SX MANUAL

CONTENTS

Contents
1 Introduction B
L1 SXFeaturesvviieiie Bl
1.2 Skylableecosystem [
2 Installation / Upgrade
2.1 Minimum reqUirementsttt
2.2 Binarypackages
23 Sourcecode.
2.4 Upgrade existingcluster @
3 Cluster deployment
3.1 Requirementst @
3.2 Creatingthefirstnode @
3.3 Addingmorenodestothecluster I
3.4 Automaticnode configuration (4]
4 Cluster Management 16l
4.1 Local node status and configuration 16
4.2 Administratoraccess e 16
43 Usermanagemento v vt ittt 1|
4.4 Volume managementt 13
4.5 Nodemanagementuoueunuenenno.. 20
4.6 Zoneconfiguration
4.7 Clusterbackupandrestore,
48 Clusterhealing 27
5 Client operations
5.1 Accessprofiles 32
5.2 Workingwithfiles B3
5.3 Mountingremotevolumes L. 36l
6 Advanced B7
6.1 Datadistribution B7
6.2 Globalobjects 33l
6.3 Jobs 39
7 Troubleshooting 40
7.1 FrequentlyAsked Questions [0l
7.2 Mailinglist [0l
7.3 Bugreporting. 40

CHAPTER

INTRODUCTION

Welcome to Skylable S¥, a complete private cloud framework. With Skylable SX you
can create flexible, reliable and secure storage solutions, which can be accessed
from all popular platforms.

1.1

SX FEATURES

This software has been designed and built with usability in mind. Some of the great
features of Skylable S* include:

Fast and lightweight protocol

Never transfer the same data twice. The S* protocol transfers only the differ-
ences between the local copy of a file and the data already stored in the cluster.
Additionally, it transfers data to/from all SX nodes in parallel to maximize
speed.

Replication

Choose how many times you want your data to be replicated. You can set dif-
ferent levels of replica for different data and find the perfect balance between
reliability and efficiency.

Rack Awareness
Ensure data gets replicated across different racks or regions by grouping nodes
into zones.

Deduplication

If you upload 10 copies of the same data, that data takes the same space
as 1 copy. If you upload 10 files, which only differ in a few bytes, just the
differences between the files will take up additional space and the rest will be
deduplicated.

Encryption
Client-side encryption with AES256, HTTPS communication, and all the secu-
rity best practices to keep your data safe.

Revisions and undelete

SX can optionally keep multiple revisions of your files and allow you to go back
in time to previous versions of your files. You can also restore a file that has
been accidentally deleted.

SX Drive
Android

Figure 1.1: Skylable cloud ecosystem

¢ S3 Support
Need a drop-in replacement for S3? Install S* together with LibreS3 and
change a single setting in your S3 clients and tools: that’s all you need to do to
switch to Skylable.

* Mobile and Desktop clients
Keep your files synchronized across all your devices with SXDrive: available
for Windows/MacOSX/Linux on desktop and iOS/Android on mobile.

1.2 SKYLABLE ECOSYSTEM

This manual covers the open-source Skylable SX software for UNIX platforms. S$*
is used to create data clusters and forms the base for the Skylable platform, which
consists of multiple components as shown on figure With Skylable SX one can
build a cloud consisting of many nodes, which can be accessed in different ways
and from multiple platforms. The client applications include command-line tools,
which are part of the Skylable S itself, as well as desktop and mobile apps.

The command line tools shipped with Skylable S* provide a typical UNIX experi-
ence and together with external tools and scripts can be used to automate various
processes, such as backups.

SX Drive for Linux, Windows and OS X keeps remote data synchronized with a
local directory. The synchronization works both ways, and the latest data is always
available on the local machine and in the cloud.

SX Drive for Android and iOS provides an instant access to the cloud from
mobile devices. One can upload or download any documents or photos and keep
favourite files automatically updated.

SX Web provides a web interface to the cloud. Users can access all their data
right from web browsers. SX Web additionally provides an easy way to share files
with other people.

SX Console provides a web-based management console for the cluster. The
cluster administrators can perform all regular operations right from a browser. S*
Console makes it easy to manage users, volumes, monitor health and status of the
cluster.

Finally, with LibreS3, the Skylable cloud becomes available to clients compatible
with the S3 protocol. LibreS3 implements a large subset of the S3 API and translates
it to the SX protocol. It makes possible to use existing solutions such as s3cmd or
DragonDisk with Skylable SX.

CHAPTER

INSTALLATION / UPGRADE

Skylable S is tested on all popular UNIX platforms, including Linux, FreeBSD, and
OS X. We try to support as many platforms as possible, if you have troubles installing,
compiling or running our software on your platform please let us know.

2.1 MINIMUM REQUIREMENTS

The default setup described in this manual requires 2GB of RAM available for each
node. SX can also be installed on machines with lower resources, such as embedded
ARM devices, but that requires advanced configuration not covered by the manual.

2.2 BINARY PACKAGES

The binary packages are available for all popular Linux distributions, and this is the
easiest and recommended way to install Skylable S¥. Please visit
http://www.skylable.com/download/sx

for the up-to-date list of supported distributions and installation instructions.

2.3 SOURCE CODE

In order to compile S* from source, you will need the following packages to be
installed together with their development versions:

¢ OpenSSL/NSS

e libcurl = 7.34.0 (otherwise the embedded one will be used)
e zlib

e FUSE = 2.7.0 (otherwise sxfs will not be compiled)

For example, on Debian run:

apt-get install libssl-dev libcurl4-openssl-dev libz-dev fuse libfuse-dev

COMPILATION

The software is based on autoconf, and you can just perform the standard installation
steps. The following commands install all the software in /usr/local:

[
$./configure && make
make install

6

http://www.skylable.com/download/sx

The rest of the manual assumes that SX was installed from a binary package, so some
paths may be different.

2.4 UPGRADE EXISTING CLUSTER

To take advantage of new features and improvements, it's recommended to keep
the cluster software up to date. The upgrade procedure has been simplified and
automated as much as possible to allow a smooth update of a live cluster.

UPGRADING A SINGLE NODE

It is recommended to upgrade one node at a time. In case of a problem, the other
nodes will stay unaffected and will be able to serve data to the clients. First install
the latest version of Skylable S* in the same way as the previous deployment. Then
run the following command:

sxsetup --upgrade

Updating sxhttpd.conf (vts)

Upgrading local node...

[sx_storage_upgradel: Performing integrity check on /var/lib/sxserver/storage
[sx_storage_upgrade]: Integrity check completed in Os
[sx_storage_upgrade]: Upgrading local databases, this may take a while...
[sx_storage_upgrade]: Committing changes

[sx_storage_upgradel: Schema upgrade completed in Os
[sx_storage_upgrade]: Successfully upgraded all DBs

[sx_storage_upgrade]: Storage closed in 1s

[upgrade_node]: Storage is up to date

Starting SX.fcgi

Starting sxhttpd

SX node started successfully

Moving remote sxsetup.conf into cluster settings...

More nodes in the cluster require upgrading.

The above is the expected output when not all of the nodes have been updated
yet. After upgrading the entire cluster the expected output is:

sxsetup --upgrade
Local node is up-to-date.
Versions:
192.168.1.101: 2.0 (2.0)
192.168.1.102: 2.0 (2.0)
192.168.1.103: 2.0 (2.0)
Cluster already fully upgraded

All components of the cluster are up-to-date!

IMPORTANT: Due to substantial changes and improvements, all nodes must be
upgraded to 2.0 otherwise some operations will only work in read-only mode.

CHAPTER

CLUSTER DEPLOYMENT

3.1 REQUIREMENTS

SX by default operates on the port 443 or 80, which needs to be available on a given
IP address'. You can build just a single-node S* cluster, however for data safety
reasons it is recommended to create at least two nodes and use replica higher than
1. You can add more nodes to the cluster at any time.

FIREWALL RULES

Some systems, such as Fedora, block most services by default. In order to allow SX
over https on Fedora run the following commands:

firewall-cmd --permanent --add-service=https

firewall-cmd --reload

CLOCK SYNCHRONIZATION

Please make sure that clocks are properly synchronized on all nodes by running NTP.
DISK SPACE

SX doesn't pre-allocate the disk space — you will need to monitor the nodes to make
sure they have enough physical space available for S* operations.

3.2 CREATING THE FIRST NODE

Setting up the first node initializes the cluster and makes SX ready to use. The
sxsetup tool presented below performs an automated configuration of the SX server,
which includes creating a local data storage, SSL certificate, and default admin
account. You will only need to answer a few basic questions!

In the example we assume the IP address of the first node is 192.168.1.101, the
name of the cluster is mycluster, and S* was installed from a binary package. In
many some cases (eg. the path to SX storage) we assume the default values, but you
may want to customize them.

sxsetup
--- SKYLABLE SX CONFIGURATION SCRIPT ---

The script will help you to create or extend a Skylable SX data
cluster.

1You can choose a custom port when running sxsetup in advanced mode.

--- CLUSTER NAME ---

Clients will access your cluster using a sx://clustername/volume/path
URI. It is recommended to use a FQDN for clustername, but not
required. Refer to the documentation for more info.

Enter the cluster name (use the same across all nodes) []: mycluster

--- DATA STORAGE ---

Please provide the location where all incoming data will be stored.
Path to SX storage [default=/var/lib/sxserver/storage]: <confirm default>

Please specify the maximum size of the storage for this node. You can

use M, G and T suffixes, eg. 100T for 100 terabytes.

Maximum size [default=1T]: G

--- NETWORKING ---

Enable SSL? (use the same setting for all nodes in the cluster) (Y/n)
<confirm default>

Enter the IP address of this node [default=192.168.1.101]: <confirm default>
Checking port 443 on 192.168.1.101 ... OK

--- CLUSTER CONFIGURATION ---

Is this (192.168.1.101) the first node of a new cluster? (Y/n)
<confirm default>

--- SSL CONFIGURATION ---

Generating default SSL certificate and keys in
/etc/ssl/private/sxkey.pem /etc/ssl/certs/sxcert.pem
Generating a 2048 bit RSA private key

writing new private key to ’/etc/ssl/private/sxkey.pem’
--- YOUR CHOICES ---

Cluster: sx://mycluster

Node: 192.168.1.101

Use SSL: yes

Storage: /var/lib/sxserver/storage
Run as user: nobody

Is this correct? (Y/n) <confirm default>
--- NODE INITIALIZATION ---

Starting SX.fcgi
Starting sxhttpd
Cluster UUID: 0Oldca714-8cc9-4e26-960e-daf04892ble2
Cluster key: CLUSTER/ALLNODE/ROOT/USERwBdjfz3tKcnTF2ouWIkTipreYuYjAAA
Admin key: ODPiKuNIrrVmD8IUCuwlhQxNqZfIkCY+oKwxi5zHSPn5y0S0i3IMawAA
Internal cluster protocol: SECURE
Used disk space: 16.75M
Actual data size: 453.00K
List of nodes:
* ec4d9d63-9fa3-4d45-838d-3e521f124ed3 192.168.1.101 (192.168.1.101) 500.00G

--- CONFIGURATION SUMMARY ---
SSL private key (/etc/ssl/private/sxkey.pem):

