| v

ERLANG

STDLIB

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.
STDLIB 1.19.4
November 9, 2016

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

November 9, 2016

Ericsson AB. All Rights Reserved.: STDLIB | 1

1.1 The Erlang I/O-protocol

1 STDLIB User's Guide

The Erlang standard library STDLIB.

1.1 The Erlang I/O-protocol

The 1/O-protocol in Erlang specifies a way for a client to communicate with an 1/O server and vice versa. The I/0O
server is a process that handles the requests and performs the requested task on e.g. an 1O device. The client is any
Erlang process wishing to read or write data from/to the 10 device.

The common |/O-pratocol has been present in OTP since the beginning, but has been fairly undocumented and has al so
somewhat evolved over the years. In an addendum to Robert Virdingsrational e the original 1/O-protocol is described.
This document describes the current I/O-protocol.

The original 1/O-protocol was simple and flexible. Demands for spacial and execution time efficiency has triggered
extensions to the protocol over the years, making the protocol larger and somewhat less easy to implement than the
original. It can certainly be argumented that the current protocol is too complex, but this text describes how it looks
today, not how it should have looked.

The basic ideas from the original protocol still hold. The 1/0 server and client communicate with one single, rather
simplistic protocol and no server state is ever present in the client. Any /O server can be used together with any client
code and client code need not be aware of the actual 10 device the 1/O server communicates with.

1.1.1 Protocol Basics

As described in Robert's paper, 1/0 servers and clients communicate using i o_r equest /i o_repl y tuples as
follows:

{io_request, From, ReplyAs, Request}

{io_reply, ReplyAs, Reply}

Theclient sendsani o_r equest tupletothel/O server and the server eventually sendsacorrespondingi o_r epl y
tuple.

e Fromisthepi d() of theclient, the process which the /O server sendsthe IO reply to.

* Repl yAs can be any datum and is returned in the corresponding i o_r epl y. Theio module simply usesthe
pid() of the I/O server asthe Repl yAs datum, but amore complicated client could have several outstanding I/
O requests to the same 1/0 server and would then usei.e. ar ef er ence() or something else to differentiate
among the incoming 10 replies. The Repl yAs element should be considered opague by the I/O server. Note
that the pi d() of the I/O server isnot explicitly present inthei o_r epl y tuple. The reply can be sent from
any process, not necessarily the actual 1/0 server. The Repl yAs element is the only thing that connects one I/O
request with an I/O-reply.

* Request and Repl y are described below.

When an I/O server receivesani o_r equest tuple, it acts upon the actual Request part and eventually sends an
i o_reply tuplewith the corresponding Repl y part.

1.1.2 Output Requests
To output characters on an IO device, the following Request sexist:

{put_chars, Encoding, Characters}

2 | Ericsson AB. All Rights Reserved.: STDLIB

1.1 The Erlang I/O-protocol

{put_chars, Encoding, Module, Function, Args}

« Encodi ng iseither uni code or | at i n1, meaning that the characters are (in case of binaries) encoded as
either UTF-8 or 1SO-latin-1 (pure bytes). A well behaved 1/0 server should also return error if list elements
contain integers > 255 when Encodi ng issettol at i n1. Note that this does not in any way tell how
characters should be put on the actual 10 device or how the I/O server should handle them. Different 1/0
servers may handle the characters however they want, this simply tellsthe I/O server which format the data
is expected to have. In the Modul e/Funct i on/Ar gs case, Encodi ng tellswhich format the designated
function produces. Note that byte-oriented datais simplest sent using the 1SO-latin-1 encoding.

» Characters are the datato be put on the 10 device. If Encodi ngisl ati nl, thisisani ol i st (). If
Encodi ng isuni code, thisisan Erlang standard mixed Unicode list (oneinteger in alist per character,
charactersin binaries represented as UTF-8).

* Mbdul e, Functi on, and Ar gs denote afunction which will be called to produce the data (like
io_lib:format/2).Args isalist of argumentsto the function. The function should produce datain the
given Encodi ng. The l/O server should call the function asappl y(Mdd, Func, Args) andwill put the
returned data on the IO device asif itwassentina{ put _chars, Encodi ng, Charact er s} request.
If the function returns anything else than a binary or list or throws an exception, an error should be sent back to
theclient.

The /O server repliesto theclient withani o_r epl y tuple wherethe Repl y element is one of:

ok
{error, Error}

» Error describesthe error to the client, which may do whatever it wants with it. The Erlang io module typically
returnsit asis.

For backward compatibility the following Request s should also be handled by an 1/O server (these requests should
not be present after R15B of OTP):

{put_chars, Characters}
{put_chars, Module, Function, Args}

These should behave as { put _chars, latinl, Characters} and{put_chars, latinl, Module,
Functi on, Args} respectively.

1.1.3 Input Requests
To read characters from an 1O device, the following Request s exist:
{get_until, Encoding, Prompt, Module, Function, ExtraArgs}

* Encodi ng denotes how dataisto be sent back to the client and what data is sent to the function denoted by
Modul e/Funct i on/Ext r aAr gs. If the function supplied returns data as alist, the datais converted to this
encoding. If however the function supplied returns datain some other format, no conversion can be done and it
is up to the client supplied function to return datain a proper way. If Encodi ngisl at i n1, lists of integers
0..255 or binaries containing plain bytes are sent back to the client when possible; if Encodi ng isuni code,
lists with integers in the whole Unicode range or binaries encoded in UTF-8 are sent to the client. The user
supplied function will always see lists of integers, never binaries, but the list may contain numbers > 255 if the
Encodi ng isuni code.

e Pronpt isalist of characters (not mixed, no binaries) or an atom to be output as a prompt for input on the IO
device. Pr onpt isoftenignored by the I/O server and if setto' ' it should always beignored (and result in
nothing being written to the 10 device).

e Mbdul e, Functi on, and Ext r aAr gs denote a function and arguments to determine when enough data is
written. The function should take two additional arguments, the last state, and a list of characters. The function
should return one of:

Ericsson AB. All Rights Reserved.: STDLIB | 3

1.1 The Erlang I/O-protocol

{done, Result, RestChars}
{more, Continuation}

The Resul t can be any Erlang term, but if itisal i st (), the I/O server may convert it to abi nary() of
appropriate format before returning it to the client, if the 1/O server is set in binary mode (see below).

The function will be called with the data the 1/O server finds on its 10 device, returning { done, Result,
Rest Char s} when enough dataisread (in which case Resul t issent to the client and Rest Char s iskeptin
the 1/0O server as a buffer for subsequent input) or { nor e, Conti nuati on}, indicating that more characters
are needed to complete the request. The Cont i nuat i on will be sent as the state in subsequent calls to the
function when more characters are available. When no more characters are available, the function shall return
{done, eof, Rest}.Theinitia stateisthe empty list and the data when an end of file is reached on the
IO device isthe atom eof . An emulation of theget _| i ne request could be (inefficiently) implemented using
the following functions:

-module(demo) .
-export([until newline/3, get line/1]).

until newline(ThisFar,eof, MyStopCharacter) ->
{done,eof,[]};
until newline(ThisFar,CharList,MyStopCharacter) ->
case
lists:splitwith(fun(X) -> X =/= MyStopCharacter end, CharlList)
of
{L,[1} ->
{more, ThisFar++L};
{L2, [MyStopCharacter|Rest]} ->
{done, ThisFar++L2++[MyStopCharacter],Rest}
end.

get line(IoServer) ->
IoServer ! {io request,

self(),
IoServer,
{get until, unicode, '', ?MODULE, until newline, [$\nl}},
receive
{io_reply, IoServer, Data} ->
Data
end.

Note especialy that the last element in the Request tuple ([$\ n]) is appended to the argument list when the
function is called. The function should be called like appl y(Modul e, Function, [State, Data |
ExtraArgs]) by thel/O server

A fixed number of charactersis requested using this Request :

{get_chars, Encoding, Prompt, N}

Encodi ng and Pr onpt asforget _until.
Nisthe number of charactersto be read from the IO device.

A singleline (likein the example above) is requested with this Request :

{get_line, Encoding, Prompt}

Encodi ng and Pr onpt asabove.

Obvioudly, theget chars andget | i ne could beimplemented withtheget _unti | request (and indeed they

were originally), but demands for efficiency has made these additions necessary.

4 | Ericsson AB. All Rights Reserved.: STDLIB

1.1 The Erlang I/O-protocol

The 1/O server repliesto the client with ani o_r epl y tuple where the Repl y element is one of:

Data
eof
{error, Error}

» Dat aisthecharactersread, in either list or binary form (depending on the 1/0O server mode, see below).

e Error describesthe error to the client, which may do whatever it wants with it. The Erlang io module typically
returnsit asis.

« eof isreturned when input end is reached and no more data is available to the client process.

For backward compatibility the following Request s should also be handled by an 1/O server (these regeusts should
not be present after R15B of OTP):

{get_until, Prompt, Module, Function, ExtraArgs}
{get_chars, Prompt, N}
{get_line, Prompt}

These should behave as {get _until, latinl, Pronpt, Mdule, Function, ExtraArgs},
{get_chars, latinl, Pronpt, N} and{get_line, latinl, Pronpt} respectively.

1.1.4 1/O-server Modes

Demands for efficiency when reading data from an 1/O server has not only lead to the addition of theget _| i ne and
get _char s requests, but has also added the concept of 1/O server options. No options are mandatory to implement,
but all 1/0 serversin the Erlang standard libraries honor the bi nar y option, which allows the Dat a element of the
i o_reply tupleto be abinary instead of alist when possible. If the data is sent as a binary, Unicode data will be
sent in the standard Erlang Unicode format, i.e. UTF-8 (note that the function of the get _unti | request till gets
list data regardless of the 1/0 server mode).

Notethat i.e. theget _unti | request allows for afunction with the data specified as aways being a list. Also the
return value data from such a function can be of any type (asisindeed the case when ani o: f r ead request is sent
to an I/O server). The client has to be prepared for data received as answers to those requests to be in a variety of
forms, but the 1/0 server should convert the results to binaries whenever possible (i.e. when the function supplied to
get _until actually returnsalist). The example shown later in thistext doesjust that.

An 1/O-server in binary mode will affect the data sent to the client, so that it has to be able to handle binary data. For
convenience, it is possible to set and retrieve the modes of an /O server using the following /O requests:

{setopts, Opts}
« Optsisalist of optionsin the format recognized by proplists (and of course by the I/O server itself).
Asan example, the I/O server for the interactive shell (in gr oup. er |) understands the following options:

{binary, boolean()} (or binary/list)

{echo, boolean()}

{expand_fun, fun()}

{encoding, unicode/latinl} (or unicode/latinl)

- of which the bi nary and encodi ng options are common for all 1/0 serversin OTP, while echo and expand
arevalid only for this I/O server. It isworth noting that the uni code option notifies how characters are actually put
on the physical 10 device, i.e. if theterminal per seis Unicode aware, it does not affect how characters are sent in the
I/O-protocol, where each request contains encoding information for the provided or returned data.

The I/O server should send one of the following as Repl y:

ok
{error, Error}

Ericsson AB. All Rights Reserved.: STDLIB | 5

1.1 The Erlang I/O-protocol

An error (preferably enot sup) is to be expected if the option is not supported by the I/O server (like if an echo
optionissentin aset opt s request to aplain file).

To retrieve options, this request is used:

getopts

Theget opt s request asksfor acompletelist of all options supported by the 1/0O server aswell astheir current val ues.
The I/O server replies:

OptList
{error, Error}

e OptList isalist of tuples{ Opti on, Val ue} where Qpt i on isawaysan atom.

1.1.5 Multiple I/O Requests

The Request element caninitself contain several Request s by using the following format:
{requests, Requests}

e Requestsisalistof vaidi o_request tuplesfor the protocol, they shall be executed in the order in which
they appear in the list and the execution should continue until one of the requests result in an error or thelistis
consumed. The result of the last request is sent back to the client.

The 1/O server can for alist of requests send any of the valid resultsin the reply:

ok

{ok, Data}
{ok, Options}
{error, Error}

- depending on the actual requestsin the list.

1.1.6 Optional I/O Requests

Thefollowing I/0 request is optional to implement and a client should be prepared for an error return:
{get_geometry, Geometry}

» Ceonetry iseither the atom r ows or the atom col umms.

The 1/O server should send the Repl y as:

{ok, N}
{error, Error}

* Nisthe number of character rows or columnsthe IO device has, if applicable to the 1O device the I/O server
handles, otherwise{ error, enotsup} isagood answer.

1.1.7 Unimplemented Request Types

If an 1/0O server encounters arequest it does not recognize (i.e. thei o_r equest tupleisin the expected format, but
the actual Request isunknown), the I/O server should send avalid reply with the error tuple:

{error, request}

This makes it possible to extend the protocol with optiona requests and for the clients to be somewhat backwards
compatible.

6 | Ericsson AB. All Rights Reserved.: STDLIB

1.1 The Erlang I/O-protocol

1.1.8 An Annotated and Working Example 1/0O Server

An 1/O server is any process capable of handling the 1/O protocol. There is no generic I/O server behavior, but could
well be. The framework is simple enough, a process handling incoming requests, usually both 1/0O-requests and other
IO device-specific requests (for i.e. positioning, closing etc.).

Our example 1/0 server stores charactersin an ETS table, making up afairly crude ram-file (it is probably not useful,
but working).

The module begins with the usual directives, afunction to start the I/O server and a main loop handling the requests:

-module(ets io server).
-export([start link/0, init/0, loop/1l, until newline/3, until enough/3]).
-define (CHARS PER REC, 10).

