001// License: GPL. For details, see LICENSE file. 002package org.openstreetmap.josm.gui; 003 004import java.awt.Cursor; 005import java.awt.Point; 006import java.awt.Rectangle; 007import java.awt.event.ComponentAdapter; 008import java.awt.event.ComponentEvent; 009import java.awt.event.HierarchyEvent; 010import java.awt.event.HierarchyListener; 011import java.awt.geom.AffineTransform; 012import java.awt.geom.Point2D; 013import java.nio.charset.StandardCharsets; 014import java.text.NumberFormat; 015import java.util.ArrayList; 016import java.util.Collection; 017import java.util.Collections; 018import java.util.Date; 019import java.util.HashSet; 020import java.util.LinkedList; 021import java.util.List; 022import java.util.Map; 023import java.util.Map.Entry; 024import java.util.Set; 025import java.util.Stack; 026import java.util.TreeMap; 027import java.util.concurrent.CopyOnWriteArrayList; 028import java.util.function.Predicate; 029import java.util.zip.CRC32; 030 031import javax.swing.JComponent; 032import javax.swing.SwingUtilities; 033 034import org.openstreetmap.josm.data.Bounds; 035import org.openstreetmap.josm.data.ProjectionBounds; 036import org.openstreetmap.josm.data.SystemOfMeasurement; 037import org.openstreetmap.josm.data.ViewportData; 038import org.openstreetmap.josm.data.coor.EastNorth; 039import org.openstreetmap.josm.data.coor.ILatLon; 040import org.openstreetmap.josm.data.coor.LatLon; 041import org.openstreetmap.josm.data.osm.BBox; 042import org.openstreetmap.josm.data.osm.DataSet; 043import org.openstreetmap.josm.data.osm.Node; 044import org.openstreetmap.josm.data.osm.OsmPrimitive; 045import org.openstreetmap.josm.data.osm.Relation; 046import org.openstreetmap.josm.data.osm.Way; 047import org.openstreetmap.josm.data.osm.WaySegment; 048import org.openstreetmap.josm.data.osm.visitor.BoundingXYVisitor; 049import org.openstreetmap.josm.data.preferences.BooleanProperty; 050import org.openstreetmap.josm.data.preferences.DoubleProperty; 051import org.openstreetmap.josm.data.preferences.IntegerProperty; 052import org.openstreetmap.josm.data.projection.Projection; 053import org.openstreetmap.josm.data.projection.ProjectionChangeListener; 054import org.openstreetmap.josm.data.projection.ProjectionRegistry; 055import org.openstreetmap.josm.gui.help.Helpful; 056import org.openstreetmap.josm.gui.layer.NativeScaleLayer; 057import org.openstreetmap.josm.gui.layer.NativeScaleLayer.Scale; 058import org.openstreetmap.josm.gui.layer.NativeScaleLayer.ScaleList; 059import org.openstreetmap.josm.gui.mappaint.MapPaintStyles; 060import org.openstreetmap.josm.gui.mappaint.mapcss.MapCSSStyleSource; 061import org.openstreetmap.josm.gui.util.CursorManager; 062import org.openstreetmap.josm.gui.util.GuiHelper; 063import org.openstreetmap.josm.spi.preferences.Config; 064import org.openstreetmap.josm.tools.Logging; 065import org.openstreetmap.josm.tools.Utils; 066 067/** 068 * A component that can be navigated by a {@link MapMover}. Used as map view and for the 069 * zoomer in the download dialog. 070 * 071 * @author imi 072 * @since 41 073 */ 074public class NavigatableComponent extends JComponent implements Helpful { 075 076 private static final double ALIGNMENT_EPSILON = 1e-3; 077 078 /** 079 * Interface to notify listeners of the change of the zoom area. 080 * @since 10600 (functional interface) 081 */ 082 @FunctionalInterface 083 public interface ZoomChangeListener { 084 /** 085 * Method called when the zoom area has changed. 086 */ 087 void zoomChanged(); 088 } 089 090 /** 091 * To determine if a primitive is currently selectable. 092 */ 093 public transient Predicate<OsmPrimitive> isSelectablePredicate = prim -> { 094 if (!prim.isSelectable()) return false; 095 // if it isn't displayed on screen, you cannot click on it 096 MapCSSStyleSource.STYLE_SOURCE_LOCK.readLock().lock(); 097 try { 098 return !MapPaintStyles.getStyles().get(prim, getDist100Pixel(), this).isEmpty(); 099 } finally { 100 MapCSSStyleSource.STYLE_SOURCE_LOCK.readLock().unlock(); 101 } 102 }; 103 104 /** Snap distance */ 105 public static final IntegerProperty PROP_SNAP_DISTANCE = new IntegerProperty("mappaint.node.snap-distance", 10); 106 /** Zoom steps to get double scale */ 107 public static final DoubleProperty PROP_ZOOM_RATIO = new DoubleProperty("zoom.ratio", 2.0); 108 /** Divide intervals between native resolution levels to smaller steps if they are much larger than zoom ratio */ 109 public static final BooleanProperty PROP_ZOOM_INTERMEDIATE_STEPS = new BooleanProperty("zoom.intermediate-steps", true); 110 /** scale follows native resolution of layer status when layer is created */ 111 public static final BooleanProperty PROP_ZOOM_SCALE_FOLLOW_NATIVE_RES_AT_LOAD = new BooleanProperty( 112 "zoom.scale-follow-native-resolution-at-load", true); 113 114 /** 115 * The layer which scale is set to. 116 */ 117 private transient NativeScaleLayer nativeScaleLayer; 118 119 /** 120 * the zoom listeners 121 */ 122 private static final CopyOnWriteArrayList<ZoomChangeListener> zoomChangeListeners = new CopyOnWriteArrayList<>(); 123 124 /** 125 * Removes a zoom change listener 126 * 127 * @param listener the listener. Ignored if null or already absent 128 */ 129 public static void removeZoomChangeListener(ZoomChangeListener listener) { 130 zoomChangeListeners.remove(listener); 131 } 132 133 /** 134 * Adds a zoom change listener 135 * 136 * @param listener the listener. Ignored if null or already registered. 137 */ 138 public static void addZoomChangeListener(ZoomChangeListener listener) { 139 if (listener != null) { 140 zoomChangeListeners.addIfAbsent(listener); 141 } 142 } 143 144 protected static void fireZoomChanged() { 145 GuiHelper.runInEDTAndWait(() -> { 146 for (ZoomChangeListener l : zoomChangeListeners) { 147 l.zoomChanged(); 148 } 149 }); 150 } 151 152 // The only events that may move/resize this map view are window movements or changes to the map view size. 153 // We can clean this up more by only recalculating the state on repaint. 154 private final transient HierarchyListener hierarchyListener = e -> { 155 long interestingFlags = HierarchyEvent.ANCESTOR_MOVED | HierarchyEvent.SHOWING_CHANGED; 156 if ((e.getChangeFlags() & interestingFlags) != 0) { 157 updateLocationState(); 158 } 159 }; 160 161 private final transient ComponentAdapter componentListener = new ComponentAdapter() { 162 @Override 163 public void componentShown(ComponentEvent e) { 164 updateLocationState(); 165 } 166 167 @Override 168 public void componentResized(ComponentEvent e) { 169 updateLocationState(); 170 } 171 }; 172 173 protected transient ViewportData initialViewport; 174 175 protected final transient CursorManager cursorManager = new CursorManager(this); 176 177 /** 178 * The current state (scale, center, ...) of this map view. 179 */ 180 private transient MapViewState state; 181 182 /** 183 * Main uses weak link to store this, so we need to keep a reference. 184 */ 185 private final ProjectionChangeListener projectionChangeListener = (oldValue, newValue) -> fixProjection(); 186 187 /** 188 * Constructs a new {@code NavigatableComponent}. 189 */ 190 public NavigatableComponent() { 191 setLayout(null); 192 state = MapViewState.createDefaultState(getWidth(), getHeight()); 193 ProjectionRegistry.addProjectionChangeListener(projectionChangeListener); 194 } 195 196 @Override 197 public void addNotify() { 198 updateLocationState(); 199 addHierarchyListener(hierarchyListener); 200 addComponentListener(componentListener); 201 super.addNotify(); 202 } 203 204 @Override 205 public void removeNotify() { 206 removeHierarchyListener(hierarchyListener); 207 removeComponentListener(componentListener); 208 super.removeNotify(); 209 } 210 211 /** 212 * Choose a layer that scale will be snap to its native scales. 