MITIEvAIBADANBgkqhkiGOwOBAQEFAASCBKYwggSiAgEAA0IBAQCYNdtHyNg1HZQ8
va01HJWtZ/eerB2H80XyQTZpDFRS87qGUNcrRudDNO9EypcueXaW1UN/3L8KKn7t
tGhLe6quG8QuKkw//UiJDDGTDEICOndtYfBh07zNR9zgaQRi910qQB6Iqfe4K/TOF
EONMjVjil0F5JI/3SgxEDwoQ4+1eghDuMGME1zJ4VJCojXhiEtvwolZruFX+Xogd
rq4Ys6Pch7n9Fowd0c2n+IRxPXKb6CqnHC1t9AKEBmbaoP+0zhM8ZFC13WFRChvb
JF8T9Z2Z5q3n01668NILNN1f4RRe07+pbOubfWqNABhuI5hQUnG81wK jcIzjWK4AHZ
+3bMwg6PAgMBAAECggEAQ+f TGmVE0KTHm4mnXYeRJzm4+SskSaC41e10EvOTMybV
UlMCi6YoSo6EaNZROESsKYKfiI29FRX8ZqQT24ki jmaIOWgYzPmhm3QOCBB2qim2
z/UdHB4TMUAv4ValaP+edb9SE872wiRVc8SjA2YT/6610Nw09kgszLhA72QgZAbG

xmxVwCNTRFd7dg4Wmy10Qz3YV0On1C3Qs8C8LoGo00Mci85quhBUwI9s7J12skXGbu
ZGDtpJylgwtfclq7nojaFkWenGCA9D1HB8zCqKPkhMh+HtA26g8VdFaHPVBzw/pz
avv5r9gLnBETwHfM3XulYv7h3wowES5uAKVhgvL8wOQKBgQDJs2avbY0OwgcEEOf 7L
nPRqmb5X j JE329KsyIzo4Yw0rZDjQXSYrBjifoBIJzUReDDB7ww51t0Xy3MExeS4
ngL0/oWot jd7 jGU+EdABozKwW3bZuyUTSqTeQJwo+aThjNtiyMrnpFy3vjYrJKGy
W/9cnviWjqxpqnQgDjE/yJt36wKBgQDBL7p7iCWjIf+LH1/caFgPchJENd4YZZrB
bhGA/tuo6VtJIcarc/Etx3DGbKhnJq13LxRRLjyH1Phw/k70ZBdaVK27I+vNfw5Lj
c2KZCYbFnF3kbP5ryuMW0QqGbkZZ/FExzwgFyAOUuCTwIL2VmKtPgbP9ywDTJc0Z
Jq/pdz0e7QKBgFOpxn4dvvIH4DgQlk9+2yMcgoduFw5SEcC6bQVeXtrCEf7elVzTdG
qOvHjQ5gtPJ6GDIZGIkKusqT6TGhpC2v3S0iK07CImFo6tXELbOALhZY2g0WTNqj
q59EzYFxin7AHn/rKb7Lvmm4zF844plI77NLf 2nX5EwwF9r0CBmc7F/hAoGAUCtH
hadrYVqvu9PY3pU/U6rUmRTFqEa8s1FLD/bYQjgrcnkyAsa/msHELxIwQPbRi8kx
wpw jmdAmXbTKgnW6WQY+rdGy4cUImEzuXiVubpS6HFEZ18IbTDnN3wUpvEfciN5D
YO9AVONyoKK+8mv1fJBKCRa+jqfeotuCd7MEpDECgYAhWcDt6aXSsUOtq+jgVNtC
019Cnm4FNW7Z/VVgCCRFIwHxpqqAau63/naSGxkLU1K+UOStReiLC2D4FPrqs9Jh
scUHOhTIp3hxwznZBRFkuvUOm3h6CwQOt3km7Af fLRSGQZOEM1vNbATEmR/ Izgxy
smcEPJf JgX61fx7c//bU6Q==
END PRIVATE KEY

SSL certificate (/etc/ssl/certs/sxcert.pem):

MIIDpzCCAo+gAwIBAgIJAODcwxKZHi35MAOGCSqGSIb3DQEBCWUAMDsxCzAJBgNV
BAYTAkdCMQswCQYDVQQIEwJVSzZELMAKGA1UEChMCU1gxEjAQBgNVBAMTCW15Y2x1
c3R1cjAeFw0xNDAzMjExNDU2NTdaFwOx0TAzMjAxNDU2NTdaMDsxCzAJBgNVBAYT
AkdCMQswCQYDVQQIEwJVSzELMAKGA1UEChMCU1gxEjAQBgNVBAMTCW15Y2x1c3R1
cjCCASIwWDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAJg120£I2CUd1Dy907Uc
1aln956sHYfzRf JBNmkMVFLzuoZQ1ytG50M3TOTK1y55dpbVQ3/cvwoqfu20aEt7
qq4bxC4rD/9SIkMMZMMQgI6d21h8GHTvM1H30BpBGL2WipAHoip97groPOUQ40yN
WOLU4Xkkj/dKDEQPChD j7V6CE04wYwSXMnhUkKiNeGIS2/CjVmu4Vf5eiB2urhiz
09yHuf OWjB05zaf4hHE9cpvoKqccLW30A0QGZtqg/ 7TOEzxKUKXdYVEKGOskXxP1
IlnmreeiXrrwOgs03V/hFF7Tv61v25t9a00AGG4 jmFBScbzXAgNwjONYrgdn7dszC
Do8CAwEAAaOBrTCBqjAdBgNVHQ4EFgQUs7Zs8qeEtPdNQ713zs3f2v+MTrswawYD
VROjBGQwYoAUs7Zs8qeEtPdNQ713zs3f2v+MTruhP6Q9MDsxCzAJBgNVBAYTAkdAC
MQswCQYDVQQIEwJVSzELMAKGA1UEChMCU1gxEjAQBgNVBAMTCW15Y2x1c3R1colJ
AODcwxKZHi35MA8GA1UdEWEB/wQFMAMBAS 8wCwYDVROPBAQDAGEGMAOGCSqGSIb3
DQEBCwUAA4IBAQBGwoULuHM5svPvV7cOtdsBmxovrhCYkMg4MuwtPJ8eJQckyrCP3
fIU1VMXXeHKegaZ4q3QzIVODD01XB9TzifZ8yKm7a2/N1UnvgLQCGu82H/226YLE
abqoipcJsAANo5+2qGYEmYDODmLOnToaCX5bcmbLeltcG4uf /x880+PGLgh/h5+9
MUM1£fyJWAE5eJN1rk9T5k00nm5PE1QLP/ZQecodHGLIXxzg jO9KLf wbRmUruGu/
ft4Ru0o0rQDIDWxQuiBitawQKX/tyaGkpX+g38gyFwDiPINo2q/IHeckxX5EHgF3
YGgPNaWwBnH3jfsJ/kMXcJS52q/zP0IvUCz0
END CERTIFICATE

Cluster: sx://mycluster
This node: 192.168.1.101
Cluster UUID: Oldca714-8cc9-4e26-960e-daf04892ble2
Cluster key: CLUSTER/ALLNODE/ROOT/USERwBdjfz3tKcnTF2ouWIkTipreYuYjAAA
Admin key: ODPiKuNIrrVmD8IUCuwlhQxNqZfIkCY+oKwxi5zHSPn5y0S0i3IMawAA
Internal cluster protocol: SECURE
Used disk space: 16.75M
Actual data size: 453.00K
List of nodes:
* ec4d9d63-9fa3-4d45-838d-3e521f124ed3 192.168.1.101 (192.168.1.101) 500.00G
Storage location: /var/lib/sxserver/storage
Run as user: nobody
Sockets and pidfiles in: /var/run/sxserver
Logs in: /var/log/sxserver/sxfcgi.log

--- END OF SUMMARY ---

Congratulations, the new node is up and running!
You can control it with ’/usr/sbin/sxserver’

You can add a new node to the cluster by running ’sxsetup’ on another
server. When prompted, enter the ’admin key’, ’SSL private key’ and
’SSL certificate’ printed above.

You can run ’sxacl useradd joe sx://admin@mycluster’ to add a new user.
To create a new volume owned by user ’joe’ run:
’sxvol create --owner joe --replica N --size SIZE sx://admin@mycluster/VOLNAME’

When the script finishes successfully, the node is already functional. Please notice
the admin key listed at the end of the summary: it will be needed for both adding

more nodes and accessing the cluster. You can always retrieve the admin key with
the following command:

sxsetup --info
--- SX INFO ---
SX Version: 2.0
Cluster name: mycluster
Cluster port: 443
Cluster UUID: Oldca714-8cc9-4e26-960e-daf04892ble2
Cluster key: CLUSTER/ALLNODE/ROOT/USERwBdjfz3tKcnTF2ouWIkTipreYuYjAAA
Admin key: ODPiKuNIrrVmD8IUCuwlhQxNqZfIkCY+oKwxi5zHSPn5y0S0i3IMawAA
Internal cluster protocol: SECURE
Used disk space: 16.75M
Actual data size: 453.00K
List of nodes:
* ec4d9d63-9fa3-4d45-838d-3e521f124ed3 192.168.1.101 (192.168.1.101) 500.00G
Storage location: /var/lib/sxserver/storage
SSL private key: /etc/ssl/private/sxkey.pem
SX Logfile: /var/log/sxserver/sxfcgi.log

That’s it — your SX storage is already up and running! You can now go to the next
step and add more nodes or go to the next chapter and learn how to perform basic
client operations.

3.3 ADDING MORE NODES TO THE CLUSTER

Follow these steps to add a new node to the cluster:
* Run sxsetup --info on one of the nodes of the cluster
¢ Collect the following information:

— Cluster name
- Admin key

— One of the IP addresses from the list of nodes
« Install SX using a binary package or source code

* Run sxsetup and provide the collected information. Below we assume the
new node is 192.168.1.102 and its size is 250 GB.

sxsetup
--- SKYLABLE SX CONFIGURATION SCRI

The script will help you to create or extend a Skylable SX data
cluster.

--- CLUSTER NAME ---

Clients will access your cluster using a sx://clustername/volume/path
URI. It is recommended to use a FQDN for clustername, but not
required. Refer to the documentation for more info.

Enter the cluster name (use the same across all nodes) []: mycluster

--- DATA STORAGE ---

Please provide the location where all incoming data will be stored.
Path to SX storage [default=/var/lib/sxserver/storagel: <confirm default>

Please specify the maximum size of the storage for this node. You can
use M, G and T suffixes, eg. 100T for 100 terabytes.
Maximum size [default=1T]: 250G

--- NETWORKING ---

Enable SSL? (use the same setting for all nodes in the cluster) (Y/n)
<confirm default>

Enter the IP address of this node [default=192.168.1.102]: <confirm default>
Checking port 443 on 192.168.1.102 ... 0K

--- CLUSTER CONFIGURATION ---

Is this (192.168.1.102) the first node of a new cluster? (Y/n) n
Please provide the IP address of a working node in ’mycluster’.
IP address: 192.168.1.101

The admin key is required to join the existing cluster.

If you don’t have it, run sxsetup --info on 192.168.1.101.
Below you can provide the key itself or path to the file
containing the key.

Admin key or path to key-file:
ODPiKuNIrrVmD8IUCuwlhQxNqZfIkCY+oKwxi5zHSPn5y0S0i

--- SSL CONFIGURATION ---
Automatically obtained SSL private key from 192.168.1.101

Automatically obtained SSL certificate from 192.168.1.101
--- YOUR CHOICES ---

Cluster: sx://mycluster

Node: 192.168.1.102

Use SSL: yes

Storage: /var/lib/sxserver/storage
Run as user: nobody

Is this correct? (Y/n) <confirm default>
--- NODE INITIALIZATION ---

Connecting to 192.168.1.101
Server certificate:
Subject: C=UK; L=London; 0=8SX; CN=mycluster
Issuer: C=UK; L=London; 0=SX; CN=mycluster
SHA1 fingerprint: 627917198424168ad0c144e721567eb4ebc90dbl

Do you trust this SSL certificate? [y/N] y

Starting SX.fcgi

Starting sxhttpd

SX node started successfully

Cluster UUID: Oldca714-8cc9-4e26-960e-daf04892ble2

Cluster key: CLUSTER/ALLNODE/ROOT/USERwBdjfz3tKcnTF2ouWIkTipreYuYjAAA

Admin key: ODPiKuNIrrVmD8IUCuwlhQxNqZfIkCY+oKwxi5zHSPn5y0S0i3IMawAA

Internal cluster protocol: SECURE

Used disk space: 16.75M

Actual data size: 453.00K

List of nodes:
- ec4d9d63-9fa3-4d45-838d-3e521f124ed3 192.168.1.101 (192.168.1.101) 500.00G
* 02e01f5d-80d8-4a01-b1f7-ab6eecb8aefs 192.168.1.102 (192.168.1.102) 250.00G

--- CONFIGURATION SUMMARY ---
SSL private key (/etc/ssl/private/sxkey.pem):