-record(state, {
table,
position, % absolute
mode % binary | list

}).

start link() ->
spawn_link(?MODULE,init, []).

init() ->
Table = ets:new(noname, [ordered set]),
?MODULE: loop (#state{table = Table, position = 0, mode=list}).

loop(State) ->
receive
{io _request, From, ReplyAs, Request} ->
case request(Request,State) of
{Tag, Reply, NewState} when Tag =:= ok; Tag =:
reply(From, ReplyAs, Reply),
?MODULE: loop (NewState) ;
{stop, Reply, NewState} ->
reply(From, ReplyAs, Reply),
exit(Reply)
end;
%% Private message
{From, rewind} ->
From ! {self(), ok},
?MODULE: loop(State#state{position = 0});
_Unknown ->
?MODULE: loop(State)
end.

error ->

The main loop receives messages from the client (which might be using the io module to send requests). For each
request the function r equest / 2 iscaled and areply is eventually sent using ther epl y/ 3 function.

The "private” message { From rew nd} results in the current position in the pseudo-file to be reset to O (the
beginning of the"file"). Thisisatypica example of 10 device-specific messages not being part of the 1/O-protocol. It
isusually abad ideato embed such private messagesini o_r equest tuples, asthat might be confusing to the reader.

Let uslook at the reply function first...

reply (From, ReplyAs, Reply) ->

Ericsson AB. All Rights Reserved.: STDLIB | 7

1.1 The Erlang I/O-protocol

From ! {io reply, ReplyAs, Reply}.

Simple enough, it sends the i o_r epl y tuple back to the client, providing the Repl yAs element received in the
reguest along with the result of the request, as described above.

Now look at the different requests we need to handle. First the requests for writing characters:

request({put _chars, Encoding, Chars}, State) ->
put chars(unicode:characters to list(Chars,Encoding),State);
request({put chars, Encoding, Module, Function, Args}, State) ->
try
request({put _chars, Encoding, apply(Module, Function, Args)}, State)
catch
77->
{error, {error,Function}, State}
end;

TheEncodi ng tellsushow the charactersin the request are represented. Wewant to store the charactersaslistsinthe
ETS table, so we convert them to lists using the uni code: characters_to_| i st/ 2 function. The conversion
function conveniently accepts the encoding typesuni code or | ati n1, so we can use Encodi ng directly.

When Modul e, Funct i on and Ar gunent s are provided, we simply apply it and do the same thing with the result
asif the data was provided directly.

Let us handle the requests for retrieving data too:

request({get until, Encoding, Prompt, M, F, As}, State) ->
get until(Encoding, M, F, As, State);
request({get chars, Encoding, Prompt, N}, State) ->
%% To simplify the code, get chars is implemented using get until
get until(Encoding, ?MODULE, until enough, [N], State);
request({get line, Encoding, Prompt}, State) ->
%% To simplify the code, get line is implemented using get until
get until(Encoding, ?MODULE, until newline, [$\n], State);

Herewe have cheated alittle by more or lessonly implementingget _unt i | and using internal hel persto implement
get _chars and get _| i ne. In production code, this might be too inefficient, but that of course depends on
the frequency of the different requests. Before we start actually implementing the functions put _char s/ 2 and
get _until /5, letuslook into the few remaining requests:

request({get geometry, }, State) ->
{error, {error,enotsup}, State};
request({setopts, Opts}, State) ->
setopts(Opts, State);
request(getopts, State) ->
getopts(State);
request({requests, Regs}, State) ->
multi request(Reqgs, {ok, ok, State});

Theget _geonet ry request has no meaning for this 1/O server, so the reply will be{error, enotsup}.The
only option we handleisthebi nar y/l i st option, which is done in separate functions.

The multi-request tag (r equest s) is handled in a separate loop function applying the requests in the list one after
another, returning the last result.

8 | Ericsson AB. All Rights Reserved.: STDLIB

1.1 The Erlang I/O-protocol

What is left is to handle backward compatibility and the file module (which uses the old requests until backward
compatibility with pre-R13 nodes is no longer needed). Note that the 1/O server will not work with a simple
file:wite/?2ifthesearenot added:

request({put chars,Chars}, State) ->

request({put chars,latinl,Chars}, State);
request({put chars,M,F,As}, State) ->

request({put chars,latinl,M,F,As}, State);
request({get chars,Prompt,N}, State) ->

request({get chars,latinl,Prompt,N}, State);
request({get line,Prompt}, State) ->

request({get line,latinl,Prompt}, State);
request({get until, Prompt,M,F,As}, State) ->

request({get until,latinl,Prompt,M,F,As}, State);

OK, what isleft now istoreturn{error, request} if therequestis not recognized:

request(Other, State) ->
{error, {error, request}, State}.

Let us move further and actually handle the different requests, first the fairly generic multi-request type:

multi request([R|Rs], {ok, Res, State}) ->
multi request(Rs, request(R, State));
multi request([| 1, Error) ->
Error;
multi request([], Result) ->
Result.

We loop through the requests one at the time, stopping when we either encounter an error or the list is exhausted.
The last return value is sent back to the client (it is first returned to the main loop and then sent back by the function

i o_reply).
Theget opt s and set opt s requests are also simple to handle, we just change or read our state record:

setopts(OptsQ,State) ->
Opts = proplists:unfold(
proplists:substitute negations(
[{list,binary}],
Opts0)),
case check valid opts(0Opts) of
true ->
case proplists:get value(binary, Opts) of
true ->
{ok,ok,State#state{mode=binary}};
false ->
{ok,ok,State#state{mode=binary}};
->

{ok, ok, State}

end;
false ->
{error,{error,enotsup},State}
end.
check valid opts([]) ->
true;

Ericsson AB. All Rights Reserved.: STDLIB | 9

1.1 The Erlang I/O-protocol

check valid opts([{binary,Bool}|T]) when is boolean(Bool) ->
check valid opts(T);

check valid opts() ->
false.

getopts(#state{mode=M} = S) ->
{ok, [{binary, case M of
binary ->
true;
7—>
false
end}],S}.

As a convention, all 1/0O servers handle both {set opts, [binary]}, {setopts, [list]} and
{setopts, [{binary, boolean()}]}, hencethetrick with proplists:substitute_negations/2
and propl i sts: unfol d/ 1.If invalid optionsare sent to us, wesend { error, enot sup} back to the client.

Theget opt s request shouldreturnalist of { Opt i on, Val ue} tuples, which hasthetwofold function of providing
both the current values and the available options of this 1/O server. We have only one option, and hence return that.

So far our 1/0 server has been fairly generic (except for ther ewi nd request handled in the main loop and the creation
of an ETStable). Most 1/0 servers contain code similar to the one above.

To make the example runnable, we now start implementing the actual reading and writing of the datato/fromthe ETS
table. First the put _char s/ 3 function:

put chars(Chars, #state{table = T, position = P} = State) ->
R = P div ?CHARS PER REC,
C = P rem ?CHARS PER REC,
[apply update(T,U) || U <- split data(Chars, R, C) 1,
{ok, ok, State#state{position = (P + length(Chars))}}.

We aready have the data as (Unicode) lists and therefore just split the list in runs of a predefined size and put each
run in the table at the current position (and forward). The functionsspl i t _dat a/ 3 and appl y_updat e/ 2 are
implemented below.

Now we want to read data from the table. Theget _unti | / 5 function reads data and applies the function until it
saysit isdone. Theresult is sent back to the client:

get until(Encoding, Mod, Func, As,
#state{position = P, mode = M, table = T} = State) ->
case get loop(Mod, Func,As,T,P,[]) of
{done,Data, ,NewP} when is binary(Data); is list(Data) ->
if
M =:= binary ->
{Okl
unicode:characters to binary(Data, unicode, Encoding),
State#state{position = NewP}};
true ->
case check(Encoding,
unicode:characters to list(Data, unicode))
of
{error, } =E ->
{error, E, State};
List ->
{ok, List,
State#state{position = NewP}}
end
end;

10 | Ericsson AB. All Rights Reserved.: STDLIB

1.1 The Erlang I/O-protocol

{done,Data, ,NewP} ->
{ok, Data, State#state{position = NewP}};
Error ->
{error, Error, State}
end.

get loop(M,F,A,T,P,C) ->
{NewP,L} = get(P,T),
case catch apply(M,F,[C,L|A]) of
{done, List, Rest} ->
{done, List, [], NewP - length(Rest)};
{more, NewC} ->
get loop(M,F,A,T,NewP,NewC);
->
{error,F}
end.

Here we also handle the mode (bi nary or | i st) that can be set by the set opt s request. By default, al OTP 1/O
servers send data back to the client as lists, but switching modeto bi nar y might increase efficiency if the 1/O server
handlesitin an appropriate way. Theimplementation of get _unt i | ishardto get efficient asthe supplied functionis
defined to take lists as arguments, but get _char s andget _I| i ne can be optimized for binary mode. This example
does not optimize anything however. It is important though that the returned data is of the right type depending on
the options set, so we convert the lists to binaries in the correct encoding if possible before returning. The function
suppliedintheget _unti | request tuple may, asitsfinal result return anything, so only functions actually returning
lists can get them converted to binaries. If the request contained the encoding tag uni code, the lists can contain all
Unicode codepoints and the binaries should be in UTF-8, if the encoding tag was | at i n1, the client should only
get characters in the range 0..255. The function check/ 2 takes care of not returning arbitrary Unicode codepoints
inlistsif the encoding was given as| at i n1. If the function did not return alist, the check cannot be performed and
the result will be that of the supplied function untouched.

Now we are more or less done. We implement the utility functions below to actually manipulate the table:

check(unicode, List) ->
List;

check(latinl, List) ->
try

[throw(not unicode) || X <- List,

X > 255 1],

List
catch

throw: ->
{error, {cannot convert, unicode, latinl}}
end.

The function check takes care of providing an error tuple if Unicode codepoints above 255 is to be returned if the
client requested latinl.

Thetwofunctionsunti | _new i ne/ 3andunti | _enough/ 3 arehelpersused together withtheget _until/5
function to implement get _char s andget _I| i ne (inefficiently):

until newline([],eof, MyStopCharacter) ->
{done, eof, [1};
until newline(ThisFar,eof, MyStopCharacter) ->
{done,ThisFar,[1};
until newline(ThisFar,CharList,MyStopCharacter) ->
case
lists:splitwith(fun(X) -> X =/= MyStopCharacter end, CharlList)

Ericsson AB. All Rights Reserved.: STDLIB | 11

1.1 The Erlang I/O-protocol

of

{L,[1} ->
{more,ThisFar++L};
{L2, [MyStopCharacter|Rest]} ->
{done, ThisFar++L2++[MyStopCharacter],Rest}
end.

until enough([],eof, N) ->
{done, eof, [1};

until enough(ThisFar,eof, N) ->
{done, ThisFar,[1};

until enough(ThisFar,CharList,N)

when length(ThisFar) + length(CharList) >= N ->

{Res,Rest} = my split(N,ThisFar ++ CharList, []),
{done,Res,Rest};

until enough(ThisFar,CharList, N) ->
{more, ThisFar++CharList}.

As can be seen, the functions above are just the type of functions that should be provided inget _unt i | requests.
Now we only need to read and write the table in an appropriate way to complete the /0O server:

get(P,Tab) ->
R = P div ?CHARS PER REC,
C = P rem ?CHARS PER REC,
case ets:lookup(Tab,R) of
[1 ->
{P,eof};
[{R,List}] ->
case my split(C,List,[]) of
{01} ->
{P+length(List),eof};
{ _,Data} ->
{P+length(Data),Data}
end
end.

my split(0,Left,Acc) ->
{lists:reverse(Acc),Left};
my split(,[],Acc) ->
{lists:reverse(Acc),[]1};
my split(N,[H|T],Acc) ->
my split(N-1,T,[H|Acc]).

split data([]l, ,) ->
[1;

split data(Chars, Row, Col) ->
{This,Left} = my split(?CHARS PER REC - Col, Chars, []),
[{Row, Col, This} | split data(Left, Row + 1, 0) 1.

apply update(Table, {Row, Col, List}) ->
case ets:lookup(Table,Row) of
[1 ->
ets:insert(Table, {Row, lists:duplicate(Col,0) ++ List});
[{Row, OldData}] ->
{Partl, } = my split(Col,OldData,[]),
{ ,Part2} = my split(Col+length(List),0ldData,[]),
ets:insert(Table, {Row, Partl ++ List ++ Part2})
end.

The table is read or written in chunks of 2CHARS PER REC, overwriting when necessary. The implementation is
obviously not efficient, it isjust working.

12 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

This concludes the example. It isfully runnable and you can read or write to the I/O server by usingi.e. theio module
or even the file module. It is as simple as that to implement afully fledged 1/O server in Erlang.

1.2 Using Unicode in Erlang

1.2.1 Unicode Implementation

Implementing support for Unicode character sets is an ongoing process. The Erlang Enhancement Proposal (EEP)
10 outlined the basics of Unicode support and also specified a default encoding in binaries that all Unicode-aware
modules should handle in the future.

The functionality described in EEP10 was implemented in Erlang/OTP as of R13A, but that was by no means the end
of it. In R14B01 support for Unicode file names was added, although it was in no way complete and was by default
disabled on platforms where no guarantee was given for the file name encoding. With R16A came support for UTF-8
encoded source code, among with enhancements to many of the applications to support both Unicode encoded file
names as well as support for UTF-8 encoded files in several circumstances. Most notable is the support for UTF-8
infilesread by fil e: consul t/ 1, release handler support for UTF-8 and more support for Unicode character sets
in the I/O-system.