213 * @param nativeScaleLayer layer to which scale will be snapped 214 */ 215 public void setNativeScaleLayer(NativeScaleLayer nativeScaleLayer) { 216 this.nativeScaleLayer = nativeScaleLayer; 217 zoomTo(getCenter(), scaleRound(getScale())); 218 repaint(); 219 } 220 221 /** 222 * Replies the layer which scale is set to. 223 * @return the current scale layer (may be null) 224 */ 225 public NativeScaleLayer getNativeScaleLayer() { 226 return nativeScaleLayer; 227 } 228 229 /** 230 * Get a new scale that is zoomed in from previous scale 231 * and snapped to selected native scale layer. 232 * @return new scale 233 */ 234 public double scaleZoomIn() { 235 return scaleZoomManyTimes(-1); 236 } 237 238 /** 239 * Get a new scale that is zoomed out from previous scale 240 * and snapped to selected native scale layer. 241 * @return new scale 242 */ 243 public double scaleZoomOut() { 244 return scaleZoomManyTimes(1); 245 } 246 247 /** 248 * Get a new scale that is zoomed in/out a number of times 249 * from previous scale and snapped to selected native scale layer. 250 * @param times count of zoom operations, negative means zoom in 251 * @return new scale 252 */ 253 public double scaleZoomManyTimes(int times) { 254 if (nativeScaleLayer != null) { 255 ScaleList scaleList = nativeScaleLayer.getNativeScales(); 256 if (scaleList != null) { 257 if (PROP_ZOOM_INTERMEDIATE_STEPS.get()) { 258 scaleList = scaleList.withIntermediateSteps(PROP_ZOOM_RATIO.get()); 259 } 260 Scale s = scaleList.scaleZoomTimes(getScale(), PROP_ZOOM_RATIO.get(), times); 261 return s != null ? s.getScale() : 0; 262 } 263 } 264 return getScale() * Math.pow(PROP_ZOOM_RATIO.get(), times); 265 } 266 267 /** 268 * Get a scale snapped to native resolutions, use round method. 269 * It gives nearest step from scale list. 270 * Use round method. 271 * @param scale to snap 272 * @return snapped scale 273 */ 274 public double scaleRound(double scale) { 275 return scaleSnap(scale, false); 276 } 277 278 /** 279 * Get a scale snapped to native resolutions. 280 * It gives nearest lower step from scale list, usable to fit objects. 281 * @param scale to snap 282 * @return snapped scale 283 */ 284 public double scaleFloor(double scale) { 285 return scaleSnap(scale, true); 286 } 287 288 /** 289 * Get a scale snapped to native resolutions. 290 * It gives nearest lower step from scale list, usable to fit objects. 291 * @param scale to snap 292 * @param floor use floor instead of round, set true when fitting view to objects 293 * @return new scale 294 */ 295 public double scaleSnap(double scale, boolean floor) { 296 if (nativeScaleLayer != null) { 297 ScaleList scaleList = nativeScaleLayer.getNativeScales(); 298 if (scaleList != null) { 299 if (PROP_ZOOM_INTERMEDIATE_STEPS.get()) { 300 scaleList = scaleList.withIntermediateSteps(PROP_ZOOM_RATIO.get()); 301 } 302 Scale snapscale = scaleList.getSnapScale(scale, PROP_ZOOM_RATIO.get(), floor); 303 return snapscale != null ? snapscale.getScale() : scale; 304 } 305 } 306 return scale; 307 } 308 309 /** 310 * Zoom in current view. Use configured zoom step and scaling settings. 311 */ 312 public void zoomIn() { 313 zoomTo(state.getCenter().getEastNorth(), scaleZoomIn()); 314 } 315 316 /** 317 * Zoom out current view. Use configured zoom step and scaling settings. 318 */ 319 public void zoomOut() { 320 zoomTo(state.getCenter().getEastNorth(), scaleZoomOut()); 321 } 322 323 protected void updateLocationState() { 324 if (isVisibleOnScreen()) { 325 state = state.usingLocation(this); 326 } 327 } 328 329 protected boolean isVisibleOnScreen() { 330 return SwingUtilities.getWindowAncestor(this) != null && isShowing(); 331 } 332 333 /** 334 * Changes the projection settings used for this map view. 335 * <p> 336 * Made public temporarily, will be made private later. 337 */ 338 public void fixProjection() { 339 state = state.usingProjection(ProjectionRegistry.getProjection()); 340 repaint(); 341 } 342 343 /** 344 * Gets the current view state. This includes the scale, the current view area and the position. 345 * @return The current state. 346 */ 347 public MapViewState getState() { 348 return state; 349 } 350 351 /** 352 * Returns the text describing the given distance in the current system of measurement. 353 * @param dist The distance in metres. 354 * @return the text describing the given distance in the current system of measurement. 355 * @since 3406 356 */ 357 public static String getDistText(double dist) { 358 return SystemOfMeasurement.getSystemOfMeasurement().getDistText(dist); 359 } 360 361 /** 362 * Returns the text describing the given distance in the current system of measurement. 363 * @param dist The distance in metres 364 * @param format A {@link NumberFormat} to format the area value 365 * @param threshold Values lower than this {@code threshold} are displayed as {@code "< [threshold]"} 366 * @return the text describing the given distance in the current system of measurement. 367 * @since 7135 368 */ 369 public static String getDistText(final double dist, final NumberFormat format, final double threshold) { 370 return SystemOfMeasurement.getSystemOfMeasurement().getDistText(dist, format, threshold); 371 } 372 373 /** 374 * Returns the text describing the distance in meter that correspond to 100 px on screen. 375 * @return the text describing the distance in meter that correspond to 100 px on screen 376 */ 377 public String getDist100PixelText() { 378 return getDistText(getDist100Pixel()); 379 } 380 381 /** 382 * Get the distance in meter that correspond to 100 px on screen. 383 * 384 * @return the distance in meter that correspond to 100 px on screen 385 */ 386 public double getDist100Pixel() { 387 return getDist100Pixel(true); 388 } 389 390 /** 391 * Get the distance in meter that correspond to 100 px on screen. 392 * 393 * @param alwaysPositive if true, makes sure the return value is always 394 * > 0. (Two points 100 px apart can appear to be identical if the user 395 * has zoomed out a lot and the projection code does something funny.) 396 * @return the distance in meter that correspond to 100 px on screen 397 */ 398 public double getDist100Pixel(boolean alwaysPositive) { 399 int w = getWidth()/2; 400 int h = getHeight()/2; 401 LatLon ll1 = getLatLon(w-50, h); 402 LatLon ll2 = getLatLon(w+50, h); 403 double gcd = ll1.greatCircleDistance(ll2); 404 if (alwaysPositive && gcd <= 0) 405 return 0.1; 406 return gcd; 407 } 408 409 /** 410 * Returns the current center of the viewport. 411 * 412 * (Use {@link #zoomTo(EastNorth)} to the change the center.) 413 * 414 * @return the current center of the viewport 415 */ 416 public EastNorth getCenter() { 417 return state.getCenter().getEastNorth(); 418 } 419 420 /** 421 * Returns the current scale. 422 * 423 * In east/north units per pixel. 424 * 425 * @return the current scale 426 */ 427 public double getScale() { 428 return state.getScale(); 429 } 430 431 /** 432 * @param x X-Pixelposition to get coordinate from 433 * @param y Y-Pixelposition to get coordinate from 434 * 435 * @return Geographic coordinates from a specific pixel coordination on the screen. 