildrenStatus returns by means of offspring a list of the relative names of all of the
immediate descendent nodes of name in the current PMNS. If name is the empty string (” ”), it returns
the immediate descendents of the root node in the PMNS.

If status is not NULL, then pmGetChildrenStatus also returns the status of each child by means of
status. This refers to either a leaf node (with value PMNS_LEAF_STATUS) or a non-leaf node (with
value PMNS_NONLEAF_STATUS).

Normally, pmGetChildrenStatus returns the number of descendent names discovered, or else a
value less than zero to indicate an error. The value zero indicates that name is a valid metric name,
being associated with a leaf node in the PMNS.

The resulting list of pointers (offspring) and the values (relative metric names) that the pointers
reference are allocated by pmGetChildrenStatus with a single call to malloc, and it is the
responsibility of the caller to free(offspring) to release the space when it is no longer required. The
same holds true for the status array.

The python bindings return a tuple containing the relative names and statuses of all the immediate
descendents of name, where name is a full pathname to a node in the current PMNS.

3.8.1.3. pmGetPMNSLocation Funct io n

int pmGetPMNSLocation(void)
Python:

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

71

int loc = pmGetPMNSLocation()

If an application needs to know where the origin of a PMNS is, pmGetPMNSLocation returns
whether it is an archive (PMNS_ARCHIVE), a local PMNS file (PMNS_LOCAL), or a remote PMCD
(PMNS_REMOTE). This information may be useful in determining an appropriate error message
depending on PMNS location.

The python bindings return whether a PMNS is an archive cpmapi.PMNS_ARCHIVE, a local PMNS file
cpmapi.PMNS_LOCAL, or a remote PMCD cpmapi.PMNS_REMOTE. The constants are available by
importing cpmapi.

3.8.1.4. pmLoadNameSpace Funct io n

int pmLoadNameSpace(const char *filename)
Python:
int status = pmLoadNameSpace(filename)

In the highly unusual situation that an application wants to force using a local Performance Metrics
Name Space (PMNS), the application can load the PMNS using pmLoadNameSpace.

The filename argument designates the PMNS of interest. For applications that do not require a
tailored Name Space, the special value PM_NS_DEFAULT may be used for filename, to force a default
local PMNS to be established. Externally, a PMNS is stored in an ASCII format.

The python bindings load a local tailored Name Space from filename.

Note

Do not use this routine in monitor tools. The distributed PMNS services avoid the need for a
local PMNS; so applications should not use pmLoadNameSpace. Without this call, the default
PMNS is the one at the source of the performance metrics (PMCD or an archive).

3.8.1.5. pmLookupName Funct io n

int pmLookupName(int numpmid, char *namelist[], pmID pmidlist[])
Python:
c_uint pmid [] = pmLookupName("MetricName")
c_uint pmid [] = pmLookupName(("MetricName1", "MetricName2", ...))

Given a list in namelist containing numpmid full pathnames for performance metrics from the current
PMNS, pmLookupName returns the list of associated PMIDs through the pmidlist parameter. Invalid
metrics names are translated to the error PMID value of PM_ID_NULL.

The result from pmLookupName is the number of names translated in the absence of errors, or an
error indication. Note that argument definition and the error protocol guarantee a one-to-one
relationship between the elements of namelist and pmidlist; both lists contain exactly numpmid
elements.

The python bindings return an array of associated PMIDs corresponding to a tuple of MetricNames.
The returned pmid tuple is passed to pmLookupDescs and pmFetch.

3.8.1.6. pmNameAll Funct io n

PCP 3 Performance Co- Pilot ™ Programmer's Guide

72

int pmNameAll(pmID pmid, char ***nameset)
Python:
[name1, name2...] = pmNameAll(pmid)

Given a performance metric ID in pmid, pmNameAll determines all the corresponding metric names, if
any, in the PMNS, and returns these through nameset.

The resulting list of pointers nameset and the values (relative names) that the pointers reference are
allocated by pmNameAll with a single call to malloc. It is the caller's responsibility to call free and
release the space when it is no longer required.

In the absence of errors, pmNameAll returns the number of names in nameset.

For many PMNS instances, there is a 1:1 mapping between a name and a PMID, and under these
circumstances, pmNameID provides a simpler interface in the absence of duplicate names for a
particular PMID.

The python bindings return a tuple of all metric names having this identical pmid.

3.8.1.7. pmNameID Funct io n

int pmNameID(pmID pmid, char **name)
Python:
"metric name" = pmNameID(pmid)

Given a performance metric ID in pmid, pmNameID determines the corresponding metric name, if any,
in the current PMNS, and returns this through name.

In the absence of errors, pmNameID returns zero. The name argument is a null byte terminated string,
allocated by pmNameID using malloc. It is the caller's responsibility to call free and release the
space when it is no longer required.

The python bindings return a metric name corresponding to a pmid.

3.8.1.8. pmTraversePMNS Funct io n

int pmTraversePMNS(const char *name, void (*dometric)(const char *))
Python:
int status = pmTraversePMNS(name, traverse_callback)

The function pmTraversePMNS may be used to perform a depth-first traversal of the PMNS. The
traversal starts at the node identified by name --if name is an empty string, the traversal starts at the
root of the PMNS. Usually, name would be the pathname of a non-leaf node in the PMNS.

For each leaf node (actual performance metrics) found in the traversal, the user-supplied function
dometric is called with the full pathname of that metric in the PMNS as the single argument; this
argument is a null byte-terminated string, and is constructed from a buffer that is managed internally
to pmTraversePMNS. Consequently, the value is valid only during the call to dometric--if the
pathname needs to be retained, it should be copied using strdup before returning from dometric;
see the strdup(3) man page.

The python bindings perform a depth first traversal of the PMNS by scanning namespace, depth first,
and call a python function traverse_callback for each node.

3.8.1.9. pmUnloadNameSpace Funct io n

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

73

3.8.1.9. pmUnloadNameSpace Funct io n

int pmUnloadNameSpace(void)
Python:
pmUnLoadNameSpace("NameSpace")

If a local PMNS was loaded with pmLoadNameSpace, calling pmUnloadNameSpace frees up the
memory associated with the PMNS and force all subsequent Name Space functions to use the
distributed PMNS. If pmUnloadNameSpace is called before calling pmLoadNameSpace, it has no
effect.

As discussed in Section 3.8.1.4, “ pmLoadNameSpace Function” there are few if any situations where
clients need to call this routine in modern versions of PCP.

3.8.2. PMAPI Met rics Descript ion Services

The functions described in this section provide Performance Metrics Application Programming
Interface (PMAPI) metric description services.

3.8.2.1. pmLookupDesc Funct io n

int pmLookupDesc(pmID pmid, pmDesc *desc)
Python:
pmDesc* pmdesc = pmLookupDesc(c_uint pmid)
(pmDesc* pmdesc)[] = pmLookupDescs(c_uint pmids[N])
(pmDesc* pmdesc)[] = pmLookupDescs(c_uint pmid)

Given a Performance Metric Identifier (PMID) as pmid, pmLookupDesc returns the associated pmDesc
structure through the parameter desc from the current PMAPI context. For more information about
pmDesc, see Section 3.4, “Performance Metric Descriptions” .

The python bindings return the metric description structure pmDesc corresponding to pmid. The
returned pmdesc is passed to pmExtractValue and pmLookupInDom. The python bindings provide
an entry pmLookupDescs that is similar to pmLookupDesc but does a metric description lookup for
each element in a PMID array pmids.

3.8.2.2. pmLookupInDomText Funct io n

int pmLookupInDomText(pmInDom indom, int level, char **buffer)
Python:
"metric description" = pmGetInDomText(pmDesc pmdesc)

Provided the source of metrics from the current PMAPI context is a host, retrieve descriptive text about
the performance metrics instance domain identified by indom.

The level argument should be PM_TEXT_ONELINE for a one-line summary, or PM_TEXT_HELP for a
more verbose description suited to a help dialogue. The space pointed to by buffer is allocated in
pmLookupInDomText with malloc, and it is the responsibility of the caller to free unneeded space;
see the malloc(3) and free(3) man pages.

The help text files used to implement pmLookupInDomText are often created using newhelp and
accessed by the appropriate PMDA response to requests forwarded to the PMDA by PMCD. Further
details may be found in Section 2.4.4, “PMDA Help Text” .

PCP 3 Performance Co- Pilot ™ Programmer's Guide

74

The python bindings lookup the description text about the performance metrics pmDesc pmdesc. The
default is a one line summary; for a more verbose description add an optional second parameter
cpmapi.PM_TEXT_HELP. The constant is available by importing cpmapi.

3.8.2.3. pmLookupText Funct io n

int pmLookupText(pmID pmid, int level, char **buffer)
Python:
"metric description" = pmLookupText(c_uint pmid)

Provided the source of metrics from the current PMAPI context is a host, retrieve descriptive text about
the performance metric identified by pmid. The argument level should be PM_TEXT_ONELINE for a
one-line summary, or PM_TEXT_HELP for a more verbose description, suited to a help dialogue.

The space pointed to by buffer is allocated in pmLookupText with malloc, and it is the
responsibility of the caller to free the space when it is no longer required; see the malloc(3) and
free(3) man pages.

The help text files used to implement pmLookupText are created using newhelp and accessed by
the appropriate PMDA in response to requests forwarded to the PMDA by PMCD. Further details may
be found in Section 2.4.4, “PMDA Help Text” .

The python bindings lookup the description text about the performance metrics pmID pmid. The
default is a one line summary; for a more verbose description add an optional second parameter
cpmapi.PM_TEXT_HELP. The constant is available by importing cpmapi.

3.8.3. PMAPI Instance Domain Services

The functions described in this section provide Performance Metrics Application Programming
Interface (PMAPI) instance domain services.

3.8.3.1. pmGetInDom Funct io n

int pmGetInDom(pmInDom indom, int **instlist, char ***namelist)
Python:
([instance1, instance2...] [name1, name2...]) pmGetInDom(pmDesc pmdesc)

In the current PMAPI context, locate the description of the instance domain indom, and return through
instlist the internal instance identifiers for all instances, and through namelist the full external
identifiers for all instances. The number of instances found is returned as the function value (or less
than zero to indicate an error).

The resulting lists of instance identifiers (instlist and namelist), and the names that the elements of
namelist point to, are allocated by pmGetInDom with two calls to malloc, and it is the responsibility
of the caller to use free(instlist) and free(namelist) to release the space when it is no longer
required. When the result of pmGetInDom is less than one, both instlist and namelist are undefined (no
space is allocated, and so calling free is a bad idea); see the malloc(3) and free(3) man
pages.

The python bindings return a tuple of the instance identifiers and instance names for an instance
domain pmdesc.

3.8.3.2. pmLookupInDom Funct io n

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

75

int pmLookupInDom(pmInDom indom, const char *name)
Python:
int instid = pmLookupInDom(pmDesc pmdesc, "Instance")

For the instance domain indom, in the current PMAPI context, locate the instance with the external
identification given by name, and return the internal instance identifier.

The python bindings return the instance id corresponding to "Instance" in the instance domain
pmdesc.

3.8.3.3. pmNameInDom Funct io n

int pmNameInDom(pmInDom indom, int inst, char **name)
Python:
"instance id" = pmNameInDom(pmDesc pmdesc, c_uint instid)

For the instance domain indom, in the current PMAPI context, locate the instance with the internal
instance identifier given by inst, and return the full external identification through name. The space for
the value of name is allocated in pmNameInDom with malloc, and it is the responsibility of the caller
to free the space when it is no longer required; see the malloc(3) and free(3) man pages.

The python bindings return the text name of an instance corresponding to an instance domain
pmdesc with instance identifier instid.

3.8.4. PMAPI Context Services

Table 3.1, “Context Components of PMAPI Functions ” shows which of the three components of a
PMAPI context (metrics source, instance profile, and collection time) are relevant for various PMAPI
functions. Those PMAPI functions not shown in this table either manipulate the PMAPI context
directly, or are executed independently of the current PMAPI context.

Table 3.1. Context Components of PMAPI Funct ions

Funct ion Name Metrics Source Instance
Prof ile

Collect ion
Time

Notes

pmAddProfile Yes Yes

pmDelProfile Yes Yes

pmDupContext Yes Yes Yes

pmFetch Yes Yes Yes

pmFetchArchive Yes Yes (1)

pmGetArchiveEnd Yes (1)

pmGetArchiveLabel Yes (1)

pmGetChildren Yes

pmGetChildrenStatus Yes

pmGetContextHostName Yes

pmGetPMNSLocation Yes

pmGetInDom Yes Yes (2)

pmGetInDomArchive Yes (1)

pmLookupDesc Yes (3)

pmLookupInDom Yes Yes (2)

pmLookupInDomArchive Yes (1,2)

PCP 3 Performance Co- Pilot ™ Programmer's Guide

76

pmLookupInDomText Yes (4)
pmLookupName Yes

pmLookupText Yes (4)

pmNameAll Yes

pmNameID Yes

pmNameInDom Yes Yes (2)

pmNameInDomArchive Yes (1,2)

pmSetMode Yes Yes

pmStore Yes (5)

pmTraversePMNS Yes

Funct ion Name Metrics Source Instance
Prof ile

Collect ion
Time

Notes

Notes:

1. Operation supported only for PMAPI contexts where the source of metrics is an archive.

2. A specific instance domain is included in the arguments to these functions, and the result is
independent of the instance profile for any PMAPI context.

3. The metadata that describes a performance metric is sensitive to the source of the metrics, but
independent of any instance profile and of the collection time.

4. Operation is supported only for PMAPI contexts where the source of metrics is a host. The text
associated with a metric is assumed to be invariant with time and is definitely insensitive to
the current members of the instance domain. In all cases this information is unavailable from
an archive context (it is not included in the archive logs), and is directly available from a
PMDA via PMCD in the other cases.

5. This operation is supported only for contexts where the source of the metrics is a host.
Further, the instance identifiers are included in the argument to the function, and the effects
upon the current values of the metrics are immediate (retrospective changes are not allowed).
Consequently, from the current PMAPI context, neither the instance profile nor the collection
time influence the result of this function.

3.8.4.1. pmNewContext Funct io n

int pmNewContext(int type, const char *name)

The pmNewContext function may be used to establish a new PMAPI context. The source of metrics is
identified by name, and may be a host specification (type is PM_CONTEXT_HOST) or the basename of
an archive log (type is PM_CONTEXT_ARCHIVE).

A host specification usually contains a simple hostname, an internet address (IPv4 or IPv6), or the
path to the PMCD Unix domain socket. It can also specify properties of the connection to PMCD,
such as the protocol to use (secure and encrypted, or native) and whether PMCD should be reached
via a pmproxy host. Various other connection attributes, such as authentication information (user
name, password, authentication method, and so on) can also be specified. Further details can be
found in the PCPIntro(3) man page, and the companion Performance Co-Pilot Tutorials and Case
Studies document.

In the case where type is PM_CONTEXT_LOCAL, name is ignored, and the context uses a stand-alone
connection to the PMDA methods used by PMCD. When this type of context is in effect, the range of
accessible performance metrics is constrained to DSO PMDAs listed in the pmcd configuration file
${PCP_PMCDCONF_PATH}. The reason this is done, as opposed to all of the DSO PMDAs found
below ${PCP_PMDAS_DIR} for example, is that DSO PMDAs listed there are very likely to have their
metric names reflected in the local Name Space file, which will be loaded for this class of context.

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

77

The initial instance profile is set up to select all instances in all instance domains, and the initial
collection time is the current time at the time of each request for a host, or the time at the start of the
log for an archive. In the case of archives, the initial collection time results in the earliest set of metrics
being returned from the archive at the first pmFetch.

Once established, the association between a PMAPI context and a source of metrics is fixed for the
life of the context; however, functions are provided to independently manipulate both the instance
profile and the collection time components of a context.

The function returns a “handle” that may be used in subsequent calls to pmUseContext. This new
PMAPI context stays in effect for all subsequent context sensitive calls across the PMAPI until
another call to pmNewContext is made, or the context is explicitly changed with a call to
pmDupContext or pmUseContext.

For the python bindings creating and destroying a PMAPI context is done by creating and
destroying an object of the pmapi class.

3.8.4.2. pmDestroyContext Funct io n

int pmDestroyContext(int handle)

The PMAPI context identified by handle is destroyed. Typically, this implies terminating a connection
to PMCD or closing an archive file, and orderly clean-up. The PMAPI context must have been
previously created using pmNewContext or pmDupContext.

On success, pmDestroyContext returns zero. If handle was the current PMAPI context, then the
current context becomes undefined. This means the application must explicitly re-establish a valid
PMAPI context with pmUseContext, or create a new context with pmNewContext or pmDupContext,
before the next PMAPI operation requiring a PMAPI context.

For the python bindings creating and destroying a PMAPI context is done by creating and
destroying an object of the pmapi class.

3.8.4.3. pmDupContext Funct io n

int pmDupContext(void)

Replicate the current PMAPI context (source, instance profile, and collection time). This function
returns a handle for the new context, which may be used with subsequent calls to pmUseContext.
The newly replicated PMAPI context becomes the current context.

3.8.4.4. pmUseContext Funct io n

int pmUseContext(int handle)

Calling pmUseContext causes the current PMAPI context to be set to the context identified by handle.
The value of handle must be one returned from an earlier call to pmNewContext or pmDupContext.

Below the PMAPI, all contexts used by an application are saved in their most recently modified state,
so pmUseContext restores the context to the state it was in the last time the context was used, not the
state of the context when it was established.

3.8.4.5. pmWhichContext Funct io n

PCP 3 Performance Co- Pilot ™ Programmer's Guide

78

3.8.4.5. pmWhichContext Funct io n

int pmWhichContext(void)
Python:
int ctx_idx = pmWhichContext()

Returns the handle for the current PMAPI context (source, instance profile, and collection time).

The python bindings return the handle of the current PMAPI context.

3.8.4.6. pmAddProfile Funct io n

int pmAddProfile(pmInDom indom, int numinst, int instlist[])
Python:
int status = pmAddProfile(pmDesc pmdesc, [c_uint instid])

Add new instance specifications to the instance profile of the current PMAPI context. At its simplest,
instances identified by the instlist argument for the indom instance domain are added to the instance
profile. The list of instance identifiers contains numinst values.

If indom equals PM_INDOM_NULL, or numinst is zero, then all instance domains are selected. If instlist
is NULL, then all instances are selected. To enable all available instances in all domains, use this
syntax:

pmAddProfile(PM_INDOM_NULL, 0, NULL).

The python bindings add the list of instances instid to the instance profile of the instance pmdesc.

