|
D.6.12.2 ModEqn
Procedure from library qhmoduli.lib (see qhmoduli_lib).
- Usage:
- ModEqn(f [, opt]); poly f; int opt;
- Purpose:
- compute equations of the moduli space of semiquasihomogenos hypersurface singularity with principal part f w.r.t. right equivalence
- Assume:
- f quasihomogeneous polynomial with an isolated singularity at 0
- Return:
- polynomial ring, possibly a simple extension of the ground field of
the basering, containing the ideal 'modid'
- 'modid' is the ideal of the moduli space if opt is even (> 0).
otherwise it contains generators of the coordinate ring R of the
moduli space (note : Spec(R) is the moduli space)
- Options:
- 1 compute equations of the mod. space,
2 use a primary decomposition,
4 compute E_f0, i.e., the image of G_f0,
to combine options, add their value, default: opt =7
Example:
|