436 */ 437 public EastNorth getEastNorth(int x, int y) { 438 return state.getForView(x, y).getEastNorth(); 439 } 440 441 /** 442 * Determines the projection bounds of view area. 443 * @return the projection bounds of view area 444 */ 445 public ProjectionBounds getProjectionBounds() { 446 return getState().getViewArea().getProjectionBounds(); 447 } 448 449 /* FIXME: replace with better method - used by MapSlider */ 450 public ProjectionBounds getMaxProjectionBounds() { 451 Bounds b = getProjection().getWorldBoundsLatLon(); 452 return new ProjectionBounds(getProjection().latlon2eastNorth(b.getMin()), 453 getProjection().latlon2eastNorth(b.getMax())); 454 } 455 456 /* FIXME: replace with better method - used by Main to reset Bounds when projection changes, don't use otherwise */ 457 public Bounds getRealBounds() { 458 return getState().getViewArea().getCornerBounds(); 459 } 460 461 /** 462 * Returns unprojected geographic coordinates for a specific pixel position on the screen. 463 * @param x X-Pixelposition to get coordinate from 464 * @param y Y-Pixelposition to get coordinate from 465 * 466 * @return Geographic unprojected coordinates from a specific pixel position on the screen. 467 */ 468 public LatLon getLatLon(int x, int y) { 469 return getProjection().eastNorth2latlon(getEastNorth(x, y)); 470 } 471 472 /** 473 * Returns unprojected geographic coordinates for a specific pixel position on the screen. 474 * @param x X-Pixelposition to get coordinate from 475 * @param y Y-Pixelposition to get coordinate from 476 * 477 * @return Geographic unprojected coordinates from a specific pixel position on the screen. 478 */ 479 public LatLon getLatLon(double x, double y) { 480 return getLatLon((int) x, (int) y); 481 } 482 483 /** 484 * Determines the projection bounds of given rectangle. 485 * @param r rectangle 486 * @return the projection bounds of {@code r} 487 */ 488 public ProjectionBounds getProjectionBounds(Rectangle r) { 489 return getState().getViewArea(r).getProjectionBounds(); 490 } 491 492 /** 493 * @param r rectangle 494 * @return Minimum bounds that will cover rectangle 495 */ 496 public Bounds getLatLonBounds(Rectangle r) { 497 return ProjectionRegistry.getProjection().getLatLonBoundsBox(getProjectionBounds(r)); 498 } 499 500 /** 501 * Creates an affine transform that is used to convert the east/north coordinates to view coordinates. 502 * @return The affine transform. 503 */ 504 public AffineTransform getAffineTransform() { 505 return getState().getAffineTransform(); 506 } 507 508 /** 509 * Return the point on the screen where this Coordinate would be. 510 * @param p The point, where this geopoint would be drawn. 511 * @return The point on screen where "point" would be drawn, relative to the own top/left. 512 */ 513 public Point2D getPoint2D(EastNorth p) { 514 if (null == p) 515 return new Point(); 516 return getState().getPointFor(p).getInView(); 517 } 518 519 /** 520 * Return the point on the screen where this Coordinate would be. 521 * 522 * Alternative: {@link #getState()}, then {@link MapViewState#getPointFor(ILatLon)} 523 * @param latlon The point, where this geopoint would be drawn. 524 * @return The point on screen where "point" would be drawn, relative to the own top/left. 525 */ 526 public Point2D getPoint2D(ILatLon latlon) { 527 if (latlon == null) { 528 return new Point(); 529 } else { 530 return getPoint2D(latlon.getEastNorth(ProjectionRegistry.getProjection())); 531 } 532 } 533 534 /** 535 * Return the point on the screen where this Coordinate would be. 536 * 537 * Alternative: {@link #getState()}, then {@link MapViewState#getPointFor(ILatLon)} 538 * @param latlon The point, where this geopoint would be drawn. 539 * @return The point on screen where "point" would be drawn, relative to the own top/left. 540 */ 541 public Point2D getPoint2D(LatLon latlon) { 542 return getPoint2D((ILatLon) latlon); 543 } 544 545 /** 546 * Return the point on the screen where this Node would be. 547 * 548 * Alternative: {@link #getState()}, then {@link MapViewState#getPointFor(ILatLon)} 549 * @param n The node, where this geopoint would be drawn. 550 * @return The point on screen where "node" would be drawn, relative to the own top/left. 551 */ 552 public Point2D getPoint2D(Node n) { 553 return getPoint2D(n.getEastNorth()); 554 } 555 556 /** 557 * looses precision, may overflow (depends on p and current scale) 558 * @param p east/north 559 * @return point 560 * @see #getPoint2D(EastNorth) 561 */ 562 public Point getPoint(EastNorth p) { 563 Point2D d = getPoint2D(p); 564 return new Point((int) d.getX(), (int) d.getY()); 565 } 566 567 /** 568 * looses precision, may overflow (depends on p and current scale) 569 * @param latlon lat/lon 570 * @return point 571 * @see #getPoint2D(LatLon) 572 * @since 12725 573 */ 574 public Point getPoint(ILatLon latlon) { 575 Point2D d = getPoint2D(latlon); 576 return new Point((int) d.getX(), (int) d.getY()); 577 } 578 579 /** 580 * looses precision, may overflow (depends on p and current scale) 581 * @param latlon lat/lon 582 * @return point 583 * @see #getPoint2D(LatLon) 584 */ 585 public Point getPoint(LatLon latlon) { 586 return getPoint((ILatLon) latlon); 587 } 588 589 /** 590 * looses precision, may overflow (depends on p and current scale) 591 * @param n node 592 * @return point 593 * @see #getPoint2D(Node) 594 */ 595 public Point getPoint(Node n) { 596 Point2D d = getPoint2D(n); 597 return new Point((int) d.getX(), (int) d.getY()); 598 } 599 600 /** 601 * Zoom to the given coordinate and scale. 602 * 603 * @param newCenter The center x-value (easting) to zoom to. 604 * @param newScale The scale to use. 605 */ 606 public void zoomTo(EastNorth newCenter, double newScale) { 607 zoomTo(newCenter, newScale, false); 608 } 609 610 /** 611 * Zoom to the given coordinate and scale. 612 * 613 * @param center The center x-value (easting) to zoom to. 614 * @param scale The scale to use. 615 * @param initial true if this call initializes the viewport. 616 */ 617 public void zoomTo(EastNorth center, double scale, boolean initial) { 618 Bounds b = getProjection().getWorldBoundsLatLon(); 619 ProjectionBounds pb = getProjection().getWorldBoundsBoxEastNorth(); 620 double newScale = scale; 621 int width = getWidth(); 622 int height = getHeight(); 623 624 // make sure, the center of the screen is within projection bounds 625 double east = center.east(); 626 double north = center.north(); 627 east = Math.max(east, pb.minEast); 628 east = Math.min(east, pb.maxEast); 629 north = Math.max(north, pb.minNorth); 630 north = Math.min(north, pb.maxNorth); 631 EastNorth newCenter = new EastNorth(east, north); 632 633 // don't zoom out too much, the world bounds should be at least 634 // half the size of the screen 635 double pbHeight = pb.maxNorth - pb.minNorth; 636 if (height > 0 && 2 * pbHeight < height * newScale) { 637 double newScaleH = 2 * pbHeight / height; 638 double pbWidth = pb.maxEast - pb.minEast; 639 if (width > 0 && 2 * pbWidth < width * newScale) { 640 double newScaleW = 2 * pbWidth / width; 641 newScale = Math.max(newScaleH, newScaleW); 642 } 643 } 644 645 // don't zoom in too much, minimum: 100 px = 1 cm 646 LatLon ll1 = getLatLon(width / 2 - 50, height / 2); 647 LatLon ll2 = getLatLon(width / 2 + 50, height / 2); 648 if (ll1.isValid() && ll2.isValid() && b.contains(ll1) && b.contains(ll2)) { 649 double dm = ll1.greatCircleDistance(ll2); 650 double den = 100 * getScale(); 651 double scaleMin = 0.01 * den / dm / 100; 652 if (newScale < scaleMin && !Double.isInfinite(scaleMin)) { 653 newScale = scaleMin; 654 } 655 } 656 657 // snap scale to imagery if needed 658 newScale = scaleRound(newScale); 659 660 // Align to the pixel grid: 661 // This is a sub-pixel correction to ensure consistent drawing at a certain scale. 