MIIEvAIBADANBgkqhkiGOwOBAQEFAASCBKYwggSiAgEAAoIBAQCYNdtHyNglHZQ8
va01HJIWtZ/eerB2H80XyQTZpDFRS87qGUNcrRudDNO9EypcueXaW1UN/3L8KKn7t
tGhLe6quG8QuKw/ /Ui JDDGTDEICOndtYfBh07zNR9zgaQRi910qQB6Iqfe4K/TOF
EONMjVjil0F5JI/3SgxEDwoQ4+1eghDuMGME1zJ4VJICojXhiEtvwolZruFX+Xogd
rq4Ys6Pch7n9Fowd0c2n+IRxPXKb6CqnHC1t9AKEBmbaoP+0zhM8ZFC13WFRChvb
JF8T9ZZ5q3n01668NILNN1f4RRe07+pbOubfWqNABhul5hQUnG81wK jcIzjWK4HZ
+3bMwg6PAgMBAAECggEAQ+f TGmVE0KTHm4mnXYeRJzm4+SskSaC41e10EvOTMybV
U1MCi6Y0So6EaNZROESsKYKfiI29FRX8ZqQT24ki jmaIOWgYzPmhm3Q0CBB2qim2
z/UdHB4TMUAv4ValaP+edb9SE872wiRVc8SjA2YT/6610Nw09kgszLhA72QgZAbG
xmxVwCNTRFd7dg4Wmy10Qz3YV0n1C3Qs8C8LoGo00Mci85quhBUw9s7J12skXGbu
ZGDtpJylgwtfclq7nojaFkWenGCA9D1HB8zCqKPkhMh+HtA26g8VdFaHPVBzw/pz
avvbr9gLnBETwHEM3XuIYv7h3wowESuAKVhgvL.8wOQKBgQDJs2avbY0wgcEEQOf 7L
nPRqmb5X j JE329KsyIzo4YwOrZDjQXSYrBjifoBIJzUReDDB7ww51t0Xy3MExeS4
ngL0/oWot jd7 jGU+EdABozKwW3bZuyUTSqTeQJwo+aIhjNtiyMrnpFy3vjYrJKGy
W/9cnv1WjqxpqnQgDjE/yJt36wKBgQDBL7p7iCWjIf+LH1/caFgPchJENd4YZZrB

bhGA/tuo6VtJIcarc/Etx3DGbKhnJq13LxRRLjyH1Phw/k70ZBdaVK27I+vNfw5Lj
c2KZCYbFnF3kbP5ryuMW0QqGbkZZ/FExzwgFyAOUuCTwIL2VmKtPgbP9ywDTJc0Z
Jq/pdz0e7QKBgFOpxn4dvvIH4DgQlk9+2yMcgoduFw5SEcC6bQVeXtrCEf7elVzTdG
qOvHjQ5gtPJ6GDIZGIkKusqT6TGhpC2v3S0iK07CImFo6tXELbOALhZY2g0WTNq j
q59EzYFxin7AHn/rKb7Lvmm4zF844plI77NLf 2nX5EwwFOr0CBmc7F /hAoGAUCtH
ha4rYVqvu9PY3pU/U6rUmRTFqEa8s1FLD/bYQjgrcnkyAsa/msHELxIwQPbRi8kx
wpw jmdAmXbTKgnW6WQY+rdGy4cUImEzuXiVubpS6HFEZ18IbTDnN3wUpvEfciN5D
YO9AVONyoKK+8mv1fJBKCRa+jqfeotuCd7MEpDECgYAhWcDt6aXSsUOtqg+jgVNtC
019Cnm4FNW7Z/VVgCCRFIwHxpqqAau63/naSGxkLU1K+UOStReiLC2D4FPrqs9Jh
scUHOhTIp3hxwznZBRFkuvUOm3h6CwQOt3km7Af fLRSGQZI9EM1vNbATSmR/Izgxy
smcEPJfJgX61£fx7c//bU6Q==

SSL certificate (/etc/ssl/certs/sxcert.pem):

BEGIN CERTIFICATE-----
MIIDpzCCAo+gAwIBAgIJAODcwxKZHi35MAOGCSqGSIb3DQEBCWUAMDsxCzAJBgNV
BAYTAkdCMQswCQYDVQQIEwJVSzZELMAKGA1UEChMCU1gxEjAQBgNVBAMTCW15Y2x1
c3R1cjAeFw0xNDAzMjExNDU2NTdaFwOx0TAzMjAxNDU2NTdaMDsxCzAJBgNVBAYT
AkdCMQswCQYDVQQIEwJVSzELMAKGA1UEChMCU1gxEjAQBgNVBAMTCW15Y2x1c3R1
cjCCASIwWDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAJg120£I12CUd1Dy907Uc
1aln956sHYfzRf JBNmkMVFLzuoZQ1ytG50M3TOTK1y55dpbVQ3/cvwoqfu20aEt7
qq4bxC4rD/9SIkMMZMMQgI6d21h8GHTvM1H30BpBGL2WipAHoip97groPOUQ40yN
WOLU4Xkk j/dKDEQPChD j 7V6CE04wYwSXMnhUkKiNeGIS2/CjVmudVE5eiB2urhiz
09yHuf OWjB05zaf4hHE9cpvoKqccLW30A0QGZtqg/ 7TOEzxKUKXdYVEKGOskXxP1
InmreeiXrrwOgs03V/hFF7Tv61v25t9a00AGG4 jmFBScbzXAgNwjONYrgdn7dszC
Do8CAwEAAaOBrTCBqjAdBgNVHQ4EFgQUs7Zs8qeEtPdNQ713zs3f2v+MTrswawYD
VROjBGQwYoAUs7Zs8qeEtPdNQ713zs3f2v+MTruhP6Q9MDsxCzAJBgNVBAYTAkdAC
MQswCQYDVQQIEwJVSzELMAKGA1UEChMCU1gxEjAQBgNVBAMTCW15Y2x1c3R1colJ
AODcwxKZHi35MA8GA1UdEWEB/wQFMAMBAS 8wCwYDVROPBAQDAGEGMAOGCSqGSIb3
DQEBCwUAA4IBAQBGwoULuHM5svPvV7cOtdsBmxovrhCYkMg4MutPJ8eJQckyrCP3
f£IU1VMXXeHKegaZ4q3QzIVIDD01XBITz1ifZ8yKm7a2/N1UnvgLQCGu82H/226YLE
abqoipcJsAANo5+2qGYEmYDODmLOnToaCX5bcmbLeltcG4uf /x880+PGLgh/h5+9
MUM1£fyJWAE5eJN1rk9T5k00nm5PE1QLP/ZQecodHGLIXxzg jO9KLf wbRmUruGu/
f£t4Ru000rQDIDWxQuiBitawQKX/tyaGkpX+g38gyFwDiPINo2q/IHeckxX5EHGF3
YGgPNaWwBnH3jfsJ/kMXcJS52q/zP0IvUCz0

END CERTIFICATE

Cluster: sx://mycluster

This node: 192.168.1.102

Port number: 443

Cluster UUID: Oldca714-8cc9-4e26-960e-daf04892ble2

Cluster key: CLUSTER/ALLNODE/ROOT/USERwBdjfz3tKcnTF2ouWIkTipreYuYjAAA

Admin key: ODPiKuNIrrVmD8IUCuwlhQxNqZfIkCY+oKwxi5zHSPn5y0S0i3IMawAA

Internal cluster protocol: SECURE

Used disk space: 16.75M

Actual data size: 453.00K

List of nodes:
- ec4d9d63-9fa3-4d45-838d-3e521f124ed3 192.168.1.101 (192.168.1.101) 500.00G
* 02e01f5d-80d8-4a01-b1f7-ab6eecb8aef5 192.168.1.102 (192.168.1.102) 250.00G

Storage location: /var/lib/sxserver/storage

Run as user: nobody

Sockets and pidfiles in: /var/run/sxserver

Logs in: /var/log/sxserver/sxfcgi.log

--- END OF SUMMARY ---

Congratulations, the new node is up and running!
You can control it with ’/usr/sbin/sxserver’

You can add a new node to the cluster by running ’sxsetup’ on another
server. When prompted, enter the ’admin key’, ’SSL private key’ and
’SSL certificate’ printed above.

You can run ’sxacl useradd joe sx://admin@mycluster’ to add a new user.
To create a new volume owned by user ’joe’ run:
’sxvol create --owner joe --replica N --size SIZE sx://admin@mycluster/VOLNAME’

The node successfully joined the cluster — at the end of the summary you can see
the current list of nodes in the cluster. Repeat the same steps to add more nodes to
the cluster.

3.4 AUTOMATIC NODE CONFIGURATION

The process of adding new nodes can be automated with the use of --config-
file option of sxsetup. In the following example we assume the cluster has been
configured to use a couple of nodes as described in the previous section, and we
will be adding a third node with the IP address of 192.168.1.103 and size of 250GB,
which has the SX software installed the same way as on the other nodes. We will use
the sxsetup. conf file from the node 192.168.1.102 as a template, which has the
following content:

cat /etc/sxserver/sxsetup.conf

HHHH R R R R R
!1! DO NOT EDIT THIS FILE !!!

This file was generated during node creation with sxsetup.

Some of the variables defined below are used by sxserver and other
scripts, however the main purpose of this file is to provide

a template for creating new nodes with sxsetup --config-file.
Changing parameters such as SX_NODE_SIZE directly in this file
will have no effect *after* the node was created.

HoH oK HHH K HH®
HOoH oH HHOH H

HHHHH AR AR R R R R R R R R R R R R R R R R R R R

SX_CLUSTER_NAME="mycluster"

SX_DATA_DIR="/var/lib/sxserver/storage"

SX_RUN_DIR="/var/run/sxserver"

SX_LIB_DIR="/var/lib/sxserver"

SX_LOG_FILE="/var/log/sxserver/sxfcgi.log"

SX_NODE_SIZE="250G"

SX_NODE_IP="192.168.1.102"

SX_NODE_INTERNAL_IP=""

SX_EXISTING_NODE_IP="192.168.1.1"

SX_SERVER_USER="nobody"

SX_SERVER_GROUP="nogroup"

SX_CHILDREN_NUM="24"

SX_RESERVED_CHILDREN_NUM="8"

SX_PORT="443"

SX_USE_SSL="yes"

SX_SSL_KEY_FILE="/etc/ssl/private/sxkey.pem"
FILE="/etc/ssl/certs/sxcert.pem"

SX_SSL_KEY="----- BEGIN PRIVATE KEY

MIIEvAIBADANBgkqhkiGOwOBAQEFAASCBKYwggSiAgEAA0IBAQCYNdtHyNg1HZQ8

va01HJWtZ/eerB2H80XyQTZpDFRS87qGUNcrRudDNO9EypcueXaW1UN/3L8KKn7t

tGhLe6quG8QuKkw//UiJDDGTDEICOndtYfBh07zNR9zgaQRi910qQB6Iqfe4K/TOF

EONMjVjil0F5JI/3SgxEDwoQ4+1eghDuMGME1zJ4VJCojXhiEtvwolZruFX+Xogd

rq4Ys6Pch7n9Fowd0c2n+IRxPXKb6CqnHC1t9AKEBmbaoP+0zhM8ZFC13WFRChvb

JF8T9ZZ5q3n01668NILNN1f4RRe07+pbOubfWqNABhuI5hQUnG81wK jcIzjWK4AHZ

+3bMwg6PAgMBAAECggEAQ+f TGmVE0KTHm4mnXYeRJzm4+SskSaC41e10EvOTMybV

UlMCi6YoSo6EaNZROESsKYKfiI29FRX8ZqQT24ki jmaIOWgYzPmhm3QOCBB2qim2

z/UdHB4TMUAv4ValaP+edb9SE872wiRVc8SjA2YT/6610Nw09kgszLhA72QgZAbG

xmxVwCNTRFd7dg4Wmy10Qz3YV0On1C3Qs8C8LoGo00Mci85quhBUw9s7J12skXGbu

ZGDtpJylgwtfclq7nojaFkWenGCA9D1HB8zCqKPkhMh+HtA26g8VdFaHPVBzw/pz

avvbr9gLnBETwWHEM3XuIlYv7h3wowESuAKVhgvL8wOQKBgQDJs2avbYOwgcEEOf 7L

nPRgmb5XjJE329KsyIzo4YwOrZDjQXSYrBjifoBIJzUReDDB7ww51t0Xy3MExeS4

ngL0/oWot jd7 jGU+EdABozKwW3bZuyUTSqTeQJwo+alhjNtiyMrnpFy3vjYrJKGy

W/9cnviWjqxpqnQgDjE/yJt36wKBgQDBL7p7iCWjIf+LH1/caFgPchJENd4YZZrB

bhGA/tuo6VtJIcarc/Etx3DGbKhnJql13LxRRLjyH1Phw/k70ZBdaVK27I+vNfw5Lj

c2KZCYbFnF3kbP5ryuMWOQqGbkZZ/FExzwgFyAOUuCTwIL2VmKtPgbP9ywDTJc0Z

Jq/pdz0e7QKBgFOpxn4dvvIH4DgQ1k9+2yMcgoduFw5EcC6bQVeXtrCE7elVzTdG

qOvHjQ5gtPJ6GDIZGIkKusqT6TGhpC2v3S0iK07CImFo6tXELbOALhZY2g0WTNGj

q59EzYFxin7AHn/rKb7Lvmm4zF844plI77NLf 2nX5EwwF9r0CBmc7F/hAoGAUctH

ha4rYVqvu9PY3pU/U6rUmRTFqEa8s1FLD/bYQjgrcnkyAsa/msHELxIwQPbRi8kx

wpwjmdAmXbTKgnW6WQY+rdGy4cUImEzuXiVubpS6HFEZ18IbTDnN3wUpvEfciN5SD

YO9AVONyoKK+8mv1fJBKCRa+jqfeotuCd7MEpDECgYAhWcDt6aXSsUOtq+jgVNtC

019Cnm4FNW7Z/VVgCCRFIwHxpqqAau63/naSGxkLU1K+UOStReiLC2D4FPrqs9Jh

scUH9hTIp3hxwznZBRFkuvUOm3h6CwQOt3km7Af f LRSGQZOEM1vNb4AT5mR/ Izgxy

SX_SSL_CERT=" --BEGIN CERTIFICATE-----

MIIDpzCCAo+gAwIBAgIJAODcwxKZHi35MAOGCSqGSIb3DQEBCwWUAMDsxCzAJBgNV
BAYTAkdCMQswCQYDVQQIEwJVSzELMAKGA1UEChMCU1gxEjAQBgNVBAMTCW15Y2x1
c3R1cjAeFw0xNDAzMjExNDU2NTdaFwOx0TAzMjAxNDU2NTdaMDsxCzAJBgNVBAYT