In R17, the encoding default for Erlang source files will be switched to UTF-8 and in R18 Erlang will support atoms
in the full Unicode range, meaning full Unicode function and module names

This guide outlines the current Unicode support and gives a couple of recipes for working with Unicode data.

1.2.2 Understanding Unicode

Experience with the Unicode support in Erlang has made it painfully clear that understanding Unicode characters and
encodings is not as easy as one would expect. The complexity of the field as well as the implications of the standard
requires thorough understanding of concepts rarely before thought of.

Furthermore the Erlang implementation requires understanding of conceptsthat never were an issue for many (Erlang)
programmers. To understand and use Unicode characters requires that you study the subject thoroughly, evenif you're
an experienced programmer.

As an example, one could contemplate the issue of converting between upper and lower case letters. Reading the
standard will make you realize that, to begin with, there's not a simple one to one mapping in all scripts. Take German
asan example, wherethere'saletter "[3' (Sharp s) in lower case, but the uppercase equivalentis"SS'. Or Greek, where
"#"' hastwo different lowercase forms: "#" in word-final position and "#" elsewhere. Or Turkish where dotted and dot-
less"i" both exist in lower case and upper caseforms, or Cyrillic 1" which usually has no lowercase form. Or of course
languages that have no concept of upper case (or lower case). So, aconversion function will need to know not only one
character at atime, but possibly the whole sentence, maybe the natural language the trandlation should bein and also
take into account differences in input and output string length and so on. There is at the time of writing no Unicode
to_upper/to_lower functionality in Erlang/OTP, but there are publicly available libraries that address these issues.

Another example is the accented characters where the same glyph has two different representations. Let's look at the
Swedish "@". There's a code point for that in the Unicode standard, but you can also write it as "0" followed by U
+0308 (Combining Diaeresis, with the simplified meaning that the last letter should have a "™ above). They have
exactly the same glyph. They are for most purposes the same, but they have completely different representations. For
example MacOS X converts all file names to use Combining Diaeresis, while most other programs (including Erlang)
try to hide that by doing the opposite when for example listing directories. However it's done, it's usually important
to normalize such characters to avoid utter confusion.

The list of examples can be made as long as the Unicode standard, | suspect. The point is that one need a kind of
knowledge that was never needed when programs only took one or two languages into account. The complexity of
human languages and scripts, certainly has made this a challenge when constructing a universal standard. Supporting
Unicode properly in your program will require effort.

Ericsson AB. All Rights Reserved.: STDLIB | 13

1.2 Using Unicode in Erlang

1.2.3 What Unicode Is

Unicodeis a standard defining code points (numbers) for all known, living or dead, scripts. In principle, every known
symbol used in any language has a Unicode code point.

Unicode code points are defined and published by the Unicode Consortium, which is a non profit organization.

Support for Unicode isincreasing throughout the world of computing, asthe benefits of one common character set are
overwhelming when programs are used in aglobal environment.

Along with the base of the standard: the code points for all the scripts, there are a couple of encoding standards
available.

Itisvital to understand the difference between encodings and Unicode characters. Unicode characters are code points
according to the Unicode standard, while the encodings are ways to represent such code points. An encoding isjust a
standard for representation, UTF-8 can for example be used to represent a very limited part of the Unicode character
set (e.g. 1ISO-Latin-1), or the full Unicode range. It's just an encoding format.

Aslong asall character setswere limited to 256 characters, each character could be stored in one single byte, so there
was more or less only one practical encoding for the characters. Encoding each character in one byte was so common
that the encoding wasn't even named. When we now, with the Unicode system, have alot more than 256 characters,
we need acommon way to represent these. The common ways of representing the code points are the encodings. This
means awhole new concept to the programmer, the concept of character representation, which was before anon-issue.

Different operating systems and tools support different encodings. For example Linux and MacOS X has chosen the
UTF-8 encoding, which is backwards compatible with 7-bit ASCII and therefore affects programs written in plain
English the least. Windows on the other hand supports alimited version of UTF-16, namely all the code planes where
the characters can be stored in one single 16-bit entity, which includes most living languages.

The most widely spread encodings are:

Bytewise representation
Thisis not a proper Unicode representation, but the representation used for characters before the Unicode
standard. It can still be used to represent character code points in the Unicode standard that have numbers
below 256, which corresponds exactly to the ISO-Latin-1 character set. In Erlang, thisis commonly denoted
I ati n1 encoding, which is slightly misleading as | SO-Latin-1 is a character code range, not an encoding.

UTF-8
Each character is stored in one to four bytes depending on code point. The encoding is backwards compatible
with bytewise representation of 7-bit ASCII as all 7-bit characters are stored in one single bytein UTF-8. The
characters beyond code point 127 are stored in more bytes, letting the most significant bit in the first character
indicate a multi-byte character. For details on the encoding, the RFC is publicly available. Note that UTF-8 is
not compatible with bytewise representation for code points between 128 and 255, so a|SO-Latin-1 bytewise
representation is not generally compatible with UTF-8.

UTF-16
This encoding has many similaritiesto UTF-8, but the basic unit is a 16-bit number. This means that al
characters occupy at least two bytes, some high numbers even four bytes. Some programs, libraries and
operating systems claiming to use UTF-16 only allows for characters that can be stored in one 16-bit entity,
which isusualy sufficient to handle living languages. As the basic unit is more than one byte, byte-order issues
occur, why UTF-16 existsin both a big-endian and little-endian variant. In Erlang, the full UTF-16 range is
supported when applicable, likein the uni code module and in the bit syntax.

UTF-32
The most straight forward representation. Each character is stored in one single 32-bit number. Thereisno
need for escapes or any variable amount of entities for one character, all Unicode code points can be stored
in one single 32-bit entity. Aswith UTF-16, there are byte-order issues, UTF-32 can be both big- and little-
endian.

14 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

UCs4
Basically the same as UTF-32, but without some Unicode semantics, defined by |EEE and hasllittle use
as a separate encoding standard. For all normal (and possibly abnormal) usages, UTF-32 and UCS-4 are
interchangeable.

Certain ranges of numbers are left unused in the Unicode standard and certain ranges are even deemed invalid. The
most notable invalid range is 16#D800 - 16#DFFF, as the UTF-16 encoding does not allow for encoding of these
numbers. It can be speculated that the UTF-16 encoding standard was, from the beginning, expected to be able to hold
all Unicode characters in one 16-hit entity, but then had to be extended, |eaving a hole in the Unicode range to cope
with backward compatibility.

Additionally, the code point 16#FEFF isused for byte order marks (BOM's) and use of that character is not encouraged
in other contexts than that. It actually is valid though, as the character "ZWNBS" (Zero Width Non Breaking Space).
BOM's are used to identify encodings and byte order for programs where such parameters are not known in advance.
Byte order marks are more seldom used than one could expect, but their use might become more widely spread as they
provide the means for programs to make educated guesses about the Unicode format of a certain file.

1.2.4 Areas of Unicode Support

To support Unicode in Erlang, problems in several areas have been addressed. Each area is described briefly in this
section and more thoroughly further down in this document:

Representation
To handle Unicode characters in Erlang, we have to have a common representation both in lists and binaries.
The EEP (10) and the subseguent initial implementation in R13A settled a standard representation of Unicode
charactersin Erlang.

Manipulation
The Unicode characters need to be processed by the Erlang program, why library functions need to be able to
handle them. In some cases functionality was added to already existing interfaces (as the string module now
can handle lists with arbitrary code points), in some cases new functionality or options need to be added (asin
thei o-module, the file handling, the uni code module and the bit syntax). Today most modules in kernel and
STDLIB, aswell asthe VM are Unicode aware.

Filel/O
1/0 is by far the most problematic areafor Unicode. A fileis an entity where bytes are stored and the lore of
programming has been to treat characters and bytes as interchangeable. With Unicode characters, you need to
decide on an encoding as soon as you want to store the datain afile. In Erlang you can open atext file with
an encoding option, so that you can read characters from it rather than bytes, but you can also open afile for
bytewise I/0O. The I/O-system of Erlang has been designed (or at least used) in away where you expect any 1/
O-server to be able to cope with any string data, but that is no longer the case when you work with Unicode
characters. Handling the fact that you need to know the capabilities of the device where your dataends up is
something new to the Erlang programmer. Furthermore, portsin Erlang are byte oriented, so an arbitrary string
of (Unicode) characters can not be sent to a port without first converting it to an encoding of choice.

Termina 1/0
Terminal 1/0O isdlightly easier than file 1/0. The output is meant for human reading and is usually Erlang
syntax (e.g. in the shell). There exists syntactic representation of any Unicode character without actually
displaying the glyph (instead written as\ x{ HHH}), so Unicode data can usually be displayed even if the
terminal as such do not support the whole Unicode range.

File names
File names can be stored as Unicode strings, in different ways depending on the underlying OS and file system.
This can be handled fairly easy by a program. The problems arise when the file system is not consistent in
it's encodings, like for example Linux. Linux allows files to be named with any sequence of bytes, leaving to
each program to interpret those bytes. On systems where these "transparent” file names are used, Erlang has
to be informed about the file name encoding by a startup flag. The default is bytewise interpretation, which is
actually usually wrong, but alows for interpretation of all file names. The concept of "raw file names' can be

Ericsson AB. All Rights Reserved.: STDLIB | 15

1.2 Using Unicode in Erlang

used to handle wrongly encoded file names if one enables Unicode file name translation (+f nu) on platforms
where this is not the default.

Source code encoding
When it comes to the Erlang source code, there is support for the UTF-8 encoding and bytewise encoding. The
default in R16B is bytewise (or latinl) encoding. Y ou can control the encoding by a comment like:

%% -*- coding: utf-8 -*-

in the beginning of the file. This of course requires your editor to support UTF-8 as well. The same comment
isasointerpreted by functionslikef i | e: consul t/ 1, the release handler etc, so that you can have all text
filesin your source directoriesin UTF-8 encoding.

The language
Having the source codein UTF-8 also allows you to write string literals containing Unicode characters with
code points > 255, although atoms, module names and function names will be restricted to the |SO-Latin-1
range until the R18 release. Binary literals where you use the / ut f 8 type, can also be expressed using
Unicode characters > 255. Having module names using characters other than 7-bit ASCII can cause trouble
on operating systems with inconsistent file naming schemes, and might also hurt portability, so it's not really
recommended. It is suggested in EEP 40 that the language should a so allow for Unicode characters > 255 in
variable names. Whether to implement that EEP or not is yet to be decided.

1.2.5 Standard Unicode Representation

In Erlang, strings are actualy lists of integers. A string was up until R13 defined to be encoded in the 1SO-latin-1
(1S08859-1) character set, which is, code point by code point, a sub-range of the Unicode character set.

The standard list encoding for strings was therefore easily extended to cope with the whole Unicode range: A Unicode
string in Erlang is simply a list containing integers, each integer being a valid Unicode code point and representing
one character in the Unicode character set.

Erlang stringsin ISO-latin-1 are a subset of Unicode strings.

Only if a string contains code points < 256, can it be directly converted to a binary by using i.e
erlang:iolist_to_binary/ 1 orcanbesentdirectly toaport. If the string contains Unicode characters > 255,
an encoding has to be decided upon and the string should be converted to a binary in the preferred encoding using
uni code: characters_to_binary/ {1, 2, 3}.Stringsarenot generally listsof bytes, asthey werebefore R13.
They arelists of characters. Characters are not generally bytes, they are Unicode code points.

Binaries are more troublesome. For performance reasons, programs often store textual datain binariesinstead of lists,
mainly because they are more compact (one byte per character instead of two words per character, as is the case
with lists). Using erl ang: | i st _to_bi nary/ 1, an ISO-Latin-1 Erlang string could be converted into a binary,
effectively using bytewise encoding - one byte per character. Thiswasvery convenient for those limited Erlang strings,
but cannot be done for arbitrary Unicode lists.

Asthe UTF-8 encoding is widely spread and provides some backward compatibility in the 7-bit ASCII range, it is
selected as the standard encoding for Unicode charactersin binaries for Erlang.

The standard binary encoding is used whenever alibrary function in Erlang should cope with Unicode datain binaries,
but isof course not enforced when communi cating externally. Functions and bit-syntax exist to encode and decode both
UTF-8, UTF-16 and UTF-32 in binaries. Library functions dealing with binaries and Unicode in general, however,
only deal with the default encoding.

Character datamay be combined from several sources, sometimes availablein amix of stringsand binaries. Erlang has
for long had the concept of i odat a ori ol i st s, where binaries and lists can be combined to represent a sequence of
bytes. Inthe sameway, the Unicode aware modul es often all ow for combinations of binariesand listswherethe binaries
have characters encoded in UTF-8 and the lists contain such binaries or numbers representing Unicode code points:

16 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

unicode binary() = binary() with characters encoded in UTF-8 coding standard

chardata()

charlist() | unicode binary()

charlist() maybe improper list(char() | unicode binary() | charlist(),

unicode binary() | nil())

Themoduleuni code in STDLIB even supports similar mixeswith binaries containing other encodings than UTF-8,
but that is a special case to allow for conversionsto and from external data:

external unicode binary() = binary() with characters coded in
a user specified Unicode encoding other than UTF-8 (UTF-16 or UTF-32)

external chardata() = external charlist() | external unicode binary()

external charlist() = maybe improper list(char() |
external unicode binary() |
external charlist(),
external unicode binary() | nil())

1.2.6 Basic Language Support

As of Erlang/OTP R16 Erlang source files can be written in either UTF-8 or bytewise encoding (a.k.a. | ati nl
encoding). The details on how to state the encoding of an Erlang source file can be found in epp(3) . Strings and
comments can be written using Unicode, but functions still have to be named using characters from the 1SO-latin-1
character set and atoms are restricted to the same |SO-latin-1 range. These restrictions in the language are of course
independent of the encoding of the source file. Erlang/OTP R18 is expected to handle functions named in Unicode
aswell as Unicode atoms.