3.8.4.7. pmDelProfile Funct io n

int pmDelProfile(pmInDom indom, int numinst, int instlist[])
Python:
int status = pmDelProfile(pmDesc pmdesc, c_uint instid)
int status = pmDelProfile(pmDesc pmdesc, [c_uint instid])

Delete instance specifications from the instance profile of the current PMAPI context. In the simplest
variant, the list of instances identified by the instlist argument for the indom instance domain is
removed from the instance profile. The list of instance identifiers contains numinst values.

If indom equals PM_INDOM_NULL, then all instance domains are selected for deletion. If instlist is
NULL, then all instances in the selected domains are removed from the profile. To disable all
available instances in all domains, use this syntax:

pmDelProfile(PM_INDOM_NULL, 0, NULL)

The python bindings delete the list of instances instid from the instance profile of the instance domain
pmdesc.

3.8.4.8. pmSetMode Funct io n

int pmSetMode(int mode, const struct timeval *when, int delta)
Python:
int status = pmSetMode(mode, timeVal timeval, int delta)

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

79

This function defines the collection time and mode for accessing performance metrics and metadata
in the current PMAPI context. This mode affects the semantics of subsequent calls to the following
PMAPI functions: pmFetch, pmFetchArchive, pmLookupDesc, pmGetInDom, pmLookupInDom ,
and pmNameInDom.

The pmSetMode function requires the current PMAPI context to be of type PM_CONTEXT_ARCHIVE.

The when parameter defines a time origin, and all requests for metadata (metrics descriptions and
instance identifiers from the instance domains) are processed to reflect the state of the metadata as of
the time origin. For example, use the last state of this information at, or before, the time origin.

If the mode is PM_MODE_INTERP then, in the case of pmFetch, the underlying code uses an
interpolation scheme to compute the values of the metrics from the values recorded for times in the
proximity of the time origin.

If the mode is PM_MODE_FORW, then, in the case of pmFetch, the collection of recorded metric values
is scanned forward, until values for at least one of the requested metrics is located after the time
origin. Then all requested metrics stored in the PCP archive at that time are returned with a
corresponding time stamp. This is the default mode when an archive context is first established with
pmNewContext.

If the mode is PM_MODE_BACK, then the situation is the same as for PM_MODE_FORW, except a
pmFetch is serviced by scanning the collection of recorded metrics backward for metrics before the
time origin.

After each successful pmFetch, the time origin is reset to the time stamp returned through the
pmResult.

The pmSetMode parameter delta defines an additional number of time unit that should be used to
adjust the time origin (forward or backward) after the new time origin from the pmResult has been
determined. This is useful when moving through archives with a mode of PM_MODE_INTERP. The
high-order bits of the mode parameter field is also used to optionally set the units of time for the
delta field. To specify the units of time, use the PM_XTB_SET macro with one of the values
PM_TIME_NSEC, PM_TIME_MSEC, PM_TIME_SEC, or so on as follows:

PM_MODE_INTERP | PM_XTB_SET(PM_TIME_XXXX)

If no units are specified, the default is to interpret delta as milliseconds.

Using these mode options, an application can implement replay, playback, fast forward, or reverse
for performance metric values held in a PCP archive log by alternating calls to pmSetMode and
pmFetch.

In Example 3.11, “Dumping Values in Temporal Sequence” , the code fragment may be used to dump
only those values stored in correct temporal sequence, for the specified performance metric
my.metric.name:

Example 3.11. Dumping Values in Temporal Sequence

 int sts;
 pmID pmid;
 char *name = “my.metric.name”;

 sts = pmNewContext(PM_CONTEXT_ARCHIVE, “myarchive”);
 sts = pmLookupName(1, &name, &pmid);

PCP 3 Performance Co- Pilot ™ Programmer's Guide

80

 for (; ;) {
 sts = pmFetch(1, &pmid, &result);
 if (sts < 0)
 break;
 /* dump value(s) from result->vset[0]->vlist[] */
 pmFreeResult(result);
 }

Alternatively, the code fragment in Example 3.12, “Replaying Interpolated Metrics” may be used to
replay interpolated metrics from an archive in reverse chronological order, at ten-second intervals (of
recorded time):

Example 3.12. Replaying In terpolated Metrics

 int sts;
 pmID pmid;
 char *name = “my.metric.name”;
 struct timeval endtime;

 sts = pmNewContext(PM_CONTEXT_ARCHIVE, “myarchive”);
 sts = pmLookupName(1, &name, &pmid);
 sts = pmGetArchiveEnd(&endtime);
 sts = pmSetMode(PM_MODE_INTERP, &endtime, -10000);
 while (pmFetch(1, &pmid, &result) != PM_ERR_EOL) {
 /*
 * process interpolated metric values as of result->timestamp
 */
 pmFreeResult(result);
 }

The python bindings define the collection time and mode for reading archive files. mode can be one
of: c_api.PM_MODE_LIVE, c_api.PM_MODE_INTERP, c_api.FORW, c_api.BACK. wjocj are available
by importing cpmapi.

3.8.4.9. pmReconnectContext Funct io n

int pmReconnectContext(int handle)
Python:
int status = pmReconnectContext()

As a result of network, host, or PMCD (Performance Metrics Collection Daemon) failure, an
application's connection to PMCD may be established and then lost.

The function pmReconnectContext allows an application to request that the PMAPI context
identified by handle be re-established, provided the associated PMCD is accessible.

Note

handle may or may not be the current context.

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

81

To avoid flooding the system with reconnect requests, pmReconnectContext attempts a
reconnection only after a suitable delay from the previous attempt. This imposed restriction on the
reconnect re-try time interval uses a default exponential back-off so that the initial delay is 5 seconds
after the first unsuccessful attempt, then 10 seconds, then 20 seconds, then 40 seconds, and then 80
seconds thereafter. The intervals between reconnection attempts may be modified using the
environment variable PMCD_RECONNECT_TIMEOUT and the time to wait before an attempted
connection is deemed to have failed is controlled by the PMCD_CONNECT_TIMEOUT environment
variable; see the PCPIntro(1) man page.

If the reconnection succeeds, pmReconnectContext returns handle. Note that even in the case of a
successful reconnection, pmReconnectContext does not change the current PMAPI context.

The python bindings reestablish the connection for the context.

3.8.4.10. pmGetContextHostName Funct io n

const char *pmGetContextHostName(int id)
char *pmGetContextHostName_r(int id, char *buf, int buflen)
Python:
"hostname" = pmGetContextHostName()

Given a valid PCP context identifier previously created with pmNewContext or pmDupContext, the
pmGetContextHostName function provides a possibility to retrieve a host name associated with a
context regardless of the context type.

This function will use the pmcd.hostname metric if it is available, and so is able to provide an
accurate hostname in the presence of connection tunnelling and port forwarding.

If id is not a valid PCP context identifier, this function returns a zero length string and therefore never
fails.

In the case of pmGetContextHostName, the string value is held in a single static buffer, so
concurrent calls may not produce the desired results. The pmGetContextHostName_r function
allows a buffer and length to be passed in, into which the message is stored; this variant uses no
shared storage and can be used in a thread-safe manner.

The python bindings query the current context hostname.

3.8.5. PMAPI T imezone Services

The functions described in this section provide Performance Metrics Application Programming
Interface (PMAPI) timezone services.

3.8.5.1. pmNewContextZone Funct io n

int pmNewContextZone(void)
Python:
pmNewContextZone()

If the current PMAPI context is an archive, the pmNewContextZone function uses the timezone from
the archive label record to set the current reporting timezone. The current reporting timezone affects
the timezone used by pmCtime and pmLocaltime.

PCP 3 Performance Co- Pilot ™ Programmer's Guide

82

If the current PMAPI context corresponds to a host source of metrics, pmNewContextZone executes
a pmFetch to retrieve the value for the metric pmcd.timezone and uses that to set the current
reporting timezone.

In both cases, the function returns a value to identify the current reporting timezone that may be used
in a subsequent call to pmUseZone to restore this reporting timezone.

PM_ERR_NOCONTEXT indicates the current PMAPI context is not valid. A return value less than zero
indicates a fatal error from a system call, most likely malloc.

3.8.5.2. pmNewZone Funct io n

int pmNewZone(const char *tz)
Python:
int tz_handle = pmNewZone(int tz)

The pmNewZone function sets the current reporting timezone, and returns a value that may be used in
a subsequent call to pmUseZone to restore this reporting timezone. The current reporting timezone
affects the timezone used by pmCtime and pmLocaltime.

The tz argument defines a timezone string, in the format described for the TZ environment variable.
See the environ(7) man page.

A return value less than zero indicates a fatal error from a system call, most likely malloc.

The python bindings create a new zone handle and set reporting timezone for the timezone defined
by tz.

3.8.5.3. pmUseZone Funct io n

int pmUseZone(const int tz_handle)
Python:
int status = pmUseZone(int tz_handle)

In the pmUseZone function, tz_handle identifies a reporting timezone as previously established by a
call to pmNewZone or pmNewContextZone, and this becomes the current reporting timezone. The
current reporting timezone effects the timezone used by pmCtime and pmLocaltime).

A return value less than zero indicates the value of tz_handle is not legal.

The python bindings set the current reporting timezone defined by timezone tz_handle.

3.8.5.4. pmWhichZone Funct io n

int pmWhichZone(char **tz)
Python:
"zone string" = pmWhichZone()

The pmWhichZone function returns the handle of the current timezone, as previously established by
a call to pmNewZone or pmNewContextZone. If the call is successful (that is, there exists a current
reporting timezone), a non-negative integer is returned and tz is set to point to a static buffer
containing the timezone string itself. The current reporting timezone effects the timezone used by
pmCtime and pmLocaltime.

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

83

A return value less than zero indicates there is no current reporting timezone.

The python bindings return the current reporting timezone.

3.8.6. PMAPI Met rics Services

The functions described in this section provide Performance Metrics Application Programming
Interface (PMAPI) metrics services.

3.8.6.1. pmFetch Funct io n

int pmFetch(int numpmid, pmID pmidlist[], pmResult **result)
Python:
pmResult* pmresult = pmFetch(c_uint pmid[])

The most common PMAPI operation is likely to be calls to pmFetch, specifying a list of PMIDs (for
example, as constructed by pmLookupName) through pmidlist and numpmid. The call to pmFetch is
executed in the context of a source of metrics, instance profile, and collection time, previously
established by calls to the functions described in Section 3.8.4, “PMAPI Context Services” .

The principal result from pmFetch is returned as a tree structured result, described in the Section 3.5,
“Performance Metrics Values” .

If one value (for example, associated with a particular instance) for a requested metric is unavailable
at the requested time, then there is no associated pmValue structure in the result. If there are no
available values for a metric, then numval is zero and the associated pmValue[] instance is empty;
valfmt is undefined in these circumstances, but pmid is correctly set to the PMID of the metric with no
values.

If the source of the performance metrics is able to provide a reason why no values are available for a
particular metric, this reason is encoded as a standard error code in the corresponding numval; see
the pmerr(1) and pmErrStr(3) man pages. Since all error codes are negative, values for a
requested metric are unavailable if numval is less than or equal to zero.

The argument definition and the result specifications have been constructed to ensure that for each
PMID in the requested pmidlist there is exactly one pmValueSet in the result, and that the PMIDs
appear in exactly the same sequence in both pmidlist and result. This makes the number and order of
entries in result completely deterministic, and greatly simplifies the application programming logic
after the call to pmFetch.

The result structure returned by pmFetch is dynamically allocated using one or more calls to
malloc and specialized allocation strategies, and should be released when no longer required by
calling pmFreeResult. Under no circumstances should free be called directly to release this
space.

As common error conditions are encoded in the result data structure, only serious events (such as
loss of connection to PMCD, malloc failure, and so on) would cause an error value to be returned
by pmFetch. Otherwise, the value returned by the pmFetch function is zero.

In Example 3.13, “PMAPI Metrics Services” , the code fragment dumps the values (assumed to be
stored in the lval element of the pmValue structure) of selected performance metrics once every 10
seconds:

Example 3.13. PMAPI Metrics Services

PCP 3 Performance Co- Pilot ™ Programmer's Guide

84

 int i, j, sts;
 pmID pmidlist[10];
 pmResult *result;
 time_t now;

 /* set up PMAPI context, numpmid and pmidlist[] ... */
 while ((sts = pmFetch(10, pmidlist, &result)) >= 0) {
 now = (time_t)result->timestamp.tv_sec;
 printf("\n@ %s", ctime(&now));
 for (i = 0; i < result->numpmid; i++) {
 printf("PMID: %s", pmIDStr(result->vset[i]->pmid));
 for (j = 0; j < result->vset[i]->numval; j++) {
 printf(" 0x%x", result->vset[i]->vlist[j].value.lval);
 putchar('\n');
 }
 }
 pmFreeResult(result);
 sleep(10);
 }

Note

If a response is not received back from PMCD within 10 seconds, the pmFetch times out and
returns PM_ERR_TIMEOUT. This is most likely to occur when the PMAPI client and PMCD are
communicating over a slow network connection, but may also occur when one of the hosts is
extremely busy. The time out period may be modified using the PMCD_REQUEST_TIMEOUT
environment variable; see the PCPIntro(1) man page.

The python bindings fetch a pmResult corresponding to a pmid list, which is returned from
pmLookupName. The returned pmresult is passed to pmExtractValue.

3.8.6.2. pmFreeResult Funct io n

void pmFreeResult(pmResult *result)
Python:
pmFreeResult(pmResult* pmresult)

Release the storage previously allocated for a result by pmFetch.

THe python bindings free a pmresult previously allocated by pmFetch.

3.8.6.3. pmStore Funct io n

int pmStore(const pmResult *request)
Python:
pmResult* pmresult = pmStore(pmResult* pmresult)

In some special cases it may be helpful to modify the current values of performance metrics in one or
more underlying domains, for example to reset a counter to zero, or to modify a metric, which is a
control variable within a Performance Metric Domain.

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

85

The pmStore function is a lightweight inverse of pmFetch. The caller must build the pmResult data
structure (which could have been returned from an earlier pmFetch call) and then call pmStore. It is
an error to pass a request to pmStore in which the numval field within any of the pmValueSet
structure has a value less than one.

The current PMAPI context must be one with a host as the source of metrics, and the current value of
the nominated metrics is changed. For example, pmStore cannot be used to make retrospective
changes to information in a PCP archive log.

3.8.7. PMAPI Fetchgroup Services

The fetchgroup functions implement a registration-based mechanism to fetch groups of performance
metrics, including automation for general unit, rate, type conversions and convenient instance and
value encodings. They constitute a powerful and compact alternative to the classic Performance
Metrics Application Programming Interface (PMAPI) sequence of separate lookup, check, fetch,
iterate, extract, and convert functions.

A fetchgroup consists of a PMAPI context and a list of metrics that the application is interested in
fetching. For each metric of interest, a conversion specification and a destination pmAtomValue
pointer is given. Then, at each subsequent fetchgroup-fetch operation, all metrics are fetched,
decoded/converted, and deposited in the desired field of the destination pmAtomValues. See
Example 3.16, “ pmAtomValue Structure” for more on that data type. Similarly, a per-metric-instance
status value is optionally available for detailed diagnostics reflecting fetch/conversion.

The pmfetchgroup(3) man pages give detailed information on the C API; we only list some
common cases here. The simplified Python binding to the same API is summarized below. One
difference is that runtime errors in C are represented by status integers, but in Python are mapped to
pmErr exceptions. Another is that supplying metric type codes are mandatory in the C API but
optional in Python, since the latter language supports dynamic typing. Another difference is Python's
wrapping of output metric values in callable "holder" objects. We demonstrate all of these below.

3.8.7.1. Fet chgro up set up

To create a fetchgroup and its private PMAPI context, the pmCreateFetchGroup function is used,
with parameters similar to pmNewContext (see Section 3.8.4.1, “ pmNewContext Function”).

int sts;
pmFG fg;
sts = pmCreateFetchGroup(& fg, PM_CONTEXT_ARCHIVE, "./foo.meta");
assert(sts == 0);
Python
fg = pmapi.fetchgroup(c_api.PM_CONTEXT_ARCHIVE, './foo.meta')

If special PMAPI query, PMNS enumeration, or configuration upon the context is needed, the private
context may be carefully accessed.

int ctx = pmGetFetchGroupContext(fg);
sts = pmUseContext(ctx);
assert(sts == 0);
sts = pmSetMode(...);
Python
ctx = fg.get_context()
ctx.pmSetMode(...)

A fetchgroup is born empty. It needs to be extended with metrics to read. Scalars are easy. We specify

PCP 3 Performance Co- Pilot ™ Programmer's Guide

86

the metric name, an instance-domain instance if necessary, a unit-scaling and/or rate-conversion
directive if desired, and a type code (see Example 3.2, “ pmDesc Structure”). In C, the value
destination is specified by pointer. In Python, a value-holder is returned.

static pmAtomValue ncpu, loadavg, idle;
sts = pmExtendFetchGroup_item(fg, "hinv.ncpu", NULL, NULL,
 & ncpu, PM_TYPE_32, NULL);
assert (sts == 0);
sts = pmExtendFetchGroup_item(fg, "kernel.all.load", "5 minute", NULL,
 & loadavg, PM_TYPE_DOUBLE, NULL);
assert (sts == 0);
sts = pmExtendFetchGroup_item(fg, "kernel.all.cpu.idle", NULL, "s/100s",
 & idle, PM_TYPE_STRING, NULL);
assert (sts == 0);
Python
ncpu = fg.extend_item('hinv.cpu')
loadavg = fg.extend_item('kernel.all.load', instance='5 minute')
idle = fg.extend_item('kernel.all.cpu.idle, scale='s/100s')

Registering metrics with whole instance domains are also possible; these result in a vector of
pmAtomValue instances, instance names and codes, and status codes, so the fetchgroup functions
take more optional parameters. In Python, a value-holder-iterator object is returned.

enum { max_disks = 100 };
static unsigned num_disks;
static pmAtomValue disk_reads[max_disks];
static int disk_read_stss[max_disks];
static char *disk_names[max_disks];
sts = pmExtendFetchGroup_indom(fg, "disk.dm.read", NULL,
 NULL, disk_names, disk_reads, PM_TYPE_32,
 disk_read_stss, max_disks, & num_disks,
 NULL);
Python
values = fg.extend_indom('disk.dm.read')

Registering interest in the future fetch-operation timestamp is also possible. In python, a datetime-
holder object is returned.

struct timeval tv;
sts = pmExtendFetchGroup_timestamp(fg, & tv);
Python
tv = fg.extend_timestamp()

3.8.7.2. Fet chgro up o perat io n

Now it's time for the program to process the metrics. In the C API, each metric value is put into status
integers (if requested), and one field of the pmAtomValue union - whichever was requested with the
PM_TYPE_* code. In the Python API, each metric value is accessed by calling the value-holder
objects.

sts = pmFetchGroup(fg);
assert (sts == 0);
printf("%s", ctime(& tv.tv_sec));
printf("#cpus: %d, loadavg: %g, idle: %s\n", ncpu.l, loadavg.d,

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

87

idle.cp);
for (i=0; i<num_disks; i++)
 if (disk_read_stss[i] == 0)
 printf("disk %s reads %d\n", disk_names[i], disk_reads[i].l);
Python
fg.fetch()
print(tv())
print("#cpus: %d, loadavg: %g, idle: %d\n" % (ncpu(), loadavg(),
idle()))
for icode, iname, value in values():
 print('disk %s reads %d' % (iname, value()))

The program may fetch and process the values only once, or in a loop. The program need not - must
not - modify or free any of the output values/pointers supplied by the fetchgroup functions.