AkdCMQswCQYDVQQIEwJVSzELMAKGA1UEChMCU1gxEjAQBgNVBAMTCW15Y2x1c3R1
cjCCASIwWDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAJg120£I12CUd1Dy907Uc
1aln956sHYfzRf JBNmkMVFLzuoZQ1ytG50M3TOTK1y55dpbVQ3/cvwoqfu20aEt7
qq4bxC4rD/9SIkMMZMMQgI6d21h8GHTvM1H30BpBGL2WipAHoip97groPOUQ40yN
WOLU4Xkkj/dKDEQPChD j7V6CE04wYwSXMnhUkKiNeGIS2/CjVmu4Vf5eiB2urhiz
09yHuf OWjB05zaf4hHE9cpvoKqccLW30A0QGZtqg/ 7TOEzxKUKXdYVEKGOskXxP1
IlnmreeiXrrwOgs03V/hFF7Tv61v25t9a00AGG4 jmFBScbzXAgNwjONYrgdn7dszC
Do8CAwEAAaOBrTCBqjAdBgNVHQ4EFgQUs7Zs8qeEtPdNQ713zs3f2v+MTrswawYD
VROjBGQwYoAUs7Zs8qeEtPdNQ713zs3f2v+MTruhP6Q9MDsxCzAJBgNVBAYTAkdAC
MQswCQYDVQQIEwJVSzELMAKGA1UEChMCU1gxEjAQBgNVBAMTCW15Y2x1c3R1colJ
AODcwxKZHi35MA8GA1UdEWEB/wQFMAMBA 8wCwYDVROPBAQDAgEGMAOGCSqGSIb3
DQEBCwUAA4IBAQBGwoULuHM5svPvV7cOtdsBmxovrhCYkMg4MutPJ8eJQckyrCP3
fIU1VMXXeHKegaZ4q3QzIVODD01XB9TzifZ8yKm7a2/N1UnvgLQCGu82H/226YLE
abqoipcJsAANo5+2qGYEmYDODmLOnToaCX5bcmbLeltcG4uf /x880+PGLgh/h5+9
MUM1££fyJWAE5eJN1rk9T5k00nm5PE1QLP/ZQecodHGLIXxzg jOOKLf wbRmUruGu/
ft4Ru0o0rQDIDWxQuiBitawQKX/tyaGkpX+g38gyFwDiPINo2q/IHeckxX5EHgF3
YGgPNaWwBnH3jfsJ/kMXcJS52q/zP0IvUCz0

END CERTIFICATE
SX_CFG_VERSION="3"
SX_CLUSTER_UUID="01dca714-8cc9-4e26-960e-daf04892ble2"
SX_CLUSTER_KEY=CLUSTER/ALLNODE/ROOT/USERwBd jfz3tKcnTF20ouWIkTipreYuYjAAA
SX_ADMIN_KEY=0DPiKuNIrrVmD8IUCuw1hQxNqZfIkCY+oKwxi5zHSPn5y0S0i3IMawAA

As instructed in the header, we shouldn’t modify the original file. Instead, we will
copy the file to /root/sxsetup.conf on the new node and update SX_NODE_IP
to point to 192.168.1.3 with the other settings left untouched. After that we run
sxsetup on the new node as follows:

sxsetup --config-file /root/sxsetup.conf

Using config file /root/sxsetup.conf

[...]

Cluster: sx://mycluster

This node: 192.168.1.103

Port number: 443

Cluster UUID: Oldca714-8cc9-4e26-960e-daf04892ble2

Cluster key: CLUSTER/ALLNODE/ROOT/USERwBdjfz3tKcnTF2ouWIkTipreYuYjAAA

Admin key: ODPiKuNIrrVmD8IUCuwlhQxNqZfIkCY+oKwxi5zHSPn5y0S0i3IMawAA

Internal cluster protocol: SECURE

Used disk space: 16.75M

Actual data size: 453.00K

List of nodes:
- ec4d9d63-9fa3-4d45-838d-3e521f124ed3 192.168.1.101 (192.168.1.101) 500.00G
- 02e01£f5d-80d8-4a01-b1f7-ab6eecb8aef5 192.168.1.102 (192.168.1.102) 250.00G
* 912b6125-9228-4227-93ce-57f6£6e248c0 192.168.1.103 (192.168.1.103) 250.00G

Storage location: /var/lib/sxserver/storage

Run as user: nobody

Sockets and pidfiles in: /var/run/sxserver

Logs in: /var/log/sxserver/sxfcgi.log

--- END OF SUMMARY ---

Congratulations, the new node is up and running!
You can control it with ’/usr/sbin/sxserver’

The node has been automatically configured and successfully joined the cluster.

CHAPTER

CLUSTER MANAGEMENT

4.1 LOCAL NODE STATUS AND CONFIGURATION

You can check status of a specific node by running sxserver status on that node:

sxserver status
--- SX STATUS ---

sx.fcgi is running (PID 14394)
sxhttpd is running (PID 14407)

Run sxsetup --info to display the node’s configuration:

sxsetup --info

--- SX INFO ---

SX Version: 2.0

Cluster name: mycluster

Cluster port: 443

Cluster UUID: 0ldca714-8cc9-4e26-960e-daf04892ble2

Cluster key: CLUSTER/ALLNODE/ROOT/USERwBdjfz3tKcnTF2ouWIkTipreYuYjAAA
Admin key: ODPiKuNIrrVmD8IUCuwlhQxNqZfIkCY+oKwxi5zHSPn5y0S0i3IMawAA

Internal cluster protocol: SECURE
Used disk space: 16.75M
Actual data size: 453.00K

List of nodes:
* ec4d9d63-9fa3-4d45-838d-3e521f124ed3 192.168.1.101 (192.168.1.101) 500.00G
Storage location: /var/lib/sxserver/storage
SSL private key: /etc/ssl/private/sxkey.pem
SX Logfile: /var/log/sxserver/sxfcgi.log

This gives you the information about local services and disk usage, but also provides
the admin key, which is needed for accessing the cluster itself.

4.2 ADMINISTRATOR ACCESS

During cluster deployment a default admin account gets created and initialized.
For security reasons, the account uses a randomly generated key instead of a
password. You should be able to access the cluster from any node using sx:
//admin@mycluster profile. In order to manage the cluster remotely or from an-
other system account, you need to initialize access to the cluster using sxinit !. In
the example below we use the default admin account created during cluster setup.
Since “mycluster” is not a DNS name, we need to point sxinit to one of the nodes
of the cluster — this will allow it automatically discover the IP addresses of the other
nodes. Additionally, we create an alias @cluster, which later can be used instead of
sx://admin@mycluster.

1For more information about access profiles please see sectionon page

16

$ sxinit --key -1 192.168.1.101 -A Qcluster sx://admin@mycluster
Warning: self-signed certificate:

Subject: C=GB, ST=UK, 0=SX, CN=mycluster
Issuer: C=GB, ST=UK, 0=SX, CN=mycluster
SHA1 Fingerprint: 84:EF:39:80:1E:28:9C:4A:C8:80:E6:56:57:A4:CD:64:2E:23:99:7A

Do you trust this SSL certificate? [y/N] y
Trusting self-signed certificate
Please enter the user key: ODPiKuNIrrVmD8IUCuwlhQxNqZfIkCY+oKwxi5zHSPn5y0S0i3IMawAA

4.3 USER MANAGEMENT

SX similarly to UNIX systems supports two types of users: regular and administrators.
A new cluster has only a single ‘admin’ user enabled by default. The administrators
can perform all cluster operations and access all data in the cluster (except for
encrypted volumes), while the regular users can only work with volumes they have
access to. It is recommended to only use the admin account for administrative
purposes and perform regular operations as a normal user.

CREATING A NEW USER
Use sxacl useradd to add new users to the cluster:

$ sxacl useradd jeff @cluster

Enter password for user ’jeff’

Enter password:

Re-enter password:

User successfully created!

Name: jeff

Key : FqmlTd9CWZUuPBGMdjE46DaT1/3kx+EYbahlrhcdVpy/9ePfrtWCIgAA
Type: normal

Run ’sxinit sx://jeff@mycluster’ to start using the cluster as user ’jeff’.

By default a regular user account gets created and the key is generated from the pass-
word. The user can later authenticate both using the password or the key. It’s also
possible to automatically generate a random key by passing the --generate-key
option.

LISTING USERS

In order to list all users in the cluster run:

$ sxacl userlist @cluster
admin (admin)

jeff (normal)

Only cluster administrators can list users.

KEY AND PASSWORD MANAGEMENT

SX uses special authentication keys, which are either randomly generated or based
on passwords. It is possible to obtain the existing key or issue a new one for any user
in the cluster. To retrieve the current authentication key for user ‘jeff’ run:

R —————————————————————————————
$ sxacl usergetkey jeff Qcluster
5tJdVr+RSpA/IPuFeSwUeePtKdbDLWUKqoaoZLkmCcXTw5qzPg5e7AAA

A new password/key can be set at any time by running:
[

$ sxacl usernewkey jeff @sxtest

Enter new password for user ’jeff’
Enter password:

Re-enter password:
Key successfully changed!
Name 1 jeff

New key: FqmlTd9CWZUuPBGMdjE46DaT1/3MSHkOTLH27dFf5Zd611EbWEeAqgAA
Run ’sxinit sx://jeff@sxtest’ and provide the new key for user ’jeff’.

As long as the user can access the cluster, it can change its own key. The cluster ad-
ministrator can force a key change for any user, what can also be used to temporarily
block access to the cluster for a specified user.

REMOVING A USER

Use sxacl userdel to permanently delete a user from the cluster:

I ————————————————————————
$ sxacl userdel jeff @cluster
User ’jeff’ successfully removed.

All volumes owned by the user will be automatically reassigned to the cluster admin-
istrator performing the removal.

4.4 VOLUME MANAGEMENT

Volumes are logical partitions of the SX storage, which are of specific size and ac-
cessible by a particular group of users. The volumes can be used in connection
with client side filters to perform additional operations, such as compression or
encryption. Only cluster administrators can create and remove volumes.

CREATING A PLAIN VOLUME

Below we create a basic volume of size 50GB owned by the user ‘jeff’ and fully
replicated on two nodes.

[
$ sxvol create -o jeff -r 2 -s 650G @cluster/vol-jeff

Volume ’vol-jeff’ (replica: 2, size: 50G, max-revisions: 1) created.

By default, a volume will only keep a single revision of each file (max-revisions
parameter set to 1). The revisions are previous versions of the file stored when the
file gets modified. For example, when a volume gets created with max-revisions
set to 3, and some file gets modified multiple times, then the latest 3 versions of the
file will be preserved. All revisions are accounted for their size. See the information
about sxrev in section[5.2jon page[33|on how to manage file revisions.