662 // For example take 2 nodes, that have a distance of exactly 2.6 pixels. 663 // Depending on the offset, the distance in rounded or truncated integer 664 // pixels will be 2 or 3. It is preferable to have a consistent distance 665 // and not switch back and forth as the viewport moves. This can be achieved by 666 // locking an arbitrary point to integer pixel coordinates. (Here the EastNorth 667 // origin is used as reference point.) 668 // Note that the normal right mouse button drag moves the map by integer pixel 669 // values, so it is not an issue in this case. It only shows when zooming 670 // in & back out, etc. 671 MapViewState mvs = getState().usingScale(newScale); 672 mvs = mvs.movedTo(mvs.getCenter(), newCenter); 673 Point2D enOrigin = mvs.getPointFor(new EastNorth(0, 0)).getInView(); 674 // as a result of the alignment, it is common to round "half integer" values 675 // like 1.49999, which is numerically unstable; add small epsilon to resolve this 676 Point2D enOriginAligned = new Point2D.Double( 677 Math.round(enOrigin.getX()) + ALIGNMENT_EPSILON, 678 Math.round(enOrigin.getY()) + ALIGNMENT_EPSILON); 679 EastNorth enShift = mvs.getForView(enOriginAligned.getX(), enOriginAligned.getY()).getEastNorth(); 680 newCenter = newCenter.subtract(enShift); 681 682 if (!newCenter.equals(getCenter()) || !Utils.equalsEpsilon(getScale(), newScale)) { 683 if (!initial) { 684 pushZoomUndo(getCenter(), getScale()); 685 } 686 zoomNoUndoTo(newCenter, newScale, initial); 687 } 688 } 689 690 /** 691 * Zoom to the given coordinate without adding to the zoom undo buffer. 692 * 693 * @param newCenter The center x-value (easting) to zoom to. 694 * @param newScale The scale to use. 695 * @param initial true if this call initializes the viewport. 696 */ 697 private void zoomNoUndoTo(EastNorth newCenter, double newScale, boolean initial) { 698 if (!Utils.equalsEpsilon(getScale(), newScale)) { 699 state = state.usingScale(newScale); 700 } 701 if (!newCenter.equals(getCenter())) { 702 state = state.movedTo(state.getCenter(), newCenter); 703 } 704 if (!initial) { 705 repaint(); 706 fireZoomChanged(); 707 } 708 } 709 710 /** 711 * Zoom to given east/north. 712 * @param newCenter new center coordinates 713 */ 714 public void zoomTo(EastNorth newCenter) { 715 zoomTo(newCenter, getScale()); 716 } 717 718 /** 719 * Zoom to given lat/lon. 720 * @param newCenter new center coordinates 721 * @since 12725 722 */ 723 public void zoomTo(ILatLon newCenter) { 724 zoomTo(getProjection().latlon2eastNorth(newCenter)); 725 } 726 727 /** 728 * Zoom to given lat/lon. 729 * @param newCenter new center coordinates 730 */ 731 public void zoomTo(LatLon newCenter) { 732 zoomTo((ILatLon) newCenter); 733 } 734 735 /** 736 * Create a thread that moves the viewport to the given center in an animated fashion. 737 * @param newCenter new east/north center 738 */ 739 public void smoothScrollTo(EastNorth newCenter) { 740 // FIXME make these configurable. 741 final int fps = 20; // animation frames per second 742 final int speed = 1500; // milliseconds for full-screen-width pan 743 if (!newCenter.equals(getCenter())) { 744 final EastNorth oldCenter = getCenter(); 745 final double distance = newCenter.distance(oldCenter) / getScale(); 746 final double milliseconds = distance / getWidth() * speed; 747 final double frames = milliseconds * fps / 1000; 748 final EastNorth finalNewCenter = newCenter; 749 750 new Thread("smooth-scroller") { 751 @Override 752 public void run() { 753 for (int i = 0; i < frames; i++) { 754 // FIXME - not use zoom history here 755 zoomTo(oldCenter.interpolate(finalNewCenter, (i+1) / frames)); 756 try { 757 Thread.sleep(1000L / fps); 758 } catch (InterruptedException ex) { 759 Logging.warn("InterruptedException in "+NavigatableComponent.class.getSimpleName()+" during smooth scrolling"); 760 Thread.currentThread().interrupt(); 761 } 762 } 763 } 764 }.start(); 765 } 766 } 767 768 public void zoomManyTimes(double x, double y, int times) { 769 double oldScale = getScale(); 770 double newScale = scaleZoomManyTimes(times); 771 zoomToFactor(x, y, newScale / oldScale); 772 } 773 774 public void zoomToFactor(double x, double y, double factor) { 775 double newScale = getScale()*factor; 776 EastNorth oldUnderMouse = getState().getForView(x, y).getEastNorth(); 777 MapViewState newState = getState().usingScale(newScale); 778 newState = newState.movedTo(newState.getForView(x, y), oldUnderMouse); 779 zoomTo(newState.getCenter().getEastNorth(), newScale); 780 } 781 782 public void zoomToFactor(EastNorth newCenter, double factor) { 783 zoomTo(newCenter, getScale()*factor); 784 } 785 786 public void zoomToFactor(double factor) { 787 zoomTo(getCenter(), getScale()*factor); 788 } 789 790 /** 791 * Zoom to given projection bounds. 792 * @param box new projection bounds 793 */ 794 public void zoomTo(ProjectionBounds box) { 795 double newScale = box.getScale(getWidth(), getHeight()); 796 newScale = scaleFloor(newScale); 797 zoomTo(box.getCenter(), newScale); 798 } 799 800 /** 801 * Zoom to given bounds. 802 * @param box new bounds 803 */ 804 public void zoomTo(Bounds box) { 805 zoomTo(new ProjectionBounds(getProjection().latlon2eastNorth(box.getMin()), 806 getProjection().latlon2eastNorth(box.getMax()))); 807 } 808 809 /** 810 * Zoom to given viewport data. 811 * @param viewport new viewport data 812 */ 813 public void zoomTo(ViewportData viewport) { 814 if (viewport == null) return; 815 if (viewport.getBounds() != null) { 816 zoomTo(viewport.getBounds()); 817 } else { 818 zoomTo(viewport.getCenter(), viewport.getScale(), true); 819 } 820 } 821 822 /** 823 * Set the new dimension to the view. 824 * @param v box to zoom to 825 */ 826 public void zoomTo(BoundingXYVisitor v) { 827 if (v == null) { 828 v = new BoundingXYVisitor(); 829 } 830 if (v.getBounds() == null) { 831 v.visit(getProjection().getWorldBoundsLatLon()); 832 } 833 834 // increase bbox. This is required 835 // especially if the bbox contains one single node, but helpful 836 // in most other cases as well. 837 // Do not zoom if the current scale covers the selection, #16706 838 final MapView mapView = MainApplication.getMap().mapView; 839 final double mapScale = mapView.getScale(); 840 final double minScale = v.getBounds().getScale(mapView.getWidth(), mapView.getHeight()); 841 v.enlargeBoundingBoxLogarithmically(); 842 final double maxScale = v.getBounds().getScale(mapView.getWidth(), mapView.getHeight()); 843 if (minScale <= mapScale && mapScale < maxScale) { 844 mapView.zoomTo(v.getBounds().getCenter()); 845 } else { 846 zoomTo(v.getBounds()); 847 } 848 } 849 850 private static class ZoomData { 851 private final EastNorth center; 852 private final double scale; 853 854 ZoomData(EastNorth center, double scale) { 855 this.center = center; 856 this.scale = scale; 857 } 858 859 public EastNorth getCenterEastNorth() { 860 return center; 861 } 862 863 public double getScale() { 864 return scale; 865 } 866 } 867 868 private final transient Stack<ZoomData> zoomUndoBuffer = new Stack<>(); 869 private final transient Stack<ZoomData> zoomRedoBuffer = new Stack<>(); 870 private Date zoomTimestamp = new Date(); 871 872 private void pushZoomUndo(EastNorth center, double scale) { 873 Date now = new Date(); 874 if ((now.getTime() - zoomTimestamp.getTime()) > (Config.getPref().getDouble("zoom.undo.delay", 1.0) * 1000)) { 875 zoomUndoBuffer.push(new ZoomData(center, scale)); 876 if (zoomUndoBuffer.size() > Config.getPref().getInt("zoom.undo.max", 50)) { 877 zoomUndoBuffer.remove(0); 878 } 879 zoomRedoBuffer.clear(); 880 } 881 zoomTimestamp = now; 882 } 883 884 /** 885 * Zoom to previous location. 