3.8.7.3. Fet chgro up shut do wn

Should the program wish to shut down a fetchgroup explicitly, thereby closing the private PMAPI
context, there is a function for that.

sts = pmDestroyFetchGroup(fg);
Python
del fg # or nothing

3.8.8. PMAPI Record-Mode Services

The functions described in this section provide Performance Metrics Application Programming
Interface (PMAPI) record-mode services. These services allow a monitor tool to establish connections
to pmlogger co-processes, which they create and control for the purposes of recording live
performance data from (possibly) multiple hosts. Since pmlogger records for one host only, these
services can administer a group of loggers, and set up archive folios to track the logs. Tools like
pmafm can subsequently use those folios to replay recorded data with the initiating tool. pmchart
uses these concepts when providing its Record mode functionality.

3.8.8.1. pmRecordAddHost Funct io n

int pmRecordAddHost(const char *host, int isdefault, pmRecordHost **rhp)
Python:
(int status, pmRecordHost* rhp) = pmRecordAddHost("host string", 1,
"configure string")

The pmRecordAddHost function adds hosts once pmRecordSetup has established a new
recording session. The pmRecordAddHost function along with the pmRecordSetup and
pmRecordControl functions are used to create a PCP archive.

pmRecordAddHost is called for each host that is to be included in the recording session. A new
pmRecordHost structure is returned via rhp. It is assumed that PMCD is running on the host as this
is how pmlogger retrieves the required performance metrics.

If this host is the default host for the recording session, isdefault is nonzero. This ensures that the
corresponding archive appears first in the PCP archive folio. Hence the tools used to replay the
archive folio make the correct determination of the archive associated with the default host. At most
one host per recording session may be nominated as the default host.

PCP 3 Performance Co- Pilot ™ Programmer's Guide

88

The calling application writes the desired pmlogger configuration onto the stdio stream returned via
the f_config field in the pmRecordHost structure.

pmRecordAddHost returns 0 on success and a value less than 0 suitable for decoding with
pmErrStr on failure. The value EINVAL has the same interpretation as errno being set to EINVAL.

3.8.8.2. pmRecordControl Funct io n

int pmRecordControl(pmRecordHost *rhp, int request, const char *options)
Python:
int status = pmRecordControl("host string", 1, "configure string")

Arguments may be optionally added to the command line that is used to launch pmlogger by calling
the pmRecordControl function with a request of PM_REC_SETARG. The pmRecordControl along
with the pmRecordSetup and pmRecordAddHost functions are used to create a PCP archive.

The argument is passed via options and one call to pmRecordControl is required for each distinct
argument. An argument may be added for a particular pmlogger instance identified by rhp. If the rhp
argument is NULL, the argument is added for all pmlogger instances that are launched in the current
recording session.

Independent of any calls to pmRecordControl with a request of PM_REC_SETARG, each pmlogger
instance is automatically launched with the following arguments: -c, -h, -l, -x, and the basename
for the PCP archive log.

To commence the recording session, call pmRecordControl with a request of PM_REC_ON, and rhp
must be NULL. This launches one pmlogger process for each host in the recording session and
initializes the fd_ipc, logfile, pid, and status fields in the associated pmRecordHost
structure(s).

To terminate a pmlogger instance identified by rhp, call pmRecordControl with a request of
PM_REC_OFF. If the rhp argument to pmRecordControl is NULL, the termination request is
broadcast to all pmlogger processes in the current recording session. An informative dialogue is
generated directly by each pmlogger process.

To display the current status of the pmlogger instance identified by rhp, call pmRecordControl
with a request of PM_REC_STATUS. If the rhp argument to pmRecordControl is NULL, the status
request is broadcast to all pmlogger processes in the current recording session. The display is
generated directly by each pmlogger process.

To detach a pmlogger instance identified by rhp, allow it to continue independent of the application
that launched the recording session and call pmRecordControl with a request of PM_REC_DETACH.
If the rhp argument to pmRecordControl is NULL, the detach request is broadcast to all pmlogger
processes in the current recording session.

pmRecordControl returns 0 on success and a value less than 0 suitable for decoding with
pmErrStr on failure. The value EINVAL has the same interpretation as errno being set to EINVAL.

pmRecordControl returns PM_ERR_IPC if the associated pmlogger process has already exited.

3.8.8.3. pmRecordSetup Funct io n

FILE *pmRecordSetup(const char *folio, const char *creator, int replay)
Python:
int status = pmRecordSetup("folio string", "creator string", int replay)

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

89

The pmRecordSetup function along with the pmRecordAddHost and pmRecordControl functions
may be used to create a PCP archive on the fly to support record-mode services for PMAPI client
applications.

Each record mode session involves one or more PCP archive logs; each is created using a
dedicated pmlogger process, with an overall Archive Folio format as understood by the pmafm
command, to name and collect all of the archive logs associated with a single recording session.

The pmRecordHost structure is used to maintain state information between the creator of the
recording session and the associated pmlogger process(es). The structure, shown in Example 3.14,
“ pmRecordHost Structure” , is defined as:

Example 3.14. pmRecordHost St ructure

typedef struct {
 FILE *f_config; /* caller writes pmlogger configuration here
*/
 int fd_ipc; /* IPC channel to pmlogger */
 char *logfile; /* full pathname for pmlogger error logfile
*/
 pid_t pid; /* process id for pmlogger */
 int status; /* exit status, -1 if unknown */
} pmRecordHost;

In Procedure 3.1, “Creating a Recording Session” , the functions are used in combination to create a
recording session.

Procedure 3.1. Creat ing a Recording Session

1. Call pmRecordSetup to establish a new recording session. A new Archive Folio is created
using the name folio. If the folio file or directory already exists, or if it cannot be created, this is
an error. The application that is creating the session is identified by creator (most often this
would be the same as the global PMAPI application name, pmProgname). If the application
knows how to create its own configuration file to replay the recorded session, replay should
be nonzero. The pmRecordSetup function returns a stdio stream onto which the application
writes the text of any required replay configuration file.

2. For each host that is to be included in the recording session, call pmRecordAddHost. A new
pmRecordHost structure is returned via rhp. It is assumed that PMCD is running on the host
as this is how pmlogger retrieves the required performance metrics. See Section 3.8.8.1, “
pmRecordAddHost Function” for more information.

3. Optionally, add arguments to the command line that is used to launch pmlogger by calling
pmRecordControl with a request of PM_REC_SETARG. The argument is passed via options
and one call to pmRecordControl is required for each distinct argument. See
Section 3.8.8.2, “ pmRecordControl Function” for more information.

4. To commence the recording session, call pmRecordControl with a request of PM_REC_ON,
and rhp must be NULL.

5. To terminate a pmlogger instance identified by rhp, call pmRecordControl with a request of
PM_REC_OFF.

PCP 3 Performance Co- Pilot ™ Programmer's Guide

90

6. To display the current status of the pmlogger instance identified by rhp, call
pmRecordControl with a request of PM_REC_STATUS.

7. To detach a pmlogger instance identified by rhp, allow it to continue independent of the
application that launched the recording session, call pmRecordControl with a request of
PM_REC_DETACH.

The calling application should not close any of the returned stdio streams; pmRecordControl
performs this task when recording is commenced.

Once pmlogger has been started for a recording session, pmlogger assumes responsibility for any
dialogue with the user in the event that the application that launched the recording session should
exit, particularly without terminating the recording session.

By default, information and dialogues from pmlogger is displayed using pmconfirm. This default is
based on the assumption that most applications launching a recording session are GUI-based. In
the event that pmconfirm fails to display the information (for example, because the DISPLAY
environment variable is not set), pmlogger writes on its own stderr stream (not the stderr stream of
the launching process). The output is assigned to the xxxxxx.host.log file. For convenience, the
full pathname to this file is provided via the logfile field in the pmRecordHost structure.

If the options argument to pmRecordControl is not NULL, this string may be used to pass additional
arguments to pmconfirm in those cases where a dialogue is to be displayed. One use of this
capability is to provide a -geometry string to control the placement of the dialogue.

Premature termination of a launched pmlogger process may be determined using the
pmRecordHost structure, by calling select on the fd_ipc field or polling the status field that will
contain the termination status from waitpid if known, or -1.

These functions create a number of files in the same directory as the folio file named in the call to
pmRecordSetup. In all cases, the xxxxxx component is the result of calling mkstemp.

If replay is nonzero, xxxxxx is the creator's replay configuration file, else an empty control file,
used to guarantee uniqueness.

The folio file is the PCP Archive Folio, suitable for use with the pmafm command.

The xxxxxx.host.config file is the pmlogger configuration for each host. If the same host is
used in different calls to pmRecordAddHost within the same recording session, one of the letters
'a' through 'z' is appended to the xxxxxx part of all associated file names to ensure uniqueness.

 xxxxxx.host.log is stdout and stderr for the pmlogger instance for each host.

The xxxxxx.host.{0,meta,index} files comprise a single PCP archive for each host.

pmRecordSetup may return NULL in the event of an error. Check errno for the real cause. The value
EINVAL typically means that the order of calls to these functions is not correct; that is, there is an
obvious state associated with the current recording session that is maintained across calls to the
functions.

For example, calling pmRecordControl before calling pmRecordAddHost at least once, or calling
pmRecordAddHost before calling pmRecordSetup would produce an EINVAL error.

3.8.9. PMAPI Archive-Specific Services

The functions described in this section provide archive-specific services.

3.8.9.1. pmGetArchiveLabel Funct io n

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

91

3.8.9.1. pmGetArchiveLabel Funct io n

int pmGetArchiveLabel(pmLogLabel *lp)
Python:
pmLogLabel loglabel = pmGetArchiveLabel()

Provided the current PMAPI context is associated with a PCP archive log, the pmGetArchiveLabel
function may be used to fetch the label record from the archive. The structure returned through lp is
as shown in Example 3.15, “ pmLogLabel Structure” :

Example 3.15. pmLogLabel St ructure

/*
 * Label Record at the start of every log file - as exported above the
PMAPI ...
 */
#define PM_TZ_MAXLEN 40
#define PM_LOG_MAXHOSTLEN 64
#define PM_LOG_MAGIC 0x50052600
#define PM_LOG_VERS01 0x1
#define PM_LOG_VERS02 0x2
#define PM_LOG_VOL_TI -2 /* temporal index */
#define PM_LOG_VOL_META -1 /* meta data */
typedef struct {
 int ll_magic; /* PM_LOG_MAGIC | log format
version no. */
 pid_t ll_pid; /* PID of logger */
 struct timeval ll_start; /* start of this log */
 char ll_hostname[PM_LOG_MAXHOSTLEN]; /* name of
collection host */
 char ll_tz[PM_TZ_MAXLEN]; /* $TZ at
collection host */
} pmLogLabel;

The python bindings get the label record from the archive.

3.8.9.2. pmGetArchiveEnd Funct io n

int pmGetArchiveEnd(struct timeval *tvp)
Python:
timeval tv = status = pmGetArchiveEnd()

Provided the current PMAPI context is associated with a PCP archive log, pmGetArchiveEnd finds
the logical end of file (after the last complete record in the archive), and returns the last recorded time
stamp with tvp. This timestamp may be passed to pmSetMode to reliably position the context at the
last valid log record, for example, in preparation for subsequent reading in reverse chronological
order.

For archive logs that are not concurrently being written, the physical end of file and the logical end of
file are co-incident. However, if an archive log is being written by pmlogger at the same time that an
application is trying to read the archive, the logical end of file may be before the physical end of file
due to write buffering that is not aligned with the logical record boundaries.

PCP 3 Performance Co- Pilot ™ Programmer's Guide

92

The python bindings get the last recorded timestamp from the archive.

3.8.9.3. pmGetInDomArchive Funct io n

int pmGetInDomArchive(pmInDom indom, int **instlist, char ***namelist)
Python:
((instance1, instance2...) (name1, name2...)) pmGetInDom(pmDesc pmdesc)

Provided the current PMAPI context is associated with a PCP archive log, pmGetInDomArchive
scans the metadata to generate the union of all instances for the instance domain indom that can be
found in the archive log, and returns through instlist the internal instance identifiers, and through
namelist the full external identifiers.

This function is a specialized version of the more general PMAPI function pmGetInDom.

The function returns the number of instances found (a value less than zero indicates an error).

The resulting lists of instance identifiers (instlist and namelist), and the names that the elements of
namelist point to, are allocated by pmGetInDomArchive with two calls to malloc, and it is the
responsibility of the caller to use free(instlist) and free(namelist) to release the space when it is no
longer required; see the malloc(3) and free(3) man pages.

When the result of pmGetInDomArchive is less than one, both instlist and namelist are undefined (no
space is allocated; so calling free is a singularly bad idea).

The python bindings return a tuple of the instance IDs and names for the union of all instances for
the instance domain pmdesc that can be found in the archive log.

3.8.9.4. pmLookupInDomArchive Funct io n

int pmLookupInDomArchive(pmInDom indom, const char *name)
Python:
c_uint instid = pmLookupInDomArchive(pmDesc pmdesc, "Instance")

Provided the current PMAPI context is associated with a PCP archive log, pmLookupInDomArchive
scans the metadata for the instance domain indom, locates the first instance with the external
identification given by name, and returns the internal instance identifier.

This function is a specialized version of the more general PMAPI function pmLookupInDom.

The pmLookupInDomArchive function returns a positive instance identifier on success.

The python bindings return the instance id in pmdesc corresponding to Instance.

3.8.9.5. pmNameInDomArchive Funct io n

int pmNameInDomArchive(pmInDom indom, int inst, char **name)
Python:
"instance id" = pmNameInDomArchive(pmDesc pmdesc, c_uint instid)

Provided the current PMAPI context is associated with a PCP archive log, pmNameInDomArchive
scans the metadata for the instance domain indom, locates the first instance with the internal instance
identifier given by inst, and returns the full external instance identification through name. This
function is a specialized version of the more general PMAPI function pmNameInDom.

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

93

The space for the value of name is allocated in pmNameInDomArchive with malloc, and it is the
responsibility of the caller to free the space when it is no longer required; see the malloc(3)
andfree(3) man pages.

The python bindings return the text name of an instance corresponding to an instance domain
pmdesc with instance identifier instid.

3.8.9.6. pmFetchArchive Funct io n

int pmFetchArchive(pmResult **result)
Python:
pmResult* pmresult = pmFetchArchive()

This is a variant of pmFetch that may be used only when the current PMAPI context is associated
with a PCP archive log. The result is instantiated with all of the metrics (and instances) from the next
archive record; consequently, there is no notion of a list of desired metrics, and the instance profile is
ignored.

It is expected that pmFetchArchive would be used to create utilities that scan archive logs (for
example, pmdumplog and pmlogsummary), and the more common access to the archives would be
through the pmFetch interface.

3.8.10. PMAPI T ime Cont rol Services

The PMAPI provides a common framework for client applications to control time and to synchronize
time with other applications. The user interface component of this service is fully described in the
companion Performance Co-Pilot User's and Administrator's Guide. See also the pmtime(1) man page.

This service is most useful when processing PCP archive logs, to control parameters such as the
current archive position, update interval, replay rate, and timezone, but it can also be used in live
mode to control a subset of these parameters. Applications such as pmchart, pmgadgets, pmstat,
and pmval use the time control services to connect to an instance of the time control server process,
pmtime, which provides a uniform graphical user interface to the time control services.

A full description of the PMAPI time control functions along with code examples can be found in man
pages as listed in Table 3.2, “Time Control Functions in PMAPI” :

Table 3.2. T ime Contro l Funct ions in PMAPI

Man Page Synopsis of T ime Contro l Funct ion
pmCtime(3) Formats the date and time for a reporting timezone.

pmLocaltime(3) Converts the date and time for a reporting timezone.

pmParseTimeWindow(3) Parses time window command line arguments.

pmTimeConnect(3) Connects to a time control server via a command socket.

pmTimeDisconnect(3) Closes the command socket to the time control server.

pmTimeGetPort(3) Obtains the port name of the current time control server.

pmTimeRecv(3) Blocks until the time control server sends a command message.

pmTimeSendAck(3) Acknowledges completion of the step command.

pmTimeSendBounds(3) Specifies beginning and end of archive time period.

pmTimeSendMode(3) Requests time control server to change to a new VCR mode.

pmTimeSendPosition(3) Requests time control server to change position or update
intervals.

PCP 3 Performance Co- Pilot ™ Programmer's Guide

94

pmTimeSendTimezone(3) Requests time control server to change timezones.
pmTimeShowDialog(3) Changes the visibility of the time control dialogue.

pmTimeGetStatePixmap(3) Returns array of pixmaps representing supplied time control
state.

Man Page Synopsis of T ime Contro l Funct ion

3.8.11. PMAPI Ancillary Support Services

The functions described in this section provide services that are complementary to, but not
necessarily a part of, the distributed manipulation of performance metrics delivered by the PCP
components.

3.8.11.1. pmGetConfig Funct io n

char *pmGetConfig(const char *variable)
Python:
"env variable value = pmGetConfig("env variable")

The pmGetConfig function searches for a variable first in the environment and then, if one is not
found, in the PCP configuration file and returns the string result. If a variable is not already in the
environment, it is added with a call to the putenv function before returning.

The default location of the PCP configuration file is /etc/pcp.conf, but this location may be
changed by setting PCP_CONF in the environment to a new location, as described in the
pcp.conf(5) man page.

If the variable is not found in either the environment or the PCP configuration file (or the PCP
configuration file is not found and PCP_CONF is not set in the environment), then a fatal error
message is printed and the process will exit. Although this sounds drastic, it is the only course of
action available because the PCP configuration or installation is fatally flawed.

If this function returns, the returned value points to a string in the environment; and so although the
function returns the same type as the getenv function (which should probably be a const char
*), changing the content of the string is not recommended.

The python bindings return a value for environment variable "env variable" from environment or pcp
config file.

