Top
Back: isReg
Forward: kohom
FastBack: grwalk_lib
FastForward: integralbasis_lib
Up: homolog_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.4.7.15 hom_kernel

Procedure from library homolog.lib (see homolog_lib).

Usage:
hom_kernel(A,M,N);

Compute:
Let M and N be submodules of R^m and R^n, presenting M'=R^m/M, N'=R^n/N (R=basering), and let A:R^m-->R^n be a matrix inducing a map A':M'-->N'. Then ker(A,M,N); computes a presentation K of ker(A') as in the commutative diagram:
 
          ker(A') --->  M' --A'--> N'
             |^         |^         |^
             |          |          |
             R^r  ---> R^m --A--> R^n
             |^         |^         |^
             |K         |M         |N
             |          |          |
             R^s  ---> R^p -----> R^q

Return:
module K, a presentation of ker(A':coker(M)->coker(N)).

Example:
 


Top Back: isReg Forward: kohom FastBack: grwalk_lib FastForward: integralbasis_lib Up: homolog_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 3-1-6, Dec 2012, generated by texi2html.