886 */ 887 public void zoomPrevious() { 888 if (!zoomUndoBuffer.isEmpty()) { 889 ZoomData zoom = zoomUndoBuffer.pop(); 890 zoomRedoBuffer.push(new ZoomData(getCenter(), getScale())); 891 zoomNoUndoTo(zoom.getCenterEastNorth(), zoom.getScale(), false); 892 } 893 } 894 895 /** 896 * Zoom to next location. 897 */ 898 public void zoomNext() { 899 if (!zoomRedoBuffer.isEmpty()) { 900 ZoomData zoom = zoomRedoBuffer.pop(); 901 zoomUndoBuffer.push(new ZoomData(getCenter(), getScale())); 902 zoomNoUndoTo(zoom.getCenterEastNorth(), zoom.getScale(), false); 903 } 904 } 905 906 /** 907 * Determines if zoom history contains "undo" entries. 908 * @return {@code true} if zoom history contains "undo" entries 909 */ 910 public boolean hasZoomUndoEntries() { 911 return !zoomUndoBuffer.isEmpty(); 912 } 913 914 /** 915 * Determines if zoom history contains "redo" entries. 916 * @return {@code true} if zoom history contains "redo" entries 917 */ 918 public boolean hasZoomRedoEntries() { 919 return !zoomRedoBuffer.isEmpty(); 920 } 921 922 private BBox getBBox(Point p, int snapDistance) { 923 return new BBox(getLatLon(p.x - snapDistance, p.y - snapDistance), 924 getLatLon(p.x + snapDistance, p.y + snapDistance)); 925 } 926 927 /** 928 * The *result* does not depend on the current map selection state, neither does the result *order*. 929 * It solely depends on the distance to point p. 930 * @param p point 931 * @param predicate predicate to match 932 * 933 * @return a sorted map with the keys representing the distance of their associated nodes to point p. 934 */ 935 private Map<Double, List<Node>> getNearestNodesImpl(Point p, Predicate<OsmPrimitive> predicate) { 936 Map<Double, List<Node>> nearestMap = new TreeMap<>(); 937 DataSet ds = MainApplication.getLayerManager().getActiveDataSet(); 938 939 if (ds != null) { 940 double dist, snapDistanceSq = PROP_SNAP_DISTANCE.get(); 941 snapDistanceSq *= snapDistanceSq; 942 943 for (Node n : ds.searchNodes(getBBox(p, PROP_SNAP_DISTANCE.get()))) { 944 if (predicate.test(n) 945 && (dist = getPoint2D(n).distanceSq(p)) < snapDistanceSq) { 946 List<Node> nlist; 947 if (nearestMap.containsKey(dist)) { 948 nlist = nearestMap.get(dist); 949 } else { 950 nlist = new LinkedList<>(); 951 nearestMap.put(dist, nlist); 952 } 953 nlist.add(n); 954 } 955 } 956 } 957 958 return nearestMap; 959 } 960 961 /** 962 * The *result* does not depend on the current map selection state, 963 * neither does the result *order*. 964 * It solely depends on the distance to point p. 965 * 966 * @param p the point for which to search the nearest segment. 967 * @param ignore a collection of nodes which are not to be returned. 968 * @param predicate the returned objects have to fulfill certain properties. 969 * 970 * @return All nodes nearest to point p that are in a belt from 971 * dist(nearest) to dist(nearest)+4px around p and 972 * that are not in ignore. 973 */ 974 public final List<Node> getNearestNodes(Point p, 975 Collection<Node> ignore, Predicate<OsmPrimitive> predicate) { 976 List<Node> nearestList = Collections.emptyList(); 977 978 if (ignore == null) { 979 ignore = Collections.emptySet(); 980 } 981 982 Map<Double, List<Node>> nlists = getNearestNodesImpl(p, predicate); 983 if (!nlists.isEmpty()) { 984 Double minDistSq = null; 985 for (Entry<Double, List<Node>> entry : nlists.entrySet()) { 986 Double distSq = entry.getKey(); 987 List<Node> nlist = entry.getValue(); 988 989 // filter nodes to be ignored before determining minDistSq.. 990 nlist.removeAll(ignore); 991 if (minDistSq == null) { 992 if (!nlist.isEmpty()) { 993 minDistSq = distSq; 994 nearestList = new ArrayList<>(); 995 nearestList.addAll(nlist); 996 } 997 } else { 998 if (distSq-minDistSq < (4)*(4)) { 999 nearestList.addAll(nlist); 1000 } 1001 } 1002 } 1003 } 1004 1005 return nearestList; 1006 } 1007 1008 /** 1009 * The *result* does not depend on the current map selection state, 1010 * neither does the result *order*. 1011 * It solely depends on the distance to point p. 1012 * 1013 * @param p the point for which to search the nearest segment. 1014 * @param predicate the returned objects have to fulfill certain properties. 1015 * 1016 * @return All nodes nearest to point p that are in a belt from 1017 * dist(nearest) to dist(nearest)+4px around p. 1018 * @see #getNearestNodes(Point, Collection, Predicate) 1019 */ 1020 public final List<Node> getNearestNodes(Point p, Predicate<OsmPrimitive> predicate) { 1021 return getNearestNodes(p, null, predicate); 1022 } 1023 1024 /** 1025 * The *result* depends on the current map selection state IF use_selected is true. 1026 * 1027 * If more than one node within node.snap-distance pixels is found, 1028 * the nearest node selected is returned IF use_selected is true. 1029 * 1030 * Else the nearest new/id=0 node within about the same distance 1031 * as the true nearest node is returned. 1032 * 1033 * If no such node is found either, the true nearest node to p is returned. 1034 * 1035 * Finally, if a node is not found at all, null is returned. 1036 * 1037 * @param p the screen point 1038 * @param predicate this parameter imposes a condition on the returned object, e.g. 1039 * give the nearest node that is tagged. 1040 * @param useSelected make search depend on selection 1041 * 1042 * @return A node within snap-distance to point p, that is chosen by the algorithm described. 1043 */ 1044 public final Node getNearestNode(Point p, Predicate<OsmPrimitive> predicate, boolean useSelected) { 1045 return getNearestNode(p, predicate, useSelected, null); 1046 } 1047 1048 /** 1049 * The *result* depends on the current map selection state IF use_selected is true 1050 * 1051 * If more than one node within node.snap-distance pixels is found, 1052 * the nearest node selected is returned IF use_selected is true. 1053 * 1054 * If there are no selected nodes near that point, the node that is related to some of the preferredRefs 1055 * 1056 * Else the nearest new/id=0 node within about the same distance 1057 * as the true nearest node is returned. 1058 * 1059 * If no such node is found either, the true nearest node to p is returned. 1060 * 1061 * Finally, if a node is not found at all, null is returned. 1062 * 1063 * @param p the screen point 1064 * @param predicate this parameter imposes a condition on the returned object, e.g. 1065 * give the nearest node that is tagged. 1066 * @param useSelected make search depend on selection 1067 * @param preferredRefs primitives, whose nodes we prefer 1068 * 1069 * @return A node within snap-distance to point p, that is chosen by the algorithm described. 