3.8.11.2. pmErrStr Funct io n

const char *pmErrStr(int code)
char *pmErrStr_r(int code, char *buf, int buflen);
Python:
"error string text" = pmErrStr(int error_code)

This function translates an error code into a text string, suitable for generating a diagnostic
message. By convention within PCP, all error codes are negative. The small values are assumed to
be negated versions of the platform error codes as defined in errno.h, and the strings returned are
according to strerror. The large, negative error codes are PMAPI error conditions, and pmErrStr
returns an appropriate PMAPI error string, as determined by code.

In the case of pmErrStr, the string value is held in a single static buffer, so concurrent calls may not
produce the desired results. The pmErrStr_r function allows a buffer and length to be passed in,
into which the message is stored; this variant uses no shared storage and can be used in a thread-
safe manner.

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

95

The python bindings return the error string corresponding to the error code.

3.8.11.3. pmExtractValue Funct io n

int pmExtractValue(int valfmt, const pmValue *ival, int itype,
pmAtomValue *oval, int otype)
Python:
pmAtomValue atomval = pmExtractValue(int valfmt, const pmValue * ival,
 int itype,
 pmAtomValue *oval,
 int otype)

The pmValue structure is embedded within the pmResult structure, which is used to return one or
more performance metrics; see the pmFetch man page.

All performance metric values may be encoded in a pmAtomValue union, defined in Example 3.16, “
pmAtomValue Structure” :

Example 3.16. pmAtomValue St ructure

/* Generic Union for Value-Type conversions */
typedef union {
 __int32_t l; /* 32-bit signed */
 __uint32_t ul; /* 32-bit unsigned */
 __int64_t ll; /* 64-bit signed */
 __uint64_t ull; /* 64-bit unsigned */
 float f; /* 32-bit floating point */
 double d; /* 64-bit floating point */
 char *cp; /* char ptr */
 void *vp; /* void ptr */
} pmAtomValue;

The pmExtractValue function provides a convenient mechanism for extracting values from the
pmValue part of a pmResult structure, optionally converting the data type, and making the result
available to the application programmer.

The itype argument defines the data type of the input value held in ival according to the storage format
defined by valfmt (see the pmFetch man page). The otype argument defines the data type of the result
to be placed in oval. The value for itype is typically extracted from a pmDesc structure, following a call
to pmLookupDesc for a particular performance metric.

Table 3.3, “PMAPI Type Conversion” defines the various possibilities for the type conversion. The
input type (itype) is shown vertically, and the output type (otype) horizontally. The following rules
apply:

Y means the conversion is always acceptable.

N means conversion can never be performed (function returns PM_ERR_CONV).

P means the conversion may lose accuracy (but no error status is returned).

T means the result may be subject to high-order truncation (if this occurs the function returns
PM_ERR_TRUNC).

PCP 3 Performance Co- Pilot ™ Programmer's Guide

96

S means the conversion may be impossible due to the sign of the input value (if this occurs the
function returns PM_ERR_SIGN).

If an error occurs, oval is set to zero (or NULL).

Note

Note that some of the conversions involving the PM_TYPE_STRING and PM_TYPE_AGGREGATE
types are indeed possible, but are marked N; the rationale is that pmExtractValue should
not attempt to duplicate functionality already available in the C library through sscanf and
sprintf. No conversion involving the type PM_TYPE_EVENT is supported.

Table 3.3. PMAPI Type Conversion

TYPE 32 U32 64 U64 FLOAT DBLE STRIN
G

AGGR EVENT

32 Y S Y S P P N N N

U32 T Y Y Y P P N N N

64 T T,S Y S P P N N N

u64 T T T Y P P N N N

FLOAT P, T P, T, S P, T P, T, S Y Y N N N

DBLE P, T P, T, S P, T P, T, S P Y N N N

STRING N N N N N N Y N N

AGGR N N N N N N N Y N

EVENT N N N N N N N N N

In the cases where multiple conversion errors could occur, the first encountered error is returned, and
the order of checking is not defined.

If the output conversion is to one of the pointer types, such as otype PM_TYPE_STRING or
PM_TYPE_AGGREGATE, then the value buffer is allocated by pmExtractValue using malloc, and it
is the caller's responsibility to free the space when it is no longer required; see the malloc(3) and
free(3) man pages.

Although this function appears rather complex, it has been constructed to assist the development of
performance tools that convert values, whose type is known only through the type field in a pmDesc
structure, into a canonical type for local processing.

The python bindings extract a value from a pmValue struct ival stored in format valfmt (see pmFetch),
and convert its type from itype to otype.

3.8.11.4. pmConvScale Funct io n

int
pmConvScale(int type, const pmAtomValue *ival, const pmUnits *iunit,
pmAtomValue *oval, pmUnits *ounit)
Python:
pmAtomValue atomval = pmConvScale(int itype, pmAtomValue value,
 pmDesc* pmdesc , int descidx, int otype)

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

97

Given a performance metric value pointed to by ival, multiply it by a scale factor and return the value
in oval. The scaling takes place from the units defined by iunit into the units defined by ounit. Both
input and output units must have the same dimensionality.

The performance metric type for both input and output values is determined by type, the value for
which is typically extracted from a pmDesc structure, following a call to pmLookupDesc for a
particular performance metric.

pmConvScale is most useful when values returned through pmFetch (and possibly extracted using
pmExtractValue) need to be normalized into some canonical scale and units for the purposes of
computation.

The python bindings convert a value pointed to by pmdesc entry descidx to a different scale otype.

3.8.11.5. pmUnitsStr Funct io n

const char *pmUnitsStr(const pmUnits *pu)
char *pmUnitsStr_r(const pmUnits *pu, char *buf, int buflen)
Python:
"units string" = pmUnitsStr(pmUnits pmunits)

As an aid to labeling graphs and tables, or for error messages, pmUnitsStr takes a dimension and
scale specification as per pu, and returns the corresponding text string.

pu is typically from a pmDesc structure, for example, as returned by pmLookupDesc.

If *pu were {1, -2, 0, PM_SPACE_MBYTE, PM_TIME_MSEC, 0}, then the result string would be
Mbyte/sec^2.

In the case of pmUnitsStr, the string value is held in a single static buffer; so concurrent calls may
not produce the desired results. The pmUnitsStr_r function allows a buffer and length to be
passed in, into which the units are stored; this variant uses no shared storage and can be used in a
thread-safe manner.

The python bindings translate a pmUnits struct pmunits to a readable string.

3.8.11.6. pmIDStr Funct io n

const char *pmIDStr(pmID pmid)
char *pmIDStr_r(pmID pmid, char *buf, int buflen)
Python:
"ID string" = pmIDStr(int pmID)

For use in error and diagnostic messages, return a human readable version of the specified PMID,
with each of the internal domain, cluster, and item subfields appearing as decimal numbers,
separated by periods.

In the case of pmIDStr, the string value is held in a single static buffer; so concurrent calls may not
produce the desired results. The pmIDStr_r function allows a buffer and length to be passed in, into
which the identifier is stored; this variant uses no shared storage and can be used in a thread-safe
manner.

The python bindings translate a pmID pmid to a readable string.

3.8.11.7. pmInDomStr Funct io n

PCP 3 Performance Co- Pilot ™ Programmer's Guide

98

const char *pmInDomStr(pmInDom indom)
char *pmInDomStr_r(pmInDom indom, char *buf, int buflen)
Python:
"indom" = pmGetInDom(pmDesc pmdesc)

For use in error and diagnostic messages, return a human readable version of the specified instance
domain identifier, with each of the internal domain and serial subfields appearing as decimal
numbers, separated by periods.

In the case of pmInDomStrr, the string value is held in a single static buffer; so concurrent calls may
not produce the desired results. The pmInDomStr_r function allows a buffer and length to be
passed in, into which the identifier is stored; this variant uses no shared storage and can be used in
a thread-safe manner.

The python bindings translate an instance domain ID pointed to by a pmDesc pmdesc to a readable
string.

3.8.11.8. pmTypeStr Funct io n

const char *pmTypeStr(int type)
char *pmTypeStr_r(int type, char *buf, int buflen)
Python:
"type" = pmTypeStr(int type)

Given a performance metric type, produce a terse ASCII equivalent, appropriate for use in error and
diagnostic messages.

Examples are “32” (for PM_TYPE_32), “U64” (for PM_TYPE_U64), “AGGREGATE” (for
PM_TYPE_AGGREGATE), and so on.

In the case of pmTypeStr, the string value is held in a single static buffer; so concurrent calls may
not produce the desired results. The pmTypeStr_r function allows a buffer and length to be passed
in, into which the identifier is stored; this variant uses no shared storage and can be used in a
thread-safe manner.

The python bindings translate a performance metric type to a readable string. Constants are
available for the types, e.g. c_api.PM_TYPE_FLOAT, by importing cpmapi.

3.8.11.9. pmAtomStr Funct io n

const char *pmAtomStr(const pmAtomValue *avp, int type)
char *pmAtomStr_r(const pmAtomValue *avp, int typechar *buf, int buflen)
Python:
"value" = pmAtomStr(atom, type)

Given the pmAtomValue identified by avp, and a performance metric type, generate the
corresponding metric value as a string, suitable for diagnostic or report output.

In the case of pmAtomStr, the string value is held in a single static buffer; so concurrent calls may
not produce the desired results. The pmAtomStr_r function allows a buffer and length to be passed
in, into which the identifier is stored; this variant uses no shared storage and can be used in a
thread-safe manner.

The python bindings translate a pmAtomValue atom having performance metric type to a readable
string. Constants are available for the types, e.g. c_api.PM_TYPE_U32, by importing cpmapi.

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

99

3.8.11.10. pmNumberStr Funct io n

const char *pmNumberStr(double value)
char *pmNumberStr_r(double value, char *buf, int buflen)

The pmNumberStr function returns the address of a static 8-byte buffer that holds a null-byte
terminated representation of value suitable for output with fixed-width fields.

The value is scaled using multipliers in powers of one thousand (the decimal kilo) and has a bias
that provides greater precision for positive numbers as opposed to negative numbers. The format
depends on the sign and magnitude of value.

3.8.11.11. pmPrintValue Funct io n

void pmPrintValue(FILE *f, int valfmt, int type, const pmValue *val,
int minwidth)
Python:
pmPrintValue(FILE* file, pmResult pmresult, pmdesc, vset_index,
vlist_index, min_width)

The value of a single performance metric (as identified by val) is printed on the standard I/O stream
identified by f. The value of the performance metric is interpreted according to the format of val as
defined by valfmt (from a pmValueSet within a pmResult) and the generic description of the metric's
type from a pmDesc structure, passed in through.

If the converted value is less than minwidth characters wide, it will have leading spaces to pad the
output to a width of minwidth characters.

Example 3.17, “Using pmPrintValue to Print Values” illustrates using pmPrintValue to print the
values from a pmResult structure returned via pmFetch:

Example 3.17. Using pmPrintValue to Print Values

 int numpmid, i, j, sts;
 pmID pmidlist[10];
 pmDesc desc[10];
 pmResult *result;

 /* set up PMAPI context, numpmid and pmidlist[] ... */
 /* get metric descriptors */
 for (i = 0; i < numpmid; i++) {
 if ((sts = pmLookupDesc(pmidlist[i], &desc[i])) < 0) {
 printf("pmLookupDesc(pmid=%s): %s\n",
 pmIDStr(pmidlist[i]), pmErrStr(sts));
 exit(1);
 }
 }
 if ((sts = pmFetch(numpmid, pmidlist, &result)) >= 0) {
 /* once per metric */
 for (i = 0; i < result->numpmid; i++) {
 printf("PMID: %s", pmIDStr(result->vset[i]->pmid));
 /* once per instance for this metric */
 for (j = 0; j < result->vset[i]->numval; j++) {
 printf(" [%d]", result->vset[i]->vlist[j].inst);

PCP 3 Performance Co- Pilot ™ Programmer's Guide

100

 pmPrintValue(stdout, result->vset[i]->valfmt,
 desc[i].type,
 &result->vset[i]->vlist[j],
 8);
 }
 putchar('\n');
 }
 pmFreeResult(result);
 }
 else
 printf("pmFetch: %s\n", pmErrStr(sts));

Print the value of a pmresult pointed to by vset_index/vlist_index and described by pmdesc. The format
of a pmResult is described in pmResult The python bindings can use sys.__stdout__ as a value for file
to display to stdout.

3.8.11.12. pmflush Funct io n

int pmflush(void);
Python:
int status = pmflush()

The pmflush function causes the internal buffer which is shared with pmprintf to be either
displayed in a window, printed on standard error, or flushed to a file and the internal buffer to be
cleared.

The PCP_STDERR environment variable controls the output technique used by pmflush:

If PCP_STDERR is unset, the text is written onto the stderr stream of the caller.

If PCP_STDERR is set to the literal reserved word DISPLAY, then the text is displayed as a GUI
dialogue using pmconfirm.

The pmflush function returns a value of zero on successful completion. A negative value is returned
if an error was encountered, and this can be passed to pmErrStr to obtain the associated error
message.

3.8.11.13. pmprintf Funct io n

int pmprintf(const char *fmt, ... /*args*/);
Python:
pmprintf("fmt", ... /*args*/);

The pmprintf function appends the formatted message string to an internal buffer shared by the
pmprintf and pmflush functions, without actually producing any output. The fmt argument is
used to control the conversion, formatting, and printing of the variable length args list.

The pmprintf function uses the mkstemp function to securely create a pcp-prefixed temporary file
in ${PCP_TMP_DIR}. This temporary file is deleted when pmflush is called.

On successful completion, pmprintf returns the number of characters transmitted. A negative value
is returned if an error was encountered, and this can be passed to pmErrStr to obtain the
associated error message.

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

101

3.8.11.14. pmSortInstances Funct io n

void pmSortInstances(pmResult *result)
Python:
pmSortInstances (pmResult* pmresult)

The pmSortInstances function may be used to guarantee that for each performance metric in the
result from pmFetch, the instances are in ascending internal instance identifier sequence. This is
useful when trying to compute rates from two consecutive pmFetch results, where the underlying
instance domain or metric availability is not static.

3.8.11.15. pmParseInterval Funct io n

int pmParseInterval(const char *string, struct timeval *rslt, char
**errmsg)
Python:
(struct timeval, "error message") = pmParseInterval("time string")

The pmParseInterval function parses the argument string specifying an interval of time and fills in
the tv_sec and tv_usec components of the rslt structure to represent that interval. The input
string is most commonly the argument following a -t command line option to a PCP application, and
the syntax is fully described in the PCPIntro(1) man page.

pmParseInterval returns 0 and errmsg is undefined if the parsing is successful. If the given string
does not conform to the required syntax, the function returns -1 and a dynamically allocated error
message string in errmsg.

The error message is terminated with a newline and includes the text of the input string along with an
indicator of the position at which the error was detected as shown in the following example:

 4minutes 30mumble
 ^ -- unexpected value

In the case of an error, the caller is responsible for calling free to release the space allocated for
errmsg.

3.8.11.16. pmParseMetricSpec Funct io n

int pmParseMetricSpec(const char *string, int isarch, char *source,
 pmMetricSpec **rsltp, char **errmsg)
Python:
(pmMetricSpec metricspec, "error message") =
 pmParseMetricSpec("metric specification", isarch,
source)

The pmParseMetricSpec function accepts a string specifying the name of a PCP performance
metric, and optionally the source (either a hostname, a PCP archive log filename, or a local context)
and instances for that metric. The syntax is described in the PCPIntro(1) man page.

If neither host nor archive component of the metric specification is provided, the isarch and source
arguments are used to fill in the returned pmMetricSpec structure. In Example 3.18, “
pmMetricSpec Structure” , the pmMetricSpec structure, which is returned via rsltp, represents the
parsed string.

PCP 3 Performance Co- Pilot ™ Programmer's Guide

102

Example 3.18. pmMetricSpec St ructure

typedef struct {
 int isarch; /* source type: 0 -> host, 1 -> archive, 2 ->
local context */
 char *source; /* name of source host or archive */
 char *metric; /* name of metric */
 int ninst; /* number of instances, 0 -> all */
 char *inst[1]; /* array of instance names */
} pmMetricSpec;

The pmParseMetricSpec function returns 0 if the given string was successfully parsed. In this case,
all the storage allocated by pmParseMetricSpec can be released by a single call to the free
function by using the address returned from pmMetricSpec via rsltp. The convenience macro
pmFreeMetricSpec is a thinly disguised wrapper for free.

The pmParseMetricSpec function returns 0 if the given string was successfully parsed. It returns
PM_ERR_GENERIC and a dynamically allocated error message string in errmsg if the given string
does not parse. In this situation, the error message string can be released with the free function.

In the case of an error, rsltp is undefined. In the case of success, errmsg is undefined. If rsltp->ninst is
0, then rsltp->inst[0] is undefined.

3.9. PMAPI Programming Issues and Examples

The following issues and examples are provided to enable you to create better custom performance
monitoring tools.

The source code for a sample client (pmclient) using the PMAPI is shipped as part of the PCP
package. See the pmclient(1) man page, and the source code, located in
${PCP_DEMOS_DIR}/pmclient.

3.9.1. Symbolic Associat ion between a Met ric's Name and Value

A common problem in building specific performance tools is how to maintain the association between
a performance metric's name, its access (instantiation) method, and the application program variable
that contains the metric's value. Generally this results in code that is easily broken by bug fixes or
changes in the underlying data structures. The PMAPI provides a uniform method for instantiating
and accessing the values independent of the underlying implementation, although it does not solve
the name-variable association problem. However, it does provide a framework within which a
manageable solution may be developed.

Fundamentally, the goal is to be able to name a metric and reference the metric's value in a manner
that is independent of the order of operations on other metrics; for example, to associate the LOADAV
macro with the name kernel.all.load, and then be able to use LOADAV to get at the value of the
corresponding metric.

The one-to-one association between the ordinal position of the metric names is input to
pmLookupName and the PMIDs returned by this function, and the one-to-one association between
the PMIDs input to pmFetch and the values returned by this function provide the basis for an
automated solution.

