Top
Back: secondary_no_molien
Forward: secondary_and_irreducibles_no_molien
FastBack: Invariant theory
FastForward: ainvar_lib
Up: finvar_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.7.1.30 irred_secondary_no_molien

Procedure from library finvar.lib (see finvar_lib).

Usage:
irred_secondary_no_molien(P,REY[,deg_vec,v]);
P: a 1xn <matrix> with primary invariants, REY: a gxn <matrix> representing the Reynolds operator, deg_vec: an optional <intvec> listing some degrees where no irreducible secondary invariants can be found, v: an optional <int>

Assume:
n is the number of variables of the basering, g the size of the group, REY is the 1st return value of group_reynolds(), reynolds_molien() or the second one of primary_invariants()

Return:
Irreducible secondary invariants of the invariant ring (type <matrix>)

Display:
information if v does not equal 0

Theory:
Irred. secondary invariants are calculated by finding a basis (in terms of monomials) of the basering modulo primary and previously found secondary invariants, mapping those to invariants with the Reynolds operator. Among these images we pick secondary invariants, using Groebner basis techniques.

Example:
 
See also: irred_secondary_char0.


Top Back: secondary_no_molien Forward: secondary_and_irreducibles_no_molien FastBack: Invariant theory FastForward: ainvar_lib Up: finvar_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 3-1-6, Dec 2012, generated by texi2html.