1070 * @since 6065 1071 */ 1072 public final Node getNearestNode(Point p, Predicate<OsmPrimitive> predicate, 1073 boolean useSelected, Collection<OsmPrimitive> preferredRefs) { 1074 1075 Map<Double, List<Node>> nlists = getNearestNodesImpl(p, predicate); 1076 if (nlists.isEmpty()) return null; 1077 1078 if (preferredRefs != null && preferredRefs.isEmpty()) preferredRefs = null; 1079 Node ntsel = null, ntnew = null, ntref = null; 1080 boolean useNtsel = useSelected; 1081 double minDistSq = nlists.keySet().iterator().next(); 1082 1083 for (Entry<Double, List<Node>> entry : nlists.entrySet()) { 1084 Double distSq = entry.getKey(); 1085 for (Node nd : entry.getValue()) { 1086 // find the nearest selected node 1087 if (ntsel == null && nd.isSelected()) { 1088 ntsel = nd; 1089 // if there are multiple nearest nodes, prefer the one 1090 // that is selected. This is required in order to drag 1091 // the selected node if multiple nodes have the same 1092 // coordinates (e.g. after unglue) 1093 useNtsel |= Utils.equalsEpsilon(distSq, minDistSq); 1094 } 1095 if (ntref == null && preferredRefs != null && Utils.equalsEpsilon(distSq, minDistSq)) { 1096 List<OsmPrimitive> ndRefs = nd.getReferrers(); 1097 for (OsmPrimitive ref: preferredRefs) { 1098 if (ndRefs.contains(ref)) { 1099 ntref = nd; 1100 break; 1101 } 1102 } 1103 } 1104 // find the nearest newest node that is within about the same 1105 // distance as the true nearest node 1106 if (ntnew == null && nd.isNew() && (distSq-minDistSq < 1)) { 1107 ntnew = nd; 1108 } 1109 } 1110 } 1111 1112 // take nearest selected, nearest new or true nearest node to p, in that order 1113 if (ntsel != null && useNtsel) 1114 return ntsel; 1115 if (ntref != null) 1116 return ntref; 1117 if (ntnew != null) 1118 return ntnew; 1119 return nlists.values().iterator().next().get(0); 1120 } 1121 1122 /** 1123 * Convenience method to {@link #getNearestNode(Point, Predicate, boolean)}. 1124 * @param p the screen point 1125 * @param predicate this parameter imposes a condition on the returned object, e.g. 1126 * give the nearest node that is tagged. 1127 * 1128 * @return The nearest node to point p. 1129 */ 1130 public final Node getNearestNode(Point p, Predicate<OsmPrimitive> predicate) { 1131 return getNearestNode(p, predicate, true); 1132 } 1133 1134 /** 1135 * The *result* does not depend on the current map selection state, neither does the result *order*. 1136 * It solely depends on the distance to point p. 1137 * @param p the screen point 1138 * @param predicate this parameter imposes a condition on the returned object, e.g. 1139 * give the nearest node that is tagged. 1140 * 1141 * @return a sorted map with the keys representing the perpendicular 1142 * distance of their associated way segments to point p. 1143 */ 1144 private Map<Double, List<WaySegment>> getNearestWaySegmentsImpl(Point p, Predicate<OsmPrimitive> predicate) { 1145 Map<Double, List<WaySegment>> nearestMap = new TreeMap<>(); 1146 DataSet ds = MainApplication.getLayerManager().getActiveDataSet(); 1147 1148 if (ds != null) { 1149 double snapDistanceSq = Config.getPref().getInt("mappaint.segment.snap-distance", 10); 1150 snapDistanceSq *= snapDistanceSq; 1151 1152 for (Way w : ds.searchWays(getBBox(p, Config.getPref().getInt("mappaint.segment.snap-distance", 10)))) { 1153 if (!predicate.test(w)) { 1154 continue; 1155 } 1156 Node lastN = null; 1157 int i = -2; 1158 for (Node n : w.getNodes()) { 1159 i++; 1160 if (n.isDeleted() || n.isIncomplete()) { //FIXME: This shouldn't happen, raise exception? 1161 continue; 1162 } 1163 if (lastN == null) { 1164 lastN = n; 1165 continue; 1166 } 1167 1168 Point2D pA = getPoint2D(lastN); 1169 Point2D pB = getPoint2D(n); 1170 double c = pA.distanceSq(pB); 1171 double a = p.distanceSq(pB); 1172 double b = p.distanceSq(pA); 1173 1174 /* perpendicular distance squared 1175 * loose some precision to account for possible deviations in the calculation above 1176 * e.g. if identical (A and B) come about reversed in another way, values may differ 1177 * -- zero out least significant 32 dual digits of mantissa.. 1178 */ 1179 double perDistSq = Double.longBitsToDouble( 1180 Double.doubleToLongBits(a - (a - b + c) * (a - b + c) / 4 / c) 1181 >> 32 << 32); // resolution in numbers with large exponent not needed here.. 1182 1183 if (perDistSq < snapDistanceSq && a < c + snapDistanceSq && b < c + snapDistanceSq) { 1184 List<WaySegment> wslist; 1185 if (nearestMap.containsKey(perDistSq)) { 1186 wslist = nearestMap.get(perDistSq); 1187 } else { 1188 wslist = new LinkedList<>(); 1189 nearestMap.put(perDistSq, wslist); 1190 } 1191 wslist.add(new WaySegment(w, i)); 1192 } 1193 1194 lastN = n; 1195 } 1196 } 1197 } 1198 1199 return nearestMap; 1200 } 1201 1202 /** 1203 * The result *order* depends on the current map selection state. 1204 * Segments within 10px of p are searched and sorted by their distance to @param p, 1205 * then, within groups of equally distant segments, prefer those that are selected. 1206 * 1207 * @param p the point for which to search the nearest segments. 1208 * @param ignore a collection of segments which are not to be returned. 1209 * @param predicate the returned objects have to fulfill certain properties. 1210 * 1211 * @return all segments within 10px of p that are not in ignore, 1212 * sorted by their perpendicular distance. 1213 */ 1214 public final List<WaySegment> getNearestWaySegments(Point p, 1215 Collection<WaySegment> ignore, Predicate<OsmPrimitive> predicate) { 1216 List<WaySegment> nearestList = new ArrayList<>(); 1217 List<WaySegment> unselected = new LinkedList<>(); 1218 1219 for (List<WaySegment> wss : getNearestWaySegmentsImpl(p, predicate).values()) { 1220 // put selected waysegs within each distance group first 1221 // makes the order of nearestList dependent on current selection state 1222 for (WaySegment ws : wss) { 1223 (ws.way.isSelected() ? nearestList : unselected).add(ws); 1224 } 1225 nearestList.addAll(unselected); 1226 unselected.clear(); 1227 } 1228 if (ignore != null) { 1229 nearestList.removeAll(ignore); 1230 } 1231 1232 return nearestList; 1233 } 1234 1235 /** 1236 * The result *order* depends on the current map selection state. 1237 * 1238 * @param p the point for which to search the nearest segments. 1239 * @param predicate the returned objects have to fulfill certain properties. 1240 * 1241 * @return all segments within 10px of p, sorted by their perpendicular distance. 1242 * @see #getNearestWaySegments(Point, Collection, Predicate) 1243 */ 1244 public final List<WaySegment> getNearestWaySegments(Point p, Predicate<OsmPrimitive> predicate) { 1245 return getNearestWaySegments(p, null, predicate); 1246 } 1247 1248 /** 1249 * The *result* depends on the current map selection state IF use_selected is true. 1250 * 1251 * @param p the point for which to search the nearest segment. 1252 * @param predicate the returned object has to fulfill certain properties. 1253 * @param useSelected whether selected way segments should be preferred. 1254 * 1255 * @return The nearest way segment to point p, 1256 * and, depending on use_selected, prefers a selected way segment, if found. 1257 * @see #getNearestWaySegments(Point, Collection, Predicate) 1258 */ 1259 public final WaySegment getNearestWaySegment(Point p, Predicate<OsmPrimitive> predicate, boolean useSelected) { 1260 WaySegment wayseg = null; 1261 WaySegment ntsel = null; 1262 1263 for (List<WaySegment> wslist : getNearestWaySegmentsImpl(p, predicate).values()) { 1264 if (wayseg != null && ntsel != null) { 1265 break; 1266 } 1267 for (WaySegment ws : wslist) { 1268 if (wayseg == null) { 1269 wayseg = ws; 1270 } 1271 if (ntsel == null && ws.way.isSelected()) { 1272 ntsel = ws; 1273 } 1274 } 1275 } 1276 1277 return (ntsel != null && useSelected) ? ntsel : wayseg; 1278 } 1279 1280 /** 1281 * The *result* depends on the current map selection state IF use_selected is true. 1282 * 1283 * @param p the point for which to search the nearest segment. 