Bit-syntax

The bit-syntax contains types for coping with binary data in the three main encodings. The types are named ut f 8,
ut f 16 and ut f 32 respectively. Theut f 16 and ut f 32 types can be in abig- or little-endian variant:

<<Ch/utf8, /binary>> = Binl,

<<Ch/utfl16-little, /binary>> = Bin2,

Bin3 = <<$H/utf32-little, $e/utf32-little, $1/utf32-little, $1/utf32-little,
$o/utf32-little>>,

For convenience, literal strings can be encoded with a Unicode encoding in binaries using the following (or similar)
syntax:

Bin4 = <<"Hello"/utfl6>>,

String and Character Literals

For source code, thereisan extension to the\ OOO (backslash followed by three octal numbers) and\ xHH (backslash
followed by x, followed by two hexadecimal characters) syntax, namely \ x{ H ...} (a backslash followed by an x,
followed by left curly bracket, any number of hexadecimal digits and a terminating right curly bracket). This allows
for entering characters of any code point literally in a string even when the encoding of the source file is bytewise
(atinl).

Ericsson AB. All Rights Reserved.: STDLIB | 17

1.2 Using Unicode in Erlang

Intheshédll, if using aUnicodeinput device, or in source code stored in UTF-8, $ can befollowed directly by aUnicode
character producing an integer. In the following example the code point of a Cyrillic # is output:

7> $c.
1089

Heuristic String Detection

In certain output functions and in the output of return valuesin the shell, Erlang triesto heuristically detect string data
in lists and binaries. Typically you will see heuristic detection in a situation like this:

1> [97,98,99].

"abc"

2> <<97,98,99>>.

<<"abc">>

3> <<195,165,195,164,195,182>>.

°

<<"a@ad"/utf8>>

Here the shell will detect lists containing printable characters or binaries containing printable characters either in
bytewise or UTF-8 encoding. The question here is: what is a printable character? One view would be that anything
the Unicode standard thinks is printable, will also be printable according to the heuristic detection. The result would
be that almost any list of integers will be deemed a string, resulting in all sorts of characters being printed, maybe
even characters your terminal does not have in its font set (resulting in some generic output you probably will not
appreciate). Another way isto keep it backwards compatible so that only the |SO-L atin-1 character set isused to detect
a string. A third way would be to let the user decide exactly what Unicode ranges are to be viewed as characters.
In R16B you can select either the whole Unicode range or the I1SO-Latin-1 range by supplying the startup flag +pc
Range, where Rangeiseither | at i n1 or uni code. For backwards compatibility, the default is| at i n1. Thisonly
controls how heuristic string detection is done. In the future, more ranges are expected to be added, so that one can
tailor the heuristics to the language and region relevant to the user.

Letslook at an example with the two different startup options:

$ erl +pc latinl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> [1024].

[1024]

2> [1070,1085,1080,1082,1086,1076] .
[1070,1085,1080,1082,1086,1076]

3> [229,228,246].

"340"

4> <<208,174,208,189,208,184,208,186,208,190,208,180>>.
<<208,174,208,189,208,184,208,186,208,190,208,180>>
5> <<229/utf8,228/utf8,246/utf8>>.

<<"3306"/utf8>>

$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> [1024].
o

18 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

2> [1070,1085,1080,1082,1086,1076] .
"lOHuKkon"
3> [229,228,246].

na=x

aao"
4> <<208,174,208,189,208,184,208,186,208,190,208,180>>.
<<"lOHukop" /utf8>>
5> <<229/utf8,228/utf8,246/utf8>>.
<<"3306"/utf8>>

In the examples, we can see that the default Erlang shell will only interpret characters from the ISO-Latinl range as
printable and will only detect lists or binaries with those "printable” characters as containing string data. The valid
UTF-8 binary containing "#####", will not be printed as a string. When, on the other hand, started with all Unicode
characters printable (+pc uni code), the shell will output anything containing printable Unicode data (in binaries
either UTF-8 or bytewise encoded) as string data.

These heuristicsareasoused by i o(_I i b): f or mat / 2 and friendswhen thet modifier isused in conjunction with
~p or ~P:

$ erl +pc latinl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> io:format("~tp~n", [{<<"380">>, <<"330"/utf8>>, <<208,174,208,189,208,184,208,186,208,190,208,180>>}]).
{<<"330">>,<<"336" /utf8>>,<<208,174,208,189,208,184,208,186,208,190,208,180>>}

ok

$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)
1> io:format("~tp~n", [{<<"380">>, <<"330"/utf8>>, <<208,174,208,189,208,184,208,186,208,190,208,180>>}]).

n g n2

{<<"aa0">>,<<"aao"/utf8>>, <<"l0Hukon" /utf8>>}
ok

Please observethat thisonly affects heuristic interpretation of lists and binaries on output. For examplethe~t s format
sequence does always output avalid lists of characters, regardless of the +pc setting, asthe programmer has explicitly
reguested string output.

1.2.7 The Interactive Shell

The interactive Erlang shell, when started towards a terminal or started using the wer | command on windows, can
support Unicode input and output.

On Windows, proper operation requires that a suitable font isinstalled and selected for the Erlang application to use.
If no suitable font is available on your system, try installing the DejaVu fonts (dej avu- f ont s. or g), which are
freely available and then select that font in the Erlang shell application.

On Unix-like operating systems, the terminal should be able to handle UTF-8 on input and output (modern versions
of XTerm, KDE konsole and the Gnome terminal do for example) and your locale settings have to be proper. As an
example, my LANG environment variableis set as this:

$ echo $LANG
en US.UTF-8

Ericsson AB. All Rights Reserved.: STDLIB | 19

1.2 Using Unicode in Erlang

Actually, most systems handle the LC_CTYPE variable before LANG, soif that is set, it has to be set to UTF- 8:

$ echo $LC CTYPE
en US.UTF-8

The LANGor LC_CTYPE setting should be consistent with what the terminal is capable of, thereis no portable way for
Erlang to ask the actual terminal about its UTF-8 capacity, we haveto rely on the language and character type settings.

To investigate what Erlang thinks about the terminal, thei o0: get opt s() call can be used when the shell is started:

$ LC CTYPE=en US.IS0-8859-1 erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> lists:keyfind(encoding, 1, io:getopts()).

{encoding,latinl}

2> q().

ok

$ LC CTYPE=en US.UTF-8 erl

Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> lists:keyfind(encoding, 1, io:getopts()).
{encoding,unicode}

2>

When (finally?) everything isin order with the local e settings, fonts and the terminal emulator, you probably also have
discovered a way to input characters in the script you desire. For testing, the simplest way is to add some keyboard
mappings for other languages, usually done with some applet in your desktop environment. In my KDE environment, |
start the KDE Control Center (Personal Settings), select "Regional and Accessibility” and then "Keyboard Layout”. On
Windows XP, | start Control Panel->Regional and Language Options, select the Language tab and click the Detalils...
button in the square named "Text services and input Languages". Y our environment probably provides similar means
of changing the keyboard layout. Make sure you have a way to easily switch back and forth between keyboards if
you are not used to this, entering commands using a Cyrillic character set is, as an example, not easily done in the
Erlang shell.

Now you are set up for some Unicodeinput and output. The simplest thing to dois of courseto enter astring in the shell:

$ erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> lists:keyfind(encoding, 1, io:getopts()).
{encoding,unicode}

2> "lOHukop" .

"lOHukon"

3> io:format("~ts~n", [v(2)]).

0HMKog

ok

4>

While strings can be input as Unicode characters, the language elements are still limited to the ISO-latin-1 character
set. Only character constants and strings are allowed to be beyond that range:

20 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

$ erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)
1> $E.

958

2> l0HuKofO.

* 1: illegal character

2>

1.2.8 Unicode File Names

Most modern operating systems support Unicode file names in some way or another. There are several different ways
to do this and Erlang by default treats the different approaches differently:

Mandatory Unicode file naming

Windows and, for most common uses, MacOS X enforces Unicode support for file names. All files created in
the file system have names that can consistently be interpreted. In MacOS X, al file names are retrieved in
UTF-8 encoding, while Windows has selected an approach where each system call handling file names has a
special Unicode aware variant, giving much the same effect. There are no file names on these systems that are
not Unicode file names, why the default behavior of the Erlang VM isto work in "Unicode file name trandation
mode”, meaning that a file name can be given as a Unicode list and that will be automatically trandated to the
proper name encoding for the underlying operating and file system.

Doingi.e.afile:list_dir/1 ononeof these systems may return Unicode lists with code points beyond
255, depending on the content of the actual file system.

Asthefeatureisfairly new, you may still stumble upon non core applications that cannot handle being provided
with file names containing characters with code points larger than 255, but the core Erlang system should have
no problems with Unicode file names.

Transparent file naming

Most Unix operating systems have adopted a simpler approach, namely that Unicode file naming is not enforced,
but by convention. Those systems usually use UTF-8 encoding for Unicode file names, but do not enforce it.
On such a system, a file name containing characters having code points between 128 and 255 may be named
either as plain 1SO-latin-1 or using UTF-8 encoding. As no consistency is enforced, the Erlang VM can do
no consistent translation of all file names. If the VM would automatically select encoding based on heuristics,
one could get unexpected behavior on these systems. By default, Erlang starts in "latin1" file name mode on
such systems, meaning bytewise encoding in file names. This alows for list representation of al file names
in the system, but, for example, a file named "Ostersund.txt", will appear infile:list_dir/1 aseither
"Ostersund.txt” (if the file name was encoded in bytewise | SO-L atin-1 by the program creating the file, or more
probably as[195, 150, 115, 116, 101, 114, 115, 117, 110, 100] , whichisalist containing UTF-8 bytes
- not what you would want... If you on the other hand use Unicode file name translation on such a system, non-
UTF-8 file names will simply be ignored by functions likefi |l e: i st _di r/ 1. They can be retrieved with
file:list_dir_all/21,butwrongly encoded file nameswill appear as "raw file names".

The Unicode file naming support was introduced with OTP release R14B01. A VM operating in Unicode file name
translation mode can work with files having names in any language or character set (aslong asit is supported by the
underlying OS and file system). The Unicode character list is used to denote file or directory names and if the file
system content is listed, you will also get Unicode lists as return value. The support liesin the Kernel and STDLIB
modules, why most applications (that does not explicitly require the file names to be in the 1SO-latin-1 range) will
benefit from the Unicode support without change.

On operating systems with mandatory Unicode file names, this means that you more easily conform to the file
names of other (non Erlang) applications, and you can also process file names that, at least on Windows, were

Ericsson AB. All Rights Reserved.: STDLIB | 21

1.2 Using Unicode in Erlang

completely inaccessible (due to having names that could not be represented in ISO-latin-1). Also you will avoid
creating incomprehensible file names on MacOS X asthe vfslayer of the OSwill accept al your file namesas UTF-8
and will not rewrite them.

For most systems, turning on Unicode file name tranglation is no problem even if it uses transparent file naming.
Very few systems have mixed file name encodings. A consistent UTF-8 named system will work perfectly in Unicode
file name mode. It was still however considered experimental in R14B01 and is still not the default on such systems.
Unicodefilenametranglationisturned onwiththe+f nu switchtothe On Linux, aVM started without explicitly stating
the file name trandation mode will default to | at i n1 as the native file name encoding. On Windows and MacOS
X, the default behavior is that of Unicode file name trandlation, why thefi | e: nat i ve_name_encodi ng/ 0 by
default returns ut f 8 on those systems (the fact that Windows actually does not use UTF-8 on the file system level
can safely be ignored by the Erlang programmer). The default behavior can, as stated before, be changed using the
+f nu or +f nl optionsto the VM, seetheer | program. If the VM is started in Unicode file name translation mode,
file:native_nane_encodi ng/ 0 will return the atom ut f 8. The +f nu switch can be followed by w, i or e,
to control how wrongly encoded file names are to be reported. wmeansthat awarning issent totheer r or _| ogger
whenever a wrongly encoded file name is "skipped" in directory listings, i means that those wrongly encoded file
names are silently ignored and e means that the API function will return an error whenever a wrongly encoded file
(or directory) name is encountered. wis the default. Notethat fi | e: read_I i nk/ 1 will always return an error if
thelink pointsto an invalid file name.

In Unicode file name mode, file names given to the BIF open_port/2 with the option
{spawn_execut abl e, ...} areaso interpreted as Unicode. So is the parameter list given in the ar gs option
available when using spawn_execut abl e. The UTF-8 trandation of arguments can be avoided using binaries, see
the discussion about raw file names below.

It is worth noting that the file encodi ng options given when opening a file has nothing to do with the file name
encoding convention. Y ou can very well open files containing dataencoded in UTF-8 but having file namesin bytewise
(I ati n1) encoding or vice versa.

Note:

Erlang driversand NIF shared objects still can not be named with names containing code points beyond 127. This
is a known limitation to be removed in a future release. Erlang modules however can, but it is definitely not a
good idea and is still considered experimental.