The tool pmgenmap takes the specification of a list of metric names and symbolic tags, in the order

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

103

they should be passed to pmLookupName and pmFetch. For example, pmclient:

 cat ${PCP_DEMOS_DIR}/pmclient/pmnsmap.spec
pmclient_init {
 hinv.ncpu NUMCPU
}

pmclient_sample {
 kernel.all.load LOADAV
 kernel.percpu.cpu.user CPU_USR
 kernel.percpu.cpu.sys CPU_SYS
 mem.freemem FREEMEM
 disk.all.total DKIOPS
}

This pmgenmap input produces the C code in Example 3.19, “C Code Produced by pmgenmap Input” .
It is suitable for including with the #include statement:

Example 3.19. C Code Produced by pmgenmap Input

/*
 * Performance Metrics Name Space Map
 * Built by runme.sh from the file
 * pmnsmap.spec
 * on Thu Jan 9 14:13:49 EST 2014
 *
 * Do not edit this file!
 */

char *pmclient_init[] = {
#define NUMCPU 0
 "hinv.ncpu",

};

char *pmclient_sample[] = {
#define LOADAV 0
 "kernel.all.load",
#define CPU_USR 1
 "kernel.percpu.cpu.user",
#define CPU_SYS 2
 "kernel.percpu.cpu.sys",
#define FREEMEM 3
 "mem.freemem",
#define DKIOPS 4
 "disk.all.total",

};

3.9.2. Init ializ ing New Met rics

Using the code generated by pmgenmap, you are now able to easily initialize the application's metric

PCP 3 Performance Co- Pilot ™ Programmer's Guide

104

specifications as shown in Example 3.20, “ Initializing Metric Specifications” :

Example 3.20. In it ializ ing Metric Specif icat ions

/* C code fragment from pmclient.c */
numpmid = sizeof(pmclient_sample) / sizeof(char *);
if ((pmidlist = (pmID *)malloc(numpmid * sizeof(pmidlist[0]))) ==
NULL) {...}
if ((sts = pmLookupName(numpmid, pmclient_sample, pmidlist)) < 0)
{...}

The equivalent python code would be
pmclient_sample = ("kernel.all.load", "kernel.percpu.cpu.user",
 "kernel.percpu.cpu.sys", "mem.freemem", "disk.all.total")
pmidlist = context.pmLookupName(pmclient_sample)

At this stage, pmidlist contains the PMID for the five metrics of interest.

3.9.3. It erat ive Processing of Values

Assuming the tool is required to report values every delta seconds, use code similar to that in
Example 3.21, “ Iterative Processing” :

Example 3.21. Iterat ive Processing

/* censored C code fragment from pmclient.c */
while (samples == -1 || samples-- > 0) {
 if ((sts = pmFetch(numpmid, pmidlist, &crp)) < 0) { ... }
 for (i = 0; i < numpmid; i++)
 if ((sts = pmLookupDesc(pmidlist[i], &desclist[i])) < 0) { ... }
 ...
 pmExtractValue(crp->vset[FREEMEM]->valfmt, crp->vset[FREEMEM]-
>vlist,
 desclist[FREEMEM].type, &tmp, PM_TYPE_FLOAT);
 pmConvScale(PM_TYPE_FLOAT, &tmp, &desclist[FREEMEM].units,
 &atom, &mbyte_scale);
 ip->freemem = atom.f;
 ...
 __pmtimevalSleep(delta);
}

The equivalent python code would be
FREEMEM = 3
desclist = context.pmLookupDescs(metric_names)
while (samples > 0):
 crp = context.pmFetch(metric_names)
 val = context.pmExtractValue(crp.contents.get_valfmt(FREEMEM),
 crp.contents.get_vlist(FREEMEM, 0),
 desclist[FREEMEM].contents.type,
 c_api.PM_TYPE_FLOAT)
 atom = ctx.pmConvScale(c_api.PM_TYPE_FLOAT, val, desclist,

⁠Chapt er 3. PMAPI- - T he Performance Met rics API

105

FREEMEM,
 c_api.PM_SPACE_MBYTE)
 (tvdelta, errmsg) = c_api.pmParseInterval(delta)
 c_api.pmtimevalSleep(delta)

3.9.4. Accommodat ing Program Evolut ion

The flexibility provided by the PMAPI and the pmgenmap utility is demonstrated by Example 3.22,
“Adding a Metric” . Consider the requirement for reporting a third metric mem.physmem. This example
shows how to add the line to the specification file:

Example 3.22. Adding a Metric

mem.freemem PHYSMEM

Then regenerate the #include file, and augment pmclient.c:

 pmExtractValue(crp->vset[PHYSMEM]->valfmt, crp->vset[PHYSMEM]-
>vlist,
 desclist[PHYSMEM].type, &tmp, PM_TYPE_FLOAT);
 pmConvScale(PM_TYPE_FLOAT, &tmp, &desclist[PHYSMEM].units,
 &atom, &mbyte_scale);

The equivalent python code would be:
val = context.pmExtractValue(crp.contents.get_valfmt(PHYSMEM),
 crp.contents.get_vlist(PHYSMEM, 0),
 desclist[PHYSMEM].contents.type,
 c_api.PM_TYPE_FLOAT);

3.9.5. Handling PMAPI Errors

In Example 3.23, “PMAPI Error Handling” , the simple but complete PMAPI application demonstrates
the recommended style for handling PMAPI error conditions. The python bindings use the exception
mechanism to raise an exception in error cases. The python client can handle this condition by
catching the pmErr exception. For simplicity, no command line argument processing is shown here -
in practice most tools use the pmGetOptions helper interface to assist with initial context creation
and setup.

Example 3.23. PMAPI Error Handling

#include <pcp/pmapi.h>

int
main(int argc, char* argv[])
{
 int sts = 0;
 char *host = "local:";
 char *metric = "mem.freemem";
 pmID pmid;

PCP 3 Performance Co- Pilot ™ Programmer's Guide

106

 pmDesc desc;
 pmResult *result;

 sts = pmNewContext(PM_CONTEXT_HOST, host);
 if (sts < 0) {
 fprintf(stderr, "Error connecting to pmcd on %s: %s\n",
 host, pmErrStr(sts));
 exit(1);
 }
 sts = pmLookupName(1, &metric, &pmid);
 if (sts < 0) {
 fprintf(stderr, "Error looking up %s: %s\n", metric,
 pmErrStr(sts));
 exit(1);
 }
 sts = pmLookupDesc(pmid, &desc);
 if (sts < 0) {
 fprintf(stderr, "Error getting descriptor for %s:%s: %s\n",
 host, metric, pmErrStr(sts));
 exit(1);
 }
 sts = pmFetch(1, &pmid, &result);
 if (sts < 0) {
 fprintf(stderr, "Error fetching %s:%s: %s\n", host, metric,
 pmErrStr(sts));
 exit(1);
 }
 sts = result->vset[0]->numval;
 if (sts < 0) {
 fprintf(stderr, "Error fetching %s:%s: %s\n", host, metric,
 pmErrStr(sts));
 exit(1);
 }
 fprintf(stdout, "%s:%s = ", host, metric);
 if (sts == 0)
 puts("(no value)");
 else {
 pmValueSet *vsp = result->vset[0];
 pmPrintValue(stdout, vsp->valfmt, desc.type,
 &vsp->vlist[0], 5);
 printf(" %s\n", pmUnitsStr(&desc.units));
 }
 return 0;
}

The equivalent python code would be:
import sys
import traceback
from pcp import pmapi
from cpmapi import PM_TYPE_U32

try:
 context = pmapi.pmContext()
 pmid = context.pmLookupName("mem.freemem")
 desc = context.pmLookupDescs(pmid)
 result = context.pmFetch(pmid)

⁠Chapt er 4. Inst rument ing Applicat ions

107

 freemem = context.pmExtractValue(result.contents.get_valfmt(0),
 result.contents.get_vlist(0, 0),
 desc[0].contents.type,
 PM_TYPE_U32)
 print "freemem is " + str(int(freemem.ul))

except pmapi.pmErr, error:
 print "%s: %s" % (sys.argv[0], error.message())
except Exception, error:
 sys.stderr.write(str(error) + "\n")
 sys.stderr.write(traceback.format_exc() + "\n")

3.9.6. Compiling and Linking PMAPI Applicat ions

Typical PMAPI applications require the following line to include the function prototype and data
structure definitions used by the PMAPI.

#include <pcp/pmapi.h>

Some applications may also require these header files: <pcp/impl.h> and <pcp/pmda.h>.

The run-time environment of the PMAPI is mostly found in the libpcp library; so to link a generic
PMAPI application requires something akin to the following command:

 cc mycode.c -lpcp

PCP 3 Performance Co- Pilot ™ Programmer's Guide

108

Chapter 4. Instrumenting Applications

This chapter provides an introduction to ways of instrumenting applications using PCP.

The first section covers the use of the Memory Mapped Value (MMV) Performance Metrics Domain
Agent (PMDA) to generate customized metrics from an application. This provides a robust, extremely
efficient mechanism for transferring custom instrumentation into the PCP infrastructure. It has been
successfully deployed in production environments for many years, has proven immensely valuable
in these situations, and can be used to instrument applications written in a number of programming
languages.

The Memory Mapped Value library and PMDA is supported on every PCP platform, and is enabled by
default.

Note

A particularly expansive Java API is available from the separate Parfait project. It supports
both the existing JVM instrumentation, and custom application metric extensions.

The chapter also includes information on how to use the MMV library (libpcp_mmv) for
instrumenting an application. The example programs are installed in ${PCP_DEMOS_DIR}/mmv.

The second section covers the design of the Trace PMDA, in an effort to explain how to configure the
agent optimally for a particular problem domain. This information supplements the functional
coverage which the man pages provide to both the agent and the library interfaces.

This part of the chapter also includes information on how to use the Trace PMDA and its associated
library (libpcp_trace) for instrumenting applications. The example programs are installed in
${PCP_DEMOS_DIR}/trace.

Warning

The current PCP trace library is a relatively heavy-weight solution, issuing multiple system
calls per trace point, runs over a TCP/IP socket even locally and performs no event batching.
As such it is not appropriate for production application instrumentation at this stage.

A revised application tracing library and PMDA are planned which will be light-weight, suitable for
production system tracing, and support event metrics and other advances in end-to-end distributed
application tracing.

The application instrumentation libraries are designed to encourage application developers to
embed calls in their code that enable application performance data to be exported. When combined
with system-level performance data, this feature allows total performance and resource demands of
an application to be correlated with application activity.

For example, developers can provide the following application performance metrics:

Computation state (especially for codes with major shifts in resource demands between phases of
their execution)

Problem size and parameters, that is, degree of parallelism throughput in terms of sub-problems
solved, iteration count, transactions, data sets inspected, and so on

⁠Chapt er 4. Inst rument ing Applicat ions

109

http://code.google.com/p/parfait/

Service time by operation type

4.1. Applicat ion and Performance Co-Pilot Relat ionship

The relationship between an application, the pcp_mmv and pcp_trace instrumentation libraries, the
MMV and Trace PMDAs, and the rest of the PCP infrastructure is shown in Figure 4.1, “Application
and PCP Relationship” :

PMDA
Trace
PMDAPMDA

pmcd

Mo nito r

Ker nel DB MS End -us er
ap p l i c ati o n

AB C

Mo nito r

PMAPI PMAPI
li

b
p

cp
_t

ra
ce

MMV
PMDA

End -us er
ap p l i c ati o n

XYZ

li
b

p
cp

_m
m

v

Figure 4.1. Applicat ion and PCP Relat ionship

Once the application performance metrics are exported into the PCP framework, all of the PCP tools
may be leveraged to provide performance monitoring and management, including:

Two- and three-dimensional visualization of resource demands and performance, showing
concurrent system activity and application activity.

Transport of performance data over the network for distributed performance management.

Archive logging for historical records of performance, most useful for problem diagnosis,
postmortem analysis, performance regression testing, capacity planning, and benchmarking.

Automated alarms when bad performance is observed. These apply both in real-time or when
scanning archives of historical application performance.

4.2. Performance Inst rumentat ion and Sampling

The pcp_mmv library provides function calls to assist with extracing important performance metrics
from a program into a shared, in-memory location such that the MMV PMDA can examine and serve
that information on behalf of PCP client tool requests. The pcp_mmv library is described in the
mmv_stats_init(3), mmv_lookup_value_desc(3), mmv_inc_value(3) man pages.
Additionally, the format of the shared memory mappings is described in detail in mmv(5).

PCP 3 Performance Co- Pilot ™ Programmer's Guide

110

4.3. MMV PMDA Design

An application instrumented with memory mapped values directly updates the memory that backs the
metric values it exports. The MMV PMDA reads those values directly, from the same memory that the
application is updating, when current values are sampled on behalf of PMAPI client tools. This
relationship, and a simplified MMV API, are shown in Figure 4.2, “Memory Mapped Page Sharing” .

/usr/bin/acme
ba se = mmv_stats_init(
 "widge t.count",
 "widge t.byte s ", ...)

{
 s z = a cme _build_one _widge t()
 mmv_inc_value(ba se , thruput, s z)
 mmv_inc_value(ba se , iops , 1)
}

iops = mmv_lookup_value_desc(
 ba se , "widge t.count")
thruput = mmv_lookup_value_desc(
 ba se , "widge t.byte s ")

MMV PMDA
mmv_disk_header

mmv_disk_toc
mmv_disk_toc

mmv_disk_metric

mmv_disk_value

mmv_disk_value

mmv_disk_value

mmv_disk_metric

iops
thruput

pmLookupDesc ...
 mmv.widge t.count:
 mmv.widge t.byte s :

ba se (+X)
ba se (+Y)

pmFetch ...
 mmv.widge t.count:
 mmv.widge t.byte s :

Shared Memory
Mappings

Figure 4.2. Memory Mapped Page Sharing

It is worth noting that once the metrics of an application have been registered via the pcp_mmv library
initialisation API, subsequent interactions with the library are not intrusive to the instrumented
application. At the points where values are updated, the only cost involved is the memory mapping
update, which is a single memory store operation. There is no need to explicitly transfer control to the
MMV PMDA, nor allocate memory, nor make system or library calls. The PMDA will only sample the
values at times driven by PMAPI client tools, and this places no overhead on the instrumented
application.

4.4. Memory Mapped Values API

The libpcp_mmv Application Programming Interface (API) can be called from C, C++, Perl and
Python (a separate project, Parfait, services the needs of Java applications). Each language has
access to the complete set of functionality offered by libpcp_mmv. In most cases, the calling
conventions differ only slightly between languages - in the case of Java and Parfait, they differ
significantly however.

4.4.1. Start ing and Stopping Inst rumentat ion

Instrumentation is begun with an initial call to mmv_stats_init, and ended with a call to
mmv_stats_stop. These calls manipulate global state shared by the library and application. These
are the only calls requiring synchonization and a single call to each is typically performed early and
late in the life of the application (although they can be used to reset the library state as well, at any
time). As such, the choice of synchonization primitive is left to the application, and none is currently
performed by the library.

⁠Chapt er 4. Inst rument ing Applicat ions

111

void *mmv_stats_init(const char *name, int cluster, mmv_stats_flags_t
flags,
 const mmv_metric_t *stats, int nstats,
 const mmv_indom_t *indoms, int nindoms)

The name should be a simple symbolic name identifying the application. It is usually used as the first
application-specific part of the exported metric names, as seen from the MMV PMDA. This behavior
can be overriden using the flags parameter, with the MMV_FLAG_NOPREFIX flag. In the example
below, full metric names such as mmv.acme.products.count will be created by the MMV PMDA.
With the MMV_FLAG_NOPREFIX flag set, that would instead become mmv.products.count. It is
recommended to not disable the prefix - doing so requires the applications to ensure naming
conflicts do not arise in the MMV PMDA metric names.

The cluster identifier is used by the MMV PMDA to further distinguish different applications, and is
directly used for the MMV PMDA PMID cluster field described in Example 2.3, “ __pmID_int
Structure” , for all MMV PMDA metrics.

All remaining parameters to mmv_stats_init define the metrics and instance domains that exist
within the application. These are somewhat analagous to the final parameters of pmdaInit(3), and
are best explained using Example 4.1, “Memory Mapped Value Instance Structures” and Example 4.2,
“Memory Mapped Value Metrics Structures” . As mentioned earlier, the full source code for this
example instrumented application can be found in ${PCP_DEMOS_DIR}/mmv.

Example 4.1. Memory Mapped Value Instance St ructures

#include <pcp/pmapi.h>
#include <pcp/mmv_stats.h>

static mmv_instances_t products[] = {
 { .internal = 0, .external = "Anvils" },
 { .internal = 1, .external = "Rockets" },
 { .internal = 2, .external = "Giant_Rubber_Bands" },
};
#define ACME_PRODUCTS_INDOM 61
#define ACME_PRODUCTS_COUNT (sizeof(products)/sizeof(products[0]))

static mmv_indom_t indoms[] = {
 { .serial = ACME_PRODUCTS_INDOM,
 .count = ACME_PRODUCTS_COUNT,
 .instances = products,
 .shorttext = "Acme products",
 .helptext = "Most popular products produced by the Acme
Corporation",
 },
};

The above data structures initialize an instance domain of the set of products produced in a factory
by the fictional "Acme Corporation". These structures are directly comparable to several concepts we
have seen already (and for good reason - the MMV PMDA must interpret the applications intentions
and properly export instances on its behalf):

mmv_instances_t maps to pmdaInstid, as in Example 2.7, “ pmdaInstid Structure”

mmv_indom_t maps to pmdaIndom, as in Example 2.8, “ pmdaIndom Structure” - the major

PCP 3 Performance Co- Pilot ™ Programmer's Guide

112

difference is the addition of oneline and long help text, the purpose of which should be self-
explanatory at this stage.

serial numbers, as in Example 2.9, “ __pmInDom_int Structure”

Next, we shall create three metrics, all of which use this instance domain. These are the
mmv.acme.products metrics, and they reflect the rates at which products are built by the machines
in the factory, how long these builds take for each product, and how long each product type spends
queued (while waiting for factory capacity to become available).

Example 4.2. Memory Mapped Value Metrics St ructures

static mmv_metric_t metrics[] = {
 { .name = "products.count",
 .item = 7,
 .type = MMV_TYPE_U64,
 .semantics = MMV_SEM_COUNTER,
 .dimension = MMV_UNITS(0,0,1,0,0,PM_COUNT_ONE),
 .indom = ACME_PRODUCTS_INDOM,
 .shorttext = "Acme factory product throughput",
 .helptext =
"Monotonic increasing counter of products produced in the Acme
Corporation\n"
"factory since starting the Acme production application. Quality
guaranteed.",
 },
 { .name = "products.time",
 .item = 8,
 .type = MMV_TYPE_U64,
 .semantics = MMV_SEM_COUNTER,
 .dimension = MMV_UNITS(0,1,0,0,PM_TIME_USEC,0),
 .indom = ACME_PRODUCTS_INDOM,
 .shorttext = "Machine time spent producing Acme products",
 .helptext =
"Machine time spent producing Acme Corporation products. Does not
include\n"
"time in queues waiting for production machinery.",
 },
 { .name = "products.queuetime",
 .item = 10,
 .type = MMV_TYPE_U64,
 .semantics = MMV_SEM_COUNTER,
 .dimension = MMV_UNITS(0,1,0,0,PM_TIME_USEC,0),
 .indom = ACME_PRODUCTS_INDOM,
 .shorttext = "Queued time while producing Acme products",
 .helptext =
"Time spent in the queue waiting to build Acme Corporation
products,\n"
"while some other Acme product was being built instead of this one.",
 },
};
#define INDOM_COUNT (sizeof(indoms)/sizeof(indoms[0]))
#define METRIC_COUNT (sizeof(metrics)/sizeof(metrics[0]))

⁠Chapt er 4. Inst rument ing Applicat ions

113

As was the case with the "products" instance domain before, these metric-defining data structures are
directly comparable to PMDA data structures described earlier:

mmv_metric_t maps to a pmDesc structure, as in Example 2.7, “ pmdaInstid Structure”

MMV_TYPE, MMV_SEM, and MMV_UNITS map to PMAPI constructs for type, semantics,
dimensionality and scale, as in Example 3.3, “ pmUnits and pmDesc Structures”

item number, as in Example 2.3, “ __pmID_int Structure”

For the most part, all types and macros map directly to their core PCP counterparts, which the MMV
PMDA will use when exporting the metrics. One important exception is the introduction of the metric
type MMV_TYPE_ELAPSED, which is discussed further in Section 4.4.4, “Elapsed Time Measures” .

