Top
Back: algebra_lib
Forward: module_containment
FastBack: absfact_lib
FastForward: assprimeszerodim_lib
Up: algebra_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.4.2.1 algebra_containment

Procedure from library algebra.lib (see algebra_lib).

Usage:
algebra_containment(p,A[,k]); p poly, A ideal, k integer.
A = A[1],...,A[m] generators of subalgebra of the basering

Return:
 
         - k=0 (or if k is not given) an integer:
           1  : if p is contained in the subalgebra K[A[1],...,A[m]]
           0  : if p is not contained in K[A[1],...,A[m]]
         - k=1 : a list, say l, of size 2, l[1] integer, l[2] ring, satisfying
           l[1]=1 if p is in the subalgebra K[A[1],...,A[m]] and then the ring
           l[2]: ring, contains poly check = h(y(1),...,y(m)) if p=h(A[1],...,A[m])
           l[1]=0 if p is not in the subalgebra K[A[1],...,A[m]] and then
           l[2] contains the poly check = h(x,y(1),...,y(m)) if p satisfies
           the nonlinear relation p = h(x,A[1],...,A[m]) where
           x = x(1),...,x(n) denote the variables of the basering

Display:
if k=0 and printlevel >= voice+1 (default) display the polynomial check

Note:
The proc inSubring uses a different algorithm which is sometimes faster.

Theory:
The ideal of algebraic relations of the algebra generators A[1],..., A[m] is computed introducing new variables y(i) and the product order with x(i) >> y(i).
p reduces to a polynomial only in the y(i) <=> p is contained in the subring generated by the polynomials A[1],...,A[m].

Example:
 


Top Back: algebra_lib Forward: module_containment FastBack: absfact_lib FastForward: assprimeszerodim_lib Up: algebra_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 3-1-6, Dec 2012, generated by texi2html.