Notes About Raw File Names

Raw file names were introduced together with Unicode file name support in erts-5.8.2 (OTP R14B01). The reason
"raw file names" was introduced in the system was to be able to consistently represent file names given in different
encodings on the same system. Having the VM automatically trandlate a file name that is not in UTF-8 to alist of
Unicode characters might seem practical, but this would open up for both duplicate file names and other inconsistent
behavior. Consider a directory containing a file named "bjorn" in 1SO-latin-1, while the Erlang VM is operating in
Unicode file name mode (and therefore expecting UTF-8 file naming). The |SO-latin-1 name is not valid UTF-8 and
one could be tempted to think that automatic conversioninfor examplef i | e: I i st _di r/ 1 isagoodidea. But what
would happen if welater tried to open thefile and have the name asaUnicode list (magically converted from the | SO-
latin-1 file name)? The VM will convert the file name given to UTF-8, as this is the encoding expected. Effectively
this means trying to open the file named <<"bjorn"/utf8>>. Thisfile does not exist, and even if it existed it would not
be the same file as the one that was listed. We could even create two files named "bjérn", one named in the UTF-8
encoding and one not. If file:list _dir/1wouldautomatically convert the ISO-latin-1 file name to alist, we
would get two identical file names as the result. To avoid this, we need to differentiate between file names being
properly encoded according to the Unicode file naming convention (i.e. UTF-8) and file names being invalid under
the encoding. By the common fil e: i st _dir/ 1 function, the wrongly encoded file names are simply ignored

22 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

in Unicode file name tranglation mode, but by thefil e: 1i st _dir_al | /1 function, the file names with invalid
encoding are returned as "raw" file names, i.e. as binaries.

The Erlang f i | e module accepts raw file names asinput. open_port ({ spawn_executable, ...} ...)
aso accepts them. As mentioned earlier, the arguments given in the option list to
open_port ({spawn_executable, ...} ...) undergothesame conversion asthefile names, meaning that

the executable will be provided with arguments in UTF-8 as well. This translation is avoided consistently with how
the file names are treated, by giving the argument as a binary.

To force Unicode file name transl ation mode on systems where this is not the default was considered experimental in
OTP R14B01 dueto thefact that theinitial implementation did not ignore wrongly encoded file names, so that raw file
names could spread unexpectedly throughout the system. Beginning with R16B, the wrongly encoded file names are
only retrieved by specia functions(e.g.fil e: i st_dir_all/ 1), sotheimpact on existing code is much lower,
why it is now supported. Unicode file name translation is expected to be default in future rel eases.

Even if you are operating without Unicode file naming transl ation automatically done by the VM, you can access and
create fileswith namesin UTF-8 encoding by using raw file names encoded as UTF-8. Enforcing the UTF-8 encoding
regardless of the mode the Erlang VM is started in might, in some circumstances be a good idea, as the convention
of using UTF-8 file namesiis spreading.

Notes About MacOS X

MacOS X's vfs layer enforces UTF-8 file namesin a quite aggressive way. Older versions did this by ssmply refusing
to create non UTF-8 conforming file names, while newer versions replace offending bytes with the sequence "%HH",
whereHH istheoriginal character in hexadecimal notation. As Unicode trandlation is enabled by default on MacOS X,
the only way to come up against thisisto either start the VM with the +f nl flag or to use araw file namein bytewise
(I at i n1) encoding. If using araw filename, with a bytewise encoding containing characters between 127 and 255,
to create afile, the file can not be opened using the same name as the one used to createit. Thereis no remedy for this
behaviour, other than keeping the file names in the right encoding.

MacOS X also reorganizes the names of files so that the representation of accents etc is using the "combining
characters', i.e. the character 0 is represented as the code points [111,776], where 111 is the character o and 776 is
the special accent character "combining diaeresis'. Thisway of normalizing Unicode is otherwise very seldom used
and Erlang normalizes those file namesin the opposite way upon retrieval, so that file names using combining accents
are not passed up to the Erlang application. In Erlang the file name "bjérn" is retrieved as [98,106,246,114,110], not
as[98,106,117,776,114,110], even though the file system might think differently. The normalization into combining
accents are redone when actually accessing files, so this can usually be ignored by the Erlang programmer.

1.2.9 Unicode in Environment and Parameters

Environment variables and their interpretation is handled much in the same way as file names. If Unicode file names
are enabled, environment variables as well as parameters to the Erlang VM are expected to be in Unicode.

If Unicode file names are enabled, the calls to os: get env/ 0, 0s: get env/ 1 and os: put env/ 2 will handle
Unicode strings. On Unix-like platforms, the built-in functions will translate environment variablesin UTF-8 to/from
Unicode strings, possibly with code points > 255. On Windows the Unicode versions of the environment system API
will be used, also allowing for code points > 255.

On Unix-like operating systems, parameters are expected to be UTF-8 without trandation if Unicode file names are
enabled.

1.2.10 Unicode-aware Modules

Most of the modulesin Erlang/OTP are of course Unicode-unaware in the sense that they have no notion of Unicode
and really should not have. Typically they handle non-textual or byte-oriented data (likegen_t cp etc).

Modules that actually handle textual data (likei o_li b, string etc) are sometimes subject to conversion or
extension to be able to handle Unicode characters.

Ericsson AB. All Rights Reserved.: STDLIB | 23

1.2 Using Unicode in Erlang

Fortunately, most textual data has been stored in lists and range checking has been sparse, why moduleslikest r i ng
workswell for Unicode lists with little need for conversion or extension.

Some modules are however changed to be explicitly Unicode-aware. These modules include:
uni code

The module uni code is obviously Unicode-aware. It contains functions for conversion between different
Unicode formats aswell as some utilities for identifying byte order marks. Few programs handling Unicode data
will survive without this module.

Thei o module has been extended along with the actual 1/0O-protocol to handle Unicode data. This means that
severa functionsrequire binariesto bein UTF-8 and there are modifiersto formatting control sequencesto allow
for outputting of Unicode strings.

file,group,user

1/O-serversthroughout the system are able to handle Unicode dataand has optionsfor converting data upon actual
output or input to/from the device. Asshown earlier, theshel | hassupport for Unicodeterminalsandthefi | e
module alows for translation to and from various Unicode formats on disk.

The actual reading and writing of files with Unicode data is however not best done with the f i | e module as
its interface is byte oriented. A file opened with a Unicode encoding (like UTF-8), is then best read or written
using thei o module.

re

The r e module alows for matching Unicode strings as a specia option. As the library is actually centered on
matching in binaries, the Unicode support is UTF-8-centered.

Thewx graphical library has extensive support for Unicode text

The module st ri ng works perfectly for Unicode strings as well as for | SO-latin-1 strings with the exception of the
language-dependent t o_upper andt o_I| ower functions, which are only correct for the | SO-latin-1 character set.
Actually they can never function correctly for Unicode characters in their current form, as there are language and
locale issues as well as multi-character mappings to consider when converting text between cases. Converting casein
an international environment is a big subject not yet addressed in OTP.

1.2.11 Unicode Data in Files

The fact that Erlang as such can handle Unicode data in many forms does not automatically mean that the content of
any file can be Unicode text. The external entities such as ports or 1/0O-servers are not generally Unicode capable.

Ports are always byte oriented, so before sending data that you are not sure is bytewise encoded to a port, make sure
to encode it in a proper Unicode encoding. Sometimes this will mean that only part of the data shall be encoded as
e.g. UTF-8, some parts may be binary data (like alength indicator) or something else that shall not undergo character
encoding, so ho automatic translation is present.

I/O-serversbehavealittledifferently. Thel/O-serversconnected to terminals (or stdout) can usually copewith Unicode
data regardless of the encodi ng option. This is convenient when one expects a modern environment but do not
want to crash when writing to a archaic terminal or pipe. Files on the other hand are more picky. A file can have
an encoding option which makes it generally usable by the io-module (e.g. { encodi ng, ut f 8}), but is by default
opened as a byte oriented file. The f i | e module is byte oriented, why only |SO-Latin-1 characters can be written
using that module. The i o0 module is the one to use if Unicode data is to be output to a file with other encodi ng
than | ati nl1 (ak.a. bytewise encoding). It is dlightly confusing that a file opened with eg. fi | e: open(Nane,

[read, {encodi ng, ut f8}]), cannot be properly read using fi | e: read(Fi | e, N) but you have to use the
i 0 moduleto retrieve the Unicode datafromit. Thereasonisthatfil e: read andfil e: wri t e (and friends) are

24 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

purely byte oriented, and should so be, asthat isthe way to access files other than text files - byte by byte. Just aswith
ports, you can of course write encoded data into afile by "manually” converting the data to the encoding of choice
(using the uni code module or the bit syntax) and then output it on a bytewise encoded (I at i n1) file.

The rule of thumb is that the file module should be used for files opened for bytewise access
({encodi ng, I ati n1}) and the i 0 module should be used when accessing files with any other encoding (e.g.
{encodi ng, uf 8}).

Functions reading Erlang syntax from files generally recognize the codi ng: comment and can therefore handle
Unicode data on input. When writing Erlang Termsto afile, you should insert such comments when applicable:

$ erl +fna +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> file:write file("test.term",<<"%% coding: utf-8\n[{\"lOHnkop\",4711}].\n"/utf8>>).
ok

2> file:consult("test.term").

{ok, [[{"lOHnkon",4711}11}

1.2.12 Summary of Options

The Unicode support is controlled by both command line switches, some standard environment variables and the
version of OTPyouareusing. Most optionsaffect mainly theway Unicode dataisdisplayed, not the actual functionality
of the API'sin the standard libraries. This meansthat Erlang programs usually do not need to concern themselves with
these options, they are more for the devel opment environment. An Erlang program can be written so that it works well
regardless of the type of system or the Unicode options that are in effect.

Here follows a summary of the settings affecting Unicode:
The LANGand LC_CTYPE environment variables

The language setting in the OS mainly affects the shell. The terminal (i.e. the group leader) will operate with
{encodi ng, uni code} onlyif theenvironment tellsit that UTF-8 isallowed. This setting should correspond
to the actual terminal you are using.

The environment can also affect file name interpretation, if Erlang is started with the +f na flag.

You can check the setting of this by calling i o: get opt s(), which will give you an option list containing
{encodi ng, uni code} or{encodi ng, | atinl}.

The+pc {uni codell atinl} flagtoerl (1)

This flag affects what is interpreted as string data when doing heuristic string detection in the shell and in
iofio_lib:format withthe"~t p" and ~t P formatting instructions, as described above.

You can check this option by calling io:printable range/0, which in R16B will return uni code or
latinl. To be compatible with future (expected) extensions to the settings, one should rather use
io_lib:printable_list/1tocheckifalistisprintable according to the setting. That function will take
into account new possible settings returned fromi o: pri nt abl e_r ange/ 0.

The +f n{l |aju} [{Wi |e}] flagtoer] (1)

Thisflag affects how the file names are to be interpreted. On operating systems with transparent file naming, this
has to be specified to allow for file naming in Unicode characters (and for correct interpretation of file names
containing characters > 255.

+f nl means bytewise interpretation of file names, which was the usual way to represent 1SO-L atin-1 file names
before UTF-8 file naming got widespread. Thisisthe default on all Unix-like operating systems except MacOS X.

Ericsson AB. All Rights Reserved.: STDLIB | 25

1.2 Using Unicode in Erlang

+f nu means that file names are encoded in UTF-8, which is nowadays the common scheme (athough not
enforced).

+f na means that you automatically select between +f nl and +f nu, based on the LANG and LC_CTYPE
environment variables. Thisis optimistic heuristics indeed, nothing enforces a user to have a termina with the
sameencoding asthefile system, but usually, thisisthe case. Thismight bethe default behavior in afuturerelease.

The file name translation mode can be read with thefi | e: nati ve_nane_encodi ng/ 0 function, which
returns| at i n1 (meaning bytewise encoding) or ut f 8.

epp: defaul t _encodi ng/ 0

This function returns the default encoding for Erlang source files (if no encoding comment is present) in the
currently running release. For R16 thisreturns| at i n1 (meaning bytewise encoding). In R17 and forward it is
expected to return ut f 8.

The encoding of each file can be specified using comments as described in epp(3) .
i 0: setopts/{1,2} andthe- ol dshel | /-noshel | flags.

When Erlang is started with - ol dshel | or - noshel I, the I/O-server for st andar d_i o is default set to
bytewise encoding, while an interactive shell defaults to what the environment variables says.

With the i 0: set opt s/ 2 function you can set the encoding of a file or other 1/0O-server. This can aso be
set when opening a file. Setting the terminal (or other st andar d_i o server) unconditionally to the option
{'encodi ng, ut f 8} will for example make UTF-8 encoded characters being written to the device regardless
of how Erlang was started or the users environment.

Opening fileswith encodi ng option is convenient when writing or reading text files in a known encoding.
You can retrieve the encodi ng setting for an 1/O-server using i 0: get opt s() .

1.2.13 Recipes

When starting with Unicode, one often stumbles over some common issues. | try to outline some methods of dealing
with Unicode datain this section.

Byte Order Marks

A common method of identifying encoding in text-filesis to put a byte order mark (BOM) first in the file. The BOM
is the code point 16#FEFF encoded in the same way as the rest of the file. If such afileisto be read, the first few
bytes (depending on encoding) is not part of the actual text. This code outlines how to open afilewhich isbelieved to
have aBOM and set the files encoding and position for further sequential reading (preferably using thei o module).
Note that error handling is omitted from the code:

open_bom file for reading(File) ->
{ok,F} = file:open(File,[read,binaryl]),
{ok,Bin} = file:read(F,4),
{Type,Bytes} = unicode:bom to encoding(Bin),
file:position(F,Bytes),
io:setopts(F, [{encoding,Type}l),
{ok,F}.

The uni code: bom t o_encodi ng/ 1 function identifies the encoding from a binary of at least four bytes. It
returns, along with an term suitable for setting the encoding of the file, the actual length of the BOM, so that the file
position can be set accordingly. Notethatf i | e: posi ti on/ 2 alwaysworks on byte-offsets, so that the actual byte-
length of the BOM is needed.