The compound metric types - aggregate and event type metrics - are not supported by the MMV
format.

4.4.2. Get t ing a Handle on Mapped Values

Once metrics (and the instance domains they use) have been registered, the memory mapped file has
been created and is ready for use. In order to be able to update the individual metric values, however,
we must find get a handle to the value. This is done using the mmv_lookup_value_desc function,
as shown in Example 4.3, “Memory Mapped Value Handles” .

Example 4.3. Memory Mapped Value Handles

#define ACME_CLUSTER 321 /* PMID cluster identifier */

int
main(int argc, char * argv[])
{
 void *base;
 pmAtomValue *count[ACME_PRODUCTS_COUNT];
 pmAtomValue *machine[ACME_PRODUCTS_COUNT];
 pmAtomValue *inqueue[ACME_PRODUCTS_COUNT];
 unsigned int working;
 unsigned int product;
 unsigned int i;

 base = mmv_stats_init("acme", ACME_CLUSTER, 0,
 metrics, METRIC_COUNT, indoms, INDOM_COUNT);
 if (!base) {
 perror("mmv_stats_init");
 return 1;
 }

 for (i = 0; i < ACME_PRODUCTS_COUNT; i++) {
 count[i] = mmv_lookup_value_desc(base,
 "products.count", products[i].external);
 machine[i] = mmv_lookup_value_desc(base,
 "products.time", products[i].external);
 inqueue[i] = mmv_lookup_value_desc(base,
 "products.queuetime", products[i].external);
 }

PCP 3 Performance Co- Pilot ™ Programmer's Guide

114

Space in the mapping file for every value is set aside at initialization time (by the mmv_stats_init
function) - that is, space for each and every metric, and each value (instance) of each metric when an
instance domain is used. To find the handle to the space set aside for one individual value requires
the tuple of base memory address of the mapping, metric name, and instance name. In the case of
metrics with no instance domain, the final instance name parameter should be either NULL or the
empty string.

4.4.3. Updat ing Mapped Values

At this stage we have individual handles (pointers) to each instrumentation point, we can now start
modifying these values and observing changes through the PCP infrastructure. Notice that each
handle is simply the canonical pmAtomValue pointer, as defined in Example 3.16, “ pmAtomValue
Structure” , which is a union providing sufficient space to hold any single value.

This pointer can be either manipulated directly, or using helper functions provided by the pcp_mmv
API, such as the mmv_stats_inc and mmv_stats_set functions.

Example 4.4. Memory Mapped Value Updates

 while (1) {
 /* choose a random number between 0-N -> product */
 product = rand() % ACME_PRODUCTS_COUNT;

 /* assign a time spent "working" on this product */
 working = rand() % 50000;

 /* pretend to "work" so process doesn't burn CPU */
 usleep(working);

 /* update the memory mapped values for this one: */
 /* one more product produced and work time spent */
 mmv_inc_value(base, machine[product], working); /* API */
 count[product]->ull += 1; /* or direct mmap update */

 /* all other products are "queued" for this time */
 for (i = 0; i < ACME_PRODUCTS_COUNT; i++)
 if (i != product)
 mmv_inc_value(base, inqueue[i], working);
 }

At this stage, it will be informative to compile and run the complete example program, which can be
found in ${PCP_DEMOS_DIR}/mmv/acme.c. There is an associated Makefile to build it, in the
same directory. Running the acme binary creates the instrumentation shown in Example 4.5, “Memory
Mapped Value Reports” , with live values letting us explore simple queueing effects in products being
created on the ACME factory floor.

Example 4.5. Memory Mapped Value Reports

 pminfo -m mmv.acme
mmv.acme.products.queuetime PMID: 70.321.10
mmv.acme.products.time PMID: 70.321.8
mmv.acme.products.count PMID: 70.321.7

⁠Chapt er 4. Inst rument ing Applicat ions

115

pmval -f2 -s3 mmv.acme.products.time
metric: mmv.acme.products.time
host: localhost
semantics: cumulative counter (converting to rate)
units: microsec (converting to time utilization)
samples: 3
interval: 1.00 sec

 Anvils Rockets Giant_Rubber_Bands
 0.37 0.12 0.50
 0.35 0.25 0.38
 0.57 0.20 0.23

Experimentation with the algorithm from Example 4.4, “Memory Mapped Value Updates” is
encouraged. In particular, observe the effects of rate conversion (counter metric type) of a metric with
units of " time" (PM_TIME_*). The reported values are calculated over a sampling interval, which also
has units of " time", forming a utilization. This is extremely valuable performance analysis currency -
comparable metrics would include processor utilization, disk spindle utilization, and so forth.

4.4.4. Elapsed T ime Measures

One problem with the instrumentation model embodied by the pcp_mmv library is providing timing
information for long-running operations. For instrumenting long-running operations, like uploading
downloading a file, the overall operation may be broken into smaller, discrete units of work which
can be easily instrumented in terms of operations and througput measures. In other cases, there are
no divisible units for long-running operations (for example a black-box library call) and
instrumenting these operations presents a challenge. Sometimes the best that can be done is adding
the instrumentation point at the completion of the operation, and simply accept the "bursty" nature of
this approach. In these problematic cases, the work completed in one sampling-interval may have
begun several intervals before, from the point of view of the monitoring tool, which can lead to
misleading results.

One technique that is available to combat this is through use of the MMV_TYPE_ELAPSED metric
type, which provides the concept of a " timed section" of code. This mechanism stores the start time of
an operation along with the mapped metric value (an "elapsed time" counter), via the
mmv_stats_interval_start instrumentation function. Then, with help from the MMV PMDA which
recognizes this type, the act of sampling the metric value causes an in terim timestamp to be taken
(by the MMV PMDA, not the application) and combined with the initial timestamp to form a more
accurate reflection of time spent within the timed section, which effectively smooths out the bursty
nature of the instrumentation.

The completion of each timed section of code is marked by a call to mmv_stats_interval_end
which signifies to the MMV PMDA that the operation is not active, and no extra " in-progress" time
should be applied to the exported value. At that time, the elapsed time for the entire operation is
calculated and accounted toward metrics value.

4.5. Performance Inst rumentat ion and Tracing

The pcp_trace library provides function calls for identifying sections of a program as transactions
or events for examination by the trace PMDA, a user command called pmdatrace. The pcp_trace
library is described in the pmdatrace(3) man page

PCP 3 Performance Co- Pilot ™ Programmer's Guide

116

The monitoring of transactions using the Performance Co-Pilot (PCP) infrastructure begins with a
pmtracebegin call. Time is recorded from there to the corresponding pmtraceend call (with
matching tag identifier). A transaction in progress can be cancelled by calling pmtraceabort.

A second form of program instrumentation is available with the pmtracepoint function. This is a
simpler form of monitoring that exports only the number of times a particular point in a program is
passed. The pmtraceobs and pmtracecount functions have similar semantics, but the former
allows an arbitrary numeric value to be passed to the trace PMDA.

The pmdatrace command is a PMDA that exports transaction performance metrics from application
processes using the pcp_trace library; see the pmdatrace(1) man page for details.

4.6. Trace PMDA Design

Trace PMDA design covers application interaction, sampling techniques, and configuring the trace
PMDA.

4.6.1. Applicat ion Interact ion

Figure 4.3, “Trace PMDA Overview” describes the general state maintained within the trace PMDA.

l ib
pcp

_tr
ace

Instrumented
Applications Trace PMDA

l ib
pcp

_tr
ace

PDU

I/O

trace .* .count m etrics

Event
Counters

trace .* .t im e m etrics

Response Time
Statistics

(t im e averaging)

Figure 4.3. Trace PMDA Overview

Applications that are linked with the libpcp_trace library make calls through the trace Application
Programming Interface (API). These calls result in interprocess communication of trace data between
the application and the trace PMDA. This data consists of an identification tag and the performance
data associated with that particular tag. The trace PMDA aggregates the incoming information and
periodically updates the exported summary information to describe activity in the recent past.

As each protocol data unit (PDU) is received, its data is stored in the current working buffer. At the
same time, the global counter associated with the particular tag contained within the PDU is
incremented. The working buffer contains all performance data that has arrived since the previous
time interval elapsed. For additional information about the working buffer, see Section 4.6.2.2,
“Rolling-Window Periodic Sampling” .

4.6.2. Sampling T echniques

The trace PMDA employs a rolling-window periodic sampling technique. The arrival time of the data

⁠Chapt er 4. Inst rument ing Applicat ions

117

at the trace PMDA in conjunction with the length of the sampling period being maintained by the
PMDA determines the recency of the data exported by the PMDA. Through the use of rolling-window
sampling, the trace PMDA is able to present a more accurate representation of the available trace
data at any given time than it could through use of simple periodic sampling.

The rolling-window sampling technique affects the metrics in Example 4.6, “Rolling-Window
Sampling Technique” :

Example 4.6. Rolling-Window Sampling Technique

trace.observe.rate
trace.counter.rate
trace.point.rate
trace.transact.ave_time
trace.transact.max_time
trace.transact.min_time
trace.transact.rate

The remaining metrics are either global counters, control metrics, or the last seen observation value.
Section 4.7, “Trace API” , documents in more detail all metrics exported by the trace PMDA.

4.6.2.1. Simple Perio dic Sampling

The simple periodic sampling technique uses a single historical buffer to store the history of events
that have occurred over the sampling interval. As events occur, they are recorded in the working
buffer. At the end of each sampling interval, the working buffer (which at that time holds the historical
data for the sampling interval just finished) is copied into the historical buffer, and the working buffer
is cleared. It is ready to hold new events from the sampling interval now starting.

4.6.2.2. Ro lling-Windo w Perio dic Sampling

In contrast to simple periodic sampling with its single historical buffer, the rolling-window periodic
sampling technique maintains a number of separate buffers. One buffer is marked as the current
working buffer, and the remainder of the buffers hold historical data. As each event occurs, the
current working buffer is updated to reflect it.

At a specified interval, the current working buffer and the accumulated data that it holds is moved into
the set of historical buffers, and a new working buffer is used. The specified interval is a function of
the number of historical buffers maintained.

The primary advantage of the rolling-window sampling technique is seen at the point where data is
actually exported. At this point, the data has a higher probability of reflecting a more recent sampling
period than the data exported using simple periodic sampling.

The data collected over each sample duration and exported using the rolling-window sampling
technique provides a more up-to-date representation of the activity during the most recently
completed sample duration than simple periodic sampling as shown in Figure 4.4, “Sample Duration
Comparison” .

PCP 3 Performance Co- Pilot ™ Programmer's Guide

118

0 10 20 30
Simple periodic sampling

Rolling window periodic sampling
0 10 20 30

Sample duration extends back to previous sample time; and
sample durations do not overlap

Sample duration extends over N previous sampling times;
and sample durations do overlap

Figure 4.4. Sample Durat ion Comparison

The trace PMDA allows the length of the sample duration to be configured, as well as the number of
historical buffers that are maintained. The rolling-window approach is implemented in the trace
PMDA as a ring buffer (see Figure 4.3, “Trace PMDA Overview”).

When the current working buffer is moved into the set of historical buffers, the least recent historical
buffer is cleared of data and becomes the new working buffer.

4.6.2.3. Ro lling-Windo w Perio dic Sampling Example

Consider the scenario where you want to know the rate of transactions over the last 10 seconds. You
set the sampling rate for the trace PMDA to 10 seconds and fetch the metric trace.transact.rate.
So if in the last 10 seconds, 8 transactions took place, the transaction rate would be 8/10 or 0.8
transactions per second.

The trace PMDA does not actually do this. It instead does its calculations automatically at a
subinterval of the sampling interval. Reconsider the 10-second scenario. It has a calculation
subinterval of 2 seconds as shown in Figure 4.5, “Sampling Intervals” .

⁠Chapt er 4. Inst rument ing Applicat ions

119

4

2
1

2
1 1

1
2
3
4
5
6

0 4 8 122 14106
3.5 13.5

3

Interval used by agent
Requested interval

Nu
m

be
r o

f t
ra

ns
ac

tio
ns

T ime (seconds) Request rate
at this time

0

Figure 4.5. Sampling In tervals

If at 13.5 seconds, you request the transaction rate, you receive a value of 0.7 transactions per
second. In actual fact, the transaction rate was 0.8, but the trace PMDA did its calculations on the
sampling interval from 2 seconds to 12 seconds, and not from 3.5 seconds to 13.5 seconds. For
efficiency, the trace PMDA calculates the metrics on the last 10 seconds every 2 seconds. As a result,
the PMDA is not driven each time a fetch request is received to do a calculation.

4.6.3. Configuring the T race PMDA

The trace PMDA is configurable primarily through command-line options. The list of command-line
options in Table 4.1, “Selected Command-Line Options” is not exhaustive, but it identifies those
options which are particularly relevant to tuning the manner in which performance data is collected.

Table 4.1. Selected Command-Line Opt ions

Opt ion Descript ion
Access controls The trace PMDA offers host-based access control. This

control allows and disallows connections from instrumented
applications running on specified hosts or groups of hosts.
Limits to the number of connections allowed from individual
hosts can also be mandated.

Sample duration The interval over which metrics are to be maintained before
being discarded is called the sample duration.

Number of historical buffers The data maintained for the sample duration is held in a
number of internal buffers within the trace PMDA. These are
referred to as historical buffers. This number is configurable
so that the rolling window effect can be tuned within the
sample duration.

Counter and observation metric
units

Since the data being exported by the
trace.observe.value and trace.counter.count
metrics are user-defined, the trace PMDA by default exports
these metrics with a type of “none.” A framework is provided
that allows the user to make the type more specific (for
example, bytes per second) and allows the exported values
to be plotted along with other performance metrics of similar

PCP 3 Performance Co- Pilot ™ Programmer's Guide

120

units by tools like pmchart.

Instance domain refresh The set of instances exported for each of the trace metrics
can be cleared through the storable
trace.control.reset metric.

Opt ion Descript ion

4.7. Trace API

The libpcp_trace Application Programming Interface (API) is called from C, C++, Fortran, and
Java. Each language has access to the complete set of functionality offered by libpcp_trace. In
some cases, the calling conventions differ slightly between languages. This section presents an
overview of each of the different tracing mechanisms offered by the API, as well as an explanation of
their mappings to the actual performance metrics exported by the trace PMDA.

4.7.1. T ransact ions

Paired calls to the pmtracebegin and pmtraceend API functions result in transaction data being
sent to the trace PMDA with a measure of the time interval between the two calls. This interval is the
transaction service time. Using the pmtraceabort call causes data for that particular transaction to
be discarded. The trace PMDA exports transaction data through the following trace.transact
metrics listed in Table 4.2, “ trace.transact Metrics” :

Table 4.2. trace.transact Met rics

Metric Descript ion
 trace.transact.ave_time The average service time per transaction type. This

time is calculated over the last sample duration.
 trace.transact.count The running count for each transaction type seen

since the trace PMDA started.
 trace.transact.max_time The maximum service time per transaction type within

the last sample duration.
 trace.transact.min_time The minimum service time per transaction type within

the last sample duration.
 trace.transact.rate

The average rate at which each transaction type is
completed. The rate is calculated over the last sample
duration.

 trace.transact.total_time The cumulative time spent processing each
transaction since the trace PMDA started running.

4.7.2. Point T racing

Point tracing allows the application programmer to export metrics related to salient events. The
pmtracepoint function is most useful when start and end points are not well defined. For example,
this function is useful when the code branches in such a way that a transaction cannot be clearly
identified, or when processing does not follow a transactional model, or when the desired
instrumentation is akin to event rates rather than event service times. This data is exported through
the trace.point metrics listed in Table 4.3, “trace.point Metrics” :

⁠Appendix A. Acronyms

121

Table 4.3. trace.point Met rics

Metric Descript ion
trace.point.count Running count of point observations for each tag seen

since the trace PMDA started.

trace.point.rate The average rate at which observation points occur for each
tag within the last sample duration.

4.7.3. Observat ions and Counters

The pmtraceobs and pmtracecount functions have similar semantics to pmtracepoint, but also
allow an arbitrary numeric value to be passed to the trace PMDA. The most recent value for each tag
is then immediately available from the PMDA. Observation data is exported through the
trace.observe metrics listed in Table 4.4, “ trace.observe Metrics” :

Table 4.4. trace.observe Met rics

Metric Descript ion
trace.observe.count Running count of observations seen since the trace PMDA

started.
trace.observe.rate The average rate at which observations for each tag occur.

This rate is calculated over the last sample duration.
trace.observe.value The numeric value associated with the observation last seen

by the trace PMDA.
trace.counter Counter data is exported through the trace.counter

metrics. The only difference between trace.counter and
trace.observe metrics is that the numeric value of
trace.counter must be a monotonic increasing count.

4.7.4. Configuring the T race Library

The trace library is configurable through the use of environment variables listed in Table 4.5,
“Environment Variables” as well as through the state flags listed in Table 4.6, “State Flags” . Both
provide diagnostic output and enable or disable the configurable functionality within the library.

Table 4.5. Environment Variables

Name Descript ion
PCP_TRACE_HOST The name of the host where the trace PMDA is running.

PCP_TRACE_PORT TCP/IP port number on which the trace PMDA is accepting
client connections.

PCP_TRACE_TIMEOUT The number of seconds to wait until assuming that the initial
connection is not going to be made, and timeout will occur.
The default is three seconds.

PCP_TRACE_REQTIMEOUT The number of seconds to allow before timing out on
awaiting acknowledgment from the trace PMDA after trace
data has been sent to it. This variable has no effect in the
asynchronous trace protocol (refer to Table 4.6, “State
Flags”).