CREATING A FILTERED VOLUME

Filters are client side plugins, which perform operations on files or their contents,
before and after they get transferred to/from the SX cluster. When a filter gets
assigned to a volume, all remote clients will be required to have support for that
particular filter in order to access the volume. Run the following command to list
the available filters:

$ sxvol filter --list
Name Ver Type Short description

undelete . generic Backup removed files

Zcomp . compress Z1ib Compression Filter
aes256 . crypt Encrypt data using AES-256-CBC-HMAC-512
attribs . generic File Attributes

We will create an encrypted volume for user ‘jeff’. To obtain more information about
the aes256 filter run:

$ sxvol filter -i aes256
’aes256’ filter details:
Short description: Encrypt data using AES-256-CBC-HMAC-512 mode.
Summary: The filter automatically encrypts and decrypts all data using
OpenSSL’s AES-256 in CBC-HMAC-512 mode.
Options:
setkey (set a permanent key when creating a volume)

paranoid (don’t use key files at all - always ask for a password)
encrypt_filenames: enable encryption of filenames (may be slow with big number of
files)
salt:HEX (force given salt, HEX must be 32 chars long)
UUID: 15bOac3c-404f-481e-bc98-6598e4577bbd*
Type: crypt
Version: 2.0

Now run the following command to create an encrypted volume:

$ sxvol create jeff -r 2 aes256 Qcluster/vol-jeff-aes

Volume ’vol-jeff-aes’ (repl ze: 50G, max-revisions: 1) created.

The user will be asked to set a new password while accessing the volume for the first
time.

LISTING ALL VOLUMES

To get a list of all volumes in the cluster run sx1s with the cluster argument as an
administrator. When the same command is run by a normal user, it will list all
volumes, to which the user has access.

$ sxls -1H Qcluster
VOL rep:2 rev:l rw - 0 50.00G 0% sx://admin@mycluster/vol-jeff

VOL rep:2 rev:l rw aes256 O 50.00G 0% sx://admin@mycluster/vol-jeff-aes

The -1 (--long-format) flag makes sx1s provide more information about the
volumes, and -H converts all sizes into a human readable form. The parameters
right after the volume marker VOL are: number of replicas, maximum number of
revisions, access permissions for the user performing the listing (in this case for the
administrator), active filter, used space, size of the volume, and the usage percentage.

MANAGING VOLUME PERMISSIONS

Cluster administrators and volume owners can grant or revoke access to the volumes
to other users. The owner can also grant another user the manager privilege, which
allows to manage the volume permissions. To list the current access control list for
the volume vol- jeff run:

$ sxacl volshow @cluster/vol-jeff
admin: read write

jeff: read write manager owner
(all admin users): read write admin

To grant full access to user ‘bob’ run:

$ sxacl volperm --grant=read,write bob @cluster/vol-jeff
New volume ACL:
admin: read write

bob: read write

jeff: read write manager owner
(all admin users): read write admin

User ‘bob’ can now upload, download and remove files from the volume but cannot
make any changes to the volume settings (this is restricted to admins, managers and
owners). To revoke write access from user ‘bob’ run:

$ sxacl volperm --revoke=write bob @cluster/vol-jeff
New volume ACL:
admin: read write

bob: read

jeff: read write manager owner
(all admin users): read write admin

Now ‘bob’ can only read files but cannot upload or remove anything.

CHANGING VOLUME SETTINGS

Some of the volume settings such as its size or ownership can be modified at a later
time. For example, the cluster administrator may want to extend a volume size or
shrink it to forbid users from storing more data — when the new size is lower than
the current space usage of the volume the existing contents will remain untouched
— but in order to upload more data to the volume, the user will have to make enough
space to satisfy the new limit.

To resize the volume ‘vol-jeff’ to 100GB run:

R ————————————————————————————
$ sxvol modify --size 100G @cluster/vol-jeff

4.5 NODE MANAGEMENT

In section B.3]on page [11]we described how to add new nodes to a cluster. This
section covers other modifications to an existing cluster, such as node repair, resize
or delete. In the examples below we will manage a cluster with four nodes, 500GB
each, with an administrator profile configured as @cluster2.

REMOTE CLUSTER STATUS

To get information about remote cluster status run the following command:

[
$ sxadm cluster --info @cluster2

Cluster UUID: cc8ab859-619e-4806-ade6-c32ab2db1665

Operating mode: read-write

Current configuration: 536870912000/192.168.100.1/d3f8ad83-d003-4aaa-bbfb-73359af85991
536870912000/192.168.100.2/abc2ed51-b4a8-46b6-aBac-0beb58e697d2
536870912000/192.168.100.3/a343b7£9-0bef-4£03-8c6f-526cal2d75a9
536870912000/192.168.100.4/b9b05fc7-7a4b-417d-853b-ac56ed32f5d3

Distribution: 872eeecb-ebf9-4368-8150-beb23cd44edf (v.7) - checksum: 18024964248989723179

State of nodes:

* node d3f8ad83-d003-4aaa-bbfb-73359af85991: addr: 192.168.100.1, capacity: 536870912000,
status: follower, online: yes

* node abc2ed51-b4a8-46b6-aBac-0beb58e697d2: addr: 192.168.100.2, capacity: 536870912000,
status: follower, online: yes

* node a343b7f9-0bef-4f03-8c6f-526cal2d75a9: addr: 192.168.100.3, capacity: 536870912000,
status: leader, online: yes

* node b9b05fc7-7a4b-417d-853b-ac56ed32f5d3: addr: 192.168.100.4, capacity: 536870912000,
status: follower, online: yes

The first line provides the list of cluster nodes in the following format:

where SIZE is in bytes and UUID is a unique identifier assigned to a node when
joining the cluster.

In order to get information about the individual nodes run (-H converts sizes to
human readable form):

$ sxadm cluster --list-nodes -H @cluster2
Node d3f8ad83-d003-4aaa-bbfb-73359af85991 status:

Versions:
SX: 2.0

HashFS: SX-Storage 2.0
System:
Name: Linux
Architecture: x86_64
Release: 3.2.0-4-amd64
Version: #1 SMP Debian 3.2.51-1
CPU(s): 8
Endianness: little-endian
Local time: 2015-05-07 17:03:21 CEST
UTC time: 2015-05-07 15:03:21 UTC
Network:
Public address: 192.168.100.1
Internal address: 192.168.100.1
Storage:
Storage directory: /var/lib/sxserver/storage
Allocated space: 259.47G
Used space: 227.30G
Storage filesystem:
Block size: 4.00K
Total size: 1.14T
Available: 644.28G
Used: 53.28%
Memory:
Total: 31.36G

REBALANCE MODE

After making any change to the cluster, it will automatically enter into a rebalance
mode. The rebalance process makes the data properly distributed among the nodes
according to the new cluster scheme. During the rebalance all data operations on
volumes can be performed as usual, but no changes to the cluster itself are accepted.
When the cluster is rebalancing, it reports its new configuration in the status output
under “Target configuration”. IMPORTANT: All nodes should be online during the
rebalance process. It is not possible to cancel a running rebalance nor make any
changes to the cluster during the process.

CLUSTER RESIZE

The first modification we will perform is a global cluster resize. sxadm cluster --
resize provides an easy way to shrink or grow the entire cluster, with changes
applied to all nodes proportionally to their current capacity in the cluster. In our

cluster all four nodes have equal sizes, therefore growing the cluster by 400GB,
should result in each node being resized by 100GB:

$ sxadm cluster --resize +400G Qcluster2

$ sxadm cluster --info @cluster2

Cluster UUID: cc8ab859-619e-4806-ade6-c32ab2db1665

Operating mode: read-write

Target configuration: 644245094400/192.168.100.1/d3f8ad83-d003-4aaa-bbfb-73359af85991
644245094400/192.168.100.2/abc2ed51-b4a8-46b6-aBac-0beb58e697d2
644245094400/192.168.100.3/a343b7£f9-0bef-4f03-8c6f-526cal12d75a9
644245094400/192.168.100.4/b9b05fc7-7a4b-417d-853b-ac56ed32f5d3

Current configuration: 536870912000/192.168.100.1/d3f8ad83-d003-4aaa-bbfb-73359af85991
536870912000/192.168.100.2/abc2ed51-b4a8-46b6-aBac-0beb58e697d2

536870912000/192.168.100.3/a343b7£f9-0bef-4f03-8c6f-526cal2d75a9
536870912000/192.168.100.4/b9b05fc7-7a4b-417d-853b-ac56ed32f5d3

Operating mode: read-write

Distribution: 872eeecb-ebf9-4368-8150-beb23cd44edf (v.8) - checksum: 14098478712246199608

State of nodes:
* node d3f8ad83-d003-4aaa-bbfb-73359af85991: addr: 192.168.100.1, capacity: 644245094400,
status: follower, online: yes, activity: Relocation complete
* node abc2ed51-b4a8-46b6-aBac-0beb58e697d2: addr: 192.168.100.2, capacity: 644245094400,
status: follower, online: yes, activity: Relocation complete
* node a343b7f9-0Obef-4f03-8c6f-526cal2d75a9: addr: 192.168.100.3, capacity: 644245094400,
status: leader, online: yes, activity: Relocation complete

* node b9b05fc7-7a4b-417d-853b-ac56ed32f5d3: addr: 192.168.100.4, capacity: 644245094400,

status: follower, online: yes, activity: Relocation complete

All nodes were properly resized. When the rebalance process finishes, “Target con-
figuration” will become “Current configuration’.

NODE RESIZE

In order to modify a single node, we will use a generic option cluster --modify,
which takes a new configuration of the cluster. First, we obtain the current configu-
ration:

$ sxadm cluster --info @cluster2
Cluster UUID: cc8ab859-619e-4806-ade6-c32ab2db1665
Operating mode: read-write
Current configuration: 644245094400/192.168.100.1/d3f8ad83-d003-4aaa-bbfb-73359af85991
644245094400/192.168.100.2/abc2ed51-b4a8-46b6-aBac-0beb58e697d2
644245094400/192.168.100.3/a343b7£9-0bef-4£03-8c6f-526cal2d75a9
644245094400/192.168.100.4/b9b05fc7-7a4b-417d-853b-ac56ed32f5d3
Operating mode: read-write
Distribution: 872eeecb-ebf9-4368-8150-beb23cd44edf (v.9) - checksum: 18024963750773516843
State of nodes:
* node d3f8ad83-d003-4aaa-bbfb-73359af85991: addr: 192.168.100.1, capacity: 644245094400,
status: follower, online: yes
* node abc2ed51-b4a8-46b6-aBac-0beb58e697d2: addr: 192.168.100.2, capacity: 644245094400,
status: follower, online: yes
* node a343b7f9-0Obef-4£03-8c6f-526cal2d75a9: addr: 192.168.100.3, capacity: 644245094400,
status: leader, online: yes
* node b9b05fc7-7a4b-417d-853b-ac56ed32f5d3: addr: 192.168.100.4, capacity: 644245094400,
status: follower, online: yes

In order to change the size of the node 192.168.100.1 to 700GB, we provide a new

configuration of the cluster with an updated specification of that node that includes

the new size and the other values left untouched:

$ sxadm cluster --modify 751619276800/192.168.100.1/d3£8ad83-d003-4aaa-bbfb-73359af85991
644245094400/192. 168. 100. 2/abc2ed51-b4a8-46b6-adac-0beb58e697d2

644245094400/192.168.100.3/a343b7£9-0bef-4£03-8c6f-526cal12d75a9
644245094400/192.168.100.4/b9b05fc7-7a4b-417d-853b-acb6ed32f5d3 @cluster2

It's very important to provide proper node UUIDs, otherwise the cluster won't be able
to recognize the node changes. When the rebalance finishes, the new configuration
of the cluster is:

$ sxadm cluster --info @cluster2

Cluster UUID: cc8ab859-619e-4806-ade6-c32ab2db1665

Operating mode: read-write

Current configuration: 751619276800/192.168.100.1/d3f8ad83-d003-4aaa-bbfb-73359af85991
644245094400/192.168.100.2/abc2ed51-b4a8-46b6-aBac-0beb58e697d2
644245094400/192.168.100.3/a343b7£9-0bef-4£03-8c6f-526cal2d75a9
644245094400/192.168.100.4/b9b05fc7-7a4b-417d-853b-ac56ed32f5d3

Operating mode: read-write

Distribution: 872eeecb-ebf9-4368-8150-beb23cd44edf (v.10) - checksum: 18024964785860635179

State of nodes:

* node d3f8ad83-d003-4aaa-bbfb-73359af85991: addr: 192.168.100.1, capacity: 751619276800,
status: follower, online: yes

* node abc2ed51-b4a8-46b6-aBac-0beb58e697d2: addr: 192.168.100.2, capacity: 644245094400,
status: follower, online: yes

* node a343b7f9-0bef-4f03-8c6f-526cal2d75a9: addr: 192.168.100.3, capacity: 644245094400,
status: leader, online: yes

* node b9b05fc7-7a4b-417d-853b-ac56ed32f5d3: addr: 192.168.100.4, capacity: 644245094400,
status: follower, online: yes

NODE REMOVAL

To easily remove a single node from the cluster, log into the node and run
sxsetup --deactivate:

sxsetup --deactivate

This option will relocate all data stored on this node to other nodes in
the cluster and deactivate the node. The procedure can take more time
depending on the data size and the network speed. Please do not interrupt
it and don’t turn off the node until the operation is finished.

