![]() |
Prev | Next | det_by_lu.hpp | Headings |
# ifndef CPPAD_DET_BY_LU_INCLUDED
# define CPPAD_DET_BY_LU_INCLUDED
# include <cppad/cppad.hpp>
# include <complex>
// BEGIN CppAD namespace
namespace CppAD {
// The AD complex case is used by examples by not used by speed tests
// Must define a specializatgion of LeqZero,AbsGeq for the ADComplex case
typedef std::complex<double> Complex;
typedef CppAD::AD<Complex> ADComplex;
CPPAD_BOOL_UNARY(Complex, LeqZero )
CPPAD_BOOL_BINARY(Complex, AbsGeq )
template <class Scalar>
class det_by_lu {
private:
const size_t m;
const size_t n;
CppADvector<Scalar> A;
CppADvector<Scalar> B;
CppADvector<Scalar> X;
public:
det_by_lu(size_t n_) : m(0), n(n_), A(n_ * n_)
{ }
template <class Vector>
inline Scalar operator()(const Vector &x)
{
using CppAD::exp;
Scalar logdet;
Scalar det;
int signdet;
size_t i;
// copy matrix so it is not overwritten
for(i = 0; i < n * n; i++)
A[i] = x[i];
// comput log determinant
signdet = CppAD::LuSolve(
n, m, A, B, X, logdet);
# if 0
// Do not do this for speed test because it makes floating
// point operation sequence very simple.
if( signdet == 0 )
det = 0;
else det = Scalar( signdet ) * exp( logdet );
# endif
// convert to determinant
det = Scalar( signdet ) * exp( logdet );
# ifdef FADBAD
// Fadbad requires tempories to be set to constants
for(i = 0; i < n * n; i++)
A[i] = 0;
# endif
return det;
}
};
} // END CppAD namespace
# endif