PCP_TRACE_RECONNECT A list of values which represents the backoff approach that
the libpcp_trace library routines take when attempting to
reconnect to the trace PMDA after a connection has been

PCP 3 Performance Co- Pilot ™ Programmer's Guide

122

lost. The list of values should be a positive number ofName Descript ion

The Table 4.6, “State Flags” are used to customize the operation of the libpcp_trace routines.
These are registered through the pmtracestate call, and they can be set either individually or
together.

Table 4.6. State Flags

Flag Descript ion
PMTRACE_STATE_NONE The default. No state flags have been set, the fault-

tolerant, synchronous protocol is used for
communicating with the trace PMDA, and no diagnostic
messages are displayed by the libpcp_trace
routines.

PMTRACE_STATE_API High-level diagnostics. This flag simply displays entry
into each of the API routines.

PMTRACE_STATE_COMMS Diagnostic messages related to establishing and
maintaining the communication channel between
application and PMDA.

PMTRACE_STATE_PDU The low-level details of the trace protocol data units
(PDU) is displayed as each PDU is transmitted or
received.

PMTRACE_STATE_PDUBUF The full contents of the PDU buffers are dumped as
PDUs are transmitted and received.

PMTRACE_STATE_NOAGENT Interprocess communication control. If this flag is set, it
causes interprocess communication between the
instrumented application and the trace PMDA to be
skipped. This flag is a debugging aid for applications
using libpcp_trace.

PMTRACE_STATE_ASYNC Asynchronous trace protocol. This flag enables the
asynchronous trace protocol so that the application
does not block awaiting acknowledgment PDUs from
the trace PMDA. In order for the flag to be effective, it
must be set before using the other libpcp_trace
entry points.

⁠Appendix A. Acronyms

123

Appendix A. Acronyms

Table A.1, “Performance Co-Pilot Acronyms and Their Meanings” provides a glossary of the
acronyms used in the Performance Co-Pilot (PCP) documentation, help cards, man pages, and user
interface.

Table A.1. Performance Co-Pilo t Acronyms and Their Meanings

Acronym Meaning
API Application Programming Interface
DBMS Database Management System
DNS Domain Name Service
DSO Dynamic Shared Object
I/O Input/Output
IPC Interprocess Communication
PCP Performance Co-Pilot
PDU Protocol data unit
PMAPI Performance Metrics Application Programming Interface
PMCD Performance Metrics Collection Daemon
PMDA Performance Metrics Domain Agent
PMID Performance Metric Identifier
PMNS Performance Metrics Name Space
TCP/IP Transmission Control Protocol/Internet Protocol

Index

__pmID_int st ructure Data St ructures

__pmInDom_int st ructure Data St ructures

access contro ls Conf iguring the Trace PMDA

acronyms Acronyms

ancillary support services PMAPI Ancillary Support Services

Applicat ion Programming Interface PMAPI- -The Performance Metrics API Memory
Mapped Values API Trace API Applicat ion In teract ion Trace API

applicat ion developersInst rument ing Applicat ions

applicat ion programs Applicat ion and Agent Development

applicat ions
- compiling Compiling and Linking PMAPI Applications

- instrumentation Application and PCP Relationship

- interaction Application Interaction

architecture PCP Architecture PMDA Architecture

archive logs
- context services PMAPI Context Services

- performance data PMAPI--The Performance Metrics API Current PMAPI Context

- performance management Application and PCP Relationship

PCP 3 Performance Co- Pilot ™ Programmer's Guide

124

- pmGetArchiveEnd function pmGetArchiveEnd Function

- pmGetInDomArchive function pmGetInDomArchive Function

- retrospective sources Retrospective Sources of Performance Metrics

- time control services PMAPI Time Control Services

archive-specif ic services pmGetArchiveLabel Funct ion

Cluster PMDA Dist ributed Collect ion

arrays
- instance description Data Structures

- N dimensional data N Dimensional Data

- performance metrics Performance Metrics Values Variable Length Argument and
Results Lists

asynchronous t race protocol Conf iguring the Trace Library Conf iguring the Trace
Library

audience Programming Performance Co-Pilo t

automated alarms Applicat ion and PCP Relat ionship

caching PMDA Caching PMDA Latency and Threads of Contro l

chkhelp tool Applicat ion and Agent Development

Cisco PMDA Dist ributed Collect ion Caching PMDA

client development Client Development and PMAPI

clusters Name Space

collect ion t ime Current PMAPI Context pmNewContext Funct ion pmWhichContext
Funct ion

collect ion tools PCP Architecture

collector hosts Dist ributed Collect ion

COLOR_INDOM Data St ructures

compiling and linking Compiling and Linking PMAPI Applicat ions

component sof tware Overview of Component Sof tware

computat ion state Inst rument ing Applicat ions

conf igurat ion Conf iguring the Trace Library Conf iguring PCP Tools

context services PMAPI Context Services

contro l threads Latency and Threads of Contro l

counter semant ics Semant ics

customiz at ion Programming Performance Co-Pilo t Inst rument ing Applicat ions

daemon process method Daemon Process Method

data export Applicat ion and PCP Relat ionship

data st ructures Data St ructures Data St ructures

dbpmda man page Implement ing a PMDA Overview dbpmda Debug Ut ility

dbx man page Overview

debugging and test ing Test ing and Debugging a PMDA Conf iguring the Trace
Library

⁠Appendix A. Acronyms

125

debugging f lags

(see f lags)

delays Latency and Threads of Contro l

design requirements Implement ing a PMDA

diagnost ic output Conf iguring the Trace Library

dimensionality and scale Performance Metric Descript ions

discrete semant ics Semant ics

dist ributed performance management
- data transportation Application and PCP Relationship

- metrics collection Distributed Collection

dlopen man page In -Process (DSO) Method DSO PMDA

DNS Acronyms

domains
- definition Overview

- fields Name Space

- numbers Domains

dometric funct ion pmTraversePMNS Funct ion

DSO Acronyms
- architecture PMDA Architecture

- disadvantages Daemon PMDA

- implementation DSO PMDA

- interface PMDA Interface

- PMDA building In-Process (DSO) Method

- PMDA initialization Common Initialization

dynamic shared object

(see DSO)

embedded calls Inst rument ing Applicat ions

environment variab les Conf iguring the Trace Library

error handling Handling PMAPI Errors

examples
- alarm tools Implementing a PMDA

- Install script Installing a PMDA

- MMV PMDA Instrumenting Applications

- programming issues PMAPI Programming Issues and Examples

- Remove script Removing a PMDA

- rolling-window sampling Rolling-Window Periodic Sampling Example

PCP 3 Performance Co- Pilot ™ Programmer's Guide

126

- simple and trivial PMDAs Domains, Metrics, and Instances

- time control functions PMAPI Time Control Services

- trace PMDA Instrumenting Applications

- visualization tools Implementing a PMDA

execv system call Daemon PMDA

export ing data Ext ract ing the In format ion

f lags
- debugging Debugging Information

- state Configuring the Trace Library

fork system call Daemon PMDA

glossary Acronyms

handle context pmReconnectContext Funct ion

help text
- creation Installing a PMDA

- initialization Common Initialization

- location Installing a PMDA

- PDU_TEXT_REQ Overview

- pmLookupInDomText function pmLookupInDomText Function

- pmLookupText function Management of Evolution within a PMDA pmLookupText
Function

- structure specification Implementing a PMDA

- terse and extended descriptions PMDA Help Text

historical buf fers Simple Periodic Sampling Rolling-Window Periodic Sampling
Conf iguring the Trace PMDA

ident if icat ion tags Applicat ion In teract ion

implementat ion Implement ing a PMDA

indom instance domain pmLookupInDomText Funct ion pmAddProfile Funct ion
pmGetInDomArchive Funct ion

informat ion ext ract ion Ext ract ing the In format ion

in it ializ at ion In it ializ ing New Metrics

instance domain ref resh Conf iguring the Trace PMDA

instance domain services pmGetInDom Funct ion

instantaneous semant ics Semant ics

inst list argument pmGetInDom Funct ion pmAddProfile Funct ion

inst rumentat ion Performance Inst rumentat ion and Sampling Performance
Inst rumentat ion and Tracing Applicat ion and PCP Relat ionship

integrat ing a PMDA Integrat ion of a PMDA

internal instance ident if ier Performance Metrics Values

⁠Appendix A. Acronyms

127

in terpolated metrics pmSetMode Funct ion

interprocess communicat ion

(see IPC)
- PMTRACE_STATE_NOAGENT flag Configuring the Trace Library

IPC
- DSO In-Process (DSO) Method

- PMDA Implementing a PMDA

- trace API Application Interaction

item numbers Name Space

iterat ive processing Iterat ive Processing of Values

latency Latency and Threads of Contro l

leaf node pmTraversePMNS Funct ion

libpcp_mmv library
- Application Programming Interface Memory Mapped Values API

- instrumenting applications Instrumenting Applications

l ibpcp_trace library
- Application Programming Interface Trace API

- entry points Configuring the Trace Library

- functions Configuring the Trace Library

- instrumenting applications Instrumenting Applications

l ibrary reent rancy Library Reentrancy and Threaded Applicat ions

metric descript ion services pmLookupDesc Funct ion

metrics
- API Naming and Identifying Performance Metrics

- definition Overview Metrics

- name and value Symbolic Association between a Metric's Name and Value

metrics and instances Overview

metrics descript ion services pmLookupDesc Funct ion

metrics services pmFetch Funct ion

mmv_lookup_value_desc funct ion Get t ing a Handle on Mapped Values

mmv_stats_in it funct ion Start ing and Stopping Inst rumentat ion

mmv_stats_stop funct ion Start ing and Stopping Inst rumentat ion

mmv_stats_inc funct ion Updat ing Mapped Values

mmv_stats_interval_start funct ion Elapsed T ime Measures

mmv_stats_interval_end funct ion Elapsed T ime Measures

monitoring tools PCP Architecture

mult id imensional arrays N Dimensional Data

PCP 3 Performance Co- Pilot ™ Programmer's Guide

128

mult ip le threads Library Reentrancy and Threaded Applicat ions

MMV PMDA
- description Instrumenting Applications

- design MMV PMDA Design

name space Name Space Name Space

new metrics Management of Evolut ion with in a PMDA In it ializ ing New Metrics

new PMDA Upgrading a PMNS to Include Metrics f rom a New PMDA

newhelp man page PMDA Help Text

newhelp tool Applicat ion and Agent Development

NOW_INDOM Data St ructures

observat ion metric units Conf iguring the Trace PMDA

parallelism Inst rument ing Applicat ions

PCP
- acronym Acronyms

- description Programming Performance Co-Pilot

- tool summaries Application and Agent Development

PCP_TRACE_HOST variable Conf iguring the Trace Library

PCP_TRACE_PORT variable Conf iguring the Trace Library

PCP_TRACE_RECONNECT variable Conf iguring the Trace Library

PCP_TRACE_REQTIMEOUT variable Conf iguring the Trace Library

PCP_TRACE_TIMEOUT variable Conf iguring the Trace Library

PDU Overview Applicat ion In teract ion Conf iguring the Trace Library Acronyms

PDU_AUTH Overview

PDU_DESC_REQ Overview

PDU_FETCH Overview Simple PMDA

PDU_INSTANCE_REQ Overview

PDU_PMNS_CHILD Overview

PDU_PMNS_NAMES Overview

PDU_PMNS_TRAVERSE Overview

PDU_PMNS_IDS Overview

PDU_PROFILE Overview

PDU_RESULT Overview Simple PMDA

PDU_TEXT_REQ Overview

performance inst rumentat ion Programming Performance Co-Pilo t Performance
Inst rumentat ion and Sampling Performance Inst rumentat ion and Tracing

Performance Metric Ident if ier

(see PMID)

performance metrics

(see metrics)

Performance Metrics Applicat ion Programming Interface

⁠Appendix A. Acronyms

129

(see PMAPI)

Performance Metrics Collect ion Daemon

(see PMCD)

Performance Metrics Domain Agent

(see PMDA)

Performance Metrics Name Space

(see PMNS)

periodic sampling Simple Periodic Sampling

pipe Daemon PMDA Daemon PMDA

PM_CONTEXT_ARCHIVE type pmNewContext Funct ion

PM_CONTEXT_HOST type pmNewContext Funct ion

PM_ERR_CONV error code Management of Evolut ion with in a PMDA
pmExtractValue Funct ion

PM_ERR_INST error code simple_store in the Simple PMDA

PM_ERR_PMID error code Management of Evolut ion with in a PMDA simple_store in
the Simple PMDA

PM_ERR_SIGN error code pmExtractValue Funct ion

PM_ERR_TIMEOUT error code pmFetch Funct ion

PM_ERR_TRUNC error code pmExtractValue Funct ion

PM_IN_NULL instance ident if ier Performance Metric Instances

PM_INDOM_NULL instance domain
- data structures Data Structures Data Structures

- description Performance Metric Instances

- pmAddProfile function pmAddProfile Function

- pmDelProfile function pmDelProfile Function

PM_SEM_COUNTER semant ic type Semant ics

PM_SEM_DISCRETE semant ic type Semant ics

PM_SEM_INSTANT semant ic type Data St ructures Semant ics

PM_TYPE_AGGREGATE type Performance Metric Descript ions

PM_TYPE_NOSUPPORT value Management of Evolut ion with in a PMDA Performance
Metric Descript ions

PM_TYPE_STRING type Performance Metric Descript ions pmExtractValue Funct ion

PM_TYPE_EVENT type Performance Metric Descript ions

PM_VAL_INSITU value Performance Metrics Values

pmAddProf ile funct ion Overview PMAPI Context Services pmAddProfile Funct ion

PMAPI Applicat ion and Agent Development Performance Metric Instances
(see also metrics)

- acronym Acronyms

- ancillary support services PMAPI Ancillary Support Services

- application compiling Compiling and Linking PMAPI Applications

PCP 3 Performance Co- Pilot ™ Programmer's Guide

130

- archive-specific services pmGetArchiveLabel Function

- client development Client Development and PMAPI

- context services PMAPI Context Services

- current context Current PMAPI Context

- description PMAPI--The Performance Metrics API

- description services pmLookupDesc Function

- error handling PMAPI Error Handling Handling PMAPI Errors

- identifying metrics Naming and Identifying Performance Metrics

- initializing new metrics Initializing New Metrics

- instance domain services pmGetInDom Function

- introduction Programming Performance Co-Pilot

- iterative processing Iterative Processing of Values

- man page Distributed Collection

- metrics services pmFetch Function

- Name Space services pmGetChildren Function

- program evolution Accommodating Program Evolution

- programming issues PMAPI Programming Issues and Examples PMAPI
Programming Issues and Examples

- programming style PMAPI Programming Style and Interaction

- record-mode services pmRecordAddHost Function

- time control services PMAPI Time Control Services

- timezone services pmNewContextZone Function

- variable length arguments Variable Length Argument and Results Lists

pmAtomStr funct ion Management of Evolut ion with in a PMDA pmAtomStr Funct ion

pmAtomValue st ructure Simple PMDA

PMCD
- acronym Acronyms

- distributed collection Distributed Collection

- overview PCP Architecture

- pmReconnectContext function pmReconnectContext Function

PMCD_RECONNECT_TIMEOUT variable pmReconnectContext Funct ion

PMCD_REQUEST_TIMOUT variable pmFetch Funct ion

⁠Appendix A. Acronyms

131

pmchart command PCP Architecture Implement ing a PMDA Conf iguring the Trace
PMDA

pmclient tool Applicat ion and Agent Development
- brief description Application and Agent Development

pmConvScale funct ion Management of Evolut ion with in a PMDA pmConvScale
Funct ion

PMDA
- acronym Acronyms

- architecture PMDA Architecture

- checklist Implementing a PMDA

- development PMDA Development

- evolution Management of Evolution within a PMDA

- help text PMDA Help Text

- initialization Initializing a PMDA

- Install script Installing a PMDA Upgrading a PMNS to Include Metrics from a New
PMDA

- integration Integration of a PMDA

- interface PMDA Interface

- introduction Programming Performance Co-Pilot

- man page Distributed Collection

- removal Removing a PMDA

- structures PMDA Structures

- trace Instrumenting Applications

- writing Writing a PMDA

pmda library Applicat ion and Agent Development

(see PMDA)

mmv library Applicat ion and Agent Development

(see MMV)