To open afilefor writing and putting the BOM first is even simpler:

26 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

open_bom_file for writing(File,Encoding) ->
{ok,F} = file:open(File, [write,binary]),
ok = file:write(File,unicode:encoding to bom(Encoding)),
io:setopts(F, [{encoding,Encoding}]),
{ok,F}.

In both casesthe fileisthen best processed using thei o module, asthefunctionsini o can handle code points beyond
the 1SO-latin-1 range.

Formatted I/O

When reading and writing to Unicode-aware entities, like the User or afile opened for Unicode translation, you will
probably want to format text strings using the functionsini o ori o_I i b. For backward compatibility reasons, these
functions do not accept just any list asastring, but require a special translation modifier when working with Unicode
texts. The modifier ist . When applied to the s control character in a formatting string, it accepts all Unicode code
points and expect binariesto bein UTF-8:

1> io:format("~ts~n", [<<"830"/utf8>>]).
346

ok

2> io:format("~s~n", [<<
A¥AxAq

ok

nL

aad"/utf8>>]).

Obviously thesecondi o: f or mat / 2 givesundesired output because the UTF-8 binary isnot in latinl. For backward
compatibility, the non prefixed s control character expects bytewise encoded 1SO-latin-1 characters in binaries and
lists containing only code points < 256.

Aslong as the data is always lists, thet modifier can be used for any string, but when binary datais involved, care
must be taken to make the right choice of formatting characters. A bytewise encoded binary will also be interpreted as
astring and printed even when using ~t s, but it might be mistaken for avalid UTF-8 string and one should therefore
avoid using the ~t s control if the binary contains bytewise encoded characters and not UTF-8.

The functionforrmat/ 2 ini o_| i b behaves similarly. This function is defined to return a deep list of characters
and the output could easily be converted to binary data for outputting on a device of any kind by a simple
erlang: list_to_binary/ 1. Whenthetrandation modifier isused, thelist can however contain characters that
cannot be stored in one byte. Thecall toer | ang: i st _t o_bi nary/ 1 will in that case fail. However, if the [/O
server you want to communicate with is Unicode-aware, the list returned can still be used directly:

$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> io lib:format("~ts~n", ["Ftovvikovt"]).
["Ttovvikovt", "\n"]

2> io:put chars(io lib:format("~ts~n", ["ltoOvikovt"])).
F 1oV 1KoV T

ok

The Unicode string is returned as a Unicode list, which is recognized as such since the Erlang shell uses the Unicode
encoding (and is started with all Unicode characters considered printable). The Unicode list is valid input to the
i 0: put _char s/ 2 function, so data can be output on any Unicode capable device. If the device is a terminal,
characters will be output inthe\ x{ H ...} format if encodingisl at i n1 otherwisein UTF-8 (for the non-interactive
terminal - "oldshell" or "noshell") or whatever is suitable to show the character properly (for an interactive terminal -

Ericsson AB. All Rights Reserved.: STDLIB | 27

1.2 Using Unicode in Erlang

the regular shell). The bottom line is that you can always send Unicode datato the st andar d_i o device. Fileswill
however only accept Unicode code points beyond | SO-latin-1 if encodi ng is set to something elsethan| at i n1.

Heuristic Identification of UTF-8

Whileit is strongly encouraged that the actual encoding of charactersin binary datais known prior to processing, that
is not always possible. On atypical Linux system, there is a mix of UTF-8 and ISO-latin-1 text files and there are
seldom any BOM'sin the files to identify them.

UTF-8 is designed in such away that | SO-latin-1 characters with numbers beyond the 7-bit ASCI| range are seldom
considered valid when decoded as UTF-8. Therefore one can usually use heuristics to determineif afileisin UTF-8
or if it isencoded in ISO-latin-1 (one byte per character) encoding. The uni code module can be used to determine
if data can be interpreted as UTF-8:

heuristic_encoding bin(Bin) when is binary(Bin) ->
case unicode:characters to binary(Bin,utf8,utf8) of
Bin ->
utf8;
7—>
latinl
end.

If one does not have a complete binary of the file content, one could instead chunk through the file and check
part by part. The return-tuple {i nconpl et e, Decoded, Rest} fromuni code: characters_t o_bi nary/
{1, 2, 3} comesinhandy. Theincompleterest from one chunk of dataread from thefileisprepended to the next chunk
and we therefore circumvent the problem of character boundaries when reading chunks of bytesin UTF-8 encoding:

heuristic _encoding file(FileName) ->
{ok,F} = file:open(FileName, [read,binary]),
loop through file(F,<<>>,file:read(F,1024)).

loop through file(,<<>>,eof) ->
utfs8;
loop through file(, ,eof) ->
latinl;
loop_through file(F,Acc,{ok,Bin}) when is binary(Bin) ->
case unicode:characters to binary([Acc,Bin]) of
{error, , } ->
latinl;
{incomplete, ,Rest} ->
loop through file(F,Rest,file:read(F,1024));
Res when is binary(Res) ->
loop through file(F,<<>>,file:read(F,1024))
end.

Another option isto try to read the whole filein UTF-8 encoding and seeif it fails. Here we need to read thefile using
i 0: get _char s/ 3, aswe have to succeed in reading characters with a code point over 255:

heuristic encoding file2(FileName) ->
{ok,F} = file:open(FileName, [read,binary,{encoding,utf8}]),
loop through file2(F,io:get chars(F,'',1024)).

loop through file2(,eof) ->
utf8;

28 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

loop through file2(,{error, Err}) ->
latinl;

loop through file2(F,Bin) when is binary(Bin) ->
loop through file2(F,io:get chars(F,'"',1024)).

Lists of UTF-8 Bytes

For various reasons, you may find yourself having a list of UTF-8 bytes. This is not a regular string of Unicode
characters as each element in the list does not contain one character. Instead you get the "raw" UTF-8 encoding that
you havein binaries. Thisis easily converted to aproper Unicode string by first converting byte per byteinto abinary
and then converting the binary of UTF-8 encoded characters back to a Unicode string:

utf8 list to string(StrangelList) ->
unicode:characters to list(list to binary(StrangelList)).

Double UTF-8 Encoding

When working with binaries, you may get the horrible™"double UTF-8 encoding”, where strange characters are encoded
in your binaries or files that you did not expect. What you may have got, is a UTF-8 encoded binary that is for the
second time encoded as UTF-8. A common situation is where you read a file, byte by byte, but the actual content is
already UTF-8. If you then convert the bytesto UTF-8, using i.e. theuni code module or by writing to afile opened
with the { encodi ng, ut f 8} option. You will have each byte in the in the input file encoded as UTF-8, not each
character of the original text (one character may have been encoded in several bytes). Thereisno real remedy for this
other than being very sure of which datais actually encoded in which format, and never convert UTF-8 data (possibly
read byte by byte from afile) into UTF-8 again.

The by far most common situation where this happens, is when you get lists of UTF-8 instead of proper Unicode
strings, and then convert them to UTF-8 in abinary or on afile:

wrong thing to do() ->

{ok,Bin} = file:read file("an utf8 encoded file.txt"),

MyList = binary to list(Bin), %% Wrong! It is an utf8 binary!

{ok,C} = file:open("catastrophe.txt", [write,{encoding,utf8}]),

io:put chars(C,MyList), %% Expects a Unicode string, but get UTF-8

%% bytes in a list!

The file catastrophe.txt contains more or less unreadable
garbage!

file:close(C).

Make very sureyou know what abinary contains before converting it to astring. If no other option exists, try heuristics:

if you can not know() ->
{ok,Bin} = file:read file("maybe utf8 encoded file.txt"),
MyList = case unicode:characters to list(Bin) of
L when is list(L) ->
L;
_ ->
binary to list(Bin) %% The file was bytewise encoded
end,
%% Now we know that the list is a Unicode string, not a list of UTF-8 bytes
{ok,G} = file:open("greatness.txt", [write,{encoding,utf8}]),
io:put chars(G,MyList), %% Expects a Unicode string, which is what it gets!
file:close(G). %% The file contains valid UTF-8 encoded Unicode characters!

Ericsson AB. All Rights Reserved.: STDLIB | 29

1.2 Using Unicode in Erlang

30 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

2 Reference Manual

The Standard Erlang Libraries application, STDLIB, contains modules for manipulating lists, strings and files etc.

Ericsson AB. All Rights Reserved.: STDLIB | 31

STDLIB

STDLIB

Application

The STDLIB ismandatory in the sense that the minimal system based on Erlang/OTP consists of Kernel and STDLIB.
The STDLIB application contains no services.

Configuration

The following configuration parameters are defined for the STDLIB application. See app(4) for more information
about configuration parameters.

shell _esc = icl | abort

This parameter can be used to alter the behaviour of the Erlang shell when *G is pressed.
restricted_shell = nodul e()

This parameter can be used to run the Erlang shell in restricted mode.
shel | _cat ch_exception = bool ean()

This parameter can be used to set the exception handling of the Erlang shell's evaluator process.
shell _history length = integer() >= 0

This parameter can be used to determine how many commands are saved by the Erlang shell.
shel | _pronpt _func = {Md, Func} | default

where

e Md = atom()

e Func = atom()

This parameter can be used to set a customized Erlang shell prompt function.
shel | _saved_results = integer() >= 0

This parameter can be used to determine how many results are saved by the Erlang shell.
shel | _strings = bool ean()

This parameter can be used to determine how the Erlang shell outputs lists of integers.

See Also
app(4), application(3), shell(3),

32| Ericsson AB. All Rights Reserved.: STDLIB

array

array

Erlang module

Functional, extendible arrays. Arrays can have fixed size, or can grow automatically as needed. A default valueis used
for entries that have not been explicitly set.

Arrays uses zero based indexing. Thisis a deliberate design choice and differs from other erlang datastructures, e.g.
tuples.

Unlessspecified by the user whenthearray iscreated, the default valueistheatomundef i ned. Thereisno difference
between an unset entry and an entry which has been explicitly set to the same value as the default one (cf. reset/2). If
you need to differentiate between unset and set entries, you must make sure that the default value cannot be confused
with the values of set entries.

The array never shrinks automatically; if anindex | has been used successfully to set an entry, al indicesin therange
[O,1] will stay accessible unless the array sizeis explicitly changed by calling resize/2.

Examples:
%% Create a fixed-size array with entries 0-9 set to 'undefined'
A0 = array:new(10).
10 = array:size(A0).
%% Create an extendible array and set entry 17 to 'true',
%% causing the array to grow automatically
Al = array:set(17, true, array:new()).
18 = array:size(Al).

~+ of

% Read back a stored value
rue = array:get(17, Al).

%% Accessing an unset entry returns the default value
undefined = array:get(3, Al).

%% Accessing an entry beyond the last set entry also returns the
%% default value, if the array does not have fixed size
undefined = array:get(18, Al).

%% "sparse" functions ignore default-valued entries

A2 = array:set(4, false, Al).

[{4, false}, {17, true}] = array:sparse to orddict(A2).

%% An extendible array can be made fixed-size later
3 = array:fix(A2).

=

% A fixed-size array does not grow automatically and does not
% allow accesses beyond the last set entry

"EXIT',{badarg, }} (catch array:set(18, true, A3)).
{'EXIT',{badarg, }} (catch array:get(18, A3)).

-~ ® of

Data Types
array()

A functional, extendible array. The representation is not documented and is subject to change without notice. Note
that arrays cannot be directly compared for equality.

Ericsson AB. All Rights Reserved.: STDLIB | 33

array

array_indx()
array opts()
array opt()

integer() >= 0
array_opt() | [array_opt()]
{fixed, boolean()}

| fixed

| {default, Value :: term()}
| {size, N :: integer() >= 0}
|

(N :: integer() >= 0)
indx pairs() = [indx_pair()]
indx_pair() = {Index :: array_indx(), Value :: term()}

Exports

default(Array :: array()) -> term()
Get the value used for uninitialized entries.
See also: new/2.

fix(Array :: array()) -> array()
Fix the size of the array. This preventsit from growing automatically upon insertion; see also set/3.
See also: relax/1.

foldl(Function, InitialAcc :: A, Array :: array()) -> B
Types:
Function =
fun((Index :: array_indx(), Value :: term(), Acc :: A) -> B)

Fold the elements of the array using the given function and initial accumulator value. The elements are visited in order
from the lowest index to the highest. If Funct i on isnot afunction, the call fails with reason badar g.

See also: foldr/3, map/2, sparse foldl/3.

foldr(Function, InitialAcc :: A, Array :: array()) -> B
Types:
Function =
fun((Index :: array_indx(), Value :: term(), Acc :: A) -> B)

Fold the elements of the array right-to-left using the given function and initial accumulator value. The elements are
visited in order from the highest index to thelowest. If Funct i on isnot afunction, the call failswith reasonbadar g.

See also: foldl/3, map/2.

from list(List :: list()) -> array()
Equivalent to from list(List, undefined).

from list(List :: list(), Default :: term()) -> array()

Convert alist to an extendible array. Def aul t is used as the value for uninitialized entries of the array. If Li st is
not a proper list, the call fails with reason badar g.

See also: new/2, to_list/1

34 | Ericsson AB. All Rights Reserved.: STDLIB

array

from orddict(Orddict :: indx_pairs()) -> array()
Equivalent to from_orddict(Orddict, undefined).

from orddict(Orddict :: indx_pairs(), Default :: term()) ->
array()

Convert an ordered list of pairs{ | ndex, Val ue} to a corresponding extendible array. Def aul t is used as the
value for uninitialized entries of the array. If Or ddi ct isnot aproper, ordered list of pairs whose first elements are
nonnegative integers, the call fails with reason badar g.