1284 * @param predicate the returned object has to fulfill certain properties. 1285 * @param useSelected whether selected way segments should be preferred. 1286 * @param preferredRefs - prefer segments related to these primitives, may be null 1287 * 1288 * @return The nearest way segment to point p, 1289 * and, depending on use_selected, prefers a selected way segment, if found. 1290 * Also prefers segments of ways that are related to one of preferredRefs primitives 1291 * 1292 * @see #getNearestWaySegments(Point, Collection, Predicate) 1293 * @since 6065 1294 */ 1295 public final WaySegment getNearestWaySegment(Point p, Predicate<OsmPrimitive> predicate, 1296 boolean useSelected, Collection<OsmPrimitive> preferredRefs) { 1297 WaySegment wayseg = null; 1298 if (preferredRefs != null && preferredRefs.isEmpty()) 1299 preferredRefs = null; 1300 1301 for (List<WaySegment> wslist : getNearestWaySegmentsImpl(p, predicate).values()) { 1302 for (WaySegment ws : wslist) { 1303 if (wayseg == null) { 1304 wayseg = ws; 1305 } 1306 if (useSelected && ws.way.isSelected()) { 1307 return ws; 1308 } 1309 if (preferredRefs != null && !preferredRefs.isEmpty()) { 1310 // prefer ways containing given nodes 1311 if (preferredRefs.contains(ws.getFirstNode()) || preferredRefs.contains(ws.getSecondNode())) { 1312 return ws; 1313 } 1314 Collection<OsmPrimitive> wayRefs = ws.way.getReferrers(); 1315 // prefer member of the given relations 1316 for (OsmPrimitive ref: preferredRefs) { 1317 if (ref instanceof Relation && wayRefs.contains(ref)) { 1318 return ws; 1319 } 1320 } 1321 } 1322 } 1323 } 1324 return wayseg; 1325 } 1326 1327 /** 1328 * Convenience method to {@link #getNearestWaySegment(Point, Predicate, boolean)}. 1329 * @param p the point for which to search the nearest segment. 1330 * @param predicate the returned object has to fulfill certain properties. 1331 * 1332 * @return The nearest way segment to point p. 1333 */ 1334 public final WaySegment getNearestWaySegment(Point p, Predicate<OsmPrimitive> predicate) { 1335 return getNearestWaySegment(p, predicate, true); 1336 } 1337 1338 /** 1339 * The *result* does not depend on the current map selection state, 1340 * neither does the result *order*. 1341 * It solely depends on the perpendicular distance to point p. 1342 * 1343 * @param p the point for which to search the nearest ways. 1344 * @param ignore a collection of ways which are not to be returned. 1345 * @param predicate the returned object has to fulfill certain properties. 1346 * 1347 * @return all nearest ways to the screen point given that are not in ignore. 1348 * @see #getNearestWaySegments(Point, Collection, Predicate) 1349 */ 1350 public final List<Way> getNearestWays(Point p, 1351 Collection<Way> ignore, Predicate<OsmPrimitive> predicate) { 1352 List<Way> nearestList = new ArrayList<>(); 1353 Set<Way> wset = new HashSet<>(); 1354 1355 for (List<WaySegment> wss : getNearestWaySegmentsImpl(p, predicate).values()) { 1356 for (WaySegment ws : wss) { 1357 if (wset.add(ws.way)) { 1358 nearestList.add(ws.way); 1359 } 1360 } 1361 } 1362 if (ignore != null) { 1363 nearestList.removeAll(ignore); 1364 } 1365 1366 return nearestList; 1367 } 1368 1369 /** 1370 * The *result* does not depend on the current map selection state, 1371 * neither does the result *order*. 1372 * It solely depends on the perpendicular distance to point p. 1373 * 1374 * @param p the point for which to search the nearest ways. 1375 * @param predicate the returned object has to fulfill certain properties. 1376 * 1377 * @return all nearest ways to the screen point given. 1378 * @see #getNearestWays(Point, Collection, Predicate) 1379 */ 1380 public final List<Way> getNearestWays(Point p, Predicate<OsmPrimitive> predicate) { 1381 return getNearestWays(p, null, predicate); 1382 } 1383 1384 /** 1385 * The *result* depends on the current map selection state. 1386 * 1387 * @param p the point for which to search the nearest segment. 1388 * @param predicate the returned object has to fulfill certain properties. 1389 * 1390 * @return The nearest way to point p, prefer a selected way if there are multiple nearest. 1391 * @see #getNearestWaySegment(Point, Predicate) 1392 */ 1393 public final Way getNearestWay(Point p, Predicate<OsmPrimitive> predicate) { 1394 WaySegment nearestWaySeg = getNearestWaySegment(p, predicate); 1395 return (nearestWaySeg == null) ? null : nearestWaySeg.way; 1396 } 1397 1398 /** 1399 * The *result* does not depend on the current map selection state, 1400 * neither does the result *order*. 1401 * It solely depends on the distance to point p. 1402 * 1403 * First, nodes will be searched. If there are nodes within BBox found, 1404 * return a collection of those nodes only. 1405 * 1406 * If no nodes are found, search for nearest ways. If there are ways 1407 * within BBox found, return a collection of those ways only. 1408 * 1409 * If nothing is found, return an empty collection. 1410 * 1411 * @param p The point on screen. 1412 * @param ignore a collection of ways which are not to be returned. 1413 * @param predicate the returned object has to fulfill certain properties. 1414 * 1415 * @return Primitives nearest to the given screen point that are not in ignore. 1416 * @see #getNearestNodes(Point, Collection, Predicate) 1417 * @see #getNearestWays(Point, Collection, Predicate) 1418 */ 1419 public final List<OsmPrimitive> getNearestNodesOrWays(Point p, 1420 Collection<OsmPrimitive> ignore, Predicate<OsmPrimitive> predicate) { 1421 List<OsmPrimitive> nearestList = Collections.emptyList(); 1422 OsmPrimitive osm = getNearestNodeOrWay(p, predicate, false); 1423 1424 if (osm != null) { 1425 if (osm instanceof Node) { 1426 nearestList = new ArrayList<>(getNearestNodes(p, predicate)); 1427 } else if (osm instanceof Way) { 1428 nearestList = new ArrayList<>(getNearestWays(p, predicate)); 1429 } 1430 if (ignore != null) { 1431 nearestList.removeAll(ignore); 1432 } 1433 } 1434 1435 return nearestList; 1436 } 1437 1438 /** 1439 * The *result* does not depend on the current map selection state, 1440 * neither does the result *order*. 1441 * It solely depends on the distance to point p. 1442 * 1443 * @param p The point on screen. 1444 * @param predicate the returned object has to fulfill certain properties. 1445 * @return Primitives nearest to the given screen point. 1446 * @see #getNearestNodesOrWays(Point, Collection, Predicate) 1447 */ 1448 public final List<OsmPrimitive> getNearestNodesOrWays(Point p, Predicate<OsmPrimitive> predicate) { 1449 return getNearestNodesOrWays(p, null, predicate); 1450 } 1451 1452 /** 1453 * This is used as a helper routine to {@link #getNearestNodeOrWay(Point, Predicate, boolean)} 1454 * It decides, whether to yield the node to be tested or look for further (way) candidates. 1455 * 1456 * @param osm node to check 1457 * @param p point clicked 1458 * @param useSelected whether to prefer selected nodes 1459 * @return true, if the node fulfills the properties of the function body 1460 */ 1461 private boolean isPrecedenceNode(Node osm, Point p, boolean useSelected) { 1462 if (osm != null) { 1463 if (p.distanceSq(getPoint2D(osm)) <= (4*4)) return true; 1464 if (osm.isTagged()) return true; 1465 if (useSelected && osm.isSelected()) return true; 1466 } 1467 return false; 1468 } 1469 1470 /** 1471 * The *result* depends on the current map selection state IF use_selected is true. 1472 * 1473 * IF use_selected is true, use {@link #getNearestNode(Point, Predicate)} to find 1474 * the nearest, selected node. If not found, try {@link #getNearestWaySegment(Point, Predicate)} 1475 * to find the nearest selected way. 1476 * 1477 * IF use_selected is false, or if no selected primitive was found, do the following. 