PMDA_PMID macro Data St ructures

pmdaAt t ribute callback Overview

pmdaChildren callback Overview

pmdacisco man page Caching PMDA

pmdaConnect man page PMDA Structures Daemon In it ializ at ion

pmdaDaemon man page PMDA Structures Daemon In it ializ at ion

pmdaDesc callback Overview

pmdaDSO man page PMDA Structures

pmdaExt st ructure Overview PMDA Structures

PCP 3 Performance Co- Pilot ™ Programmer's Guide

132

pmdaFetch callback Overview Trivial PMDA

pmdaGetOpt ions man page PMDA Structures Daemon In it ializ at ion Daemon
In it ializ at ion

pmdaIndom st ructure Data St ructures

pmdaIn it man page Data St ructures PMDA Structures Common In it ializ at ion
Common In it ializ at ion

pmdaInstance callback Overview

pmdaInst id st ructure Data St ructures

pmdaInterface st ructure PMDA Structures Overview

pmdaMain man page Daemon In it ializ at ion

pmdaMetric st ructure Data St ructures

pmdaName callback Overview

pmdaOpenLog man page Daemon In it ializ at ion

pmdaPMID callback Overview

pmdaProf ile callback Overview

pmdaStore callback Overview simple_store in the Simple PMDA

pmdaText callback Overview

pmdatrace man page Performance Inst rumentat ion and Tracing Performance
Inst rumentat ion and Tracing

pmdbg man page Overview Debugging In format ion

pmDelProf ile funct ion PMAPI Context Services pmDelProfile Funct ion

pmDesc st ructure Data St ructures Management of Evolut ion with in a PMDA
Performance Metric Descript ions Performance Metric Descript ions

pmDestroyContext funct ion pmDestroyContext Funct ion

pmDupContext funct ion PMAPI Context Services pmDupContext Funct ion

pmErrStr funct ion pmErrStr Funct ion

pmExtractValue funct ion Management of Evolut ion with in a PMDA pmExtractValue
Funct ion pmConvScale Funct ion

pmFetch funct ion Performance Metrics Values Performance Metrics Values Variable
Length Argument and Results Lists PMAPI Context Services pmNewContext
Funct ion pmSetMode Funct ion pmFetch Funct ion pmFetch Funct ion pmFreeResult
Funct ion pmFetchArchive Funct ion pmPrintValue Funct ion pmSortInstances
Funct ion Symbolic Associat ion between a Metric's Name and Value

pmFetch man page Overview Management of Evolut ion with in a PMDA

pmFetchArchive funct ion PMAPI Context Services pmSetMode Funct ion
pmFetchArchive Funct ion

pmf lush funct ion pmflush Funct ion

pmFreeResult funct ion Variable Length Argument and Results Lists pmFetch
Funct ion pmFreeResult Funct ion

pmgadgets command Implement ing a PMDA

pmgenmap tool Applicat ion and Agent Development

pmGetArchiveEnd funct ion PMAPI Context Services pmGetArchiveEnd Funct ion

pmGetArchiveLabel funct ion PMAPI Context Services pmGetArchiveLabel Funct ion

⁠Appendix A. Acronyms

133

pmGetChildren funct ion Overview Variable Length Argument and Results Lists
pmGetChildren Funct ion pmGetChildrenStatus Funct ion PMAPI Context Services

pmGetChildrenStatus funct ion PMAPI Context Services

pmGetContextHostName funct ion PMAPI Context Services

pmGet InDom funct ion Overview Variable Length Argument and Results Lists
pmGetInDom Funct ion PMAPI Context Services pmSetMode Funct ion
pmGetInDomArchive Funct ion

pmGet InDomArchive funct ion PMAPI Context Services pmGetInDomArchive
Funct ion

pmGetPMNSLocat ion funct ion pmGetPMNSLocation Funct ion PMAPI Context
Services

PMID
- acronym Acronyms

- introduction Name Space

pmIDStr funct ion pmIDStr Funct ion

pmie command Implement ing a PMDA Conf iguring PCP Tools

pmieconf command Implement ing a PMDA Conf iguring PCP Tools

pmInDomStr funct ion pmInDomStr Funct ion

pmLoadNameSpace funct ion pmLoadNameSpace Funct ion

pmlogconf command Conf iguring PCP Tools

pmlogger command Implement ing a PMDA Conf iguring PCP Tools

pmLookupDesc funct ion Overview Data St ructures Management of Evolut ion
with in a PMDA pmLookupDesc Funct ion PMAPI Context Services pmSetMode Funct ion
pmExtractValue Funct ion pmConvScale Funct ion

pmLookupInDom funct ion pmLookupInDom Funct ion PMAPI Context Services
pmSetMode Funct ion

pmLookupInDomArchive funct ion PMAPI Context Services pmLookupInDomArchive
Funct ion

pmLookupInDomText funct ion pmLookupInDomText Funct ion PMAPI Context
Services

pmLookupName funct ion Overview pmLookupName Funct ion PMAPI Context Services
Symbolic Associat ion between a Metric's Name and Value

pmLookupText funct ion Overview Management of Evolut ion with in a PMDA Variable
Length Argument and Results Lists pmLookupText Funct ion PMAPI Context
Services

pmNameAll funct ion pmNameAll Funct ion

pmNameID funct ion Variable Length Argument and Results Lists pmNameID
Funct ion PMAPI Context Services

pmNameInDom funct ion Variable Length Argument and Results Lists pmNameInDom
Funct ion PMAPI Context Services pmSetMode Funct ion

pmNameInDomArchive funct ion PMAPI Context Services pmNameInDomArchive
Funct ion

pmNewContext funct ion pmNewContext Funct ion

pmNewContextZone funct ion pmNewContextZone Funct ion

PCP 3 Performance Co- Pilot ™ Programmer's Guide

134

pmNewZone funct ion pmNewZone Funct ion

PMNS
- acronym Acronyms

- distributed Distributed PMNS

- upgrade Upgrading a PMNS to Include Metrics from a New PMDA

pmns man page Name Space

pmNumberStr funct ion pmNumberStr Funct ion

pmParseInterval funct ion pmParseInterval Funct ion

pmParseMetricSpec funct ion pmParseMetricSpec Funct ion

pmprint f funct ion pmprintf Funct ion

pmPrintValue funct ion Management of Evolut ion with in a PMDA pmPrintValue
Funct ion

pmReconnectContext funct ion pmReconnectContext Funct ion

pmRecordAddHost funct ion pmRecordAddHost Funct ion

pmRecordContro l funct ion pmRecordControl Funct ion

pmRecordSetup funct ion pmRecordSetup Funct ion

pmSetMode funct ion PMAPI Context Services pmSetMode Funct ion
pmGetArchiveEnd Funct ion

pmSort Instances funct ion pmSortInstances Funct ion

pmstore funct ion Overview Metrics Management of Evolut ion with in a PMDA
simple_store in the Simple PMDA Debugging In format ion Performance Metrics
Values PMAPI Context Services pmStore Funct ion pmStore Funct ion

PMTRACE_STATE_API f lag Conf iguring the Trace Library

PMTRACE_STATE_ASYNC f lag Conf iguring the Trace Library

PMTRACE_STATE_COMMS f lag Conf iguring the Trace Library

PMTRACE_STATE_NOAGENT f lag Conf iguring the Trace Library Conf iguring the
Trace Library

PMTRACE_STATE_NONE f lag Conf iguring the Trace Library

PMTRACE_STATE_PDU f lag Conf iguring the Trace Library

PMTRACE_STATE_PDUBUF f lag Conf iguring the Trace Library

pmtraceabort funct ion Transact ions

pmtracebegin funct ion Transact ions

pmtracend funct ion Transact ions

pmtraceobs funct ion Observat ions and Counters

pmtracepoint funct ion Point Tracing Observat ions and Counters

pmtracestate call Conf iguring the Trace Library

pmTraversePMNS funct ion Overview pmTraversePMNS Funct ion PMAPI Context
Services

__pmParseHostAt t rsSpec funct ion Overview

pmTypeStr funct ion Management of Evolut ion with in a PMDA pmTypeStr Funct ion

pmUnitsStr funct ion pmUnitsStr Funct ion

⁠Appendix A. Acronyms

135

pmUnloadNameSpace funct ion pmUnloadNameSpace Funct ion

pmUnpackEventRecords funct ion Event Monitor Considerat ions

pmUseContext funct ion pmNewContext Funct ion pmUseContext Funct ion

pmUseZone funct ion pmUseZone Funct ion

pmWhichContext funct ion pmWhichContext Funct ion

pmWhichZone funct ion pmWhichZone Funct ion

point t racing Point Tracing

program evolut ion Accommodat ing Program Evolut ion

programming components Programming Performance Co-Pilo t

protocol data units

(see PDU)

pthreads man page Latency and Threads of Contro l

record-mode services pmRecordAddHost Funct ion

removal script Removing a PMDA

restart ing pmcd Installing a PMDA

ret rospect ive analysis Ret rospect ive Sources of Performance Metrics

ring buf fers Rolling-Window Periodic Sampling

rolling-window sampling Sampling Techniques Rolling-Window Periodic Sampling

sample durat ion Rolling-Window Periodic Sampling Conf iguring the Trace PMDA

sampling techniques Sampling Techniques

scale and d imensionality Performance Metric Descript ions

semant ic types Semant ics

sequent ial log f iles Implement ing a PMDA

service t ime Inst rument ing Applicat ions

simple periodic sampling Simple Periodic Sampling

simple PMDA
- 2 branches, 4 metrics Name Space

- as daemon Daemon PMDA

- DSO DSO PMDA

- initialization Simple PMDA

- pmdaFetch callback Simple PMDA

simple_in it funct ion DSO PMDA Simple PMDA Simple PMDA

simple_store funct ion Debugging In format ion

simple.color metric Simple PMDA

simple.now metric Simple PMDA

simple.store metric simple_store in the Simple PMDA

simple.t ime metric Simple PMDA

snapshot f iles Implement ing a PMDA

sof tware Overview of Component Sof tware

PCP 3 Performance Co- Pilot ™ Programmer's Guide

136

specif ic instance domain PMAPI Context Services

state f lags Conf iguring the Trace Library Conf iguring the Trace Library

storage of metrics Metrics

symbolic associat ion Symbolic Associat ion between a Metric's Name and Value

synchronous protocol Conf iguring the Trace Library

target domain Implement ing a PMDA Metrics Ext ract ing the In format ion

TCP/IP Conf iguring the Trace Library Acronyms

test ing and debugging Test ing and Debugging a PMDA

threaded applicat ions Library Reentrancy and Threaded Applicat ions

t ime contro l services PMAPI T ime Contro l Services

t imez one services pmNewContextZone Funct ion

tool conf igurat ion Conf iguring PCP Tools

t race facilit ies Programming Performance Co-Pilo t

t race PMDA
- command-line options Configuring the Trace PMDA

- description Instrumenting Applications

- design Trace PMDA Design

t race.contro l.reset metric Conf iguring the Trace PMDA

trace.observe metrics Observat ions and Counters

t race.observe.rate metric Sampling Techniques

t race.point .count metric Point Tracing

t race.point .rate metric Point Tracing Sampling Techniques

t race.t ransact .ave_t ime metric Sampling Techniques Transact ions

t race.t ransact .count metric Transact ions

t race.t ransact .max_t ime metric Sampling Techniques Transact ions

t race.t ransact .min_t ime metric Sampling Techniques Transact ions

t race.t ransact .rate metric Sampling Techniques Transact ions

t race.t ransact .to tal_t ime metric Transact ions

t ransact ions Transact ions

t rivial PMDA
- callbacks Trivial PMDA

- initialization Trivial PMDA

- singular metric Data Structures

t rivial_in it funct ion Trivial PMDA Trivial PMDA

two or three d imensional arrays N Dimensional Data

type f ield Management of Evolut ion with in a PMDA

unavailab le metrics support Management of Evolut ion with in a PMDA

working buf fers Applicat ion In teract ion Rolling-Window Periodic Sampling

⁠Appendix A. Acronyms

137

	Table of Contents
	⁠About This Guide
	⁠1. What This Guide Contains
	⁠2. Audience for This Guide
	⁠3. Related Resources
	⁠4. Man Pages
	⁠5. Web Site
	⁠6. Conventions
	⁠7. Reader Comments

	⁠Chapter 1. Programming Performance Co-Pilot
	⁠1.1. PCP Architecture
	⁠1.1.1. Distributed Collection
	⁠1.1.2. Name Space
	⁠1.1.3. Distributed PMNS
	⁠1.1.4. Retrospective Sources of Performance Metrics

	⁠1.2. Overview of Component Software
	⁠1.2.1. Application and Agent Development

	⁠1.3. PMDA Development
	⁠1.3.1. Overview
	⁠1.3.2. Building a PMDA
	⁠1.3.2.1. In-Process (DSO) Method
	⁠1.3.2.2. Daemon Process Method

	⁠1.4. Client Development and PMAPI
	⁠1.5. Library Reentrancy and Threaded Applications

	⁠Chapter 2. Writing a PMDA
	⁠2.1. Implementing a PMDA
	⁠2.2. PMDA Architecture
	⁠2.2.1. Overview
	⁠2.2.2. DSO PMDA
	⁠2.2.3. Daemon PMDA
	⁠2.2.4. Caching PMDA

	⁠2.3. Domains, Metrics, and Instances
	⁠2.3.1. Overview
	⁠2.3.2. Domains
	⁠2.3.3. Metrics
	⁠2.3.3.1. Data Structures
	⁠2.3.3.2. Semantics

	⁠2.3.4. Instances
	⁠2.3.4.1. Instance Identification
	⁠2.3.4.2. N Dimensional Data
	⁠2.3.4.3. Data Structures

	⁠2.4. Other Issues
	⁠2.4.1. Extracting the Information
	⁠2.4.2. Latency and Threads of Control
	⁠2.4.3. Name Space
	⁠2.4.4. PMDA Help Text
	⁠2.4.5. Management of Evolution within a PMDA

	⁠2.5. PMDA Interface
	⁠2.5.1. Overview
	⁠2.5.1.1. Trivial PMDA
	⁠2.5.1.2. Simple PMDA
	⁠2.5.1.3. simple_store in the Simple PMDA
	⁠2.5.1.4. Return Codes for pmdaFetch Callbacks

	⁠2.5.2. PMDA Structures

	⁠2.6. Initializing a PMDA
	⁠2.6.1. Overview
	⁠2.6.2. Common Initialization
	⁠2.6.2.1. Trivial PMDA
	⁠2.6.2.2. Simple PMDA

	⁠2.6.3. Daemon Initialization

	⁠2.7. Testing and Debugging a PMDA
	⁠2.7.1. Overview
	⁠2.7.2. Debugging Information
	⁠2.7.3. dbpmda Debug Utility

	⁠2.8. Integration of a PMDA
	⁠2.8.1. Installing a PMDA
	⁠2.8.2. Upgrading a PMNS to Include Metrics from a New PMDA
	⁠2.8.3. Removing a PMDA
	⁠2.8.4. Configuring PCP Tools

	⁠Chapter 3. PMAPI--The Performance Metrics API
	⁠3.1. Naming and Identifying Performance Metrics
	⁠3.2. Performance Metric Instances
	⁠3.3. Current PMAPI Context
	⁠3.4. Performance Metric Descriptions
	⁠3.5. Performance Metrics Values
	⁠3.6. Performance Event Metrics
	⁠3.6.1. Event Monitor Considerations
	⁠3.6.2. Event Collector Considerations

	⁠3.7. PMAPI Programming Style and Interaction
	⁠3.7.1. Variable Length Argument and Results Lists
	⁠3.7.2. Python Specific Issues
	⁠3.7.3. PMAPI Error Handling

	⁠3.8. PMAPI Procedural Interface
	⁠3.8.1. PMAPI Name Space Services
	⁠3.8.1.1. pmGetChildren Function
	⁠3.8.1.2. pmGetChildrenStatus Function
	⁠3.8.1.3. pmGetPMNSLocation Function
	⁠3.8.1.4. pmLoadNameSpace Function
	⁠3.8.1.5. pmLookupName Function
	⁠3.8.1.6. pmNameAll Function
	⁠3.8.1.7. pmNameID Function
	⁠3.8.1.8. pmTraversePMNS Function
	⁠3.8.1.9. pmUnloadNameSpace Function

	⁠3.8.2. PMAPI Metrics Description Services
	⁠3.8.2.1. pmLookupDesc Function
	⁠3.8.2.2. pmLookupInDomText Function
	⁠3.8.2.3. pmLookupText Function

	⁠3.8.3. PMAPI Instance Domain Services
	⁠3.8.3.1. pmGetInDom Function
	⁠3.8.3.2. pmLookupInDom Function
	⁠3.8.3.3. pmNameInDom Function

	⁠3.8.4. PMAPI Context Services
	⁠3.8.4.1. pmNewContext Function
	⁠3.8.4.2. pmDestroyContext Function
	⁠3.8.4.3. pmDupContext Function
	⁠3.8.4.4. pmUseContext Function
	⁠3.8.4.5. pmWhichContext Function
	⁠3.8.4.6. pmAddProfile Function
	⁠3.8.4.7. pmDelProfile Function
	⁠3.8.4.8. pmSetMode Function
	⁠3.8.4.9. pmReconnectContext Function
	⁠3.8.4.10. pmGetContextHostName Function

	⁠3.8.5. PMAPI Timezone Services
	⁠3.8.5.1. pmNewContextZone Function
	⁠3.8.5.2. pmNewZone Function
	⁠3.8.5.3. pmUseZone Function
	⁠3.8.5.4. pmWhichZone Function

	⁠3.8.6. PMAPI Metrics Services
	⁠3.8.6.1. pmFetch Function
	⁠3.8.6.2. pmFreeResult Function
	⁠3.8.6.3. pmStore Function

	⁠3.8.7. PMAPI Fetchgroup Services
	⁠3.8.7.1. Fetchgroup setup
	⁠3.8.7.2. Fetchgroup operation
	⁠3.8.7.3. Fetchgroup shutdown

	⁠3.8.8. PMAPI Record-Mode Services
	⁠3.8.8.1. pmRecordAddHost Function
	⁠3.8.8.2. pmRecordControl Function
	⁠3.8.8.3. pmRecordSetup Function

	⁠3.8.9. PMAPI Archive-Specific Services
	⁠3.8.9.1. pmGetArchiveLabel Function
	⁠3.8.9.2. pmGetArchiveEnd Function
	⁠3.8.9.3. pmGetInDomArchive Function
	⁠3.8.9.4. pmLookupInDomArchive Function
	⁠3.8.9.5. pmNameInDomArchive Function
	⁠3.8.9.6. pmFetchArchive Function

	⁠3.8.10. PMAPI Time Control Services
	⁠3.8.11. PMAPI Ancillary Support Services
	⁠3.8.11.1. pmGetConfig Function
	⁠3.8.11.2. pmErrStr Function
	⁠3.8.11.3. pmExtractValue Function
	⁠3.8.11.4. pmConvScale Function
	⁠3.8.11.5. pmUnitsStr Function
	⁠3.8.11.6. pmIDStr Function
	⁠3.8.11.7. pmInDomStr Function
	⁠3.8.11.8. pmTypeStr Function
	⁠3.8.11.9. pmAtomStr Function
	⁠3.8.11.10. pmNumberStr Function
	⁠3.8.11.11. pmPrintValue Function
	⁠3.8.11.12. pmflush Function
	⁠3.8.11.13. pmprintf Function
	⁠3.8.11.14. pmSortInstances Function
	⁠3.8.11.15. pmParseInterval Function
	⁠3.8.11.16. pmParseMetricSpec Function

	⁠3.9. PMAPI Programming Issues and Examples
	⁠3.9.1. Symbolic Association between a Metric's Name and Value
	⁠3.9.2. Initializing New Metrics
	⁠3.9.3. Iterative Processing of Values
	⁠3.9.4. Accommodating Program Evolution
	⁠3.9.5. Handling PMAPI Errors
	⁠3.9.6. Compiling and Linking PMAPI Applications

	⁠Chapter 4. Instrumenting Applications
	⁠4.1. Application and Performance Co-Pilot Relationship
	⁠4.2. Performance Instrumentation and Sampling
	⁠4.3. MMV PMDA Design
	⁠4.4. Memory Mapped Values API
	⁠4.4.1. Starting and Stopping Instrumentation
	⁠4.4.2. Getting a Handle on Mapped Values
	⁠4.4.3. Updating Mapped Values
	⁠4.4.4. Elapsed Time Measures

	⁠4.5. Performance Instrumentation and Tracing
	⁠4.6. Trace PMDA Design
	⁠4.6.1. Application Interaction
	⁠4.6.2. Sampling Techniques
	⁠4.6.2.1. Simple Periodic Sampling
	⁠4.6.2.2. Rolling-Window Periodic Sampling
	⁠4.6.2.3. Rolling-Window Periodic Sampling Example

	⁠4.6.3. Configuring the Trace PMDA

	⁠4.7. Trace API
	⁠4.7.1. Transactions
	⁠4.7.2. Point Tracing
	⁠4.7.3. Observations and Counters
	⁠4.7.4. Configuring the Trace Library

	⁠Appendix A. Acronyms
	⁠Index