Do you want to continue? (y/N) y

Waiting for cluster to finish data relocationm...
Sending SIGTERM to 32644

Sending SIGTERM to 32654

Waiting for 32644 32654

The node has been successfully deactivated.

A generic approach to remove one or mode nodes at the same time, requires
removing node specifications from the current cluster configuration. In order to
remove the node 192.168.100.4 from the cluster discussed in previous sections,
provide a new cluster configuration without specification of the node 192.168.100.4:

‘$ sxadm cluster --modify 751619276800/192.168.100.1/d3f8ad83-d003-4aaa-bbfb-73359af85991
644245094400/192.168.100.2/abc2ed51-b4a8-46b6-aBac-0beb58e697d2
644245094400/192.168.100.3/a343b7£9-0bef -4£03-8c6f-526cal2d75a9 @cluster?2

$ sxadm cluster --info @cluster2
Cluster UUID: cc8ab859-619e-4806-ade6-c32ab2db1665
Operating mode: read-write
Target configuration: 751619276800/192.168.100.1/d3f8ad83-d003-4aaa-bbfb-73359af85991
644245094400/192.168.100.2/abc2ed51-b4a8-46b6-aBac-0beb58e697d2
644245094400/192.168.100.3/a343b7£9-0bef-4£03-8c6f-526ca12d75a9
Current configuration: 751619276800/192.168.100.1/d3f8ad83-d003-4aaa-bbfb-73359af85991
644245094400/192.168.100.2/abc2ed51-b4a8-46b6-aBac-0beb58e697d2
644245094400/192.168.100.3/a343b7£9-0bef-4£03-8c6f-526cal2d75a9
644245094400/192.168.100.4/b9b05fc7-7a4b-417d-853b-ac56ed32f5d3
Distribution: 872eeecb-ebf9-4368-8150-beb23cd44edf (v.11) - checksum: 16329829800547562843
State of nodes:
* node d3f8ad83-d003-4aaa-bbfb-73359af85991: addr: 192.168.100.1, capacity: 751619276800,
status: follower, online: yes, activity: Relocating data (1510 out of ~50733 blocks
processed)
* node abc2ed51-b4a8-46b6-aBac-0beb58e697d2: addr: 192.168.100.2, capacity: 644245094400,
status: follower, online: yes, activity: Relocating data (2217 out of 748215 blocks
processed)
* node a343b7f9-0bef-4f03-8c6f-526cal2d75a9: addr: 192.168.100.3, capacity: 644245094400,
status: leader, online: yes, activity: Relocating data (2053 out of ~49712 blocks
processed)
* node b9b05fc7-7a4b-417d-853b-ac56ed32f5d3: addr: 192.168.100.4, capacity: 644245094400,
status: leaving, online: yes, activity: Relocating data (3696 out of ~38212 blocks
processed)

The rebalance process will move all the data out of the node 192.168.100.4 and
deactivate it. When the node disappears from cluster --info output, it’s no
longer part of the cluster and can be disabled physically. Using the above approach
itis possible to remove more nodes at the same time, by dropping their specifications
from the cluster configuration.

CREATING A BARE NODE

A bare node is a node, which is prepared to join a specific cluster, but is not a part of
the cluster yet. Bare nodes can be configured in order to replace existing nodes or
to join multiple nodes at once to the cluster, rather than doing that one by one. A
bare node can be configured in an automatic way, similarly to the process described
in section 3.4 on page [14] — the only difference is that the option --bare must
be additionally passed to sxsetup. It can also be configured in interactive mode,
similarly to adding a new node as described in section[3.3|on page[11} by running
sxsetup --bare and answering the questions.

sxsetup --bare

[...]

SX node started successfully

Bare node created. Use ’sxadm cluster --modify’ to join it to the cluster
or perform another operation.

Node specification: 500G/192.168.100.5

When the setup is finished, it provides a node specification string, which can be
used with cluster modification options. Please notice the bare node has no UUID
assigned — it will get it when joining the target cluster.

PERFORMING MULTIPLE CHANGES AT ONCE

Adding new nodes with sxsetup is a serialized process — one node is joined to
a cluster — a rebalance is triggered and then another node can be added. With
sxadm cluster --modify multiple operations can be merged and performed at
once, resulting in a single and shorter data rebalance process. In the following
example, we will replace a couple of nodes in the cluster, by adding two larger
nodes and removing two existing smaller nodes. First, we obtain the current cluster
configuration:

$ sxadm cluster --info @cluster2
Cluster UUID: cc8ab859-619e-4806-ade6-c32ab2db1665
Operating mode: read-write
Current configuration: 536870912000/192.168.100.1/d3f8ad83-d003-4aaa-bbfb-73359af85991
536870912000/192.168.100.2/abc2ed51-b4a8-46b6-aBac-0beb58e697d2
536870912000/192.168.100.3/a343b7£9-0bef-4£03-8c6f-526cal2d75a9
536870912000/192.168.100.4/b9b05fc7-7a4b-417d-853b-ac56ed32£5d3
Distribution: 872eeecb-ebf9-4368-8150-beb23cd44edf (v.11) - checksum: 16116260632263325108
State of nodes:
* node d3f8ad83-d003-4aaa-bbfb-73359af85991: addr: 192.168.100.1, capacity: 536870912000,
status: follower, online: yes
* node abc2ed51-b4a8-46b6-aBac-0beb58e697d2: addr: 192.168.100.2, capacity: 536870912000,
status: follower, online: yes
* node a343b7f9-0bef-4f03-8c6f-526cal2d75a9: addr: 192.168.100.3, capacity: 536870912000,
status: leader, online: yes
* node b9b05fc7-7a4b-417d-853b-ac56ed32f5d3: addr: 192.168.100.4, capacity: 536870912000,
status: follower, online: yes

It tells us there are four 500GB nodes. Now we create a couple of bare nodes:
192.168.100.5 and 192.168.100.6, both 1TB in size:

-- on node 192.168.100.5 --

sxsetup --bare

[...]

SX node started successfully

Bare node created. Use ’sxadm cluster --modify’ to join it to the cluster
or perform another operation.

Node specification: 1T/192.168.100.5

-- on node 192.168.100.6 --

sxsetup --bare

[...1

SX node started successfully

Bare node created. Use ’sxadm cluster --modify’ to join it to the cluster
or perform another operation.

Node specification: 1T/192.168.100.6

With the following command, we will remove nodes 192.168.100.3 and 192.168.100.4
and add a couple of larger nodes 192.168.100.5 and 192.167.100.6. In order to do
that, we provide a new cluster configuration, consisting of the current specifications
for nodes 192.168.100.1 and 192.168.100.2 as well as the bare nodes:

$ sxadm cluster --modify 536870912000/192.168.100.1/d3£f8ad83-d003-4aaa-bbfb-733569af85991
536870912000/192.168.100.2/abc2ed51-b4a8-46b6-a8ac-0beb58e697d2 1T/192.168.100.5

1T/192.168.100.6 @cluster2

After issuing the command, the rebalance process is started, which moves all data
from the nodes 192.168.100.3 and 192.168.100.4 and balances the data across the
cluster, which now also includes the 1TB nodes:

$ sxadm clust --info Q@cluster2

Cluster UUID: cc8ab859-619e-4806-ade6-c32ab2db1665

Operating mode: read-write

Target configuration: 536870912000/192.168.100.1/d3f8ad83-d003-4aaa-bbfb-73359af85991
536870912000/192.168.100.2/abc2ed51-b4a8-46b6-a8ac-0beb58e697d2
1099511627776/192.168.100.5/42ealec2-4127-491a-9f£9-d9fdfd7c92d0
1099511627776/192.168.100.6/5f26e559-fca0-44aa-b2d6-eb6e8e1156b1

Current configuration: 536870912000/192.168.100.1/d3f8ad83-d003-4aaa-bbfb-73359af85991
536870912000/192.168.100.2/abc2ed51-b4a8-46b6-aBac-0beb58e697d2
536870912000/192.168.100.3/a343b7f9-0bef-4f03-8c6f-526ca12d75a9
536870912000/192.168.100.4/b9b05fc7-7a4b-417d-853b-ac56ed32f5d3

Distribution: 872eeecb-ebf9-4368-8150-beb23cd44edf (v.12) - checksum: 16116260632263325108

State of nodes:

* node d3f8ad83-d003-4aaa-bbfb-73359af85991: addr: 192.168.100.1, capacity: 536870912000,
status: follower, online: yes, activity: Relocating data (1510 out of ~37733 blocks

processed)
node abc2edb51-b4a8-46b6-a8ac-0beb58e697d2: addr: 192.168.100.2, capacity: 536870912000,
status: follower, online: yes, activity: Relocating data (2217 out of ~38215 blocks
processed)
node a343b7f9-Obef-4f03-8c6f-526cal2d75a9: addr: 192.168.100.3, capacity: 536870912000,
status: leaving, online: yes, activity: Relocating data (2053 out of ~39712 blocks
processed)
node b9b05fc7-7a4b-417d-853b-ac56ed32f5d3: addr: 192.168.100.4, capacity: 536870912000,
status: leaving, online: yes, activity: Relocating data (3696 out of ~38212 blocks
processed)
node 42ealec2-4127-491a-9ff9-d9fdfd7c¢92d0: addr: 192.168.100.5, capacity 1099511627776,
status: joining, online: yes, activity: Relocating data (2976 out of ~43398 blocks
processed)
node 5f26e559-fcal-44aa-b2d6-eb6e8el1156bl: addr: 192.168.100.6, capacity 1099511627776,
status: joining, online: yes, activity: Relocating data (3153 out of ~43343 blocks
processed)

When the rebalance finishes, the cluster consists of two 500GB nodes: 192.168.100.1
and 192.168.100.2 and two 1TB nodes: 192.168.100.5 and 192.168.100.6:

$ sxadm cluster --info @cluster2
Cluster UUID: cc8ab859-619e-4806-ade6-c32ab2db1665
Operating mode: read-write
Current configuration: 536870912000/192.168.100.1/d3f8ad83-d003-4aaa-bbfb-73359af85991
536870912000/192.168.100.2/abc2ed51-b4a8-46b6-aBac-0beb58e697d2
1099511627776/192.168.100.5/42ealec2-4127-491a-9f£9-d9fdfd7c92d0
1099511627776/192.168.100.6/5f26e559-fca0-44aa-b2d6-eb6e8e1156b1
Distribution: 872eeecb-ebf9-4368-8150-beb23cd44edf (v.12) - checksum: 16116260632263325108
State of nodes:
* node d3f8ad83-d003-4aaa-bbfb-73359af85991: addr: 192.168.100.1, capacity: 751619276800,
status: follower, online: yes
* node abc2ed51-b4a8-46b6-aBac-0beb58e697d2: addr: 192.168.100.2, capacity: 644245094400,
status: follower, online: yes
* node 42ealec2-4127-491a-9ff9-d9fdfd7c92d0: addr: 192.168.100.5, capacity 1099511627776,
status: leader, online: yes
* node 5f26e559-fcal0-44aa-b2d6-eb6e8el1156bl: addr: 192.168.100.6, capacity 1099511627776,
status: follower, online: yes

The nodes 192.168.100.3 and 192.168.100.4 are no longer part of the cluster and can
be turned off.

4.6 ZONE CONFIGURATION

By default, replication is performed across individual nodes. SX provides a mecha-
nism to group the nodes into zones, which can be enabled when the cluster should
be rack aware or its data distributed across different regions (geo-replica).