1478 * 1479 * If the nearest node found is within 4px of p, simply take it. 1480 * Else, find the nearest way segment. Then, if p is closer to its 1481 * middle than to the node, take the way segment, else take the node. 1482 * 1483 * Finally, if no nearest primitive is found at all, return null. 1484 * 1485 * @param p The point on screen. 1486 * @param predicate the returned object has to fulfill certain properties. 1487 * @param useSelected whether to prefer primitives that are currently selected or referred by selected primitives 1488 * 1489 * @return A primitive within snap-distance to point p, 1490 * that is chosen by the algorithm described. 1491 * @see #getNearestNode(Point, Predicate) 1492 * @see #getNearestWay(Point, Predicate) 1493 */ 1494 public final OsmPrimitive getNearestNodeOrWay(Point p, Predicate<OsmPrimitive> predicate, boolean useSelected) { 1495 Collection<OsmPrimitive> sel; 1496 DataSet ds = MainApplication.getLayerManager().getActiveDataSet(); 1497 if (useSelected && ds != null) { 1498 sel = ds.getSelected(); 1499 } else { 1500 sel = null; 1501 } 1502 OsmPrimitive osm = getNearestNode(p, predicate, useSelected, sel); 1503 1504 if (isPrecedenceNode((Node) osm, p, useSelected)) return osm; 1505 WaySegment ws; 1506 if (useSelected) { 1507 ws = getNearestWaySegment(p, predicate, useSelected, sel); 1508 } else { 1509 ws = getNearestWaySegment(p, predicate, useSelected); 1510 } 1511 if (ws == null) return osm; 1512 1513 if ((ws.way.isSelected() && useSelected) || osm == null) { 1514 // either (no _selected_ nearest node found, if desired) or no nearest node was found 1515 osm = ws.way; 1516 } else { 1517 int maxWaySegLenSq = 3*PROP_SNAP_DISTANCE.get(); 1518 maxWaySegLenSq *= maxWaySegLenSq; 1519 1520 Point2D wp1 = getPoint2D(ws.getFirstNode()); 1521 Point2D wp2 = getPoint2D(ws.getSecondNode()); 1522 1523 // is wayseg shorter than maxWaySegLenSq and 1524 // is p closer to the middle of wayseg than to the nearest node? 1525 if (wp1.distanceSq(wp2) < maxWaySegLenSq && 1526 p.distanceSq(project(0.5, wp1, wp2)) < p.distanceSq(getPoint2D((Node) osm))) { 1527 osm = ws.way; 1528 } 1529 } 1530 return osm; 1531 } 1532 1533 /** 1534 * if r = 0 returns a, if r=1 returns b, 1535 * if r = 0.5 returns center between a and b, etc.. 1536 * 1537 * @param r scale value 1538 * @param a root of vector 1539 * @param b vector 1540 * @return new point at a + r*(ab) 1541 */ 1542 public static Point2D project(double r, Point2D a, Point2D b) { 1543 Point2D ret = null; 1544 1545 if (a != null && b != null) { 1546 ret = new Point2D.Double(a.getX() + r*(b.getX()-a.getX()), 1547 a.getY() + r*(b.getY()-a.getY())); 1548 } 1549 return ret; 1550 } 1551 1552 /** 1553 * The *result* does not depend on the current map selection state, neither does the result *order*. 1554 * It solely depends on the distance to point p. 1555 * 1556 * @param p The point on screen. 1557 * @param ignore a collection of ways which are not to be returned. 1558 * @param predicate the returned object has to fulfill certain properties. 1559 * 1560 * @return a list of all objects that are nearest to point p and 1561 * not in ignore or an empty list if nothing was found. 1562 */ 1563 public final List<OsmPrimitive> getAllNearest(Point p, 1564 Collection<OsmPrimitive> ignore, Predicate<OsmPrimitive> predicate) { 1565 List<OsmPrimitive> nearestList = new ArrayList<>(); 1566 Set<Way> wset = new HashSet<>(); 1567 1568 // add nearby ways 1569 for (List<WaySegment> wss : getNearestWaySegmentsImpl(p, predicate).values()) { 1570 for (WaySegment ws : wss) { 1571 if (wset.add(ws.way)) { 1572 nearestList.add(ws.way); 1573 } 1574 } 1575 } 1576 1577 // add nearby nodes 1578 for (List<Node> nlist : getNearestNodesImpl(p, predicate).values()) { 1579 nearestList.addAll(nlist); 1580 } 1581 1582 // add parent relations of nearby nodes and ways 1583 Set<OsmPrimitive> parentRelations = new HashSet<>(); 1584 for (OsmPrimitive o : nearestList) { 1585 for (OsmPrimitive r : o.getReferrers()) { 1586 if (r instanceof Relation && predicate.test(r)) { 1587 parentRelations.add(r); 1588 } 1589 } 1590 } 1591 nearestList.addAll(parentRelations); 1592 1593 if (ignore != null) { 1594 nearestList.removeAll(ignore); 1595 } 1596 1597 return nearestList; 1598 } 1599 1600 /** 1601 * The *result* does not depend on the current map selection state, neither does the result *order*. 1602 * It solely depends on the distance to point p. 1603 * 1604 * @param p The point on screen. 1605 * @param predicate the returned object has to fulfill certain properties. 1606 * 1607 * @return a list of all objects that are nearest to point p 1608 * or an empty list if nothing was found. 1609 * @see #getAllNearest(Point, Collection, Predicate) 1610 */ 1611 public final List<OsmPrimitive> getAllNearest(Point p, Predicate<OsmPrimitive> predicate) { 1612 return getAllNearest(p, null, predicate); 1613 } 1614 1615 /** 1616 * @return The projection to be used in calculating stuff. 1617 */ 1618 public Projection getProjection() { 1619 return state.getProjection(); 1620 } 1621 1622 @Override 1623 public String helpTopic() { 1624 String n = getClass().getName(); 1625 return n.substring(n.lastIndexOf('.')+1); 1626 } 1627 1628 /** 1629 * Return a ID which is unique as long as viewport dimensions are the same 1630 * @return A unique ID, as long as viewport dimensions are the same 1631 */ 1632 public int getViewID() { 1633 EastNorth center = getCenter(); 1634 String x = new StringBuilder().append(center.east()) 1635 .append('_').append(center.north()) 1636 .append('_').append(getScale()) 1637 .append('_').append(getWidth()) 1638 .append('_').append(getHeight()) 1639 .append('_').append(getProjection()).toString(); 1640 CRC32 id = new CRC32(); 1641 id.update(x.getBytes(StandardCharsets.UTF_8)); 1642 return (int) id.getValue(); 1643 } 1644 1645 /** 1646 * Set new cursor. 1647 * @param cursor The new cursor to use. 1648 * @param reference A reference object that can be passed to the next set/reset calls to identify the caller. 1649 */ 1650 public void setNewCursor(Cursor cursor, Object reference) { 1651 cursorManager.setNewCursor(cursor, reference); 1652 } 1653 1654 /** 1655 * Set new cursor. 1656 * @param cursor the type of predefined cursor 1657 * @param reference A reference object that can be passed to the next set/reset calls to identify the caller. 1658 */ 1659 public void setNewCursor(int cursor, Object reference) { 1660 setNewCursor(Cursor.getPredefinedCursor(cursor), reference); 1661 } 1662 1663 /** 1664 * Remove the new cursor and reset to previous 1665 * @param reference Cursor reference 1666 */ 1667 public void resetCursor(Object reference) { 1668 cursorManager.resetCursor(reference); 1669 } 1670 1671 /** 1672 * Gets the cursor manager that is used for this NavigatableComponent. 1673 * @return The cursor manager. 1674 */ 1675 public CursorManager getCursorManager() { 1676 return cursorManager; 1677 } 1678 1679 /** 1680 * Get a max scale for projection that describes world in 1/512 of the projection unit 1681 * @return max scale 1682 */ 1683 public double getMaxScale() { 1684 ProjectionBounds world = getMaxProjectionBounds(); 1685 return Math.max( 1686 world.maxNorth-world.minNorth, 1687 world.maxEast-world.minEast 1688 )/512; 1689 } 1690}