|
7.7.3.0. operatorBM
Procedure from library dmod.lib (see dmod_lib).
- Usage:
- operatorBM(f [,eng]); f a poly, eng an optional int
- Return:
- ring
- Purpose:
- compute the B-operator and other relevant data for Ann F^s,
using e.g. algorithm by Briancon and Maisonobe for Ann F^s and BS.
- Note:
- activate the output ring with the
setring command. In the output ring D[s]
- the polynomial F is the same as the input,
- the ideal LD is the annihilator of f^s in Dn[s],
- the ideal LD0 is the needed D-mod structure, where LD0 = LD|s=s0,
- the polynomial bs is the global Bernstein polynomial of f in the variable s,
- the list BS contains all the roots with multiplicities of the global Bernstein polynomial of f,
- the polynomial PS is an operator in Dn[s] such that PS*f^(s+1) = bs*f^s.
If eng <>0, std is used for Groebner basis computations,
otherwise and by default slimgb is used.
- Display:
- If
printlevel =1, progress debug messages will be printed,
if printlevel >=2, all the debug messages will be printed.
Example:
|