Top
Back: reynolds_molien
Forward: evaluate_reynolds
FastBack: Invariant theory
FastForward: ainvar_lib
Up: finvar_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.7.1.11 partial_molien

Procedure from library finvar.lib (see finvar_lib).

Usage:
partial_molien(M,n[,p]);
M: a 1x2 <matrix>, n: an <int> indicating number of terms in the expansion, p: an optional <poly>

Assume:
M is the return value of molien or the second return value of reynolds_molien, p ought to be the second return value of a previous run of partial_molien and avoids recalculating known terms

Return:
n terms (type <poly>) of the partial expansion of the Molien series (first n if there is no third parameter given, otherwise the next n terms depending on a previous calculation) and an intermediate result (type <poly>) of the calculation to be used as third parameter in a next run of partial_molien

Theory:
The following calculation is implemented:
 
(1+a1x+a2x^2+...+anx^n)/(1+b1x+b2x^2+...+bmx^m)=(1+(a1-b1)x+...
(1+b1x+b2x^2+...+bmx^m)
-----------------------
   (a1-b1)x+(a2-b2)x^2+...
   (a1-b1)x+b1(a1-b1)x^2+...

Example:
 


Top Back: reynolds_molien Forward: evaluate_reynolds FastBack: Invariant theory FastForward: ainvar_lib Up: finvar_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 3-1-6, Dec 2012, generated by texi2html.