See also: new/2, to_orddict/1.

get(I :: array_indx(), Array :: array()) -> term()

Getthevalueof entry | . If I isnot anonnegativeinteger, or if thearray hasfixedsizeand | islarger than the maximum
index, the call failswith reason badar g.

If the array does not have fixed size, this function will return the default value for any index | greater than
size(Array)-1.

See also: set/3.

is array(X :: term()) -> boolean()

Returnst r ue if X appearsto bean array, otherwisef al se. Notethat the check isonly shallow; thereis no guarantee
that X isawell-formed array representation even if this function returnst r ue.

is fix(Array :: array()) -> boolean()
Check if the array hasfixed size. Returnst r ue if the array isfixed, otherwisef al se.

See also: fix/1.
map (Function, Array :: array()) -> array()
Types:
Function =
fun((Index :: array_indx(), Value :: term()) -> term())

Map the given function onto each element of the array. The elements are visited in order from the lowest index to the
highest. If Funct i on isnot afunction, the call fails with reason badar g.

See also: foldl/3, foldr/3, sparse_map/2.

new() -> array()
Create anew, extendible array with initial size zero.
See also: new/1, new/2.

new(Options :: array_opts()) -> array()

Create a new array according to the given options. By default, the array is extendible and has initial size zero. Array
indices start at 0.

Opt i ons isasingleterm or alist of terms, selected from the following:

Ericsson AB. All Rights Reserved.: STDLIB | 35

array

N::integer() >= Oor{size, N:integer() >= 0}

Specifiestheinitia size of the array; thisalso implies{f i xed, true}.If Nisnot anonnegative integer, the
call failswith reason badar g.

fixedor{fixed, true}
Creates afixed-size array; see also fix/1.
{fixed, false}
Creates an extendible (non fixed-size) array.
{default, Value}
Sets the default value for the array to Val ue.
Options are processed in the order they occur inthelist, i.e., later options have higher precedence.
The default value is used as the value of uninitialized entries, and cannot be changed once the array has been created.
Examples:

array:new(100)

creates afixed-size array of size 100.
array:new({default,0})

creates an empty, extendible array whose default valueis 0.
array:new([{size, 10}, {fixed, false}, {default,-1}1)

creates an extendible array with initial size 10 whose default valueis-1.
Seealso: fix/1, from list/2, get/2, new/0, new/2, set/3.

new(Size :: integer() >= 0, Options :: array_opts()) -> array()

Create a new array according to the given size and options. If Si ze is not a nonnegative integer, the call fails with
reason badar g. By default, the array has fixed size. Note that any size specificationsin Opt i ons will override the
Si ze parameter.

If Opti ons isalist, thisissimply equivalenttonew([{ si ze, Size} | Options], otherwiseitisequivalent
tonew([{size, Size} | [Options]].However, using thisfunction directly is more efficient.

Example:

array:new (100, {default,0})

creates a fixed-size array of size 100, whose default valueisO.
See also: new/1.

relax(Array :: array()) -> array()
Make the array resizable. (Reverses the effects of fix/1.)
See also: fix/1.

36 | Ericsson AB. All Rights Reserved.: STDLIB

array

reset(I :: array_indx(), Array :: array()) -> array()

Reset entry | to the default value for the array. If the value of entry | is the default value the array will be returned
unchanged. Reset will never change size of the array. Shrinking can be done explicitly by calling resize/2.

If I isnot a nonnegative integer, or if the array hasfixed sizeand | islarger than the maximum index, the call fails
with reason badar g; cf. set/3

See also: new/2, set/3.

resize(Array :: array()) -> array()

Change the size of the array to that reported by sparse size/1. If the given array has fixed size, the resulting array
will also have fixed size.

See also: resize/2, sparse _size/l.

resize(Size :: integer() >= 0, Array :: array()) -> array()

Change the size of the array. If Si ze is not a nonnegative integer, the cal fails with reason badar g. If the given
array hasfixed size, the resulting array will also have fixed size.

set(I :: array_indx(), Value :: term(), Array :: array()) ->
array()

Set entry | of thearray to Val ue. If | isnot anonnegative integer, or if the array has fixed sizeand | islarger than
the maximum index, the call fails with reason badar g.

If the array does not have fixed size, and | isgreater thansi ze(Array) - 1, thearray will grow to sizel +1.
See also: get/2, reset/2.

size(Array :: array()) -> integer() >= 0
Get the number of entriesinthe array. Entriesare numbered from0tosi ze(Arr ay) - 1; hence, thisisaso theindex
of thefirst entry that is guaranteed to not have been previously set.

See also: set/3, sparse size/l.

sparse_foldl(Function, InitialAcc :: A, Array :: array()) -> B
Types:
Function =
fun((Index :: array_indx(), Value :: term(), Acc :: A) -> B)

Fold the elements of the array using the given function and initial accumulator value, skipping default-valued entries.
The elements are visited in order from the lowest index to the highest. If Funct i on isnot afunction, the call fails
with reason badar g.

See also: foldl/3, sparse foldr/3.

sparse_foldr(Function, InitialAcc :: A, Array :: array()) -> B
Types:
Function =
fun((Index :: array_indx(), Value :: term(), Acc :: A) -> B)

Fold the elements of the array right-to-left using the given function and initial accumulator value, skipping default-
valued entries. The elements are visited in order from the highest index to the lowest. If Funct i on isnot afunction,
the call fails with reason badar g.

Ericsson AB. All Rights Reserved.: STDLIB | 37

array

See also: foldr/3, sparse_foldl/3.

sparse_map(Function, Array :: array()) -> array()
Types:
Function =
fun((Index :: array_indx(), Value :: term()) -> term())

Map the given function onto each element of the array, skipping default-valued entries. The elements are visited in
order from the lowest index to the highest. If Funct i on isnot afunction, the call fails with reason badar g.

See also: map/2.

sparse _size(Array :: array()) -> integer() >= 0

Get the number of entriesin the array up until the last non-default valued entry. In other words, returns| +1 if | isthe
last non-default valued entry in the array, or zero if no such entry exists.

See also: resize/l, size/l.

sparse_to list(Array :: array()) -> list()
Convertsthe array to alist, skipping default-valued entries.
Seealso: to_list/1.

sparse_to orddict(Array :: array()) -> indx_pairs()
Convert the array to an ordered list of pairs{ | ndex, Val ue}, skipping default-valued entries.
See also: to_orddict/1.

to list(Array :: array()) -> list()
Convertsthe array to alist.
See also: from list/2, sparse to list/1.

to orddict(Array :: array()) -> indx_pairs()
Convert the array to an ordered list of pairs{ | ndex, Val ue}.
See also: from_orddict/2, sparse to_orddict/1.

38| Ericsson AB. All Rights Reserved.: STDLIB

base64

base64

Erlang module

Implements base 64 encode and decode, see RFC2045.

Data Types
ascii string() = [1..255]
ascii binary() = binary()

A bi nary() with ASCII charactersin therange 1 to 255.

Exports

encode(Data) -> Baseb64
encode to string(Data) -> Base64String
Types:

Data = ascii_string() | ascii_binary()

Baseb64 = ascii _binary()

Base64String = ascii _string()

Encodes aplain ASCII string into base64. The result will be 33% larger than the data.

decode(Base64) -> Data
decode to string(Base64) -> DataString
mime decode(Base64) -> Data
mime decode to string(Base64) -> DataString
Types:
Base64 = ascii_string() | ascii_binary()
Data = ascii _binary()
DataString = ascii_string()
Decodes a base64 encoded string to plan ASCIl. See RFC4648. mine_decode/1 and

m ne_decode_to_string/ 1 strips away illega characters, while decode/ 1 and decode_to_string/1
only strips away whitespace characters.

Ericsson AB. All Rights Reserved.: STDLIB | 39

beam_lib

beam_lib

Erlang module

beam | i b providesaninterfaceto files created by the BEAM compiler ("BEAM files"). The format used, avariant
of "EA IFF 1985" Standard for Interchange Format Files, divides datainto chunks.

Chunk data can be returned as binaries or as compound terms. Compound terms are returned when chunks are
referenced by names (atoms) rather than identifiers (strings). The names recognized and the corresponding identifiers
are

e abstract_code ("Abst")

e attributes ("Attr")

e conpile_info ("CInf")

+ exports ("ExpT")

e |abeled exports ("ExpT")

e inports ("l mpT")

e indexed_inports ("InpT")

e Jlocals ("LocT")

e labeled locals ("LocT")

e atons ("Atont)

Debug Information/Abstract Code

The option debug_i nf o can be given to the compiler (see compile(3)) in order to have debug information in the
form of abstract code (see The Abstract Format in ERTS User's Guide) stored intheabst r act _code chunk. Tools
such as Debugger and Xref require the debug information to be included.

Warning:

Source code can be reconstructed from the debug information. Use encrypted debug information (see below) to
prevent this.

The debug information can also be removed from BEAM filesusing strip/1, strip_files/1 and/or strip_release/1.

Reconstructing source code

Hereis an example of how to reconstruct source code from the debug information in aBEAM file Beam

{ok,{ ,[{abstract code,{ ,AC}}]}} = beam lib:chunks(Beam, [abstract code]).
io:fwrite("~s~n", [erl prettypr:format(erl syntax:form list(AC))]).

Encrypted debug information

The debug information can be encrypted in order to keep the source code secret, but still being able to use tools such
as Xref or Debugger.

To use encrypted debug information, a key must be provided to the compiler and beam | i b. Thekey isgivenasa
string and it is recommended that it contains at least 32 characters and that both upper and lower case letters as well
as digits and special characters are used.

40 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

The default type -- and currently the only type -- of crypto algorithm is des3_cbc, three rounds of DES. The key
string will be scrambled using er | ang: nd5/ 1 to generate the actual keys used for des3_chbc.

Note:

Asfar aswe know by thetime of writing, it isinfeasibleto break des3_chbc encryption without any knowledge
of the key. Therefore, aslong asthe key is kept safe and is unguessable, the encrypted debug information should
be safe from intruders.

There are two ways to provide the key:

* Usethe compiler option { debug_i nf o, Key}, see compile(3), and the function crypto_key fun/1 to register a
fun which returns the key whenever beam | i b needs to decrypt the debug information.

If no such funisregistered, beam | i b will instead search for a. er | ang. crypt file, see below.
« Storethekey inatext filenamed. er | ang. crypt .

In this case, the compiler option encr ypt _debug_i nf o can be used, see compile(3).
.erlang.crypt

beam | i b searchesfor. er | ang. cr ypt inthe current directory and then the home directory for the current user.
If thefileisfound and contains akey, beam | i b will implicitly create a crypto key fun and register it.

The. erl ang. crypt file should contain asingle list of tuples:

{debug info, Mode, Module, Key}

Mode isthetype of crypto agorithm; currently, the only allowed valuethusisdes3_cbc. Modul e iseither an atom,
in which case Key will only be used for the module Modul e, or [] , in which case Key will be used for all modules.
Key isthe non-empty key string.

The Key in the first tuple where both Mode and Modul e matches will be used.

Hereisan exampleof an. er | ang. cr ypt filethat returns the same key for all modules:

[{debug_info, des3_cbc, [], "%>7}|pc/DM6Cga*68$Mw]L#& GejriG~"}].

And here is a dightly more complicated example of an . er | ang. cr ypt which provides one key for the module
t , and another key for al other modules:

[{debug info, des3 cbc, t, "My KEY"},
{debug_info, des3 cbc, [], "%>7}|pc/DM6Cga*68$Mw]L#& Gejr1G "}].

Note:

Do not use any of the keys in these examples. Use your own keys.

Ericsson AB. All Rights Reserved.: STDLIB | 41

beam_lib

Data Types
beam() = module() | file:filename() | binary()

Each of the functions described below accept either the module name, the filename, or a binary containing the beam
module.

chunkdata() = {chunkid(), dataB()}
| {abstract code, abst_code()}
| {attributes, [attrib_entry()]1}
| {compile info, [conpinfo_entry()]1}
| {exports, [{atom(), arity()}1}
| {labeled exports, [labeled_entry()]1}
| {imports, [mfa()]1}
| {indexed imports,
[{i ndex() ,

module(),

Function :: atom(),

arity()}1}
| {locals, [{atom(), arity()}1}
| {labeled locals, [labeled_entry()]1}
| {atoms, [{integer(), atom()}]1}

Thelist of attributesissorted on At t r i but e (in attrib_entry()), and each attribute name occurs once in the list. The
attribute values occur in the same order asin thefile. The lists of functions are al so sorted.

chunkid() = nonempty string()

"Abst" | "Attr" | "CInf" | "ExpT" | "ImpT" | "LocT" | "Atom"

dataB() = binary()

abst code() = {AbstVersion :: atom(), forns()}
| no abstract code

It is not checked that the forms conform to the abstract format indicated by Abst Ver si on.no_abstract _code
means that the " Abst " chunk is present, but empty.

forms() = [erl _parse:abstract _form)]
compinfo entry() = {InfoKey :: atom(), term()}
attrib entry() =
{Attribute :: atom(), [AttributeValue :: term()]}
labeled entry() = {Function :: atom(), arity(), label ()}
index() = integer() >= 0
label() = integer()
chunkref() = chunknanme() | chunki d()
chunkname() = abstract code
| attributes
| compile info
| exports
| labeled exports
| imports
| indexed imports
| locals
| labeled locals

42 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

| atoms

chnk_rsn() = {unknown chunk, file:filename(), atom()}
| {key missing or invalid,

file:filenane(),

abstract code}

info_rsn()

info_rsn() = {chunk too big,
file:filenane(),
chunki d() ,
ChunkSize :: integer() >= 0,
FileSize :: integer() >= 0}
| {invalid beam file,
file:filenane(),
Position :: integer() >= 0}
| {invalid chunk, file:filename(), chunkid()}
| {missing chunk, file:filename(), chunkid()}
| {not a beam file, file:filenane()}
| {file error, file:filename(), file:posix()}
Exports

chunks(Beam, ChunkRefs) ->
{ok, {module(), [chunkdata()]}} |
{error, beam 1lib, chnk_rsn()}

Types.
Beam = beam()
ChunkRefs = [chunkref ()]

Reads chunk data for selected chunks refs. The order of the returned list of chunk data is determined by the order of
thelist of chunks references.

chunks (Beam, ChunkRefs, Options) ->
{ok, {module(), [ChunkResult]}} |
{error, beam 1lib, chnk_rsn()}

Types:
Beam = beamn()
ChunkRefs = [chunkref ()]
Options = [allow missing chunks]
ChunkResult = chunkdat a()
| {ChunkRef :: chunkref (), missing chunk}

Reads chunk data for selected chunks refs. The order of the returned list of chunk data is determined by the order of
thelist of chunks references.