$ sxadm cluster --info @cluster2

Cluster UUID: cc8ab859-619e-4806-ade6-c32ab2db1665
Operating mode: read-write

Current configuration: 644245094400/192.168.100.1/d3f8ad83-d003-4aaa-bbfb-73359af85991
644245094400/192.168.100.2/abc2ed51-b4a8-46b6-aBac-0beb58e697d2
644245094400/192.168.100.3/a343b7£9-0bef-4£03-8c6f-526cal2d75a9
644245094400/192.168.100.4/b9b05fc7-7a4b-417d-853b-ac56ed32f5d3

Operating mode: read-write

Distribution: 872eeecb-ebf9-4368-8150-beb23cd44edf (v.9) - checksum: 18024963750773516843

State of nodes:

* node d3f8ad83-d003-4aaa-bbfb-73359af85991: addr: 192.168.100.1, capacity: 644245094400,

status: follower, online: yes

* node abc2edb51-b4a8-46b6-a8ac-0beb58e697d2: addr: 192.168.100.2, capacity: 644245094400,
status: follower, online: yes

* node a343b7f9-0Obef-4f03-8c6f-526cal2d75a9: addr: 192.168.100.3, capacity: 644245094400,
status: leader, online: yes

* node b9b05fc7-7a4b-417d-853b-ac56ed32f5d3: addr: 192.168.100.4, capacity: 644245094400,
status: follower, online: yes

The test cluster has 4 nodes and allows a maximum of 4 replicas. With the replica
2, all data gets replicated twice on 2 different nodes of the cluster. If the nodes are
located in two different racks or datacenters, it might happen the replica is made
on two nodes in the same location. One can ensure the data gets distributed across
different locations, by grouping the zones into nodes. The zone configuration is
passed as the last argument to the already discussed cluster --modify option,
which takes a new configuration of the cluster. The format of the zone entry is:

ZoneNamel:UUID1,UUID2,.. . ;ZoneName2:UUID3,UUID4,...

In the following example, we will group nodes 192.168.100.1 and 192.168.100.2 into
zone "Rackl", and nodes 192.168.100.3 and 192.168.100.4 into "Rack2". To do this,
we call cluster --modify with the current configuration and append the zone
configuration after the node list:

$ sxadm cluster --modify 644245094400/192.168.100.1/d3£8ad83-d003-4aaa-bbfb-73359af85991
644245094400/192.168.100.2/abc2ed51-b4a8-46b6-aBac-0beb58e697d2
644245094400/192.168.100.3/a343b7£9-0bef-4£f03-8c6f-526cal2d75a9
644245094400/192.168.100.4/b9b05fc7-7adb-417d-853b-ac56ed32f5d3
"Rackl:d3f8ad83-d003-4aaa-bbfb-73359af85991,abc2ed51-b4a8-46b6-a8ac-0beb58e697d2;
Rack2:a343b7f9-0bef-4£03-8c6f-526cal2d75a9,b9b05fc7-7adb-417d-853b-ac56ed32f5d3"
Q@cluster2

After changing the zone configuration, the cluster needs to relocate the data accord-
ing to the new distribution rules. With the new cluster configuration, the maximum
replica is now 2 (the zone configuration would fail to apply, if the cluster contained
volumes with replica higher than 2), and the data will be replicated across two zones.
In a zone-enabled cluster, the maximum replica always equals to the number of
zones plus the number of nodes, which are not part of any zone. When the data
relocation is complete, the cluster will report the zone for each node:

$ sxadm cluster --info @cluster2
Cluster UUID: cc8ab859-619e-4806-ade6-c32ab2db1665
Operating mode: read-write
Current configuration: 644245094400/192.168.100.1/d3f8ad83-d003-4aaa-bbfb-73359af85991
644245094400/192.168.100.2/abc2ed51-b4a8-46b6-a8ac-0beb58e697d2
644245094400/192.168.100.3/a343b7£9-0bef-4£03-8c6f-526cal2d75a9
644245094400/192.168.100.4/b9b05fc7-7a4b-417d-853b-ac56ed32f5d3 Rackl:d3f8ad83-d003-4
aaa-bbfb-73359af85991,abc2ed51-b4a8-46b6-aBac-0beb58e697d2;Rack2:a343b7f9-0bef-4£03-8
c6f-526ca12d75a9,b9b05fc7-7adb-417d-853b-ac56ed32f5d3
Operating mode: read-write
Distribution: 872eeecb-ebf9-4368-8150-beb23cd44edf (v.10) - checksum: 18024963750773516843
State of nodes:
* node d3f8ad83-d003-4aaa-bbfb-73359af85991: addr: 192.168.100.1, capacity: 644245094400,
zone: Rackl, status: follower, online: yes
* node abc2ed51-b4a8-46b6-aBac-0beb58e697d2: addr: 192.168.100.2, capacity: 644245094400,
zone: Rackl, status: follower, online: yes
* node a343b7f9-0Obef-4f03-8c6f-526cal2d75a9: addr: 192.168.100.3, capacity: 644245094400,
zone: Rack2, status: leader, online: yes

* node b9b05fc7-7a4b-417d-853b-ac56ed32f5d3: addr: 192.168.100.4, capacity: 644245094400,

zone: Rack2, status: follower, online: yes

With this cluster configuration, volumes with replica 2 will be always fully replicated
in both zones Rackl and Rack2 (the data will be load-balanced across the nodes
within each zone).

4.7 CLUSTER BACKUP AND RESTORE
This section describes how to backup and restore the entire cluster.

BAckuP

The cluster backup can be automated with the sxdump tool, available from https:
//pypi.python.org/pypi/sxdump/. After installing sxdump (manually or auto-
matically with pip), run the following command:

sxdump --backup-dir /var/backups/sx/ sx://admin@mycluster
Generating sx-backup.sh and sx-restore.sh in the current directory
Review sx-backup.sh (uncomment/edit paths as necessary)

Run sx-backup.sh on the old cluster

Review sx-restore.sh (uncomment/edit paths as necessary)
Stop old cluster

Use sxsetup --config-file to setup the new cluster

Run sx-restore.sh on the new cluster

It creates two shell scripts in the current directory: sx-backup.sh and
sx-restore.sh. The first script will backup all data from the cluster, while the
other contains information on how to recreate the cluster structure, including all
volumes, users, ACLs, and settings. Running sx-backup . sh will create a copy of all
files in the cluster:

./sx-backup.sh

Backing up volume sx://admin@sxtest/voll

Downloading /video.mkv (size: 1.22GB)
Transferred 1.22GB in 8s (Q@154.35MB/s)
[...]

When the script finishes, the data from the cluster will be backed up in
/var/backups/sx. No data from encrypted volumes will be backed up — those
have to be processed manually.

RESTORE
In order to restore the cluster, including all volumes, users, and ACLs run

sx-restore.sh created by sxdump against a new cluster. You may need to edit
the file in case the cluster name or location of the backup changed.

4.8 CLUSTER HEALING

It may happen one or more nodes are permanently lost due to external causes. When
that happens, some operations might only be possible in read-only mode, until
the broken nodes get replaced or removed from the cluster. SX can automatically
detect offline or broken nodes and automatically disable them. It uses the Raft
algorithm, which achieves consensus via an elected leader. The leader checks if
it has received heartbeats from all nodes in the cluster, and if some nodes didn’t
respond for a specified amount of time, they can be blacklisted. Due to the design
of the Raft algorithm and the required majority, the automatic healing will only

https://pypi.python.org/pypi/sxdump/
https://pypi.python.org/pypi/sxdump/

work for clusters with 3 or more nodes. For smaller clusters the operation has to be
performed manually, as described below.

CONFIGURING AUTO-HEALING

The following cluster settings are used to fine-tune the heartbeat and auto-healing
process:

¢ hb_keepalive
This option sets the interval between hearbeats (in seconds). The default value
is 20 seconds.

¢ hb_warntime
The hb_warntime option is used to specify how quickly heartbeat should issue
awarning, that a node is unreachable. The default setting is 120 seconds.

¢ hb_initdead
The option is used to set the time that it takes to declare a node dead when
heartbeat is first started. It helps to avoid false reports in case a node or its
operating system takes more time to start proper network operations. The
default value for this option is 120 seconds.

¢ hb_deadtime
This option sets the time, after which an unreachable node is considered
dead and gets marked as broken. A broken node should be later replaced, as
described below. This option is turned off by default.

You can obtain the current value of any setting by running the following command:
[

$ sxadm cluster --get-param=hb_keepalive Qcluster2

hb_keepalive=20

To automatically mark broken nodes and disable them from regular cluster opera-
tions after 10 minutes of downtime, set the following options:

[
$ sxadm cluster --set-param="hb_initdead=600" @cluster2
$ sxadm cluster --set-param="hb_deadtime=600" @cluster2
hb_keepalive=20

Now, when the cluster detects a node, which didn’t perform a valid heartbeat for
more than 10 minutes, it will be automatically set as faulty and the cluster will allow
write operations again. In the example below, the node 192.168.100.4 has been set
as faulty:

|
$ sxadm cluster --info @cluster2

Cluster UUID: cc8ab859-619e-4806-ade6-c32ab2db1665
Operating mode: read-write
Current configuration: 644245094400/192.168.100.1/d3f8ad83-d003-4aaa-bbfb-73359af85991
644245094400/192.168.100.2/abc2ed51-b4a8-46b6-aBac-0beb58e697d2
644245094400/192.168.100.3/a343b7£9-0bef -4£03-8c6f-526cal2d75a9
644245094400/192.168.100.4/b9b05fc7-7a4b-417d-853b-ac56ed32f5d3
Distribution: 872eeecb-ebf9-4368-8150-beb23cd44edf (v.9) - checksum: 18024963750773516843
State of nodes:
* node d3f8ad83-d003-4aaa-bbfb-73359af85991: addr: 192.168.100.1, capacity: 644245094400,
status: follower, online: yes
node abc2ed51-b4a8-46b6-a8ac-Obeb58e697d2: addr: 192.168.100.2, capacity: 644245094400,
status: follower, online: yes
node a343b7f9-Obef-4f03-8c6f-526cal2d75a9: addr: 192.168.100.3, capacity: 644245094400,
status: leader, online: yes
node b9b05fc7-7a4b-417d-853b-ac56ed32f5d3: addr: 192.168.100.4, capacity: 644245094400,
status: ** FAULTY **, online: ** NO *x*

The faulty nodes should be later replaced as described below.

MARKING BROKEN NODES MANUALLY

If the automatic detection and marking of broken nodes is not active (eg. when
there’s less than 3 nodes in the cluster and the Raft algorithm cannot be activated),
the bad nodes can still be marked manually. Run the following command and
provide the full specification of the broken node to mark it faulty:

$ sxadm cluster --set-faulty

644245094400/192.168.100.4/b9b05fc7-7a4b-417d-853b-ac56ed32f5d3 @cluster2

Cluster with faulty nodes, which have been marked, will properly operate in read-
write mode, however no changes to the cluster structure will be allowed until the
faulty nodes get properly replaced as described in the next subsection.

REPLACING BROKEN NODES

Skylable S* provides an option to automatically rebuild a lost node and gather as
much data as possible from other nodes. Please never use this method against
properly working nodes: it assumes the node’s data is permanently lost and can
only retrieve missing data for volumes with replica higher than 1 — healthy nodes
can be replaced using - -modify option as described in the previous section. In the
following example, we assume the node 192.168.100.4 is no longer available (just
lost or already marked as faulty) and we will replace it with a new node 192.168.100.5.
First we need to prepare a bare node 192.168.100.5 of the exact size as the broken
node we are replacing, in this case it's 600GB:

-- on node 192.168.100.5 --
sxsetup --bare

[...]

SX node started successfully

Bare node created. Use ’sxadm cluster --modify’ to join it to the cluster
or perform another operation.

