Prev Next LuInvert.cpp Headings

LuInvert: Example and Test

# include <cstdlib>               // for rand function
# include <cppad/lu_invert.hpp>      // for CppAD::LuInvert
# include <cppad/near_equal.hpp>     // for CppAD::NearEqual
# include <cppad/vector.hpp>  // for CppAD::vector

bool LuInvert(void)
{    bool  ok = true;

# ifndef _MSC_VER
     using std::rand;
     using std::srand;
# endif

     size_t  n = 7;                        // number rows in A 
     size_t  m = 3;                        // number columns in B
     double  rand_max = double(RAND_MAX);  // maximum rand value
     double  sum;                          // element of L * U
     size_t  i, j, k;                      // temporary indices

     // dimension matrices
     CppAD::vector<double> 
          A(n*n), X(n*m), B(n*m), LU(n*n), L(n*n), U(n*n);

     // seed the random number generator
     srand(123); 

     // pivot vectors
     CppAD::vector<size_t> ip(n);
     CppAD::vector<size_t> jp(n);

     // set pivot vectors
     for(i = 0; i < n; i++)
     {    ip[i] = (i + 2) % n;      // ip = 2 , 3, ... , n-1, 0, 1
          jp[i] = (n + 2 - i) % n;  // jp = 2 , 1, n-1, n-2, ... , 3
     }

     // chose L, a random lower triangular matrix
     for(i = 0; i < n; i++)
     {    for(j = 0; j <= i; j++)
               L [i * n + j]  = rand() / rand_max;
          for(j = i+1; j < n; j++)
               L [i * n + j]  = 0.;
     }
     // chose U, a random upper triangular matrix with ones on diagonal
     for(i = 0; i < n; i++)
     {    for(j = 0; j < i; j++)
               U [i * n + j]  = 0.; 
          U[ i * n + i ] = 1.;
          for(j = i+1; j < n; j++)
               U [i * n + j]  = rand() / rand_max;
     }
     // chose X, a random matrix
     for(i = 0; i < n; i++)
     {    for(k = 0; k < m; k++)
               X[i * m + k] = rand() / rand_max;
     }
     // set LU to a permuted combination of both L and U
     for(i = 0; i < n; i++)
     {    for(j = 0; j <= i; j++)
               LU [ ip[i] * n + jp[j] ]  = L[i * n + j];
          for(j = i+1; j < n; j++)
               LU [ ip[i] * n + jp[j] ]  = U[i * n + j];
     }
     // set A to a permuted version of L * U 
     for(i = 0; i < n; i++)
     {    for(j = 0; j < n; j++)
          {    // compute (i,j) entry in permuted matrix
               sum = 0.;
               for(k = 0; k < n; k++)
                    sum += L[i * n + k] * U[k * n + j];
               A[ ip[i] * n + jp[j] ] = sum;
          }
     }
     // set B to A * X
     for(i = 0; i < n; i++)
     {    for(k = 0; k < m; k++)
          {    // compute (i,k) entry of B
               sum = 0.;
               for(j = 0; j < n; j++)
                    sum += A[i * n + j] * X[j * m + k];
               B[i * m + k] = sum;
          }
     }
     // solve for X
     CppAD::LuInvert(ip, jp, LU, B);

     // check result
     for(i = 0; i < n; i++)
     {    for(k = 0; k < m; k++)
          {    ok &= CppAD::NearEqual(
                    X[i * m + k], B[i * m + k], 1e-10, 1e-10
               );
          }
     }
     return ok;
}


Input File: example/lu_invert.cpp