By default, if any requested chunk is missing in Beam an error tuple is returned. However, if the option
al | ow_mi ssi ng_chunks has been given, aresult will be returned even if chunks are missing. In the result list,
any missing chunks will be represented as { ChunkRef , ni ssi ng_chunk} . Note, however, that if the " At ont'
chunk if missing, that is considered afatal error and the return value will bean er r or tuple.

version(Beam) ->
{ok, {module(), [Version :: term()1}} |

Ericsson AB. All Rights Reserved.: STDLIB | 43

beam_lib

{error, beam 1lib, chnk_rsn()}
Types.
Beam = beam()

Returns the module version(s). A version is defined by the module attribute - vsn(Vsn) . If this attribute is not
specified, the version defaults to the checksum of the module. Note that if the version Vsn is not alist, it is made
into one, that is{ ok, { Modul e, [Vsn] } } isreturned. If there are several - vsn module attributes, the result is the
concatenated list of versions. Examples:

1> beam lib:version(a). % -vsn(1).

{ok,{a, [1]}}

2> beam lib:version(b). % -vsn([1]).

{ok,{b, [1]}}

3> beam lib:version(c). % -vsn([1]). -vsn(2).
{ok,{c,[1,2]}}

4> beam lib:version(d). % no -vsn attribute

{ok, {d, [275613208176997377698094100858909383631]}}

md5(Beam) -> {ok, {module(), MD5}} | {error, beam lib, chnk_rsn()}
Types.

Beam = beam()

MD5 = binary()

Calculates an MD5 redundancy check for the code of the module (compilation date and other attributes are not
included).

info(Beam) -> [InfoPair] | {error, beam lib, info_rsn()}

Types:
Beam = beam()
InfoPair = {file, Filename :: file:filenanme()}

| {binary, Binary :: binary()}
| {module, Module :: module()}
|

{chunks,
[{ChunkId :: chunkid(),
Pos :: integer() >= 0

Size :: integer() >= é}]}

Returns alist containing some information about a BEAM fileastuples{1tem | nf 0}:
{file, Filenanme} | {binary, Binary}

The name (string) of the BEAM file, or the binary from which the information was extracted.
{nodul e, Modul e}

The name (atom) of the module.
{chunks, [{Chunkld, Pos, Size}]}

For each chunk, the identifier (string) and the position and size of the chunk data, in bytes.

cmp(Beaml, Beam2) -> ok | {error, beam lib, cnmp_rsn()}
Types:

44 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

Beaml = Beam2 = bean()

cmp_rsn() = {modules different, module(), module()}
| {chunks different, chunkid()}

| different chunks

| info_rsn()

Compares the contents of two BEAM files. If the module names are the same, and all chunks
except for the "Cl nf" chunk (the chunk containing the compilation information which is returned by
Modul e: modul e_i nf o(conpi | €)) have the same contents in both files, ok is returned. Otherwise an error
message is returned.

cmp dirs(Dirl, Dir2) ->
{Onlyl, Only2, Different} | {error, beam lib, Reason}

Types:
Dirl = Dir2 = atom() | file:filenane()
Onlyl = Only2 = [file:filename()]
Different =
[{Filenamel :: file:filenane(), Filename2 :: file:filenane()}]
Reason = {not a directory, term()} | info_rsn()

The cnp_di r s/ 2 function compares the BEAM files in two directories. Only files with extension " . beant' are
compared. BEAM filesthat exist in directory Di r 1 (Di r 2) only are returned in Onl y1 (Onl y2). BEAM files that
exist on both directories but are considered different by cnp/ 2 are returned as pairs{Fi | enanel, Fi | enane2}
whereFi | enanel (Fi | enane2) existsin directory Di r 1 (Di r 2).

diff dirs(Dirl, Dir2) -> ok | {error, beam lib, Reason}

Types.
Dirl = Dir2 = atom() | file:filenane()
Reason = {not a directory, term()} | info_rsn()

Thedi ff_di rs/ 2 function compares the BEAM files in two directories the way cnp_di r s/ 2 does, but names
of filesthat exist in only one directory or are different are presented on standard outpui.

strip(Beaml) ->
{ok, {module(), Beam2}} | {error, beam lib, info_rsn()}

Types.
Beaml = Beam2 = bean{()

Thestri p/ 1 function removes all chunks from a BEAM file except those needed by the loader. In particular, the
debug information (abst r act _code chunk) is removed.

strip files(Files) ->
{ok, [{module(), Beam}1} |
{error, beam lib, info_rsn()}

Types:
Files = [beam()]
Beam = beam()

Thestri p_fil es/ 1 functionremovesall chunksexcept those needed by theloader from BEAM files. In particular,
the debug information (abst r act _code chunk) isremoved. The returned list contains one element for each given
filename, in thesameorder asinFi | es.

Ericsson AB. All Rights Reserved.: STDLIB | 45

beam_lib

strip release(Dir) ->
{ok, [{module(), file:filename()}1} |
{error, beam lib, Reason}

Types.
Dir = atom() | file:filename()
Reason = {not a directory, term()} | info_rsn()

Thestri p_rel ease/ 1 function removes all chunks except those needed by the loader from the BEAM files of a
release. Di r should be the installation root directory. For example, the current OTP release can be stripped with the
cal beam | ib:strip_rel ease(code:root_dir()).

format error(Reason) -> io_lib:chars()
Types:
Reason = term()

Given the error returned by any function in this module, the function f or mat _er r or returns a descriptive string of
the error in English. For file errors, the functionf i | e: f or mat _error (Posi x) should be called.

crypto_key fun(CryptoKeyFun) -> ok | {error, Reason}
Types:
CryptoKeyFun = crypto_fun()
Reason = badfun | exists | term()
crypto_fun() = fun((crypto_fun_arg()) -> term())
crypto fun_ arg() = init
| clear
| {debug info,
mode() ,
module(),
file:filenane()}

mode() = des3 cbc

The crypt o_key_fun/ 1 function registers a unary fun that will be caled if beam | i b needs to read an
abstract _code chunk that has been encrypted. The fun isheld in aprocess that is started by the function.

If there already is afun registered when attempting to register afun, { error, exi st s} isreturned.
The fun must handl e the following arguments:

CryptoKeyFun(init) -> ok | {ok, NewCryptoKeyFun} | {error, Term}

Called when the fun is registered, in the process that holds the fun. Here the crypto key fun can do any necessary
initializations. If { ok, NewCr ypt oKeyFun} isreturned then NewCr ypt oKeyFun will be registered instead of
Crypt oKeyFun. If {error, Tern} isreturned, the registration is aborted and cr ypt o_key fun/ 1 returns
{error, Ternt} aswell.

CryptoKeyFun({debug info, Mode, Module, Filename}) -> Key

Called when the key is needed for the module Mbdul e in the file named Fi | enane. Mode is the type of crypto
algorithm; currently, the only possible value thusisdes3_cbc. The call should fail (raise an exception) if there is
no key available.

46 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

CryptoKeyFun(clear) -> term()

Called beforethefunisunregistered. Here any cleaning up can bedone. Thereturn valueis not important, but is passed
back to the caller of cl ear _crypt o_key_fun/ 0 aspart of its return value.

clear crypto key fun() -> undefined | {ok, Result}
Types:
Result = undefined | term()
Unregisters the crypto key fun and terminates the process holding it, started by cr ypt o_key_fun/ 1.

Thecl ear _crypto_key_fun/ 1 either returns{ ok, undefi ned} if there was no crypto key fun registered,
or { ok, Tern},whereTer misthereturnvaluefrom Cr ypt oKeyFun(cl ear),seecrypto_key_ fun/ 1.

Ericsson AB. All Rights Reserved.: STDLIB | 47

binary

binary

Erlang module

This module contains functions for manipulating byte-oriented binaries. Although the majority of functions could be
implemented using bit-syntax, the functions in this library are highly optimized and are expected to either execute
faster or consume less memory (or both) than a counterpart written in pure Erlang.

The module isimplemented according to the EEP (Erlang Enhancement Proposal) 31.

Note:

Thelibrary handles byte-oriented data. Bitstrings that are not binaries (does not contain whole octets of bits) will
result in abadar g exception being thrown from any of the functions in this module.

Data Types

cp()

Opaque data-type representing a compiled search-pattern. Guaranteed to be a tuple() to allow programs to distinguish
it from non precompiled search patterns.

part() = {Start :: integer() >= 0, Length :: integer()}

A representaion of a part (or range) in a binary. Start is a zero-based offset into a binary() and Length is the length
of that part. Asinput to functionsin this module, a reverse part specification is allowed, constructed with a negative
Length, so that the part of the binary begins at Start + Length and is -Length long. Thisis useful for referencing the
last N bytes of abinary as{ size(Binary), -N}. Thefunctionsin this module always return part()'s with positive Length.

Exports

at(Subject, Pos) -> byte()
Types.

Subject = binary()

Pos = integer() >= 0

Returns the byte at position Pos (zero-based) in the binary Subj ect as an integer. If Pos >=
byt e_si ze(Subj ect) ,abadar g exception is raised.

bin to list(Subject) -> [byte()]
Types:
Subject = binary()
Thesameasbi n_to_list(Subject, {0, byte size(Subject)}).

bin to list(Subject, PosLen) -> [byte()]
Types:

48 | Ericsson AB. All Rights Reserved.: STDLIB

binary

Subject = binary()
PosLen = part()

Converts Subj ect toalist of byt e() s, each representing the value of one byte. Thepar t () denotes which part
of thebi nar y() to convert. Example:

1> binary:bin_to list(<<"erlang">>,{1,3}).
" r.'l-a "
%% or [114,108,97] in list notation.

If PosLen in any way references outside the binary, abadar g exception israised.

bin to list(Subject, Pos, Len) -> [byte()]
Types.

Subject = binary()

Pos = integer() >= 0

Len = integer()
Thesameas bin_to_|ist(Subject, {Pos, Len}).

compile pattern(Pattern) -> cp()
Types:
Pattern = binary() | [binary()]
Builds an internal structure representing a compilation of a search-pattern, later to be used in the match/3, matches/3,

split/3 or replace/4 functions. The cp() returned is guaranteed to be at upl e() to allow programs to distinguish
it from non pre-compiled search patterns

When a list of binaries is given, it denotes a set of adternative binaries to search for.
l.e if [<<"functional">> <<"programm ng">>] is given as Pattern, this means "either
<<"functional ">> or <<" programi ng" >>". The pattern is a set of aternatives; when only a single binary
isgiven, the set has only one element. The order of alternativesin a pattern is not significant.

Thelist of binaries used for search alternatives shall be flat and proper.
If Pat t er nisnot abinary or aflat proper list of binarieswith length > 0, abadar g exception will be raised.

copy(Subject) -> binary()
Types:

Subject = binary()
Thesameascopy(Subj ect, 1).

copy(Subject, N) -> binary()
Types:
Subject = binary()
N = integer() >= 0
Creates a binary with the content of Subj ect duplicated Ntimes.

This function will always create a new binary, evenif N = 1. By using copy/ 1 on abinary referencing a larger
binary, one might free up the larger binary for garbage collection.

Ericsson AB. All Rights Reserved.: STDLIB | 49

binary

Note:

By deliberately copying a single binary to avoid referencing a larger binary, one might, instead of freeing up
the larger binary for later garbage collection, create much more binary data than needed. Sharing binary datais
usually good. Only in special cases, when small parts reference large binaries and the large binaries are no longer
used in any process, deliberate copying might be a good idea.

If N< O, abadar g exception israised.

decode unsigned(Subject) -> Unsigned
Types:

Subject = binary()

Unsigned = integer() >= 0
Thesameasdecode_unsi gned(Subj ect, big).

decode unsigned(Subject, Endianess) -> Unsigned
Types.
Subject = binary()
Endianess = big | little
Unsigned = integer() >= 0
Converts the binary digit representation, in big or little endian, of a positive integer in Subj ect to an Erlang
i nteger().
Example:

1> binary:decode unsigned(<<169,138,199>>,big).
11111111

encode unsigned(Unsigned) -> binary()
Types:

Unsigned = integer() >= 0
Thesameasencode_unsi gned(Unsi gned, big).

encode_unsigned(Unsigned, Endianess) -> binary()
Types.

Unsigned = integer() >= 0

Endianess = big | little

Converts a positive integer to the smallest possible represe