Node specification: 600G/192.168.100.5

Now we issue the following command, which uses the specification (size and UUID)
of the broken node but points to the new IP address:

c7-Ta4b-417d-853b-ac56ed32f5d3 Qcluster2

The broken node is immediately replaced with the new one, and the healing process
is started:

$ sxadm cluster --info @cluster2
Cluster UUID: cc8ab859-619e-4806-ade6-c32ab2db1665
Operating mode: read-write
Current configuration: 644245094400/192.168.100.1/d3f8ad83-d003-4aaa-bbfb-73359af85991
644245094400/192.168.100.2/abc2ed51-b4a8-46b6-aBac-0beb58e697d2
644245094400/192.168.100.3/a343b7f9-0bef-4£03-8c6f-526cal2d75a9
644245094400/192.168.100.5/b9b05fc7-7a4b-417d-853b-ac56ed32f5d3
Distribution: 872eeecb-ebf9-4368-8150-beb23cd44edf (v.10) - checksum: 18024963750773516843
State of nodes:
* node d3f8ad83-d003-4aaa-bbfb-73359af85991: addr: 192.168.100.1, capacity: 644245094400,
status: follower, online: yes
* node abc2edb1-b4a8-46b6-a8ac-0beb58e697d2: addr: 192.168.100.2, capacity: 644245094400,
status: follower, online: yes
* node a343b7f9-Obef-4f03-8c6f-526cal2d75a9: addr: 192.168.100.3, capacity: 644245094400,
status: leader, online: yes
* node b9b05fc7-7a4b-417d-853b-ac56ed32f5d3: addr: 192.168.100.5, capacity: 644245094400,
status: follower, online: yes, activity: Healing blocks

During the repair process client operations should be back to normal. The same
steps can be used to replace a broken node without changing its IP address, in that

case the bare node must be prepared and available with the IP address of the broken
one. It is also possible to repair more than one node at a time by passing more node
specifications to - -replace-faulty.

SETTING READ-ONLY MODE

The cluster can be set into read-only mode to perform maintainance or temporarily
stop clients from uploading new data by running the following command:

|
$ sxadm cluster --set-mode=ro @cluster2
Successfully switched cluster to read-only mode

To switch the cluster back to read-write mode, run the same command with rw
argument:

|
$ sxadm cluster --set-mode=rw @cluster2
Successfully switched cluster to read-write mode

CHECKING STORAGE INTEGRITY

SX provides a tool that performs a deep check of the storage structure and verifies
if the data on disk, stored in a special format called HashFS, is not corrupted. The
tool will calculate and compare checksums of all data blocks and report any incon-
sistencies. In order to perform this check, the cluster needs to be set to read-only
mode or a particular node needs to be temporarily turned off (with sxserver stop).
When the cluster is in read-only mode, you can perform the check on all nodes at
the same time. Run the following command on the node you want to check (run
sxsetup --info if you don't remember the location of the storage):

sxadm node --check /var/lib/sxserver/storage/
[sx_hashfs_check]: Integrity check started

HashFS is clean, no errors found

COMPACTING NODE DATA

The local storage of SX consists of special databases and data files, which store the
information about files and cluster configuration as well as the actual blocks of data.
When a file gets deleted, all blocks belonging to that file, which are not shared by
other files are marked as free and can be reused. S* will only allocate more space on
disk, if it cannot reuse existing blocks within data files. It will, however, not return
the free blocks to the system automatically. If there’s a need to free some disk space,
the local storage can be easily compacted:

‘# sxsetup --compact

The node will be stopped now and started again when compacting is finished
Sending SIGTERM to 28310

Sending SIGTERM to 28320

Waiting for 28310 28320

Operation complete (disk space freed: 1.95G)

Starting SX.fcgi

Starting sxhttpd

SX node started successfully

In case compacting doesn't free any disk space, force the garbage collector to mark
blocks of recently removed files as free and then try again. The garbage collector is
run with the following command:

[
$ sxadm cluster --force-gc @cluster2

DATA RECOVERY

It is possible to recover local data in case a node gets damaged. Please perform the
following command and sxadm will try to extract as much data as possible from the
local storage:

sxadm node --extract=/tmp/RECOVERED /var/lib/sxserver/storage/

Finished data extraction from node /var/lib/sxserver/storage/

CHAPTER

CLIENT OPERATIONS

5.1 ACCESS PROFILES

Using sxinit one can configure access for multiple users and clusters. The access
profiles have the format of sx: // [username@] cluster_name. When the username
is omitted, sxinit will ask for it and sx: //cluster_name will be the default profile
for a given cluster.

ADDING PROFILES

To add an access profile for the user ‘jeff’ and the local cluster created in previous

chapters run the following command:

$ sxinit -1 192.168.1.101 -A Qjeff sx://jeff@mycluster
Warning: self-signed certificate:

Subject: C=GB, ST=UK, 0=SX, CN=mycluster
Issuer: C=GB, ST=UK, 0=SX, CN=mycluster
SHA1 Fingerprint: 84:EF:39:80:1E:28:9C:4A:C8:80:E6:56:57:A4:CD:64:2E:23:99:7A

Do you trust this SSL certificate? [y/N] y
Trusting self-signed certificate
Please enter the user key: FqmlTd9CWZUuPBGMdjE46DaT1/3kx+EYbahlrhcdVpy/9ePfrtWCIgAA

Since “mycluster” is not a DNS name, we had to point sxinit to one of the nodes
of the cluster. That allowed it to connect and discover all the other nodes. We also
created the alias @jeff, which will be used for convenience.

LISTING ACCESS PROFILES

To list all configured access profiles run:

[
$ sxinit --list

sx://jeff@mycluster Qjeff
sx://admin@mycluster @cluster

DELETING PROFILES

To delete a profile run the following command and provide the full profile name or
its alias as follows:

[
$ sxinit --delete @somealias

It will delete the alias @somealias and the profile associated with it.

32

5.2 WORKING WITH FILES

SX provides easy to use file tools, which resemble typical UNIX commands. Since S*
is an object storage and not a filesystem, there are some fundamental differences,
though. One of them is lack of “real” directories: each file (object) has assigned a full
path that uniquely identifies it and the path is not a part of any tree structure. SX does
simulate a directory structure by matching the subpaths, for example /path/filel
and /path/file2 will be presented as contents of the directory /path/ just like
on a typical filesystem. However, the directory /path/ is only emulated (and is not
assigned to any object), and therefore it’s perfectly legit to also have a file with a path
/path, which doesn’t conflict with the other two files at all!

In the following subsections we present the command line tools and show how
to use them to perform common tasks.

SXCP: UPLOAD AND DOWNLOAD FILES

sxcp can copy files and entire directories from and to Skylable S* clusters. It can
also copy data between two different SX clusters. By default, for each file a progress
bar is displayed, which shows the transfer speed and the estimated time of arrival.
sxcp makes use of all the advanced features S¥, such as deduplication and transfer
resuming to minimize the bandwidth usage.

Use sxcp -r torecursively upload directories to the remote volume:

$ sxcp -r /home/jeff/VMs/ Qjeff/vol-jeff/VMimages/
Uploading /home/jeff/VMs/FreeBSD 10.0/FreeBSD 10.0.vmdk (size: 4.91GB)

147, [====>] 55.11MB/s ETA 44s

sxcp shows the average speed of the tranfer and how long it will take. The great
feature of S* is the already mentioned transfer resuming, which allows to continue
the transfer in case it was interrupted. Below we interrupt the transfer of the large
file and repeat the same copy again:

$ sxcp -r /home/jeff/VMs/ @jeff/vol-jeff/VMimages/

Uploading /home/jeff/VMs/FreeBSD 10.0/FreeBSD 10.0.vmdk (size: 4.91GB)
94% [== ===>] 55.11MB/s ETA 5s

“CProcess interrupted
$ sxcp -r /home/jeff/VMs/ Qjeff/vol-jeff/VMimages/
97% [++++++++++++++++++++++++++H++H+H+H+H+++++++++++++++=>] 52.17MB/s ETA 2s

The second sxcp call automatically finds out, which blocks of the file have been
already transferred and only uploads the missing ones. The transfer resuming works
in a similar way for file downloads.

sxcp can copy files between different volumes, also on different clusters, and
comes with other useful features, such as bandwidth limiting. See man sxcp for the
usage details and other examples.

SXLS: LIST VOLUMES AND FILES

With sx1s one can discover, which volumes are accessible on the cluster and then
list their contents. To get the list of volumes, which user ’jeff’ can access run:

$ sxls -1H Qjeff

VOL rep:2 rev:l rw - 12.83G 50.00G jeff 25% sx://jeff@mycluster/vol-jeff

With -1 (--long) and -H (--human-readable) options sx1ls displays the list
of available volumes, together with additional information such as the replica count,
maximum number of revisions per file, permissions, size, usage, and the owner
name.

Running sx1s against the volume without any arguments returns the first level
of files, similarly to the command 1s:

To list the volume recursively, with more information about files and human readable
sizes run:

$ sxls -rlH Qjeff/vol-jeff

2014-11-17 14:03 31 sx://jeff@mycluster/vol-jeff/VMimages/Debian-MIPS/bridge.sh

2014-11-17 14:03 245.88M sx://jeff@mycluster/vol-jeff/VMimages/Debian-MIPS/
debian_squeeze_mips_standard.qcow2

2014-11-17 14:03 4.10M sx://jeff@mycluster/vol-jeff/VMimages/Debian-MIPS/initrd.gz

2014-11-17 14:03 139 sx://jeff@mycluster/vol-jeff/VMimages/Debian-MIPS/run

2014-11-17 14:03 677 sx://jeff@mycluster/vol-jeff/VMimages/Debian-MIPS/start.sh

2014-11-17 14:03 6.61M sx://jeff@mycluster/vol-jeff/VMimages/Debian-MIPS/vmlinux
-2.6.32-5-4kc-malta

2014-11-17 14:03 1.41G sx://jeff@mycluster/vol-jeff/VMimages/Debian-PPC/
debian_squeeze_powerpc_standard.qcow2

2014-11-17 14:04 349 sx://jeff@mycluster/vol-jeff/VMimages/Debian-PPC/start.sh

2014-11-17 14:02 4.91G sx://jeff@mycluster/vol-jeff/VMimages/FreeBSD 10.0/FreeBSD
10.0.vmdk

2014-11-17 14:03 693.12M sx://jeff@mycluster/vol-jeff/VMimages/FreeBSD 10.0/FreeBSD
-10.0-BETA1-amd64-discl.iso

SXMV: MOVE OR RENAME FILES

sxmv can move files or group of files into new locations. It can be used to just rename
individual files or move entire groups to another cluster. In contrast to the command
mv, renaming a directory with sxmv requires prividing the recursive flag -r. That’s
because of the design of the object storage and lack of real directories as described
at the beginning of this chapter. In order to rename a directory, sxmv has to rename
all the files (objects), which share the same directory path. In the example below
we rename the directory ‘VMimages’ to ‘VMs’ and list the new volume structure in
basic mode:

$ sxmv -r @jeff/vol-jeff/VMimages/ Qjeff/vol-jeff/VMs/

$ sxls -r @jeff/vol-jeff

sx://jeff@mycluster/vol-jeff/VMs/Debian-MIPS/bridge.sh
sx://jeff@mycluster/vol-jeff/VMs/Debian-MIPS/debian_squeeze_mips_standard.qcow2
sx://jeff@mycluster/vol-jeff/VMs/Debian-MIPS/initrd.gz
sx://jeff@mycluster/vol-jeff/VMs/Debian-MIPS/run
sx://jeff@mycluster/vol-jeff/VMs/Debian-MIPS/start.sh
sx://jeff@mycluster/vol-jeff/VMs/Debian-MIPS/vmlinux-2.6.32-5-4kc-malta
sx://jeff@mycluster/vol-jeff/VMs/Debian-PPC/debian_squeeze_powerpc_standard.qcow2
sx://jeff@mycluster/vol-jeff/VMs/Debian-PPC/start.sh
sx://jeff@mycluster/vol-jeff/VMs/FreeBSD 10.0/FreeBSD 10.0.vmdk
sx://jeff@mycluster/vol-jeff/VMs/FreeBSD 10.0/FreeBSD-10.0-BETA1-amd64-discl.iso

SXRM: REMOVE FILES

The equivalent of the system command rm in SX is sxrm. Similarly to other tools, it
can handle individual files or entire directories in recursive mode. Below we first
check the current space usage for the volume, then remove a directory with some
large files (using a wildcard to match it), and check the usage again:

$ sxls -1 @jeff

VOL rep:2 rev:l rw - 7.24G 50.00G 14} sx://jeff@mycluster/vol-jeff
$ sxrm -r Q@jeff/vol-jeff/VMs/FreeBSD*

Deleted 2 file(s)
$ sxls -1H Qjeff
VOL rep:2 rev:l rw - 1.66G 50.00G 14% sx://jeff@mycluster/vol-jeff

SXREV: MANAGE FILE REVISIONS

The S* volumes can be configured' to keep multiple revisions of files. For example,
if a volume was created with an option to keep 3 revisions, every time a specific file
gets modified the previous copy will be preserved and the latest 3 versions of the
file will be available for download. A revision is only created when the new file